
ACM SIGACT News Distributed Computing Column 25

Sergio Rajsbaum∗

Abstract

The Distributed Computing Column covers the theory of systems that are composed of a number of
interacting computing elements. These include problems of communication and networking, databases,
distributed shared memory, multiprocessor architectures, operating systems, verification, Internet, and
the Web. This issue consists of:

• A review of the DISC 2006 conference by Shlomi Dolev, followed by “DISC at its 20th anniver-
sary: Past, Present and Future,” by Michel Raynal, Sam Toueg, and Shmuel Zaks.

• “Harmful dogmas in fault tolerant distributed computing” by Bernadette Charron-Bost and André
Schiper.

Many thanks to Shlomi, Michel, Sam, Shmuel, Bernadette and André for their contributions to this issue.

Request for Collaborations: Please send me any suggestions for material I should be including in this
column, including news and communications, open problems, and authors willing to write a guest column
or to review an event related to theory of distributed computing.

A Review of the DISC 2006 Conference

Shlomi Dolev 1

Abstract

This is a review of the 20th International Symposium on Distributed Computing (DISC), that
was held September 18–20, 2006, in Stockholm, Sweden, with proceedings in Springer’s Lec-
ture Notes in Computer Science #4167.

DISC, the International Symposium on DIStributed Computing, is an annual forum for presentation of
research on all facets of distributed computing, including the theory, design, analysis, implementation, and
application of distributed systems and networks. DISC 2006 is organized in cooperation with the Euro-
pean Association for Theoretical Computer Science (EATCS) and the European Research Consortium for
Informatics and Mathematics (ERCIM), Swedish Institute of Computer Science (SICS).

The 20th anniversary edition of DISC was held on September 18-20, 2006, in Stockholm Sweden,
attracting approximately one hundred participants. The celebration included three invited talks and a panel,
as well as cakes with 20+1 candles...

∗Instituto de Matemáticas, UNAM. Ciudad Universitaria, Mexico City, D.F. 04510. rajsbaum@math.unam.mx.
1Department of Computer Science, Ben-Gurion University of the Negev, Beer-Sheva, Israel. dolev@cs.bgu.ac.il.

1

There were 145 extended abstracts submitted to DISC this year, and 35 contributions were selected by
the program committee. The final program of the conference included beyond these 35 papers, one addi-
tional invited paper, and 13 brief announcements. All submitted papers were read and evaluated by at least
three program committee members, assisted by external reviewers. The final decision regarding every paper
was taken during the program committee meeting, which took place in Beer-Sheva, June 30th and July 1st,
2006.

The Best Student Award was split and given to two papers: the paper “Exact Distance Labelings Yield
Additive-Stretch Compact Routing Schemes”, by Arthur Bradly, and Lenore Cowen, and the paper “A
Fast Distributed Approximation Algorithm for Minimum Spanning Trees” co-authored by Maleq Khan and
Gopal Pandurangan.

The support of Ben-Gurion University, Microsoft Research, Intel, Sun microsystems, Deutsche Telekom
Laboratories is gratefully acknowledged.

The program covered many aspects of distributed computing, including synchronization issues in shared
memory, fault-tolerant aspects including self-stabilization, mobile robots tasks, sensor and ad-hoc networks,
correctness proof techniques and methodologies, cryptography and security, failure detectors, clock syn-
chronization, graph algorithms, and more.

Figure 1: Enjoying the hotel balcony: Hagit Attiya, Petr Kouznetsov and Corentin Travers

The 20th Anniversary Celebration Panelists were Eli Gafni, Michel Raynal, Nicola Santoro, Jan van Leeuwen
and Shmuel Zaks, that form program committee of the first and second (WDAG, which is now) DISC. It
was amazing to find that more than twenty years later (as the conference did not take place every year when
it began) all the panelists care so much, are interested, and very active in the area. The panel was infighting
giving a perspective of what has been done so far and suggestions to the future. Just after the panel we had
an hour boat tour to a conference dinner at Vaxholms Kastell. Candles light and good wine and food made
us so happy.

