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Distributed systems are increasingly deployed in the real world nowadays. Concepts like high-
availability, disaster recovery, service-oriented architectures, grid computing, and peer-to-peer are
now a standard part of a software engineer’s vocabulary. Data is often stored on remote servers or
disks, and redundancy is employed for fault-tolerance and high availability. Even computations on
a single machine are becoming increasingly parallel due to the advent of multi-core architectures,
as discussed in the previous Distributed Computing Column.

Not surprisingly, the “systems” research community follows a similar trend, and increasingly
focuses on distributed systems, distributed storage, and parallel computing. Topics like replication
and fault-tolerance, (including Byzantine fault-tolerance), which have been studied in distributed
computing conferences like PODC and DISC for a couple of decades, have now found their way
to the mainstream of systems research. Even the SIGOPS Hall of Fame Award, which recognizes
the most influential Operating Systems papers, was awarded in 2007 to five distributed computing
papers (see below). At the same time, new research topics with a distributed flavor have emerged
in response to real-world drives such as peer-to-peer applications, data storage across multiple
administrative trust domains, and multi-core architectures.

This column examines how distributed computing principlescan (and do) come into play in
systems research. I first list the laureates of the 2007 SIGOPS Hall of Fame Award. Next, Allen
Clement surveys recent papers in systems conferences (SOSPand OSDI) that employ distributed
algorithms. He first discusses how topics that have been studied in the distributed algorithms
community are now used in systems research, and then overviews new topics that are treated in
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both communities, albeit differently. Allen also points out where future research on foundations of
distributed computing can help advance the field.

The bulk of this column is by Roy Friedman, Anne-Marie Kermarrec, and Michel Raynal,
who discuss the important principle of modularity in distributed systems. They illustrate how
this principle has contributed to research in the areas of shared memory-based computing and
agreement problems. They then advocate a similar approach for peer-to-peer systems.

Many thanks to Allen, Roy, Anne-Marie, and Michel for their contributions to this column. Up-
coming columns will focus on “quantum computers meet distributed computing” and on “teaching
concurrency”.

Call for contributions: Please send me suggestions for material to include in this column, in-
cluding news and authors willing to write a guest column or toreview an event related to distributed
computing. In particular, I welcome tutorials and surveys,either exposing the community to new
and interesting topics, or providing new insight on well-studied topics by organizing them in new
ways. I also welcome open problems with a short description of context and motivation.

2007 SIGOPS Hall of Fame Award

The SIGOPS web page1 stipulates that “The SIGOPS Hall of Fame Award was instituted in
2005 to recognize the most influential Operating Systems papers that have appeared in the peer-
reviewed literature at least ten years in the past.” In 2007,the following papers were recognized,
(quoted verbatim from the SIGOPS web-page):

• Leslie Lamport, Time, Clocks, and the Ordering of Events in aDistributed System, Commu-
nications of the ACM 21(7):558-565, July 1978.
Perhaps the first true “distributed systems” paper, it introduced the concept of “causal or-
dering”, which turned out to be useful in many settings. The paper proposed the mechanism
it called “logical clocks”, but everyone now calls these “Lamport clocks”.

• Andrew D. Birrell and Bruce Jay Nelson, Implementing RemoteProcedure Calls, ACM
Transactions on Computer Systems 2(1):39-59, February 1984.
This is *the* paper on RPC, which has become the standard for remote communication in
distributed systems and the Internet. The paper does an excellent job laying out the basic
model for RPC and the implementation options.

• J. H. Saltzer, D. P. Reed, and D. D. Clark, End-To-End Arguments in System Design, ACM
Transactions on Computer Systems 2(4):277-288, November 1984.
This paper gave system designers, and especially Internet designers, an elegant framework
for making sound decisions. A paper that launched a revolution and, ultimately, a religion.

1http://www.sigops.org/awards/hall-of-fame.html
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• Michael Burrows, Martin Abadi, and Roger Needham, A Logic ofAuthentication, ACM
Transactions on Computer Systems 8(1):18-36, February 1990.
This paper introduced to the systems community a logic-based notation for authentication
protocols to precisely describe certificates, delegations, etc. With this precise description a
designer can easily reason whether a protocol is correct or not, and avoid the security flaws
that have plagued protocols. “Speaks-for” and “says” are now standard tools for system
designers.

• Fred B. Schneider, Implementing Fault-Tolerant Services Using the State Machine Ap-
proach: a tutorial, ACM Computing Surveys 22(4):299-319, December 1990.
The paper that explained how we should think about replication ... a model that turns out
to underlie Paxos, Virtual Synchrony, Byzantine replication, and even Transactional 1-Copy
Serializability.

Distributed Computing in SOSP and OSDI

Allen Clement
University of Texas at Austin

aclement@cs.utexas.edu

Abstract

SOSP, theACM Symposium on Operating Systems Principles, and OSDI, theUSENIX
Symposium no Operating System Design and Implementation, are “the world’s premier forum
for researches, developers, programmers, vendors, and teachers of operating systems technol-
ogy” according to the SOSP home page. While it may seem odd to discuss operating systems
conferences in a column dedicated to distributed computing, the proceedings of the last few
SOSP and OSDI’s have included numerous papers focused on topics more traditionally associ-
ated with distributed computing—primarily transactions,Byzantine fault tolerance, and large
distributed systems. In this article we highlight papers from the last 3 years of SOSP and OSDI
that are especially relevant to the distributed computing community, identifying areas where
the distributed computing community was clearly ahead of its time and others where it was
not.
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1 PODC, ahead of its time...

Transactions are a familiar topic at PODC and DISC, where their existence and importance is
taken as a matter of course. The case for renewed interest in transactions, specifically transactional
memory, was made in the previous Distributed Computing Column [6, 16, 24]. Not surprisingly,
transactions had a substantial presence (12.5% of the accepted papers) at SOSP 2007.

Rossbach et al. [35] explore the challenges of using transactional memory in operating systems.
Their premise is that the abstractions of atomic operation and serialized, isolated execution of
atomic units greatly simplifies the task of programming parallel systems—which modern systems
most certainly are. Unfortunately, operating systems support I/O operations that are not easily
included in transactions due to the practical difficulty of rolling back an output that is already
visible on the screen. Rossbach et al. solve this problem through the use ofcxspinlocks, a novel
mechanism that dynamically incorporates locks into transactions. Cxspinlocks allow transactions
to graciously handle I/O and also provides a solution to the problem of priority inversion in lock
based systems.

