## Geometric Computation: Introduction

Piotr Indyk

September 4, 2003

### Welcome to 6.838 !

- Overview and goals
- Course Information
- Syllabus
- 2D Convex hull
- Signup sheet

# **Geometric Computation**

- Geometric computation occurs everywhere:
  - Geographic Information Systems (GIS): nearest post office, map overlays
  - Simulation: collision detection
  - Computer graphics: visibility tests for rendering, lighting simulations
  - Computational drug design: spatial indexing
  - Computer vision: pattern matching
  - Robotics: motion planning, map construction and localization

- ...

# **Computational Geometry**

- Started in mid 70's
- Focused on design and analysis of algorithms for geometric problems
- Many problems well-solved, e.g., Voronoi diagrams, convex hulls
- Many other problems remain open

#### **Course Goals**

- Introduction to Computational Geometry
  - Well-established results and techniques
  - New directions

# **Course Information**

- 3-0-9 H-level Graduate Credit
- Grading:
  - 4 problem sets (see calendar):
  - In each PSet:
    - Core component (mandatory): 6.046-style
    - Two optional components:
      - More theoretical problems
      - Java programming assignments
  - Can collaborate, but solutions written separately
  - No midterm/final J
- Prerequisites: understanding of algorithms and probability

# Syllabus

- Part I Classic CG:
  - 1. 2D Convex hull
  - 2. Segment intersection
  - 3. LP in low dimensions
  - 4. Polygon triangulation
  - 5. Range searching
  - 6. Point location
  - 7. Arrangements and duality
  - 8. Voronoi diagrams
  - 9. Delaunay triangulations
  - 10. Convex hulls in 3D
  - 11. Binary space partitions
  - 12. Motion planning and Minkowski sum

Use "Computational Geometry: Algorithms and Applications" by de Berg, van Kreveld, Overmars, Schwarzkopf (2<sup>nd</sup> edition).

September 4, 2003

## Syllabus ctd.

- Part II New directions:
  - 13. Folding
  - 14. Quad-trees
  - 15. Kinetic algorithms
  - 16. LP in higher dimensions
  - 17. Closest pair in low dimensions
  - 18. Approximate nearest neighbor in low dimensions
  - 19. Approximate nearest neighbor in high dimensions: LSH
  - 20. Low-distortion embeddings
  - 21. Low-distortion embeddings II
  - 22. Geometric algorithms for external memory
  - 23. Geometric algorithms for streaming data
  - 24. Combinatorial geometry
  - 25. Exciting topic X
  - 26. Conclusions

## Fall'03 vs Fall'01

- Less Computer Graphics
- More Computational Geometry
- Talks given by the instructor
- PS4 will happen
- Thanks to Seth Teller and the students

## Convexity

• A set is convex if every line segment connecting two points in the set is fully contained in the set



September 4, 2003

## Convex hull

 What is a convex hull of a set of points P ?

Smallest convex set containing P

 Union of all points expressible by a convex combination of points in P, i.e. points of the form



 $\sum_{p \in P} c_p^* p$ ,  $c_p \ge 0$ ,  $\sum_{p \in P} c_p = 1$ 

 Definitions not suitable for an algorithm

September 4, 2003

# 2D Convex Hull

- Motivation:
  - Collision detection
  - Natural method for shape simplification
  - Relation to Voronoi diagram (in 3D)
  - Illustrates many techniques and issues





# **Computational Problem**

- Given  $P \subset \mathbb{R}^2$ , |P| = n, find the *description* of CH(P)
  - CH(P) is a convex polygon with at most n vertices
  - We want to find those vertices in clockwise order
- Design fast algorithm for this problem
- We assume all points are distinct (otherwise can sort and remove duplicates)

## Naive approach

- 1. For all pairs (p,q) of points in P
- /\* Check if  $p \rightarrow q$  forms a boundary edge
  - A. For all points  $r \in P-\{p,q\}$ :
    - If r lies to the left of directed line  $p \rightarrow q$ , then go to Step 2
  - B. Add (p,q) to the set of edges E
- 2. Endfor
- 3. Order the edges in E to form the boundary of CH(P)



## Details

- How to test if r lies to the left of a directed line p→q ?
  - Basic geometric operation
  - Reduces to checking the sign of a certain determinant
  - Constant time operation
- How to order the edges in E?
  - Sort

## Analysis

- Outer loop: O(n<sup>2</sup>) repetitions
- Inner loop: O(n) repetitions
- Total time: O(n<sup>3</sup>)

#### Problems

- Running time pretty high
- Algorithm does weird things:
  - What 3 points are collinear ? (degeneracy)
  - What 3 points are near-collinear ? (robustness)
- The last issue highly non-trivial
- Many ways of dealing with it:
  - Higher precision
  - Arbitrary precision
- Our approach: sweep it under the carpet

#### **Collinear** points

September 4, 2003

#### Nearly collinear points

September 4, 2003

#### Andrews algorithm

0

0

0

 $\bigcirc$ 

- Convexify(S,p)
  - While t=|S|≥2 and p left of line  $s_{t-1} \rightarrow s_t$ , remove  $s_t$  from S
  - Add p to the end of S
- Incremental-Hull(P)
  - Sort P by x-coordinates
  - Create  $U=\{p_1\}$
  - For i=2 to n
    - Convexify(U,p<sub>i</sub>)
  - Create  $L=\{p_n\}$
  - For i=n-1 downto 1
    - Convexify(L,p<sub>i</sub>)
  - Remove first/last point of L, output U and L

September 4, 2003

#### Animation

**Daniel Vlasic's CH Animation** 

September 4, 2003

#### Issues

- Points with the same x-coordinate
- Modification: Sort by x and then by y
- Solves the degeneracy problem
- Robustness:
  - Still an issue
  - But the algorithm outputs closed polygonal chain

## Analysis

- Sorting: O(n log n)
- Incremental walk: O(n)
- Altogether: O(n log n)