A perspective view and wishes of past steering committee heads follow.

2

DISC at its 20th anniversary: Past, Present and Future
Michel Raynal2 Sam Toueg3 and Shmuel Zaks4

Abstract

DISC 2006 marks the 20th anniversary of the DISC conferences. We list below the special
events that took place during DISC 2006, together with some information and perspectives on
the past and future of DISC.

Present: Special 20th anniversary events

The celebration of the 20th anniversary of DISC consisted in four main events: invited talks by three of the
brightest figures of the distributed computing community, and a panel involving all the people who were at
the very beginning of DISC:

• An invited talk “Time, clocks and the ordering of my ideas about distributed systems’’ by Leslie
Lamport.

• An invited talk “My early days in distributed computing theory: 1979-1982” by Nancy Lynch.

• An invited talk “Provably unbreakable hyper-encryption using distributed systems” by Michael Rabin.

• A panel on “The contributions of the WDAG/DISC community to distributed computing: a historical
perspective” by Eli Gafni, Jan van Leeuwen, Michel Raynal, Nicola Santoro and Shmuel Zaks (who
were the PC members of the second WDAG, Amsterdam, 1987).

Figure 2: The conference room

2IRISA, Campus de Beaulieu, 35042 Rennes, France.
3Department of Computer Science, University of Toronto, Toronto, Canada.
4Department of Computer Science, Technion, Haifa, Israel.

3

Past: a short history

The Workshop on Distributed Algorithms on Graphs (WDAG) was initiated by Eli Gafni, Nicola Santoro
and Jan van Leeuwen in 1985. It was intended to provide a forum for researchers and other interested
parties to present and discuss recent results and trends in the design and analysis of distributed algorithms
on communication networks and graphs.

Then, more than 10 years later, the acronym WDAG was changed to DISC (the international sympo-
sium on DIStributed Computing). This change was made to reflect the expansion from a workshop to a
symposium as well as the expansion of the research areas of interest. So, following 11 successful WDAGs,
DISC’98 was the 12th in the series.

Since 1996 WDAG/DISC has been managed by a Steering Committee consisting of some of the most
experienced members of the distributed computing community. The main role of this committee is to pro-
vide guidance and leadership to ensure the continuing success of this conference. To do so, the committee
oversees the continuous evolution of the symposium’s research areas of interest, it forges ties with other
related conferences and workshops, and it also maintains contact with Springer-Verlag and other profes-
sional or scientific sponsoring organizations (such as EATCS). The structure and rules of the DISC Steering
Committee, which were composed by Sam Toueg and Shmuel Zaks, and approved by the participants at the
the 1996 WDAG business meeting in Bologna, can be found at http://www.disc-conference.org. This site
also contain information about previous WDAG and DISC conferences.

Figure 3: Mark Moir, Jim Aspnes, Faith Fich, Eric Ruppert, Idit Keidar

4

The location, program chairs, and proceedings of the past 20 WDAG/DISC meetings are summarized in
Table 2, and the Steering Committee Chairs are listed in Table 1.

1996-1998 1998-2000 2000-2002 2002-2004 2004-2006 2006-2008
Sam Toueg Shmuel Zaks André Schiper Michel Raynal Alex Shvartsman Paul Vitányi