Sinfonia [4] utilizesminitransactionsas the primary building block for scalable distributed
systems. Minitransactions are not quite transactions, they are “mini” after all, but they capture the
abstraction of atomic actions and hide the complexities of concurrent execution and failures from
the programmer.

Vandiver et al. [36] present a Byzantine fault tolerant transaction processing database system.
While transactions play an important role in the system, thefocus is on providing Byzantine fault
tolerant (BFT) replication of the transaction execution.

BFT has a long and familiar history in PODC, dating back to 1982 [15] and beyond [34], and
a much shorter history in the systems community amidst concerns that the overheads of Byzantine
fault tolerant systems are insurmountably high. These concerns are traditionally based on the
lower bound of3f + 1 replicas required to solve Byzantine consensus [34] and thefundamental
impossibility of solving consensus with any failures in an asynchronous system [17].

Castro et al. [9] debunked the myth that the overheads of BFT are prohibitively high at SOSP
1999 with Practical Byzantine Fault Tolerance (PBFT), a replicated state machine based on Byzan-
tine Paxos. Since PBFT demonstrated that BFT could be practical, the SOSP/OSDI community
has been increasingly open to papers on the subject. Recent BFT work at SOSP/OSDI can be
divided into two broad categories: state machine replication and distributed storage.

PBFT requiresn ≥ 3f + 1 PBFT replicas in order to ensure safety in an asynchronous system.
When the network is cooperative and the primary is non-faulty, each client request requiresO(n2)
messages and 5 message delays to complete—one message delayfrom the client to the primary and
then 4 additional message delays to complete the consensus protocol used to coordinate the repli-
cas. A series of papers from SOSP 2005, OSDI 2006, and SOSP 2007 has attempted to improve
on the performance of PBFT by re-evaluating the mechanism used to coordinate the replicas.

The Query/Update (Q/U) protocol [1] replaces the consensusprotocol used in PBFT with a
quorum based protocol requiringn ≥ 5f + 1 replicas but that is able to complete client requests
in only 2 message delays as long as there are no contending requests in the system. Contention
is addressed through client initiated exponential back off. The Hybrid quorum (HQ) protocol [12]
presented at OSDI 2006 utilizes quorum techniques requiring n ≥ 3f + 1 replicas to coordinate
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client requests in the absence of contention and falls back to PBFT when contention is present. HQ
requires 4 message delays to complete client requests. Zyzzyva [25] presented at SOSP 2007 uti-
lizes a fast consensus protocol that requiresn ≥ 3f+1 replicas to ensure safety in an asynchronous
system and only 3 message delays to complete client requestsin the absence of failures—1 mes-
sage from the client to the primary and then two more to complete a fast consensus protocol.
The authors of Zyzzyva provide an alternate protocol requiring n ≥ 5f + 1 replicas to ensure
safety and only 3 message delays to complete even in the presence off faults. The key to under-
standing Zyzzyva lies in understanding the fast consensus protocols developed by the distributed
computing community in recent years [14, 31, 18, 27] and realizing that the clients are, adopting
Paxos [26] terminology, thelearnersin the system. Zyzzyva demonstrates that batching multiple
client requests into a single consensus operation is very valuable, increasing throughput by up to
a factor of 6 and reaffirming the observation of Friedman and van Renesse [19]. The ability to
batch requests appears to be a strong argument against primary-less quorum systems in replication
protocols.

While the evolution from PBFT to Zyzzyva has focused extensively on the computation over-
heads of coordinating replicas in a distributed system, this computational overhead is not the only
challenge faced by distributed storage systems. In storagesystems, fault tolerance is achieved by
replicating the stored data. Naive replication requires storing n copies of the data. Erasure cod-
ing is an attractive technique to reduce the storage and network overheads, but traditional systems
employing erasure coding have either increased the server and computational costs or failed to
decrease the network overheads. In a striking demonstration of the connection between SOSP and
PODC, at SOSP 2007 Hendricks et al. [22] presented a novel BFTstorage system based on the ho-
momorphic fingerprinting scheme [23] presented just monthsbefore at PODC 2007. While others
had addressed the theoretical challenge of reliable distributed storage [2, 20, 32], Hendricks et al.
were the first to demonstrate that reliable storage can be done efficiently in practice.

PeerReview [21] describes a Byzantine failure detector that is appropriate for use in distributed
systems. One key observation of PeerReview is that faults indistributed systems fall into 2 cate-
gories, acts of omission and acts of commission. Acts of omission may prevent liveness while acts
of commission are necessary in order to violate safety. PeerReview identifies and assigns blame
for acts of commission in the system but does nothing in response to acts of omission. A key chal-
lenge in PeerReview is ensuring that acts of commission are correctly identified and that correct
participants cannot be falsely accused of faulty behaviors.

2 ... and possibly a little behind

PODC 2006 saw two papers [3, 33] that attempted to integrate selfish and Byzantine behavior. The
common motivation for these works is that modern systems areoften deployed across multiple
administrative domains (MADs) where most users must be treated as potentially selfish actors
but the realities of faulty and malicious behavior cannot beavoided. Aiyer et al. [5] actually beat
PODC to the punch at SOSP 2005 with the introduction of the Byzantine Altruistic Rational (BAR)
model for distributed systems. Under the BAR model, nodes are classified as eitherByzantine,
Altruistic (i.e., correct), orRational. Aiyer et al. use a BAR tolerant consensus based replicated
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state machine protocol in order to build a peer to peer backupsystem that is provably correct in
the presence of fewer than1

3
Byzantine participants even when the non-Byzantine participants are

rational rather than correct. OSDI 2006 saw more work in the BAR model with the introduction
of BAR Gossip [28]. BAR Gossip is a gossip protocol for streaming live media that is designed to
tolerate both Byzantine and rational behaviors by the clients receiving the stream.

While the work in the BAR model [5, 28] and the PODC papers [3, 33] ostensibly address
the same problem of integrating Byzantine fault tolerance and game theory, they approach the
problem with drastically different motivations and metrics of success. The theory papers naturally
strive for a clean model with powerful properties and elegant proofs while the systems papers are
driven by implementation concerns and limitations of deployed systems. An upcoming challenge
is identifying techniques that are appealing to both systembuilders and theoreticians.

