ACM SIGACT News Distributed Computing Column 30
On Distributed Computing Principles in Systems Research

Idit Keidar
Dept. of Electrical Engineering, Technion
Haifa, 32000, Israel

idish@ee.technion.ac.il

Distributed systems are increasingly deployed in the resldynowadays. Concepts like high-
availability, disaster recovery, service-oriented attures, grid computing, and peer-to-peer are
now a standard part of a software engineer’s vocabularya Baiften stored on remote servers or
disks, and redundancy is employed for fault-tolerance agid &vailability. Even computations on
a single machine are becoming increasingly parallel dukd@tivent of multi-core architectures,
as discussed in the previous Distributed Computing Column.

Not surprisingly, the “systems” research community folkosvsimilar trend, and increasingly
focuses on distributed systems, distributed storage, aradlel computing. Topics like replication
and fault-tolerance, (including Byzantine fault-tolecay which have been studied in distributed
computing conferences like PODC and DISC for a couple of desahave now found their way
to the mainstream of systems research. Even the SIGOPS fHalhte Award, which recognizes
the most influential Operating Systems papers, was awand2@7 to five distributed computing
papers (see below). At the same time, new research topibsavdistributed flavor have emerged
in response to real-world drives such as peer-to-peer Ggifains, data storage across multiple
administrative trust domains, and multi-core architezsur

This column examines how distributed computing princigdas (and do) come into play in
systems research. | first list the laureates of the 2007 SEsB&I| of Fame Award. Next, Allen
Clement surveys recent papers in systems conferences (&@SPSDI) that employ distributed
algorithms. He first discusses how topics that have beenestud the distributed algorithms
community are now used in systems research, and then owsrview topics that are treated in

82

both communities, albeit differently. Allen also pointg @there future research on foundations of
distributed computing can help advance the field.

The bulk of this column is by Roy Friedman, Anne-Marie Kernear and Michel Raynal,
who discuss the important principle of modularity in distried systems. They illustrate how
this principle has contributed to research in the areas afeshmemory-based computing and
agreement problems. They then advocate a similar approageér-to-peer systems.

Many thanks to Allen, Roy, Anne-Marie, and Michel for theandributions to this column. Up-
coming columns will focus on “quantum computers meet disted computing” and on “teaching
concurrency”.

Call for contributions: Please send me suggestions for material to include in thisrog in-
cluding news and authors willing to write a guest column aetoew an event related to distributed
computing. In particular, | welcome tutorials and survesither exposing the community to new
and interesting topics, or providing new insight on wellesed topics by organizing them in new
ways. | also welcome open problems with a short descripti@oontext and motivation.

2007 SIGOPS Hall of Fame Award

The SIGOPS web pagstipulates that “The SIGOPS Hall of Fame Award was institiite
2005 to recognize the most influential Operating Systemernsajhat have appeared in the peer-
reviewed literature at least ten years in the past.” In 280§ following papers were recognized,
(quoted verbatim from the SIGOPS web-page):

e Leslie Lamport, Time, Clocks, and the Ordering of Events Distributed System, Commu-
nications of the ACM 21(7):558-565, July 1978.
Perhaps the first true “distributed systems” paper, it irdtaced the concept of “causal or-
dering”, which turned out to be useful in many settings. Tapgy proposed the mechanism
it called “logical clocks”, but everyone now calls these “tgort clocks”.

e Andrew D. Birrell and Bruce Jay Nelson, Implementing RemBtecedure Calls, ACM
Transactions on Computer Systems 2(1):39-59, Februarg.198
This is *the* paper on RPC, which has become the standarde€orate communication in
distributed systems and the Internet. The paper does andlexcpb laying out the basic
model for RPC and the implementation options.

e J. H. Saltzer, D. P. Reed, and D. D. Clark, End-To-End ArgusianSystem Design, ACM
Transactions on Computer Systems 2(4):277-288, Novent&zt. 1
This paper gave system designers, and especially Integsggers, an elegant framework
for making sound decisions. A paper that launched a revarhugind, ultimately, a religion.

