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Game theory and fault tolerance offer two different flavors of robustness to distributed systems – the
former is robust against participants attempting to maximize their own utilities, whereas the latter offers
robustness against unexpected faults. This column takes a look at attempts to combine the two. It features
a review of recent work that provides both flavors of robustness by Ittai Abraham, Lorenzo Alvisi, and Joe
Halpern. Ittai, Lorenzo, and Joe discuss how game theory-style strategic behavior can be accounted for in
fault-tolerant distributed protocols. They make a compelling case for bringing a game-theoretic perspective
to distributed computing problems. Many thanks to Ittai, Lorenzo and Joe for their article!

Call for contributions: I welcome suggestions for material to include in this column, including news,
reviews, open problems, tutorials and surveys, either exposing the community to new and interesting topics,
or providing new insight on well-studied topics by organizing them in new ways.
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Traditionally fault tolerance and security have divided processes into “good guys” and “bad guys”. Work
on fault tolerance has focused on assuring that certain goals are met, as long as the number of “bad guys” is
bounded (e.g., less than one third or one half of the total number of players).

The viewpoint in game theory has been quite different. There are no good guys or bad guys, only rational
players who will make moves in their own self-interest. Making this precise requires assigning payoffs
(or utilities) to outcomes. There are various solution concepts in game theory—predictions regarding the
outcome of a game with rational players. They all essentially involve players making best responses to their
beliefs, but differ in what players are assumed to know about what the other players are doing. Perhaps the
best-known and most widely-used solution concept is Nash equilibrium (NE). A profile ~σ of strategies—that
is, a collection of strategies consisting of one strategy σi for each player i—is a Nash equilibrium if no player
can improve his payoff by changing his strategy unilaterally, even assuming that he knows the strategies of
all the other players. In the notation traditionally used in game theory, ~σ is a Nash equilibrium if, for all i
and all strategies τi for player i, ui(~σ−i, τi) ≤ ui(~σ): player i does not gain any utility by switching to τi if
all the remaining players continue to play their component of ~σ. (See a standard game theory text, such as
[23], for an introduction to solution concepts, and more examples and intuition.)

Both the game theory approach and the distributed computing approach have something to recommend
them. In fact, for many applications, it is important to take both fault tolerance and strategic behavior into
account. That is, we are interested in solution concepts that consider strategic behavior while maintaining a
level of fault tolerance.

In this paper, we briefly review the approaches to combine these concerns taken in two papers, [1] and
[5], and discuss more generally the question of accounting for strategic behavior in distributed computing,
and its implications.

As pointed out in [1], extending traditional game theory to incorporate fault tolerance really involves
two separate steps. First, it is necessary to move beyond deviations by a single player, which are the focus
of Nash equilibrium (and all other standard solution concepts in game theory), to allow deviations by groups
of players. To understand the point, consider the following simple example.

Example 1. Suppose that there are n > 1 players, all of whom must play either 0 or 1. If they all play 0,
then everyone gets a payoff of 1; if exactly two players play 1, then those two players get a payoff of 2, while
the remaining players get a payoff of 0; otherwise; everyone gets a payoff of 0. Clearly, everyone playing 0

ACM SIGACT News 69 June 2011 Vol. 42, No. 2



is a Nash equilibrium. No single player can do better by deviating; if one player deviates and plays 1, then
all players get 0. On the other hand, a coalition of two players can do better by deviating and playing 1.

In [1], an equilibrium is defined to be k-resilient if the members of no group of k players can all do
better by deviating. That is, ~σ is k-resilient if, for all sets K of players with |K| ≤ k and all strategy profiles
~τ , for some i ∈ K, we have ui(~σ−K , ~τK) ≤ ui(~σ): no matter how the players in K deviate, it cannot be the
case that they all gain from the deviation. The Nash equilibrium in Example 1 is not 2-resilient.

The idea of resiliency is an old one, going back to Aumann [6]. It is surprising how little study the
notion has received in the game theory literature. Perhaps one reason is that, while Nash [22] showed that
a Nash equilibrium always exists (this was his thesis result which eventually led to him getting the Nobel
prize), in general a k-resilient equilibrium does not exist for k ≥ 2.