3 Help needed

As systems conferences, SOSP and OSDI are popular destinations for experience papers de-
scribing the design, development, and employment of large scale systems. Dynamo: Amazon’s
highly available key-value store [13] was presented at SOSP2007 and Google’s Chubby [7] and
Bigtable [10] were both presented at OSDI 2006. As experience papers, Dynamo, Chubby, and
Bigtable claim little in the way of technical contributionsbut rather focus on the requirements and
challenges of large scale deployments in mission critical environments. Traditionally, academic
work has focused on guaranteeing safety always and some formof liveness under the weakest
possible conditions. Dynamo, challenges this approach by explicitly settling for weaker safety
guarantees in order to achieve better availability and liveness properties: the key store should
always be writeable but is allowed to return stale reads. It is also not uncommon for academic sys-
tems and protocols to be designed with server faults in mind while assuming that clients are correct.
Chubby, a lock service based on Paxos [26], found that clientbehaviors posed a significant threat to
the system’s usability, providing evidence that client failures should more consistently considered.

2007 saw an interesting question raised by the SOSP/OSDI community: do we really need
3f +1 replicas for asynchronous Byzantine consensus? Surprisingly, the answer appears to be no!

Li et al. go “Beyond One-third Faulty Replicas in Byzantine Fault Tolerant Systems” [30] and
introducefork* consistency, a safety constraint weaker than the linearizabilty provided by full state
machine replication. A system is fork consistent iff (a) every result accepted by a correct client is
based on a history of well formed client requests, (b) correct client i only accepts results based on
histories that contain all ofi’s previous requests, and (c) if two correct clients accept aresult for
the same request, then the corresponding histories match upuntil that point. They are able to show
a variant of PBFT withn ≥ 3f + 1 nodes that is safe according to traditional definitions as long
as at mostf replicas are faulty and is fork consistent with up to2f faults. Fork* consistency is
based on fork linearizabilty, first used by the SUNDR system [29] at OSDI 2004 and generalized
by Cachin et al. [8] at PODC 2007.

Chun et al. [11] claim that consensus can be achieved in a Byzantine setting with only2f + 1
replicas. The key insight of this paper is the use of a trustedappend only memory. As long as the
trusted memory is correct, Byzantine replicas are unable toequivocate and send different messages
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to different replicas.
Chun et al. and Li et al. both challenge fundamental assumptions of the Byzantine fault model,

either by relaxing the consistency guarantees or restricting the actions available to Byzantine par-
ticipants. In doing so they raise important questions aboutthe tradeoffs to be made between consis-
tency and safety semantics, liveness guarantees, and restrictions on the model. These are questions
that the distributed computing community is well equipped to explore and answer.

4 Conclusion

This has been a quick overview of papers from recent SOSP and OSDI conferences that should be
of interest to the distributed computing community. Hopefully an increased awareness of the work
going on in the operating systems community reaffirms the importance of traditional distributed
computing work and aids in identifying problems that, if solved, can have a broad impact in the
computing world at large.
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Abstract
Decomposing distributed systems into modules, each with a precise interface and a func-

tional implementation independent specification, is highly effective both from a software en-
gineering point of view and for theoretical purposes. The usefulness of this approach has been
demonstrated in the past in several areas of distributed computing. Yet, despite its attractive-
ness, so far work on peer to peer systems failed to do so. This paper argues in favor of this
approach and advocates such a decomposition for peer to peersystems. This allows designers
to understand and explain both what a system does and how it does it.
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1 Introduction

Designing, building, and reasoning about robust distributed systems are complex tasks. Yet, when
considered closely, one can identify several different sources of complexity. Using the terminology
introduced by F.P. Brooks in his famousThe Mythical Man-Monthbook, some of these difficulties
areessentialwhile others areaccidental. That is, some are inherent in these environments, while
others can largely be avoided using better abstractions andbetter separations between levels of ab-
straction. Simply put, much of the accidental complexity isa result of poor engineering approaches
to these problems.

One of the most basic engineering approaches is to modularize a problem domain. That is, the
domain is decomposed intomodules.1 Each module has a well defined interface, which specifies
the methods by which the rest of the world can interact with it. Moreover, the module is assumed
to have a functional, implementation-independent, specification. From a software engineering
viewpoint, this enables composing modules based on their interface alone. More specifically, each
module in such a composition may be written in a different programming language, and provided
by an independent vendor. Also, it is possible to replace oneimplementation of a given module
with a different implementation without breaking the integrity of the system. We call this approach
thefunctional modular approachto distributed systems.

Interestingly, once we apply the functional modular approach to a given problem, it is also
easier to investigate this problem in a formal manner. For example, it is possible to investigate
what is the minimal functional specification (or properties) that a module must satisfy in order
to enable solving a higher level problem. It is also easier todevelop clean, robust, and portable
algorithms that have rigorous correctness proofs when the algorithm only needs to concentrate on
functional properties of its underlying building blocks (i.e., modules), without worrying how these
properties are implemented [18].

We demonstrate this thesis by first examining two established domains, namely distributed
shared memory and distributed agreement problems. In both domains, we survey initial models
and specifications that have been given in a non-modular approach, and discuss the benefits of their
functional modular alternatives.

Then, we turn our attention to peer to peer systems. Despite being a relatively new domain in
distributed systems, existing works on peer to peer fail to use such a functional modular approach.
As a result, they suffer from the same deficiencies as early works on distributed shared memory
and on agreement problems. This tendency is even more pronounced as peer to peer systems were
first introduced in the context of specific applications, such a file sharing systems for example.
In fact, it took a few years, to acknowledge the potential power of the overlay structure and the
routing capabilities and that their applicability could goway beyond file sharing systems. As a
result, the implementations are usually described in a monolithic manner and there are no clean
formal models describing the precise functionalities of such system. Consequently, it is difficult
to understand the precise environmental assumptions required for these systems to work, and there

1The concept of asoftware componentin software engineering is very similar to a module. The two main differ-
ences between these two terms are that components can alwaysbe composed as binary units and that components must
not have an externally observable state. Therefore, a distributed shared memory “entity” is not a component under this
definition. Thus, in this paper we use the term module.
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are typically no complete rigorous proofs of correctness. The paper proposes elements to address
peer to peer systems according to a functional modular approach.