http://ww. si gops. or g/ awar ds/ hal | - of - f ame. ht m

ACM SIGACT News 83 June 2008 Vol. 39, No. 2

e Michael Burrows, Martin Abadi, and Roger Needham, A LogicAafthentication, ACM
Transactions on Computer Systems 8(1):18-36, Februar§.199
This paper introduced to the systems community a logicebaséation for authentication
protocols to precisely describe certificates, delegati@ts. With this precise description a
designer can easily reason whether a protocol is correctaiy and avoid the security flaws
that have plagued protocols. “Speaks-for” and “says” arematandard tools for system

designers.

e Fred B. Schneider, Implementing Fault-Tolerant Servicemg the State Machine Ap-
proach: a tutorial, ACM Computing Surveys 22(4):299-318cBmber 1990.
The paper that explained how we should think about replicati. a model that turns out
to underlie Paxos, Virtual Synchrony, Byzantine replicatiand even Transactional 1-Copy

Serializability.

Distributed Computing in SOSP and OSDI

Allen Clement
University of Texas at Austin
aclement@cs.utexas.edu

Abstract

SOSP, theACM Symposium on Operating Systems Princjpéasl OSDI, theUSENIX
Symposium no Operating System Design and Implementatierithe world’s premier forum
for researches, developers, programmers, vendors, arftetseaof operating systems technol-
ogy” according to the SOSP home page. While it may seem odidtoss operating systems
conferences in a column dedicated to distributed computhng proceedings of the last few
SOSP and OSDI'’s have included numerous papers focusedioa topre traditionally associ-
ated with distributed computing—primarily transactioByzantine fault tolerance, and large
distributed systems. In this article we highlight papeosifithe last 3 years of SOSP and OSDI
that are especially relevant to the distributed computimgmmunity, identifying areas where
the distributed computing community was clearly ahead sfithe and others where it was

not.

ACM SIGACT News 84 June 2008 Vol. 39, No. 2

1 PODC, ahead of itstime...

Transactions are a familiar topic at PODC and DISC, where their existenu immportance is
taken as a matter of course. The case for renewed intergéahseictions, specifically transactional
memory, was made in the previous Distributed Computing @aoli{6, 16, 24]. Not surprisingly,
transactions had a substantial presenee(; of the accepted papers) at SOSP 2007.

Rossbach et al. [35] explore the challenges of using traioset memory in operating systems.
Their premise is that the abstractions of atomic operatiwh serialized, isolated execution of
atomic units greatly simplifies the task of programming paraystems—which modern systems
most certainly are. Unfortunately, operating systems suppfO operations that are not easily
included in transactions due to the practical difficulty ofling back an output that is already
visible on the screen. Rossbach et al. solve this probleaugir the use ofxspinlocksa novel
mechanism that dynamically incorporates locks into tratieas. Cxspinlocks allow transactions
to graciously handle I/O and also provides a solution to tiedlem of priority inversion in lock
based systems.

Sinfonia [4] utilizesminitransactionsas the primary building block for scalable distributed
systems. Minitransactions are not quite transactionyg,dhe “mini” after all, but they capture the
abstraction of atomic actions and hide the complexitieootarrent execution and failures from
the programmer.

Vandiver et al. [36] present a Byzantine fault tolerant si@stion processing database system.
While transactions play an important role in the systemfdlees is on providing Byzantine fault
tolerant (BFT) replication of the transaction execution.

BFT has a long and familiar history in PODC, dating back to 19&} find beyond [34], and
a much shorter history in the systems community amidst cosdeat the overheads of Byzantine
fault tolerant systems are insurmountably high. These e@wmrscare traditionally based on the
lower bound of3f + 1 replicas required to solve Byzantine consensus [34] anduthgamental
impossibility of solving consensus with any failures in ayr@chronous system [17].