Table 1: Steering committee chairs

Year Location Program Chair(s) Proceedings
1985 Ottawa N. Santoro and J. van Leeuwen Carleton Scientific
1987 Amsterdam J. van Leeuwen LNCS 312
1989 Nice J.-Cl. Bermond and M. Raynal LNCS 392
1990 Bari N. Santoro and J. van Leeuwen LNCS 486
1991 Delphi S. Toueg and P. Spirakis LNCS 579
1992 Haifa A. Segall and S. Zaks LNCS 647
1993 Lausanne A. Schiper LNCS 725
1994 Terschelling G. Tel and P. Vitányi LNCS 857
1995 Le Mont-Saint-Michel J.-M. Hélary and M. Raynal LNCS 972
1996 Bologna Ö. Babaoglŭ and K. Marzullo LNCS 1151
1997 Saarbrücken M. Mavronicolas and Ph. Tsigas LNCS 1320
1998 Andros S. Kutten LNCS 1499
1999 Bratislava P. Jayanti LNCS 1693
2000 Toledo M. Herlihy LNCS 1914
2001 Lisbon J. Welch LNCS 2180
2002 Toulouse D. Malkhi LNCS 2508
2003 Sorrento F.E. Fich LNCS 2848
2004 Amsterdam R. Guerraoui LNCS 3274
2005 Cracow P. Fraigniaud LNCS 3724
2006 Stockholm S. Dolev LNCS 4167

Table 2: The past Wdag/Disc

Epilogue, and Future

Together with the whole DISC community, we congratulate DISC for its 20th anniversary. We feel proud to
have taken part in this important and successful activity of our research community, and are confident that
DISC will continue to play a central role in years to come.

We wish to thank all those who contributed over the years to the success of DISC. Each played an
essential role, and each forms a vital link in the DISC chain:

• The local organizers, and their teams, who did everything to ensure a smooth and successful confer-
ence,

• The program committee chairs, program committee members, and external referees, who ensured the
high academic level of the conference,

5

Figure 4: On the way to the banquet

• The participants of the WDAG and DISC conferences,

• The steering committee members,

• The sponsor organizations, for their generous support over the years,
and - last but not least -

• All the members of the distributed computing community who submitted papers to WDAG and DISC.

We are confident that the DISC community will continue to play a central role within the distributed
computing and communication networks research communities for many years to come.
HAPPY ANNIVERSARY TO DISC!

Figure 5: The first five chairs of the DISC steering committee. Shmuel Zaks, Alex Shvartsman, Michel
Raynal, André Schiper and Sam Toueg. At the DISC 2005 banquet in Cracow, Poland.

6

Harmful dogmas in fault tolerant distributed computing

Bernadette Charron-Bost 5 and André Schiper 6

Abstract

Consensus is a central problem in fault tolerant distributed computing. A vast number of (posi-
tive and negative) results for consensus in various system models have been established. In this
paper we isolate three features that all these system models share, and we show that inappro-
priate modelling choices have led to overcomplicate the approaches to studying the consensus
problem, thus yielding too restrictive solutions for real systems.

It is hard to question these modelling choices, as they have gained the status of dogmas. Nev-
ertheless, we propose a simpler and more natural approach that allows us to get rid of these
dogmas, and to handle all types of benign fault, be it static or dynamic, permanent or transient,
in a unified framework.

1 Introduction

Replication is the most natural technique for achieving high availability, i.e., fault tolerance in distributed
systems. The technique has been studied for almost 30 years, both from a practical and a theoretical per-
spective. During these years, several systems have been built (e.g., the pioneering Isis system [4]) and a
large number of theoretical results have been published around the paradigm of replication, namely around
the consensus problem. While the goal of “system” work has been the validation of ideas through the con-
struction of prototypes, the goal of “theoretical” work has been to provide precise definitions of problems
and system models, and to identify the models in which problems are solvable. Landmark examples of
theoretical work is the negative FLP result [9] (stating that consensus is not solvable deterministically in an
asynchronous system with reliable links, if one process can be faulty) and positive results about the partially
synchronous model [8, 13] and the asynchronous model augmented with some oracles such as random or-
acles [2] or failure detectors [6]. These different goals (system goals vs. theory goals) sometimes became
antagonistic, with practical work questioning the relevance of theoretical contributions.

In this context, we claim that inappropriate modelling choices have led our community to overcomplicate
the approaches to solving consensus, thus yielding too restrictive solutions for real systems. Moreover, it has
become hard to question these modelling choices, as they have gained the status of dogmas: nevertheless,
we suggest a much simpler approach for studying agreement problems that enables us to design general
solutions and should appear more natural from a practical perspective.