A first attempt towards that direction was made pretty early on in [7] where common abstrac-
tions for peer to peer systems using a 3 tier approach was defined. In this work, theKey Based
Routing(KBR) abstraction, which allows to route a message to a node based on an abstract key was
identified at tier 0. At tier 1, the authors propose theDistributed Hash Table(DHT), Group Any-
cast and Multicast(CAST), andDecentralized Object Location and Routing(DOLR) abstractions,
which rely on the KBR for their implementation. Finally, at tier 2 there are the applications that
use one or more of the tier 1 abstractions as services. For theKBR abstraction, they also offer an
API. Yet, this work focused on structured peer to peer systems and since then, many other relevant
peer to peer systems have been proposed relying on extremelydifferent structure and potentially
different routing protocols.

We acknowledge the existence of various peer to peer networks and integrate unstructured peer
to peer overlay in our modular description. In that sense, our work can be viewed as complementing
the API definitions in [7].

2 Distributed shared memory

Initial works on Distributed Shared Memory (DSM), like Release Consistency [12] and Java Con-
sistency [14], have mixed implementation details with specifications. This resulted in specifica-
tions that were extremely difficult to understand and prove.In the case of Java consistency, as has
been shown in [20], several commercial compilers by major vendors did not implement correctly
the memory model of Java according to its initially unclear specification. On the other hand, the
approaches taken in works on Sequential Consistency, Linearizability, Hybrid Consistency, Causal
Ordering (see Appendix A), and the non-operational definition of Java Consistency [13], have
proposed to make a clean separation between implementationdetails and functionality.

In these approaches, each node can be seen as made up of two parts: the local application pro-
cess and a DSM abstraction that offers it appropriate accessprimitives, such asread andwrite
in the case of read/write objects,dequeue andenqueue in the case of queue objects, etc. Then,
a formal functional specification of the DSM abstraction is given with respect to its interface signa-
ture. That is, the specification only defines allowed collections of sequences (one for each process)
of method invocations and their returned values. In particular, this specification does not say any-
thing about the implementation of the DSM module. This way, various consistency conditions
simply differ in the restrictions they impose on such sequences of method invocations and returned
values. Once this definition framework is established, for any consistency condition, it is possible
to develop programs and prove their correctness only based on the functional specification of the
condition. Similarly, it is possible to prove lower bounds on the requirements from any possible
implementation of a given condition, as was done (e.g., in [3]).

The DSM abstraction can in turn be decomposed into several modules, which include a DSM
protocol, a local storage module and a network interface, asillustrated in Figure 1 (the local storage
module is usually used as a local cache endowed with a persistence property, the shared virtual
memory being distributed across the local storages).
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Figure 1: A typical modular view (for a node) of DSM.

The important thing is that once the functional modular approach was taken to this problem,
it facilitated understanding exactly the semantics provided for the application by each consistency
model [2]. Moreover, it allowed for clear comparisons between different consistency conditions,
and for rigorous correctness proofs of both applications and implementations. In particular, it
enabled designing applications and proving their correctness with respect to a given consistency
condition without relying on specific implementation details or assumptions. To a large extent, it
also simplifies implementing a consistency condition, since it highlights what is needed and why.

3 Agreement problems in semi-synchronous distributed envi-
ronments

Agreement is a fundamental issue in distributed computing.In distributed systems, processes
often collaborate in order to achieve a common goal. This usually involves reaching some level of
agreement, e.g., on the next state of the system, on the next course of action, on the allocation of a
resource, etc.

A precondition to designing and reasoning about solving problems in distributed systems is
having an adequate model for it. Initially, two extreme models were defined for distributed systems:
synchronousandasynchronous. In the former, all actions occur within a known deadline andthere
is a shared global clock available to all processes. In the latter, processes have no access to any
global clock and there is no bound of the latency of events.

Yet, with the exception of specially crafted real-time systems, most standard distributed sys-
tems do not continuously and dependably exhibit the strict timing assumptions of the synchronous
model. On the other hand, it was shown that basic agreement problems cannot be solved in
purely asynchronous environments [10]. Moreover, it was observed that realistic standard-based
distributed systems typically obey some level of synchronyduring large fractions of their life-
time. This lead to the definition of models with explicit timing assumptions (e.g., thetimed-
asynchronous[6] model, or the synchrony models described in [8]). However, because these mod-
els have explicit timing assumptions in them, it is harder todevelop generic portable protocols, and
it is hard to formally investigate and state the minimal system requirements for solving agreement
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problems (see Appendix B).
A cleaner modular solution was proposed by Chandra and Toueg, who introduced in their

seminal work the notion of afailure detector[5]. That is, Chandra and Toueg observed that the
difficulty of reaching agreement in asynchronous distributed systems stems from the fact that it is
not possible to distinguish a failed process from a slow one in these environments. Thus, they pro-
posed to enrich the environment with a failure detector module. The interface of a failure detector
includes a method which returns a list of suspected (alternatively, a list of trusted) processes. Given
this interface, it is possible to define the functional, implementation independent, semantics of the
failure detector module with respect to the values returnedwhen invoking its method. In particular,
Chandra and Toueg defined several types ofcompletenessandaccuracyproperties. Completeness
defines the degree to which failed processes should be included in the list of suspected processes
while accuracy defines limitations on falsely suspecting alive processes. As an example, a failure
detector of the class denoted♦S eventually suspects all the crashed processes (completeness), and
ensures that after some unknown but finite time there is a correct process that is no longer sus-
pected (eventual weak accuracy). The failure detector approach enabled identifying precisely what
are the minimal levels of completeness and accuracy that arerequired to solve various agreement
problems (e.g.,♦S has been shown to be the weakest class of failure detector modules that allow
solving consensus despite the net effect of asynchrony and crash failures). Moreover, the failure
detector approach was used to develop robust portable protocols, whose correctness depends only
on the functional behavior of the failure detector module and not on its implementation or the other
environment assumptions.

Local Storage

Application

Network Interface

Consensus Abstraction

Failure DetectorConsensus Protocol
fd query

return ()

propose () decide (u)

Figure 2: A modular view (for a node) of an asynchronous system enriched with a failure detector.

Traditionally, it was thought that the only way to implementa failure detector module is by
assuming that the underlying system obeys some minimal timing assumptions, at least most of the
time. With this assumption, it is possible to run some sort ofaheartbeatbased protocol in order to
detect failures.

Interestingly, it turned out that the class of failure detector modules♦S, which enables solving
Consensus in otherwise asynchronous distributed settings, can be also implemented in timeless
environments [19]. The only requirement is that the order inwhich each process receives replies
to queries it sends all other processes obeys some minimal constraints. This highlights the thesis
advocated in this paper, since without the functional modular approach, it would have been very
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difficult to obtain this result. Moreover, all protocols that were designed to solve Consensus based
on ♦S work correctly in both environments, each with its corresponding implementation of a♦S
module. This again exhibits the benefits of the functional modular approach.