Castro et al. [9] debunked the myth that the overheads of BEpehibitively high at SOSP
1999 with Practical Byzantine Fault Tolerance (PBFT), dicaped state machine based on Byzan-
tine Paxos. Since PBFT demonstrated that BFT could be pahcthe SOSP/OSDI community
has been increasingly open to papers on the subject. Reé@niwBrk at SOSP/OSDI can be
divided into two broad categories: state machine repbceéind distributed storage.

PBFT requires. > 3f + 1 PBFT replicas in order to ensure safety in an asynchronaiersy
When the network is cooperative and the primary is non¥aakch client request requirégn?)
messages and 5 message delays to complete—one messadeodelie client to the primary and
then 4 additional message delays to complete the consersiosq@ used to coordinate the repli-
cas. A series of papers from SOSP 2005, OSDI 2006, and SOSPh280attempted to improve
on the performance of PBFT by re-evaluating the mechanisd tescoordinate the replicas.

The Query/Update (Q/U) protocol [1] replaces the consepsawcol used in PBFT with a
quorum based protocol requiring> 5f + 1 replicas but that is able to complete client requests
in only 2 message delays as long as there are no contendingstsgn the system. Contention
is addressed through client initiated exponential backTe Hybrid quorum (HQ) protocol [12]
presented at OSDI 2006 utilizes quorum techniques requirix 3f + 1 replicas to coordinate

ACM SIGACT News 85 June 2008 Vol. 39, No. 2

client requests in the absence of contention and falls lwaPBET when contention is present. HQ
requires 4 message delays to complete client requestsyvay#25] presented at SOSP 2007 uti-
lizes a fast consensus protocol that requires 3 f + 1 replicas to ensure safety in an asynchronous
system and only 3 message delays to complete client requesis absence of failures—1 mes-
sage from the client to the primary and then two more to cotaphefast consensus protocol.
The authors of Zyzzyva provide an alternate protocol reagin > 5f + 1 replicas to ensure
safety and only 3 message delays to complete even in thenpeeséf faults. The key to under-
standing Zyzzyva lies in understanding the fast consensusgols developed by the distributed
computing community in recent years [14, 31, 18, 27] andze that the clients are, adopting
Paxos [26] terminology, thkearnersin the system. Zyzzyva demonstrates that batching multiple
client requests into a single consensus operation is véaabke, increasing throughput by up to
a factor of 6 and reaffirming the observation of Friedman aml Renesse [19]. The ability to
batch requests appears to be a strong argument againstytasa quorum systems in replication
protocols.

While the evolution from PBFT to Zyzzyva has focused extezlgion the computation over-
heads of coordinating replicas in a distributed systens,¢bimputational overhead is not the only
challenge faced by distributed storage systems. In st@ggfems, fault tolerance is achieved by
replicating the stored data. Naive replication requiresiisg) n» copies of the data. Erasure cod-
ing is an attractive technique to reduce the storage andonketwverheads, but traditional systems
employing erasure coding have either increased the semec@mputational costs or failed to
decrease the network overheads. In a striking demonstratithe connection between SOSP and
PODC, at SOSP 2007 Hendricks et al. [22] presented a novelBifaige system based on the ho-
momorphic fingerprinting scheme [23] presented just mob#isre at PODC 2007. While others
had addressed the theoretical challenge of reliable blig&d storage [2, 20, 32], Hendricks et al.
were the first to demonstrate that reliable storage can be efficiently in practice.

PeerReview [21] describes a Byzantine failure detectdrisregppropriate for use in distributed
systems. One key observation of PeerReview is that fauldssinibuted systems fall into 2 cate-
gories, acts of omission and acts of commission. Acts of simmsmay prevent liveness while acts
of commission are necessary in order to violate safety. FlRmaew identifies and assigns blame
for acts of commission in the system but does nothing in nespto acts of omission. A key chal-
lenge in PeerReview is ensuring that acts of commission@reatly identified and that correct
participants cannot be falsely accused of faulty behaviors