The rest of the paper is structured as follows. Sections 2, 3 and 4 discuss what we claim to be the basic
dogmas of fault-tolerant distributed computing. In Section 5, we briefly describe a new computation model
and present its main features. Section 6 concludes the paper.

5Ecole polytechnique, 91128 Palaiseau, France. charron@stix.polytechnique.fr.
6EPFL, 1015 Lausanne, Switzerland. Andre.Schiper@epfl.ch. Research funded by the Swiss National Science Foun-

dation under grant number 200021-111701.

7

2 Distinguishing synchrony from faults: a first dogma

The FLP negative result naturally led to the definition of system models weaker than the synchronous model,
in which consensus is solvable. In this context, it has become commonly accepted to define system models
in terms of two parameters (cf. [12]):

• Degree of synchrony (what synchrony assumptions for processes and links).
• Fault model (what fault assumptions for processes and links).

For example, the computing model in [9] assumes that processes and links are asynchronous (degree
of synchrony), links are reliable (fault model), and one process may crash (fault model). Hence degree of
synchrony and fault model appear to be two independent characteristics of system models. This way of
defining system types is taken for granted, but nevertheless has major drawbacks.

Firstly, consider the following three basic assumptions for a link:

1. transmission delay of a message is bounded;
2. transmission delay of a message is finite;
3. transmission delay of a message may be infinite.

Cases 1 and 2 are covered by synchrony assumptions whereas case 3 is covered by the fault model
(message loss). Distinguishing synchrony assumptions from fault assumptions leads us to break the natural
continuum between cases 1, 2 and 3, and tends to overcomplicate the system model space.

We can best illustrate this as follows: consider some computation in which process q is waiting for
message m sent by p. If p is “too” slow, or if p has crashed, q cannot receive m since it should time-out
before receiving m not to risk being blocked. Slowness of p is related to the synchrony model; crash of p
is related to the fault model. Two different assumptions, same consequence for q. Similarly, consider the
example from the point of view of the link from p to q. If the link behaves asynchronously “too much”,
or if it is lossy, q cannot receive m. The first assumption is related to the synchrony degree, the second to
the fault model. Again, we have two different assumptions with the same consequence for q. This artefact
directly results from the separation between synchrony model and fault model.

Secondly, the two parameter classification of system models led our community to concentrate on con-
ditions for solving consensus with reliable links, while largely ignoring conditions under which consensus
is solvable with unreliable links.7 This is an indirect consequence of the way the FLP result has been stated.
Indeed, the FLP paper shows the impossibility of solving consensus in an asynchronous system when one
process may crash. As crash failure is (already) the most benign type of process failure in the classical
failure classification [11], researchers have sought to circumvent the FLP impossibility result by increasing
synchrony, rather than investigating other fault models. In particular, links are supposed to be reliable since
message losses are usually handled by the omission fault model, a more severe type of fault than crashes.
This leads to the wrong message that synchrony (synchronous processes and synchronous links) is sufficient
to achieve agreement: as shown in [17], synchrony does not help for solving consensus in the context of link
failures.

Note that the idea of encapsulating synchrony degree and fault model in the same module already ap-
pears in the Round-by-Round Failure Detector (for short RRDF) model [10]. Unfortunately, the idea is not
followed through to the end in the RRFD model since the notion of fault model is underhandedly reintro-
duced via the notion of faulty component. Indeed, the communication medium is implicitly assumed to be
reliable (no anomalous delay, no loss) and when process q receives no message from p, the latter process
is systematically blamed for the transmission failure (p is late or has crashed). This point is related to the
second dogma of fault-tolerant distributed computing, which we discuss in the next section.

7Except, for example, [8] and [13], which assume that links may be lossy but only for a finite period.

8

3 Distinguishing process failures from link failures: a second dogma

The second dogma can be summarized as follows: in case of the non reception of a message, put the
responsibility on some “culprit” (link or process). This has several drawbacks as we explain now.