While resiliency deals with resistance to coalitions of rational players, it does not fully capture the idea
of fault tolerance. The problem is that resilience assumes that even the members of the deviating coalition
are strategic and will not deviate unless is it is in their best interests to do so. But in large systems we may
well see deviations that cannot be explained, at least in what appears to be the most obvious way, by strategic
behavior. For example, in a peer-to-peer network like KaZaA or Gnutella, it would seem that no rational
player should share files. Whether or not you can get a file depends only on whether other people share
files; on the other hand, it seems that there are disincentives for sharing (the possibility of lawsuits, use of
bandwidth, etc.). Indeed, studies of the Gnutella network have shown almost 70 percent of users share no
files and that nearly 50 percent of responses are from the top 1 percent of sharing hosts [3]; nevertheless,
people do share files.

One reason that people might not respond as we expect is that they have utilities that are different from
those we expect [1, 19]. Someone may like the feeling of providing everyone else with the music they are
listening to. At the other end of the spectrum, someone may instead actively sabotage the service, either out
of concern for copyright violations or sheer (perverse) pleasure. In other cases, “strange” behavior may be
explained by faulty computers, or by users who do not know how to use their software correctly.

Whatever the reason, it seems important to design protocols that tolerate such unanticipated behavior,
so that the payoffs of the users with “standard” utilities are not affected by the nonstandard players using
different strategies. This observation motivates the notion of immunity, introduced in [1]. Informally, an
equilibrium is t-immune if the non-deviating players are not made worse off by arbitrary (possibly coor-
dinated) deviations by up to t players. The following example may help illustrate the difference between
resilience and immunity.

Example 2. Consider a group of n bargaining players. If they all stay and bargain, then all get a payoff
of 2; anyone who goes home gets a payoff of 1; and anyone who stays if not everyone stays get a payoff of
0. Clearly, everyone staying is a k-resilient Nash equilibrium for all k < n. If everyone stays, then they
all get a payoff of 2, the highest possible payoff. On the other hand, everyone staying is a very “fragile”
equilibrium. It is not immune to even one “irrational” player going home; that is, it is not even 1-immune.

In [1], the notions of immunity and resilience are combined into a notion of robustness. Intuitively, an
equilibrium is (k, t)-robust if it is both k-resilient and t-immune. Nash equilibrium is the special case of
(1, 0)-robustness; more generally, k-resilience is just (k, 0)-robustness, and t-immunity is (0, t)-robustness.
However, (k, t)-robustness is more than just k-resilience and t-immunity; in particular, it says there is no
deviation by a coalition of k players and by t strange players that gives all k players a higher payoff. In
particular, (k, t)-robustness does not allow deviations, where the t players can help the k deviating players
get a higher payoff (even if it does not hurt the remaining players), nor does it allow deviations where
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players can take advantage of knowing who the “strange” players are (Example 3 shows how this can have
an effect.) (The reader is encouraged to consult [2] for the formal definition.)

From a distributed computing perspective, (k, t)-robustness is a compelling solution concept for at least
two reasons. First, by allowing the t strange players to adopt any arbitrary strategy, (k, t)-robustness fully
captures the protean nature of Byzantine behavior [18]. Second, (k, t)-robustness offers complete protection
from the (possibly malicious) capriciousness of Byzantine nodes with the guarantee of no regrets: because
the equilibrium strategy remains preferable irrespective of who the t Byzantine nodes are and how they
behave, (k, t)-robustness guarantees that the k colluding players will never find themselves second-guessing
their decision even if the identities and strategies of the Byzantine nodes become known.

Unfortunately, (k, t)-robustness may be difficult, if not impossible, to achieve in many practical dis-
tributed systems [7, 30]. In [2], some generic impossibility results are given for games where (k, t)-robust
equilibria cannot be attained, even though they can be attained with the help of a mediator. These results
consider the relationship between n, the total number of players, k, and t. In some cases, the results use
known impossibility results from Byzantine agreement; in other cases, new techniques are needed. The fol-
lowing example gives further insight, showing that (k, t) equilibrium cannot be attained if k = 1 and t = 1,
no matter how large n is.

Example 3. Consider a distributed system with n players, running a fault-tolerant protocol that provides
some desirable functionality despite up to t < n Byzantine failures. Think, for instance, of a system where
the players run a consensus protocol, and the desirable functionality is that no two correct players decide
different values. Assume that the protocol requires some pairwise communication between players, and that
bandwidth is not free.