2 ... and possibly alittle behind

PODC 2006 saw two papers [3, 33] that attempted to integedfistsand Byzantine behavior. The
common motivation for these works is that modern systems#tes deployed across multiple
administrative domains (MADs) where most users must beddeas potentially selfish actors
but the realities of faulty and malicious behavior cannotaibeided. Aiyer et al. [5] actually beat
PODC to the punch at SOSP 2005 with the introduction of theaBgine Altruistic Rational (BAR)
model for distributed systems. Under the BAR model, nodesctassified as eithéByzantine,
Altruistic (i.e., correct), oRational. Aiyer et al. use a BAR tolerant consensus basedicetet

ACM SIGACT News 86 June 2008 Vol. 39, No. 2

state machine protocol in order to build a peer to peer basispem that is provably correct in
the presence of fewer th%nByzantine participants even when the non-Byzantine pp#ids are
rational rather than correct. OSDI 2006 saw more work in tA&Bnodel with the introduction
of BAR Gossip [28]. BAR Gossip is a gossip protocol for straagriive media that is designed to
tolerate both Byzantine and rational behaviors by the tdieeceiving the stream.

While the work in the BAR model [5, 28] and the PODC papers [3, &tensibly address
the same problem of integrating Byzantine fault tolerancé game theory, they approach the
problem with drastically different motivations and mesrf success. The theory papers naturally
strive for a clean model with powerful properties and elégmoofs while the systems papers are
driven by implementation concerns and limitations of dgptbsystems. An upcoming challenge
is identifying techniques that are appealing to both sydiaitders and theoreticians.

3 Help needed

As systems conferences, SOSP and OSDI are popular destisdtr experience papers de-
scribing the design, development, and employment of lacgéessystems. Dynamo: Amazon’s
highly available key-value store [13] was presented at S@EF and Google’s Chubby [7] and
Bigtable [10] were both presented at OSDI 2006. As expeegrapers, Dynamo, Chubby, and
Bigtable claim little in the way of technical contributiobhat rather focus on the requirements and
challenges of large scale deployments in mission criticalrenments. Traditionally, academic
work has focused on guaranteeing safety always and somedbtiveness under the weakest
possible conditions. Dynamo, challenges this approachxplioily settling for weaker safety
guarantees in order to achieve better availability andniags properties: the key store should
always be writeable but is allowed to return stale reads.dtso not uncommon for academic sys-
tems and protocols to be designed with server faults in mimtevassuming that clients are correct.
Chubby, a lock service based on Paxos [26], found that dienaviors posed a significant threat to
the system’s usability, providing evidence that clienlufises should more consistently considered.

2007 saw an interesting question raised by the SOSP/OSDincmity: do we really need
3f + 1 replicas for asynchronous Byzantine consensus? Surgiysthe answer appears to be no!

Li et al. go “Beyond One-third Faulty Replicas in ByzantireuR Tolerant Systems” [30] and
introducefork* consistencya safety constraint weaker than the linearizabilty predity full state
machine replication. A system is fork consistent iff (a) veesult accepted by a correct client is
based on a history of well formed client requests, (b) corckent: only accepts results based on
histories that contain all afs previous requests, and (c) if two correct clients accesalt for
the same request, then the corresponding histories matehtiithat point. They are able to show
a variant of PBFT witm > 3f + 1 nodes that is safe according to traditional definitions ag lo
as at mostf replicas are faulty and is fork consistent with up2tp faults. Fork* consistency is
based on fork linearizabilty, first used by the SUNDR syst28] pt OSDI 2004 and generalized
by Cachin et al. [8] at PODC 2007.

Chun et al. [11] claim that consensus can be achieved in ariyeasetting with only2 f + 1
replicas. The key insight of this paper is the use of a truafggend only memory. As long as the
trusted memory is correct, Byzantine replicas are unaldgtivocate and send different messages

ACM SIGACT News 87 June 2008 Vol. 39, No. 2

to different replicas.

Chun et al. and Li et al. both challenge fundamental assaemgbtf the Byzantine fault model,
either by relaxing the consistency guarantees or restgdtie actions available to Byzantine par-
ticipants. In doing so they raise important questions atfmitradeoffs to be made between consis-
tency and safety semantics, liveness guarantees, anidtiess on the model. These are questions
that the distributed computing community is well equippeéxplore and answer.