First it appears that most of the time, the real causes of transmission failures, namely sender failure,
receiver failure, or link failure, are actually unknown: if q does not receive a message supposed to be sent
by p, it is generally impossible to know whether this is because of p (send-omission), because of q (receive-
omission), or because of the (lossy) link from p to q. Failure transmissions are often ascribed to some
components in a totally arbitrary manner that may not correspond to reality.

Second, as soon as a process p is blamed for a failure, p is declared faulty, and from here on, is allowed
by any consensus specification — uniform or not — to have deviant behavior (this is discussed in more
details in Section 4).

Finally, stigmatizing some components in a systematic way may lead to undesirable conclusions: for
example, in the send-omission failure model, the entire system is considered faulty even if only one message
from each process is lost.

There is no evidence that knowing the component responsible for the failure actually helps in the analysis
of fault-tolerant systems. Even more, as we show in [7], the notion of faulty component tends to unneces-
sarily overloads system analysis with non-operational details. In other words, it is sufficient that the model
just notifies transmission failures (effects) without specifying faulty components (causes).

Because of this second dogma, the classical models of fault tolerant distributed systems only handle
faults that are static both in space and time, i.e., faults by an unknown but static set of (so-called faulty)
processes (static faults in space) that are considered to be faulty for the whole computation (static faults in
time). This explains why very few models solve consensus in the presence of dynamic and transient faults
— such as message loss (possibly on all links) or crash-recovery of processes (possibly of all processes) —
or when they do solve consensus, solutions are very intricate and their analysis overcomplicated. Getting rid
of the second dogma gives us hope of handling any type of benign failure, be it static or dynamic, permanent
or transient, in a unified framework.

In a largely ignored paper, Santoro and Widmayer [17] introduce the Transmission Faults Model that
locates failures without specifying their cause. A transmission failure can represent as well link failure as
process failure. We believe that this is the right approach. Unfortunately, the Transmission Faults Model
is designed only for synchronous systems. This de facto reintroduces synchrony degree and fault model as
two separated system parameters, i.e., the model is still based on the first dogma.

4 Definition of consensus: a third dogma

As explained above, consensus has been mainly considered in the context of static and permanent faults.
With such fault models, consensus is defined by three conditions, including the following one:

• Termination: Every correct process eventually decides.

Termination requires processes to eventually decide, but restricts this requirement to correct processes (a
correct process is a process that is never blamed for any transmission failure). The role of “correct” is to
exempt faulty processes from deciding.

With omission failures, this termination condition allows a process blamed for just one omission to make
no decision, even if it does not crash. Therefore, termination turns out to be a too weak condition for such
a fault model. The same problem arises for any type of transient (benign) failure, e.g., the quite realistic
crash-recovery model (with stable storage). For the latter fault model, Aguilera et al. [1] introduce the notion

9

of good process — which is a process that crashes a finite number of times and recovers after the last crash
— and strengthen termination as follows:

• Termination-cr: Every good process eventually decides.

However, it seems rather disturbing to consider different consensus specifications according to the fault
model.

The same problem arises even if we do not modify the specification. Indeed with termination, depend-
ing on whether message losses are interpreted as send omission failures, receive omission failures, or as
link failures, processes are exempted from making a decision, or must eventually decide. This shows that
the same syntactic condition (termination) may actually correspond to different semantical requirements,
according to the way we ascribe failures to components.

To design specifications whose significance do not depend on the fault model, we have to remove any
reference to the notion of faulty (or correct) process. This leads us to specify termination as follows:

• Uniform Termination: Every process eventually decides.

Such a condition is much simpler, but it is generally considered unacceptable, with the argument that we
cannot require from a crashed process or from a process that continuously crashes and recovers to decide.
We shall come back to this issue in the next section: basically, we show that this is actually an artefact
resulting from the confusion between an algorithm devised for some computational model and its physical
implementation in some specific system.