4 Peer to peer systems

Peer to peer computing has received increasing attention over the past years and remains a rela-
tively recent area of distributed computing compared to thedistributed systems described so far.
The main characteristic of peer to peer systems over previous distributed systems is to be server-
less. More precisely, end users (nodes) potentially act both as client and server. They communicate
directly with each other, and provide the system with services in a collaborative manner, rather
than relying on dedicated servers for this. The promise of peer to peer approaches is scalability
and long term survivability. Scalability is achieved by enabling the system to operate while each
node only needs to know about a small fraction of the whole system. To this end, an overlay net-
work, connecting nodes in a logical manner, is built on top ofa physical network. Distributed Hash
Tables-based implementations, such as Pastry or Chord, have dominated at first, e.g., [21, 23, 26]
(see Appendix C). Since then, many other approaches, such asgossip-based unstructured overlay
networks have been proposed. Peer to peer systems are designed to cope with dynamics and get
automatically reorganized upon node joins and departures.

Yet, despite being an emergent domain, existing research onpeer to peer still suffers from the
same unsatisfactory engineering practices of initial works in other distributed computing domains.2

There is a lack of clear separation between levels of abstractions, and clear specifications of such
systems. More specifically, no clear specification of the exact conditions under which the system
will behave as promised is provided.3

This paper advocates the use of the functional modular decomposition for peer to peer systems.
The proposed architecture may not be the ultimate one, but weuse it as a proof of concept. We
show that by taking the functional modular approach, we can specify a generic peer to peer system.
The different modules of this generic architecture can thenbe instantiated, each with a specific
implementation. The presentation that follows is voluntarily informal. Its aim is only to show how
peer to peer systems can benefit from the modular approach.

4.1 Problem statement

We assume a system operating in a distributed environment composed of a finite but unbounded
and changing set of processes. We refer to each change in the set of processes as aconfiguration
change. Peer to peer systems can be used for many purposes. Yet, for the sake of simplicity and
for consistency with the previous sections (Section 2 and Section 3), we consider a system whose
goal is to implement asemi-reliable unified storageabstraction. That is, we call a collection of
sequences of read and write operations, each of these sequences executed by a single process, a

2This is, of course, with the exception of [7], as discussed inthe Introduction.
3We would like to emphasize that while the actual implementations of these systems might be written in object ori-

ented programming languages, their design, at least as it appears in research papers describing them, are not modular.
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Figure 3: Modular view (for a node) of a peer to peer system.

partial execution. We call anuninterrupted partial executiona partial execution during which
there are no failures or configuration changes. We then require that for each uninterrupted partial
executionσ of the system, it is possible to find a total orderφ that extends the real time ordering
of all operations inσ such that each read operation for a given objecto returns the value written by
the last write too that precedes it inφ. This is similar to the notion oflinearizability(see Appendix
A) restricted to an uninterrupted partial execution.

Notice that this specification is weak in the sense that it does not require anything w.r.t. op-
erations that occur during periods in which the system is unstable. Finding a meaningful formal
specification that captures the entire lifespan of the system, and yet is simple to grasp, is left as an
open challenge to the readers of this article.

The reason we are only interested in semi-reliable storage is that most peer to peer systems
implement a location service. The goal of a location serviceis to allow finding an object. Thus, a
possible way to implement such a location service is to have each object write its location in the
semi-reliable storage. Then, for lookup, a node tries to read the location of the object from the
semi-reliable storage until it gets an answer.

4.2 Architecture

Figure 3 illustrates a modular view of a peer to peer system. In such a system, all nodes are
symmetric. This figure has the same structure as the two previous ones. The only difference is
that, on each node, the corresponding application process accesses a unified storage abstraction
(instead of a DSM or an agreement abstraction). The unified storage abstraction is made up of four
parts: aunified storageprotocol, anoverlaymodule (see below), alocal storagemodule, and a
network interface.

The unified storage module consults the overlay module to perform read/query and write/update
request ordered by the application. To this end, the overlaymodule exposes a single method called
route, which accepts an object identifier and the current process id and returns the next pro-
cess(es) id(s) to whom the message should be routed to. Thus,each time the application invokes a
read or a write, the unified storage module invokes theroute method and forwards the message
to the corresponding process(es). This continues until theroutemethod returns the same process
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id as the calling process. The latter indicates to the unifiedstorage module that it is the one re-
sponsible for storing the object. For this, the unified storage module uses the local storage module.
The corresponding protocol is summarized in Figure 4 (withts initialized to0 before the execution
begins). Note that for clarity of presentation, in Figure 4 we consider that only one process id is
returned at each step.

Upon Write(o, v) from the applicationdo
ts[o]← ts[o] + 1;
pl ← overlay.route(pi,o);
send (WRITE,o,v,(ts[o], i)) to pl;
return

Upon Read(o) from the applicationdo
pl ← overlay.route(pi,o);
send (QUERY,o,pi) to pl;
wait until (RESPONSE,o,v,(t, j)) is received;
ts[o]← max(ts[o],t);
return v

Upon receiving (QUERY,o,pk) from the networkdo
next← overlay.route(pi,o);
if next= pi then send (RESPONSE,o,v,(ts[o], j)) to pk;

% note thatpk is the originator of (QUERY,o,pk).
% Sopi directly sends the response topk

% (ts[o], j) is the timestamp thatpi associated witho
% if o does not exist locally, its local timestamp
% is 0 and the value is the default initial value

else send (QUERY,o,pk) to next
endif

Upon receiving (WRITE,o,v,(ts, j)) from the networkdo
next← overlay.route(pi,o);
if next= pi then if (ts, j) is larger than the timestamp ofpi’s copy ofo

then update the value of the local copy ofo to v

update the timestamp of the local copy ofo to (ts, j)
% if o does not exist locally, this initializes its copy

endif
else send (WRITE,o,v,ts) to next

endif

Figure 4: A generic peer to peer protocol (code for nodepi).

4.3 The overlay module

In order to define the properties of the overlay module, we first define the following concepts: A
targeted invocation sequenceis a sequence of invocations of theroute method such that (a) all
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Figure 5: Decomposing the overlay module.

invocations are called with the same object identifier, and (b) the process id passed to the(i +
1)th invocation is the one returned by theith invocation in the sequence. We say that a targeted
invocation sequenceconvergesif it includes two consecutive invocations of theroute method
that return the same process id. If the sequence converges, we call the first process id that appears
in such a pair of consecutive invocations in this sequence the converged process. Finally, for a
given execution of the system, we say that two targeted invocation sequences areundisturbedif
there are no failures and no configuration changes during theentire interval from the earliest of
these invocations until the time at which the latest of them returns.