4 Conclusion

This has been a quick overview of papers from recent SOSP &m €onferences that should be
of interest to the distributed computing community. Hoplgfan increased awareness of the work
going on in the operating systems community reaffirms theomamce of traditional distributed
computing work and aids in identifying problems that, ifvsad, can have a broad impact in the
computing world at large.

References

[1] M. Abd-El-Malek, G. Ganger, G. Goodson, M. Reiter, andlie. Fault-scalable byzantine
fault-tolerant services. IRroc. 20th SOSPOct. 2005.

[2] 1. Abraham, G. V. ChockKler, I. Keidar, and D. Malkhi. By#@ne disk paxos: optimal re-
silience with byzantine shared memory. BODC '04: Proceedings of the twenty-third an-
nual ACM symposium on Principles of distributed computipgges 226-235, New York,
NY, USA, 2004. ACM.

[3] I. Abraham, D. Dolev, R. Gonen, and J. Halpern. Distrdgsitomputing meets game theory:
robust mechanisms for rational secret sharing and mutyigamputation. INPODC ’06:
Proceedings of the twenty-fifth annual ACM symposium onciplies of distributed comput-
ing, pages 53-62, New York, NY, USA, 2006. ACM.

[4] M. K. Aguilera, A. Merchant, M. Shah, A. Veitch, and C. Kananolis. Sinfonia: a new
paradigm for building scalable distributed systemsS@SP '07: Proceedings of twenty-first
ACM SIGOPS symposium on Operating systems pringipbages 159-174, New York, NY,
USA, 2007. ACM.

[5] A. S. Aiyer, L. Alvisi, A. Clement, M. Dahlin, J.-P. Manti, and C. Porth. BAR fault tolerance
for cooperative services. IAroc. 20th SOSPOct. 2005.

[6] H. Attiya. Needed: foundations for transactional memn& GACT News39(1):59-61, 2008.

[7] M. Burrows. The chubby lock service for loosely-coupbdtributed systems. I@SDI '06:
Proceedings of the 7th symposium on Operating systemsndasdjimplementatigrpages
335-350, Berkeley, CA, USA, 2006. USENIX Association.

ACM SIGACT News 88 June 2008 Vol. 39, No. 2

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

C. Cachin, A. Shelat, and A. Shraer. Efficient fork-lineable access to untrusted shared
memory. INPODC '07: Proceedings of the twenty-sixth annual ACM synym®n Princi-
ples of distributed computingages 129-138, New York, NY, USA, 2007. ACM.

M. Castro and B. Liskov. Practical Byzantine fault t@ace and proactive recoverpCM
Trans. Comput. Sys2002.

F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. WaJld¢hBurrows, T. Chandra,
A. Fikes, and R. E. Gruber. Bigtable: a distributed storggéesn for structured data. @SDI
'06: Proceedings of the 7th symposium on Operating systazaiga and implementation
pages 205-218, Berkeley, CA, USA, 2006. USENIX Association

B.-G. Chun, P. Maniatis, S. Shenker, and J. Kubiatowiéttested append-only memory:
making adversaries stick to their word. 80OSP '07: Proceedings of twenty-first ACM
SIGOPS symposium on Operating systems pringipiages 189-204, New York, NY, USA,
2007. ACM.

J. Cowling, D. Myers, B. Liskov, R. Rodrigues, and L. Bar HQ replication: A hybrid
guorum protocol for Byzantine fault tolerance. Rnoc. 7th OSDJ] Nov. 2006.

G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapatl.@kshman, A. Pilchin, S. Sivasub-
ramanian, P. Vosshall, and W. Vogels. Dynamo: amazon’siyh@bailable key-value store.
In SOSP '07: Proceedings of twenty-first ACM SIGOPS symposiu@perating systems
principles pages 205-220, New York, NY, USA, 2007. ACM.