5 An iconoclastic new model: the “Heard-Of” model

In [7] we propose a new computational model, called Heard-Of (HO for short) that is free of the three
dogmas we have stated above, and so allows us to avoid the problems that they induce. We give here only
a brief overview of the model, and refer to [7] for a complete presentation. Basically, in the HO model, (1)
synchrony degree and fault model are encapsulated in the same abstract structure, and (2) the notion of faulty
component (process or link) has totally disappeared. The HO model merely notifies transmission failures
without specifying by whom nor why such failures occur. As a result, the conditions for solving agreement
problems (1) do not to refer anymore to synchrony assumptions or to failure assumptions (dogma 1), and (2)
handle process failures and link failures in the same way (dogma 2). The liveness condition for consensus
is expressed using the uniform termination property of Section 4, which applies to any process, be it correct
or faulty (dogma 3). The HO model is inspired by (1) the asynchronous round model defined by Dwork,
Lynch and Stockmeyer [8], extended by Gafni [10], and by (2) the work of Santoro and Widmayer [17].

In the HO model, computation consists of asynchronous communication-closed rounds (a message sent
but not received in round r is lost). Consider a set Π of processes. At each round, any process first sends a
message to all (send phase), then receives a subset of the messages sent at this round (receive phase), and
finally does some local computation (transition phase). We denote by HO(p, r) the set of processes that p
hears of at round r, i.e., the processes (including itself) from which p receives a message at round r.

An HO model is defined by a predicate — over the collections of sets (HO(p, r))p∈Π,r>0 — that holds
for all computations. For example, an HO model could be defined by the predicate:

∃r0 > 0, ∀p, q ∈ Π2 : HO(p, r0) = HO(q, r0),

which ensures the existence of some round r0 in which all processes hear of the same set of processes.

10

In this way, the model just describes transmission faults at each round without specifying the causes
(omission or slowness), and without assigning the responsibility of these faults to some components (pro-
cess, channel). These are the key features that allow us to handle any benign fault, be it static or dynamic,
permanent or transient, in a unified framework.

As shown in [7], the HO formalism enables us to express well-known consensus algorithms (e.g., the
Rotating Coordinator algorithm [6] or the Paxos algorithm [13]) in a quite concise and elegant way, and
so to extract the algorithmic schemes on which they are based. This not only gives some new insights into
these consensus algorithms, but also allows us to design new ones that are quite interesting in practice since
they are correct under very realistic conditions. The consensus Algorithm 1 given below best exemplifies
the latter claim. In Algorithm 1 the send phase corresponds to line 5, and the receive phase takes place
between line 5 and line 6. When the receive phase terminates, the predicate on the HO’s is guaranteed to
hold. The local computation phase starts at line 7. In [7], we show that safety properties – namely integrity
and agreement – are never violated, and that uniform termination is guaranteed by the following predicate:

∃r0 > 0, ∃Π0, |Π0| > 2n/3 : (∀p : HO(p, r0) = Π0) ∧ (∀p, ∃rp > r0 : |HO(p, rp)| > 2n/3) (1)

The predicate ensures (i) the existence of some “uniform” round (in the sense that all the heard-of sets are
equal) with sufficiently large heard-of sets, and (ii) for each process p, the existence of some round rp > r0

in which |HO(p, rp)| > 2n/3 holds. Note that this predicate allows rounds without any constraint on the
HO’s, e.g., rounds in which no messages are received.