Based on these definitions, theroutemethod of the overlay module must satisfy the following
properties (these requirements are the functional specification of the overlay module):

• Route Convergence: There exists a functionf(n) such that any targeted invocation sequence
of length at leastf(n) converges.

• Route Consistency: Any two static undisturbed targeted invocation sequences in which the
route method is invoked with the same object id converge to the sameconverged process4.
Note that depending on the application and the system considered, the invocation of the route
method may return several processes.

Periodically do
candidates← RP.potential-neighbors(pi);
emptyfinger;
foreach entryk in candidatesdo

finger[k]← FD.First-alive(candidates[k])
enddo

Upon route(pi,obj) do
return

(

RP.next-neighbor(finger,obj)
)

Figure 6: Overlay module.

Therefore the overlay module should specify(i) the structure of peer to peer overlay network
and (ii) the routing protocol. Internally, the overlay module is based on three sub-modules, as

4It is possible to refine this definition to limit what can happen even during configuration changes and failures.
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illustrated in Figure 5: the overlay protocol, the routing module, and a failure detector module.
The overlay protocol is aided by the other two modules. The aim of this “high level” description is
to show the benefit of the modular decomposition approach. When mapping various peer to peer
systems to the model we have introduced, many of them differ in the functionf(n) of the defini-
tion of Route Convergence (or theoverlay network diameter), and in the size of the list returned
by thepotential-neighbors method (or thenode degreein the overlay). Our decomposi-
tion allows investigating lower bounds on obtaining these properties, as well as comparing known
protocols based on a common ground.

In the next section, we provide more details on each of these components. More specifically, we
provide examples of several potential implementations of possible overlay and routing modules.
Obviously, these two modules are strongly related as for a given overlay structure, a specific routing
protocol might be the most relevant. Likewise the choice of aspecific overlay structure or routing
protocol may be dependent of the application targeted. Yet,this decomposition both covers existing
approaches and leaves space for new ones.

4.3.1 Overlay protocol

This protocol specifies the way the peer to peer overlay network is structured. Existing peer to
peer overlay networks mostly differ in the structure they impose to the logical overlay topology.
At one end of the spectrum lie thestructured overlay networks, while at the other end, we find
fully unstructured overlay networks. Many possible intermediary structures might be considered.
Usually, the more structured a peer to peer overlay is, the more efficient the routing protocol
becomes, but it offers less flexibility or expressiveness.

The overlay structure is fully defined by the localknowledgeof the system, precisely provided
by the set of neighbors (Id and IP address) that each node maintains. The overlay protocol is fully
specified by the set of neighbors maintained at each node, specifying the structure of the peer to
peer overlay network, the join and the maintenance protocols.

Structured overlay networks In structured peer to peer networks, the peers are organizedin a
pre-defined structure such as tree, a hypercube, a ring, etc.To this end, peers get assigned coordi-
nates in an id space, usually in a random and uniform way. Thisensures that the ids are uniformly
distributed in that space. This assumption, by avoiding skewed distribution of ids, enables to evenly
balance the load between peers in the systems. Theset of neighborsmaintained at each node is
strongly dependent on the structure of the overlay. In structured peer to peer overlays, strict con-
straints are imposed on the choice of neighbors, usually through the identifier. For example in a
ring-based overlay, each node should know about its predecessorand successor in the one dimen-
sion identifier space. In CAN [22], each node should know about its predecessor and successor
along each dimension in ad-dimensional coordinate space. In Pastry, node-IDs arer digit numbers
of base2b [21]. Each Pastry node maintains two sets of neighbors namely a leaf setand arouting
table. The leaf set contains a fixed number of entries whose node IDsare numerically closer to the
local node ID. In Pastry routing tables, the entry in the cell[i, j] has the firsti− 1 digits of its node
ID same as the local node-ID and theith digit asj.
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The join protocolspecifies the actions taken upon join. The aggressiveness ofthe join protocol
has a strong impact on the time required upon join to convergetowards the targeted structure. Node
joins are usually handled by the basic routing mechanism. When a new node joins the overlay, it
uses the routing protocol to find the closest node to its own IDand inserts itself adjacent to that
node in the overlay. Some additional operations may be required to make the set of neighbors
converged more quickly.

Finally, the maintenance protocol specifies the way the structure is maintained, more specif-
ically, this protocol enables to cope with system dynamics.For instance, Pastry implements a
lightweight maintenance protocol when periodically, eachnode exchanges a line, chosen ran-
domly, of its routing table with a neighbor, chosen randomly, of this specific line. A specific
repair protocol is implemented when a failure is detected during the routing operation.

Unstructured overlay networks In unstructured overlays, each node maintains a set ofc arbi-
trary neighbors. Random graph-like topologies have received an increasing interest as they provide
a sound basis to implement reliable dissemination for example. Several protocols have been pro-
posed to build and maintain unstructured overlay networks [1, 9, 24]. In that space, gossip-based
protocols have received an increasing interest. In such protocols each node periodically exchanges
information with another node randomly chosen from its neighbor set. This periodic exchange
between peers spreads the information in the system in an epidemic manner. Gossip-based algo-
rithms have been used to create random-like topologies [16]. Several instances exist and differ
by the way they select the peer to communicate with, the list of peers they exchange and the way
the compute their new set of neighbors. The join procedure isextremely simple and consists for
a new node to contact a peer in the network and bootstrap from its set of neighbors. The periodic
maintenance protocol ensures that the neighbor set converge to a random set of neighbors.

Some protocols such as SCAMP [11] provides each peer with a set of random neighbors.
The originality of SCAMP is to provide each node withO(log(n)) neighbors without any node
knowing explicitly the size of the network. SCAMP does not implement specific maintenance (the
(un)structure is achieved through the join protocol only).