D. Dobre and N. Suri. One-step consensus with zeroatdkgion. INDSN '06: Proceed-
ings of the International Conference on Dependable SystemddNetworkspages 137-146,
Washington, DC, USA, 2006. IEEE Computer Society.

D. Dolev and R. Reischuk. Bounds on information excleafay byzantine agreement. In
PODC '82: Proceedings of the first ACM SIGACT-SIGOPS synuposin Principles of dis-
tributed computingpages 132-140, New York, NY, USA, 1982. ACM.

P. Felber, C. Fetzer, R. Guerraoui, and T. Harris. Taatisns are back—nbut are they the
same?: "le retour de martin guerre” (sommersiSIJGACT News39(1):47-58, 2008.

M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossybof distributed consensus with
one faulty process]. ACM 32(2):374-382, 1985.

R. Friedman, A. Mostefaoui, and M. Raynal. Simple anfitieint oracle-based consensus
protocols for asynchronous byzantine systemiSEE Trans. Dependable Secur. Comput.
2(1):46-56, 2005.

R. Friedman and R. van Renesse. Packing messages d$a twsting the performance of
total ordering protocls. IHPDC '97: Proceedings of the 6th IEEE International Sympasi
on High Performance Distributed Computingage 233, Washington, DC, USA, 1997. IEEE
Computer Society.

ACM SIGACT News 89 June 2008 Vol. 39, No. 2

[20] R. Guerraoui, R. R. Levy, and M. Vukolic. Lucky read/teriaccess to robust atomic stor-
age. InDSN ’06: Proceedings of the International Conference on@welable Systems and
Networks pages 125-136, Washington, DC, USA, 2006. IEEE Computeie§o

[21] A. Haeberlen, P. Kouznetsov, and P. Druschel. Peawevpractical accountability for dis-
tributed systems. IIBOSP '07: Proceedings of twenty-first ACM SIGOPS symposium
Operating systems principlggages 175-188, New York, NY, USA, 2007. ACM.

[22] J. Hendricks, G. R. Ganger, and M. K. Reiter. Low-ovadhbyzantine fault-tolerant storage.
In SOSP ’07: Proceedings of twenty-first ACM SIGOPS symposiu@perating systems
principles pages 73—-86, New York, NY, USA, 2007. ACM.

[23] J. Hendricks, G. R. Ganger, and M. K. Reiter. Verifyingtdbuted erasure-coded data.
In PODC '07: Proceedings of the twenty-sixth annual ACM symymoson Principles of
distributed computingpages 139-146, New York, NY, USA, 2007. ACM.

[24] M. Herlihy and V. Luchangco. Distributed computing aheé multicore revolutionSIGACT
News 39(1):62—72, 2008.

[25] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong. yZzyva: speculative byzantine
fault tolerance. Ir'Sfymposium on Operating Systems Principles (SOSé&t) 2007.

[26] L. Lamport. The part-time parliamemACM Trans. Comput. SysiL6(2):133—-169, 1998.

[27] L. Lamport. Lower bounds on asynchronous consensuButare Directions in Distributed
Computing volume 2584 ofLecture Notes in Computer Scienqeges 22—-23. Springer,
2003.

[28] H. C. Li, A. Clement, E. Wong, J. Napper, I. Roy, L. Alvisind M. Dahlin. Bar Gossip. In
Proc. 7th OSD] 2006.

[29] J. Li, M. Krohn, D. Mazieres, and D. Shasha. Secureustéd data repository (sundr). In
OSDI'04: Proceedings of the 6th conference on Symposiumpaading Systems Design &
Implementationpages 9-9, Berkeley, CA, USA, 2004. USENIX Association.

[30] J. Li and D. Mazires. Beyond one-third faulty replicashiyzantine fault tolerant systems.
In Proceedings of the 4th Symposium on Networked SystemsnDasiglmplementation
(NSDI), April 2007.