Algorithm 1 A simple consensus algorithm in the HO model (n is the number of processes).
1: Initialization:
2: xp := vp { vp is the initial value of p }

3: Round r:
4: Send Phase:
5: send 〈xp 〉 to all processes

6: Transition Phase:
7: if |HO(p, r)| > 2n/3 then
8: if the values received, except at most [n−1

3], are equal to x then
9: xp := x

10: else
11: xp := smallest x received
12: if more than 2n/3 values received are equal to x then
13: DECIDE(x)

The HO model has several features that distinguish it from existing models, and make it more realistic
and better from a practical perspective. In particular the HO model can adapt to transient and dynamic faults.
For example, liveness in Algorithm 1 just requires the existence of a “good” sequence of (at most) n + 1
rounds, possibly non consecutive: one uniform round r0 in which every process hears of the same subset
of processes, and for each process p, a subsequent round rp at which p hears more than 2n/3 processes.
In the other rounds, any transient faults from any component, i.e., dynamic fault, can occur.8 Note that
the communication predicate (1) above is much finer than the usual termination conditions given in the

8Specifically, this means that the send of line 5 can be implemented using the unreliable IP-multicast primitive, an option that
is problematic when using failure detectors, which require reliable links.

11

literature, which all stipulate that some condition must eventually hold forever (see [8], or consensus with
the failure detector 3S [6], or Paxos with reliable channels and the leader oracle Ω [5]).

Remains the issue of uniform termination which, as explained in Section 4, does not exempt any process
from making a decision. Such a strong liveness requirement may seem unreasonable in two respects. First,
it may make Consensus needlessly unsolvable in the sense that the resulting Consensus specification might
be unsolvable under some communication predicate P whereas the classical Consensus problem is solvable
under P . In [7], we show that this objection does not hold. Secondly, one may wonder whether an algorithm
in which all processes decide can be implemented in real systems with crash failures. The answer is positive
as we now explain. The fundamental point here is to distinguish an algorithm – a logical entity – from
the physical system on which the algorithm is running. Of course, a process that has crashed takes no
step, and so can make no decision. However, such a process is then mute, and so is no more heard by any
other process. Consequently, what actually happens to crashed processes has no impact on the rest of the
computation. Thus there is no problem when running an HO Consensus algorithm on a physical system
where processes may crash: the capability of making a decision provided by the HO algorithm is just not
implemented by the processes that have crashed. In other words, the implementation of an HO algorithm
solving uniform termination in a physical system with crash failures only solves termination.

Hence we can safely remove any reference to faulty components in the Consensus specification. This
yields a uniform specification in the sense that its semantics does not depend anymore on the fault model.
With such a clean specification, a process is no more unreasonably exempted from making a decision just
because it was once accused of a fault during the computation – maybe incorrectly. As a matter of fact, this
specification of the Consensus problem already appears in several fundamental papers dealing with benign
faults [15, 3, 13].

Related Work: At first sight, the HO model may seem close to the RRFD model introduced by Gafni [10].
However, these two models only share the idea of capturing synchrony degree and failure model with the
same abstraction – see our first dogma – but basically differ with regard to the second and third dogmas. In-
deed, the RRFD modules only suspect processes – and more specifically, only the senders – never links. On
the contrary, a central idea of the HO model is to remove the notion of “culprit” (the component responsible
of the fault). Ignoring culprits allows us to get rid of the typical system model assumptions such as “chan-
nels are reliable”, “processes crash and do not recover” (crash-stop model), “processes crash but may later
recover” (crash-recovery model), etc., and shows that solving consensus does not require to overload the
system analysis with such details. In this regard, the HO model is inspired by Santoro and Widmayer [17].
Unfortunately, the idea of ignoring culprits is not completely followed through to the end in [17] since the
authors assume at each round only one posssible source for all transmission faults, i.e., one process that is
responsible for originating the transmission faults of a round. Moreover, they still consider synchrony, an
assumption that does not appear in the HO model.

It should also be noted that the unification provided by the HO model must be seen from the perspective
of constructing solutions to consensus that span the whole class of benign faults. This differs from other
work on system models with the goal of providing unified proof of impossibility of consensus protocols, or
of deriving proof of bounds on consensus, e.g., [14, 16].

6 Discussion

In the context of solving agreement problems, system models have been defined in a way that led our
community to consider irrelevant details. This has obscured a technically difficult domain, making it appear
unnecessarily harder than needed. The new HO model avoids the pitfalls that we have highlighted. For

12

example, it unifies all benign faults in a quite natural way. It also makes the handling of the crash-recovery
model — and more generally dynamic and transient faults — much simpler, avoiding the complexity that
appears for example in [1].