Weakly structured overlay networks In small-world based topologies, each node in a mesh,
knows itsclosest5 neighbors and has additional shortcuts in the graph. The asymptotic routing
performance depends on the way shortcuts are chosen (random[25] or following a specific distri-
bution such as thed-harmonic distribution [17]). Small-world topologies with random shortcuts
can be achieved using a simple random peer sampling protocoland a specific clustering protocol
[15]. Small-world topologies with a harmonic distributionof shortcuts can be implemented by a
biased peer sampling protocol and a similar clustering protocol [4]. Interestingly, these protocols
achieves the targeted structure in a few cycles. Therefore asimple join operation is usually not
enough to achieve such a topology and the maintenance protocol is compulsory.

5The proximity metric may be application-dependent.
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4.3.2 The routing protocol

The routing module has two methods, namely,potential-neighborsandnext-neighbor.
Thepotential-neighborsaccepts a process identifier and returns an array of ordered lists of
processes. Thenext-neighbor accepts as parameters an object identifier and a list of processes
and returns the id of one or several of the processes appearing in its input list.

While the overlay protocol enables to build a peer to peer overlay following a given structure,
the routing protocol provides the means to navigate such an overlay. The main metric considered
to evaluate a routing protocol is the complexity and the exhaustiveness of the result. While many
routing protocols may be considered, the most used in the area remains thegreedyprotocol. In
such a routing protocol, each routing step gets the message closer to the destination. In the context
of unstructured overlay though, a greedy protocol achievesa routing convergence with aO(n)
complexity (wheren is the system size). In order to improve on latency, flooding or restricted
flooding is possible.

Structured overlay networks Many structured overlays rely on akey-based routingprotocol.
Chord routing protocol is provided in Annex C. In CAN, the message progresses along a route in
ad-dimensional space along one of the dimension in a greedy manner. In Pastry, the messages are
routed through nodes with increasing prefix matching the destination.

Unstructured overlay networks Greedy routing in unstructured overlays leads to a linear com-
plexity in the size of the network. Potentially all nodes should be visited to achieve routing con-
vergence. Flooding protocols are the most used protocols and consists at each peer in flooding the
route message to all its neighbors, until the destination isreached. The restricted flooding protocol,
assigns a TTL (time to live) to each lookup operation. The TTLis decremented at each hop and the
route procedure terminates once the TTL reaches 0. Route convergence might not be guaranteed
in such cases. Note that routing to a fixed id is definitely not the most efficient operation in such
networks. However, unstructured overlay assorted with flooding or restricted flooding protocols
are used for more expressive lookup operations such as rangeor keyword-based queries. Another
option is to perform random walks with a bounded TTL. Yet in order for random walks to have a
good chance of find a given data item within reasonable time, there has to be a way to bias them,
as is done, e.g., in the GIA system.

4.4 The failure detector module

The failure detector module supports one method (denotedfirst-alive in Figure 5) that ac-
cepts an ordered list of processes and returns the id of the firstk processes on the list that are alive.
The implementation of the overlay based on the routing and failure detector modules appears in
Figure 6. (see also Appendix D.)
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5 Conclusion

In summary, the great benefits of the functional modular approach are that, after decomposing the
system this way, it is easy to understand both what the systemdoes, and how it does it. This is a
direct consequence of the clean separation between the different abstraction layers. This permits
one to define precisely what is the functional specification of each module, and to come up with
a generic protocol that is based only on the functional properties of the underlying modules. This
also enables further investigation into what are the minimal required environment assumptions, and
to write correctness proofs for the protocols. It also enables better comparisons between systems,
as it highlights the essence of their differences.

In the context of peer-to-peer systems, this paper has takena first step towards such a speci-
fication. Yet, our specification is limited to storage oriented systems and lookup services. Also,
our specification does not cover the behavior of the system during periods of instability (churn).
Extending our specification and capturing other types of peer-to-peer systems is left for future
work.
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A Consistency criteria for DSM

The definition of a consistency criterion is crucial for the correctness of a multiprocess program.
Basically, a consistency criterion defines which value has to be returned when a read operation
on a shared object is invoked by a process. The strongest (i.e., most constraining) consistency
criterion is atomic consistency[A7] (also calledlinearizability when we consider objects more
sophisticated than simple read/write shared variables [A4]). It states that a read returns the value
written by the last preceding write, ”last” referring to real-time occurrence order (concurrent writes
being ordered).Causal consistency[A2] is a weaker criterion stating that a read does not get an
overwritten value. Causal consistency allows concurrent writes; consequently, it is possible that
concurrent read operations on the same object get differentvalues (this occurs when those values
have been produced by concurrent writes). Causal consistency is encountered in some cooperative
applications. Other consistency criteria (weaker than causal consistency) have also been proposed
[A1,A3].

Sequential consistency[A5] is a criterion that lies between atomic consistency andcausal con-
sistency. Informally it states that a multiprocess programexecutes correctly if its results could have
been produced by executing that program on a single processor system. This means that an execu-
tion is correct if we can totally order its operations in sucha way that (1) the order of operations in
each process is preserved, and (2) each read gets the last previously written value, “last” referring
here to the total order. The difference between atomic consistency and sequential consistency lies
in the meaning of the word “last”. This word refers to real-time when we consider atomic con-
sistency, while it refers to a logical time notion when we consider sequential consistency (namely
the logical time defined by the total order). The main difference between sequential consistency
and causal consistency lies in the fact that (as atomic consistency) sequential consistency orders
all write operations, while causal consistency does not require to order concurrent writes.

The figures 7 and 8 show the difference between atomic consistency and sequential consis-
tency. (Solid arrows denote “process” order, while dotted arrows denote “read-from” order.) Let
us consider Figure 7. There are two processes,p1 andp2 whose executions are as follows (where
ri(x)a means “pi readsx and obtains the valuea”, andwi(x)a means “pi writesa in x”): p1 first
writes0 into x, then readsx and obtains the value1, and finally reads againx and obtains the value
2; p2 writes twice inx, first the value1, then the value2.

For this execution to be atomically consistent we must be able to totally order all its operations
in such a way that (1) the real-time order on operations is respected (e.g., asw1(x)0 is terminated
whenw2(x)1 starts it has to appear before in the total order), (2) concurrent operations can be
ordered in any way, and (3) each read operation obtains the value of the last preceding write (“last”
with respect to this total order). The consistent total order w1(x)0, w2(x)1, r1(x)1, w2(x)2, r2(x)2
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can be associated with the execution of Figure 7. Hence, it itatomically consistent.

w1(x)0

real time axis

w2(x)1 w2(x)2

r1(x)1 r1(x)2

Figure 7: An atomically consistent execution.