[31] J.-P. Martin and L. Alvisi. Fast byzantine consensa$ 8N '05: Proceedings of the 2005 In-
ternational Conference on Dependable Systems and Netwmages 402-411, Washington,
DC, USA, 2005. IEEE Computer Society.

[32] J.-P. Martin, L. Alvisi, and M. Dahlin. Minimal byzante storage. IDISC '02: Proceedings
of the 16th International Conference on Distributed Compytpages 311-325, London,
UK, 2002. Springer-Verlag.

ACM SIGACT News 90 June 2008 Vol. 39, No. 2

o

[33] T. Moscibroda, S. Schmid, and R. Wattenhofer. Whengselfneets evil: byzantine players
in a virus inoculation game. IRODC '06: Proceedings of the twenty-fifth annual ACM
symposium on Principles of distributed computipgges 35—-44, New York, NY, USA, 2006.
ACM.

[34] M. Pease, R. Shostak, and L. Lamport. Reaching agreieimehe presence of faultsJ.
ACM, 27(2):228-234, 1980.

[35] C. J. Rossbach, O. S. Hofmann, D. E. Porter, H. E. Rama8aAditya, and E. Witchel.
Txlinux: using and managing hardware transactional menmmn operating system. In
SOSP '07: Proceedings of twenty-first ACM SIGOPS symposiu@perating systems prin-
ciples pages 87-102, New York, NY, USA, 2007. ACM.

[36] B. Vandiver, H. Balakrishnan, B. Liskov, and S. Maddefolerating byzantine faults in
transaction processing systems using commit barrier sdingd In SOSP '07: Proceedings
of twenty-first ACM SIGOPS symposium on Operating systeimsipies pages 59—-72, New
York, NY, USA, 2007. ACM.

Modularity: a First Class Concept to Address Distributed

Systems
Roy Friedman Anne-Marie Kermarrec Michel Raynal
Computer Science Department, Technion INRIA Bretagnewfitjue IRISA, Université de Rennes
Haifa 32000, Israel 35042 Rennes Cedex, France 35042 R@auex, France
roy@cs.technion.ac.il Anne-Marie.Kermarrec@inria.fr aymal@irisa.fr

Abstract

Decomposing distributed systems into modules, each witleeige interface and a func-
tional implementation independent specification, is higffective both from a software en-
gineering point of view and for theoretical purposes. Thefulsess of this approach has been
demonstrated in the past in several areas of distributegpotiny. Yet, despite its attractive-
ness, so far work on peer to peer systems failed to do so. Hpierpargues in favor of this
approach and advocates such a decomposition for peer teystems. This allows designers
to understand and explain both what a system does and howstitlo

ACM SIGACT News 91 June 2008 Vol. 39, No. 2

1 Introduction

Designing, building, and reasoning about robust distabgtystems are complex tasks. Yet, when
considered closely, one can identify several differentcesiof complexity. Using the terminology
introduced by F.P. Brooks in his famotlike Mythical Man-Montiook, some of these difficulties
areessentialwhile others areccidental That is, some are inherent in these environments, while
others can largely be avoided using better abstractionbetter separations between levels of ab-
straction. Simply put, much of the accidental complexitg result of poor engineering approaches
to these problems.

One of the most basic engineering approaches is to modelamzoblem domain. That is, the
domain is decomposed intnodulest Each module has a well defined interface, which specifies
the methods by which the rest of the world can interact witivibreover, the module is assumed
to have a functional, implementation-independent, spetin. From a software engineering
viewpoint, this enables composing modules based on theirfate alone. More specifically, each
module in such a composition may be written in a differengpaoming language, and provided
by an independent vendor. Also, it is possible to replaceimmpementation of a given module
with a different implementation without breaking the inigégof the system. We call this approach
thefunctional modular approacto distributed systems.

Interestingly, once we apply the functional modular apphoto a given problem, it is also
easier to investigate this problem in a formal manner. Fangle, it is possible to investigate
what is the minimal functional specification (or propertisat a module must satisfy in order
to enable solving a higher level problem. It is also easietaeelop clean, robust, and portable
algorithms that have rigorous correctness proofs whenlgoithm only needs to concentrate on
functional properties of its underlying building blockse(, modules), without worrying how these
properties are implemented [18].