The HO model also leads to a more natural expression of conditions for liveness. Previous approaches,
e.g., the partially synchronous model [8] or the failure detector approach [6] require conditions to hold
eventually forever. This is non intuitive from a pragmatic point of view. In contrast, the conditions for
liveness in the HO model do not have this this problem, and appear very intuitive. This may contribute to
demystify the consensus problem.

An issue not addressed here is how to ensure an HO predicate. Ongoing work has shown that the liveness
condition for Algorithm 1 is easy to ensure, assuming a system that alternates between good and bad periods,
a very realistic assumption: During a bad period, any benign failure can occur; during a good period, at least
2n/3 processes can communicate timely.

To summarize, we believe that fault tolerant distributed computing can become much simpler than what
inappropriate modelling choices have allowed it to be in the past.

References

[1] M.K. Aguilera, W. Chen, and S. Toueg. Failure detection and consensus in the crash-recovery model.
Distributed Computing, 13(2):99–125, 2000.

[2] M. Ben-Or. Another Advantage of Free Choice: Completely Asynchronous Agreement Protocols. In
proc. 2nd annual ACM Symposium on Principles of Distributed Computing, pages 27–30, 1983.

[3] O. Biran, S. Moran, and S. Zaks. A combinatorial characterization of the distributed 1-solvable tasks.
Journal of Algorithms, 11(3):420–440, September 1990.

[4] K. Birman. The Process Group Approach to Reliable Distributed Computing. Comm. ACM, 36(12):37–
53, December 1993.

[5] R. Boichat, P. Dutta, S. Frolund, and R. Guerraoui. Reconstructing Paxos. ACM SIGACT News,
34(1):47–67, 2003.

[6] T. D. Chandra and S. Toueg. Unreliable failure detectors for reliable distributed systems. Journal of
ACM, 43(2):225–267, 1996.

[7] B. Charron-Bost and A. Schiper. The “Heard-Of” model: Unifying all benign faults. Technical Re-
port TR, EPFL, June 2006.

[8] C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in the presence of partial synchrony. Journal of
ACM, 35(2):288–323, April 1988.

[9] M. Fischer, N. Lynch, and M. Paterson. Impossibility of Distributed Consensus with One Faulty
Process. Journal of ACM, 32:374–382, April 1985.

[10] Eli Gafni. Round-by-round fault detectors: Unifying synchrony and asynchrony. In Proc of the 17th
ACM Symp. Principles of Distributed Computing (PODC), pages 143–152, Puerto Vallarta, Mexico,
June-July 1998.

[11] V. Hadzilacos and S. Toueg. Fault-Tolerant Broadcasts and Related Problems. In Sape Mullender,
editor, Distributed Systems, pages 97–145. ACM Press, 1993.

13

[12] V. Hadzilacos and S. Toueg. Fault-Tolerant Broadcasts and Related Problems. Technical Report 94-
1425, Department of Computer Science, Cornell University, May 1994.

[13] L. Lamport. The Part-Time Parliament. ACM Trans. on Computer Systems, 16(2):133–169, May 1998.

[14] R. Lubitch and S. Moran. Closed schedulers: A novel technique for analyzing asynchronous protocols.
Distributed Computing, 8(4), 1995.

[15] S. Moran and Y. Wolfstahl. Extended impossibility results for asynchronous complete networks. In-
formation Processing Letters, 26(3):145–151, 1987.

[16] Y. Moses and S. Rajsbaum. A layered analysis of consensus. SIAM J. Comput., 31(4):989–1021, 2002.

[17] N. Santoro and P. Widmayer. Time is not a healer. In Proceedings of the 6th Symposium on Theor.
Aspects of Computer Science, pages 304–313, Paderborn, Germany, 1989.

14