Differently, the execution described in Figure 8 is only sequentially consistent. It is possible to
totally order all its operations while respecting only the order inside each process and the read-from
relation:w2(x)1, w2(y)2, r2(x)1, w1(x)0, r1(y)2, r1(x)0. As the reader can check, this execution
is not atomically consistent as it is not possible to totallyorder its operations while respecting the
realtime order of non-overlapping operations.

w1(x)0

real time axis

w2(x)1 w2(y)2 r2(x)1

r1(y)2 r1(x)0

Figure 8: A sequentially consistent execution.

Both atomic consistency and sequential consistency require a sequential “witness” execution.
In each case a read obtains the last written value in this sequential execution. As already indicated,
“last” is with respect to real-time for atomic consistency,while it is with respect to some logical
time for sequential consistency. That is why these consistency criteria demand different protocols
when one wants to manage cached values in distributed systems [A6].
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B Why consensus is important in distributed systems

Considering a message-passing asynchronous distributed system where nodes can crash, theatomic
broadcastproblem states that (1) all the nodes that do not crash must deliver the same set of mes-
sages in the same order, and (2) the nodes that crash deliver aprefix of this sequence of messages.
This sequence includes only messages broadcast by the nodes, and must include at least the mes-
sages broadcast by the correct nodes.

Chandra and Toueg have shown that the atomic broadcast problem and the consensus problem
are equivalent in the sense that any of them can be solved as soon as we are given a protocol solving
the other. Figure 9 shows how such a transformation works. When a node wants to broadcast
a messagem it invokes the primitiveTO Broadcast(m) which simply consists in sendingm
to all the nodes using the underlying primitiveUR Broadcast(m) (a uniform reliable broadcast
primitive [B4]).

The messages received by a nodei are stored in a setUR Deliveredi. Then the nodes use
consecutive consensus instances. During each consensus instance, each node “proposes” a delivery
order for the messages it has received (and not yet delivered) from the other nodes. As each
consensus instance imposes the same batch of messages to allthe nodes, and all the nodes that
have not crashed execute the same sequence of consensus instances, they deliver the messages in
the same order. These messages are stored in a local queue by each nodei, that can then deliver the
same sequence of messages (as determined by the sequence of message batches) to the application
process located on this node. This shows that atomic broadcast is at the same time a communication
problem (messages have to be delivered) and an agreement problem (in the same order). More on
this can be found in [B3,B5].

Also, several file systems and real-world replication modules are based on consensus protocols,
e.g., [B1] and [B2].

TO Broadcast(m)
TO Deliver()

UR Deliver()

Define a common delivery order

TO deliverablei

UR deliveredi

UR Broadcast(m)

Application layer

Figure 9: From consensus to atomic broadcast.
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C A look at Chord

Chord [C2] is one of the first peer to peer systems to use distributed hash tables for data location.
The main idea of Chord is to assign to each node and data item anhashed identifier in the range
[0 − 2m−1] for some value ofm. Thus, each hashed identifier ism bits long. For example, ifm
is 128, which is often the case, then each identifier is of length 128 bit. Choosing such a value for
m ensures that the chances of collisions are negligible and therefore we can assume that indeed no
two data items are assigned the same identifier.
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Finger table for N8

N8+2

N42N8+32

N32N8+16

N8+8 N21

N14N8+4

Figure 10: The Chord peer to peer protocol assumingm = 6 (from [C2]).

Next, Chord logically places all hashed identifiers, for both nodes and data items, on a logical
ring, as illustrated in Figure 10. The goal of the system is tohave each node pointing to onlylog n

other nodes, and have an overlay diameter oflog n as well. Thus, ideally we would like a node
that is assigned an identifieri to maintain pointers to all other nodes whose identifiers arei + 2j

mod 2m for j ∈ [0, 1, . . . , log n] (so the last node isi itself). However, given that the actual number
of nodes is much smaller than2128, then most potential identifiers are not assigned to any node.
Thus, instead of keeping a pointer to a nodek, nodei keeps a pointer to nodesuccessor(k),
i.e., to the first node clockwise atk or afterwards in the logical ring. This list of nodes thati points
to is referred to as thefinger table ofi.

Finding a data item with a hashed identifierd is done by having each node with identifieri

propagating the request to the first entry in the finger table of i such that the identifierk′ stored
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there is the largest node that precedes (or equals)d in modulo2m.
Placing Chord in our terminology, thepotential neighbors method of the DHT would

return an array such that each entryk of the array consists of the range of identifiers [i+2k, . . . , 2k+m

mod 2m]. The first alive method of the failure detector would return the first identifier
that is populated by an alive node. This serves as the entriesin the finger table. Finally, the
next neighbor method of the DHT would return the first entry in the finger table that recedes
(or equals)d in modulo2m.

Note that to adapt to a different peer to peer protocol (such as Pastry [C1] or Tapestry [C3])
all that is needed is to modify the values returned by thepotential neighbors and the
next neighbor methods.
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Route(Np,d)=Nq

Route(Nq,d)=Nr
Nq

Route(Nr,d)=Ns

Route(Ns,d)=Ns

Ns

Np

Nr

Figure 11: Theroute invocation process in the generic case.

D Looking for a data item in a peer to peer overlay

Following the description in Section 4, we demonstrate the route invocation process as illustrated
in Figure 11. Suppose the application at nodeNp decides write a valuev to data itemd. The
application invokes theWrite(d, v) method. As a result, the unified storage protocol invokes the
route(Np, d) method that returns with the next node’s identifierNq. ThenNp forwards a write
message toNq. When this message arrives at the unified storage protocol ofNq, it invokes the
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route(Nq, d) that returns withNr. The write message is then forwarded toNr. The latter in-
vokes theroute(Nr, d) method that returns withNs. Finally, whenNs invokes theroute(Ns, d)
method, it returns withNs. This indicates to the unified storage mechanism that it is responsible for
data itemd, and it stores the valuev for d in its local storage module: if there was a previous value,
thenv overwrites it; otherwise,Ns initiates a new copy ofd with valuev. Figure 12 illustrates the
same calling chain, but when the DHT module is instantiated with the Chord protocol.

[D1] Stoica I., Morris R., Liben-Nowell D., Karger D., Kaashoek M.F., Dabek F. and Balakrish-
nan H., Chord: A Scalable peer to peer Lookup Protocol for Internet Applications.IEEE/ACM
Transactions on Networking, 11(1):17-32, 2003.
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Figure 12: An example ofroute invocation process when instantiated for the Chord protocol
(adapted from [D1]).
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