We could model this system as a game as follows: players obtain benefit by implementing the desirable
functionality provided in the original system; attaining this functionality requires communication between
some pair of players, and communication incurs some cost; finally, the functionality can be attained despite
t strange players. The details of the utility function are not relevant here; all that matters is that a player
gets positive utility if the functionality is attained, and loses some (small) utility for each message sent.

Can we build a (k, t)-robust equilibrium in this game? There is a trivial equilibrium: no one sends any
messages. Clearly this is an equilibrium. No rational player is motivated to send a message if no one else is
going to send a message. The more interesting question is whether there is a nontrivial robust equilibrium,
where the functionality is attained (at least sometimes). As we now show, we cannot do this if k > 0, no
matter how large n is. For simplicity, suppose that k = t = 1. In the resulting (1, 1)-robust equilibrium,
no player should receive a higher payoff from deviating unilaterally, irrespective of the strategy adopted by
a single strange player. Suppose, by way of contradiction, that there is a (1, 1) robust equilibrium ~σ that
attains the desirable functionality. Since it does so, there must be some communication. Let the first message
sent in some execution of ~σ be a message from i to j. (The algorithm may randomize, so this may not be the
first message in all executions.) Now suppose that j is “strange”, and never sends and never communicates
with anyone. Clearly i can do better if j follows this strategy by never communicating with j; i’s outcome
will not change (since j never communicates with anyone), and i’s communication costs are lower. Thus,
a rational player i can gain by deviating from σi if j follows the strategy of never communicating. Since
(1, 1)-robustness requires that no rational player can gain by deviating, no matter what the strange player
does, ~σ is not (1, 1)-robust.

The problem here is that (k, t)-robustness guarantees k-resilience irrespective of the actions of the t
Byzantine players. While this promise guarantee a mathematically well-defined way to defend against the
arbitrary nature of Byzantine behavior, it seems that it will be hard to achieve if, for example, communication
is not free.
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The question of what the most appropriate solution concept is for questions such as these remains open.
In general, equilibrium concepts assume that players are always making a best response to their beliefs, but
that leaves open the question of (a) how the beliefs are represented, (b) what counts as a best response, and
(c) under what conditions the response is made. We explain these points (especially the last) by example.
The standard approach in economics is to assume that players’ beliefs are represented by a single probability
distribution, and “best response” means “response that maximizes expected utility, given those beliefs”. In
Nash equilibrium, the only source of probability is the players’ strategies, which can use randomization and
thus generate a distribution over outcomes. A player’s strategy must be a best response, under the condition
that what the other players are doing in the equilibrium is fixed. In a (k, t)-robust equilibrium, best response
has the same meaning as in Nash, but now a player’s strategy must be a best response under the condition
that he can be part of a deviating group of size k, and must continue to be a a best response even if up to t of
the other players are changed arbitrarily. While this requirement is strong, it is analogous to requirements
often made in distributed computing that an algorithm be correct no matter what an adversary does.

But other approaches are also possible. For simplicity in the remainder of this discussion, assume that
k = 1. In the spirit of standard game theory, we could assume that each player has a distribution over which
set of t players are strange and what the strange players will do. When combined with the randomization
made by strategies, this gives a distribution over outcomes. We could then require that players make a best
response to that distribution. Yet another alternative is not to assume a distribution over which set of t
players will be strange and what the strange players will do, and to change the notion of “best response” to
mean the response that gives the best worst-case outcome (the maximin response). That is, we take strategy
σ to be at least as good as strategy σ′ if the worst-case expected payoff of σ (taken over all possible choices
of t strange players and their strategies, while fixing the strategies of the remaining players) is at least as
good as that of σ′, somewhat in the spirit of [4]. Note that the latter two options do not place as stringent
requirements on what it takes to be a best response as (k, t)-robustness.

Aiyer et al. [5] use the latter approach. Effectively, they are modeling Byzantine players as responding
to any given candidate rational strategy with a behavior that minimizes the rational players’ payoff for that
strategy. Under this assumption, Aiyer et al. provide a cooperative backup protocol that is a Nash equilibrium
(i.e., a 1-resilient strategy) if the system contains no more than t < n/3 Byzantine nodes. Clement et al. [8]
and Li et al. [19] discuss other examples of systems that are 1-resilient when rational agents are risk-averse.

These efforts suggest that combining distributed computing and game theory in real systems is not only
feasible, but that, given a model of Byzantine behavior, 1-resilience can be achieved for non-trivial applica-
tions, such as state-machine replication [5], terminating reliable broadcast [8] and live data streaming [19].

Explicitly modeling Byzantine behavior can also be useful in assessing the impact that introducing
Byzantine players has on the efficiency of a system with only selfish players. In particular, Moscibroda,
Schmid, and Wattenhofer [21] define the price of malice as the cost of tolerating Byzantine players that
behave maliciously by comparing the best that selfish players can do in a system where there are no malicious
players to the best they can do in the presence of malicious players.

Note that the approach of creating a model of Byzantine behavior does not limit the set of strategies that
Byzantine players can adopt; what it does limit is the set of Byzantine strategies against which it guarantees
k-resilience. If the Byzantine players do play an unanticipated strategy, then the strategy used by the rational
players may be painfully far from a best response.

While predicating one’s best response on a model of Byzantine behavior does not provide the same level
of guarantee as (k, t)-robustness, it can be realized in real systems and it may suffice for many practical
applications.
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In fact, in a number of situations there are standard forms of “irrational” behavior that a system designer
may want to model. For example, in [11, 14], scrip systems (systems with virtual money) are considered.
In a scrip system, money is a tool to buy services. There is no utility attached to the money itself, only to
the services that the money can buy. In a scrip system, if someone needs a service, players can volunteer to
provide it. A player gains utility by having the service performed, but must pay a dollar for the service; the
player performing the service gets the dollar, but suffers a small utility penalty. Because we assume some
discounting (a unit of utility today is worth more than the same unit tomorrow), players will not volunteer
to provide service if they feel that they already have enough money. It is shown that there is a rather natural
equilibrium in this setting, where all players use a threshold strategy: they volunteer to provide the service
if they have below a particular threshold of money, and otherwise do not volunteer.

In such a scrip system, two particular types of “irrational” behavior are particularly prominent. In a
large scrip system, there will almost certainly be players who hoard money—they continue to volunteer
and collect money well beyond their threshold. We might also find the occasional “altruist”, who performs
services for nothing. (Think of people who post music on KaZaA and Gnutella, or those who seed on
BitTorrent.) Rather than trying to protect against arbitrary types of irrational behavior, a system designer
using a scrip system may want to focus on dealing with specific types of irrational behavior that are likely
to arise. (As shown in [14], hoarders and altruists can have some subtle effects on scrip systems.) This
is the analogue of focusing on, say, crash failures or omission failures rather than Byzantine failures when
designing a fault-tolerant system, but now the “types of failures” become “types of irrational behavior”.

However, provable robustness against Byzantine and selfish behavior is but one of the many properties
one may desire from a system. In particular, there is no reason for an equilibrium to be a good outcome—one
where players get high payoffs. For example, the only guarantee provided by Nash equilibrium is stability;
players will typically not deviate from a Nash equilibrium. In practice, the price for achieving an equilibrium
may be to limit the freedom to design practical solutions.

For example, k-resilient systems such as BAR-Backup [5], BAR Gossip [19], and Equicast [17] do not
allow dynamic membership, require nodes to waste network bandwidth by sending garbage data to balance
bandwidth consumption, and provide little flexibility to adapt to changing system conditions.

One option, of course, is to renounce rigorous guarantees, use incentives informally, and argue that
rational players are unlikely to deviate from a given protocol—this is the approach used in KaZaA [15] and
BitTorrent [9], whose incentive structure has been shown to be vulnerable to subtle exploits [16, 24, 28].

A perhaps more desirable approach is to consider approximate equilibria. Dodis et al. [10] define a no-
tion of computational Nash equilibrium, where no polynomially bounded player can gain a non-negligible
advantage by not following its strategy. Abraham et al. [1, 2] define ε–(k, t)-robust equilibria, where rational
players cannot increase their utility by more than ε by deviating. Li et al. [20] use the notion of approximate
equilibria to design a peer-to-peer application for live data streaming that limits selfish deviations rigorously,
but allows the flexibility necessary to address other practical concerns. Their system, which models Byzan-
tine players as malicious, provides a 1-resilient ε-equilibrium, where ε is now a multiplicative factor, not an
additive factor. That is, rational players cannot gain more than a factor of ε by deviating. With ε = 0.1, the
system provides virtually jitter-free streaming, supports dynamic membership, and caps upload bandwidth
so that the protocol is accessible to users behind cable or ADSL connections.

Considering approximate equilibria seems quite reasonable in practice. It reflects the intuition that if
deviating involves developing a new protocol, or going through the headache of installing new software—
especially with the risk that new software will be buggy or malicious—it may just not be worth it.

So far we have discussed rational players and “strange” or Byzantine players. But in the fault-tolerant
distributed computing, besides “bad” or “Byzantine” players, there are also assumed to be “good” players,
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who follow the designer’s protocol. It is thanks to the actions of the “good” (non-faulty) processes that
fault-tolerant protocols can tolerate the misdeeds of the “bad” processes. Considering good players makes
perfect sense in a game-theoretic context as well. People often follow a recommended protocol, even if it is
not optimal, as long as it seems reasonable. Most people using BitTorrent continue to follow recommended
protocol, seeding even after they have downloaded their desired file(s), even though this is arguably irrational
(at least, under some minimal assumptions about utility). Such players are recognized explicitly in the BAR
(Byzantine, Altruistic, Rational) model [5], where they are called “altruistic”, although they are not, as the
altruists in the context of scrip systems, acting to increase well-being; rather, they do what they have been
asked to do. They are perhaps better viewed as “obedient” (or, in deference to the acronym, “acquiescent”)
than altruistic, although there are situations where obedient players can be viewed as acting altruistically.

The idea of altruistic or obedient agents appears in the literature on cooperation, particularly in biology.
In variants of prisoner’s dilemma, the altruistic/obedient strategy involves punishing players who do not
cooperate. Punishing a non-cooperator is typically costly for the punisher; that is, it is not “rational” to
punish. But as long as there are obedient players who are willing to punish, then in fact, there is essentially
no defection; it becomes rational to cooperate. Thus, both the punishers and the rational players get the
same payoff. (See [13, 25, 27] and the references therein for more details.)

In the context of distributed computing, it may well be reasonable for players to be obedient. Even if
defecting can give them some small gain in the short run, they are all better off if everyone cooperates. Can
better algorithms be designed by taking advantage of the likelihood that a reasonable percentage of players
will follow a recommended strategy, provided that it is not too unreasonable? (Of course, we must still make
precise what it means for a strategy to be “not too unreasonable”.)

Recent work [29] shows that having altruistic/obedient players can in fact help promote cooperation
among rational players. But there is clearly scope for more work along these lines.

As we hope this review has made clear, there is much to be gained by taking a game-theoretic perspective
to distributed computing problems. Thinking in terms of rational agents opens the door to a wider class
of algorithms. It would be well worth trying to understand how specific fault-tolerant algorithms can be
modified to deal with rational agents. Moreover, there are a host of new research issues to consider. We
consider just three examples here. The first is asynchrony. Game theory implicitly assumes that the world
is synchronous. Most strategies proceed in rounds. How do things change if we consider an asynchronous
environment? The second issue is taking computational cost into account more seriously. Game theory
implicitly assumes that computation is free. Recently, Halpern and Pass [12], continuing a line of research
started by Rubinstein [26], introduced a general model of game theory with computational costs. The idea
is that players choose Turing machines to play for them, and there is an abstract complexity associated
each Turing machine M and input x (for example, the complexity of (M,x) could be the time or space
used by M on input x). A player’s utility can then depend on the complexity of the TM he chooses and
the input. This allows us to model how an agent may rationally choose a good heuristic over an exact
algorithm that may have much longer running time. Once we add complexity to the picture, we need to
consider the strategic aspects. When playing a game against opponents, an agent needs to consider how
much time is worth investing in computing a better answer. Combining these ideas with intuitions regarding
fault tolerance leads to new insights in security (see [12] for more details). Again, there seems to be scope
for much more work to be done. Finally, as we have suggested at various points, altruism and Byzantine
behavior can both be seen as instances of having “unexpected” utilities. It would be of interest to consider
other broad classes of utility functions that represent behaviors observed in real-life scenarios, and to then
try to develop strategies that deal with such behaviors.
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