We demonstrate this thesis by first examining two estaldist@mains, namely distributed
shared memory and distributed agreement problems. In lotlaohs, we survey initial models
and specifications that have been given in a non-modulaoappr and discuss the benefits of their
functional modular alternatives.

Then, we turn our attention to peer to peer systems. Deseiibg la relatively new domain in
distributed systems, existing works on peer to peer fais®such a functional modular approach.
As a result, they suffer from the same deficiencies as eartksvon distributed shared memory
and on agreement problems. This tendency is even more prmoadas peer to peer systems were
first introduced in the context of specific applications,tsacfile sharing systems for example.
In fact, it took a few years, to acknowledge the potential poof the overlay structure and the
routing capabilities and that their applicability could gay beyond file sharing systems. As a
result, the implementations are usually described in a hitbimmanner and there are no clean
formal models describing the precise functionalities afflsgystem. Consequently, it is difficult
to understand the precise environmental assumptionsregbjiar these systems to work, and there

1The concept of aoftware componerih software engineering is very similar to a module. The twaimdiffer-
ences between these two terms are that components can adlevegmposed as binary units and that components must
not have an externally observable state. Therefore, alistd shared memory “entity” is not a component under this
definition. Thus, in this paper we use the term module.

ACM SIGACT News 92 June 2008 Vol. 39, No. 2

are typically no complete rigorous proofs of correctnedse paper proposes elements to address
peer to peer systems according to a functional modular appro

A first attempt towards that direction was made pretty eanlyngd7] where common abstrac-
tions for peer to peer systems using a 3 tier approach wasedefim this work, thekey Based
Routing(KBR) abstraction, which allows to route a message to a nadedon an abstract key was
identified at tier 0. At tier 1, the authors propose Distributed Hash TabléDHT), Group Any-
cast and Multicas(CAST), andDecentralized Object Location and Routi(idOLR) abstractions,
which rely on the KBR for their implementation. Finally, &2 there are the applications that
use one or more of the tier 1 abstractions as services. Fé&tBReabstraction, they also offer an
API. Yet, this work focused on structured peer to peer systana since then, many other relevant
peer to peer systems have been proposed relying on extreliffelent structure and potentially
different routing protocols.

We acknowledge the existence of various peer to peer nesveordt integrate unstructured peer
to peer overlay in our modular description. In that sensewauk can be viewed as complementing
the API definitions in [7].

2 Distributed shared memory

Initial works on Distributed Shared Memory (DSM), like Rate Consistency [12] and Java Con-
sistency [14], have mixed implementation details with sfEations. This resulted in specifica-
tions that were extremely difficult to understand and promghe case of Java consistency, as has
been shown in [20], several commercial compilers by majoidees did not implement correctly
the memory model of Java according to its initially unclgaedfication. On the other hand, the
approaches taken in works on Sequential Consistency, tiradslity, Hybrid Consistency, Causal
Ordering (see Appendix A), and the non-operational de@iniof Java Consistency [13], have
proposed to make a clean separation between implementigiails and functionality.

In these approaches, each node can be seen as made up oftsveh@alocal application pro-
cess and a DSM abstraction that offers it appropriate aqréss#ives, such asead andwr i t e
in the case of read/write objectdequeue andenqueue in the case of queue objects, etc. Then,
a formal functional specification of the DSM abstractioniigeg with respect to its interface signa-
ture. That s, the specification only defines allowed coiters of sequences (one for each process)
of method invocations and their returned values. In padigthis specification does not say any-
thing about the implementation of the DSM module. This wayious consistency conditions
simply differ in the restrictions they impose on such segasrof method invocations and returned
values. Once this definition framework is established, fgr @onsistency condition, it is possible
to develop programs and prove their correctness only basédeofunctional specification of the
condition. Similarly, it is possible to prove lower bounds the requirements from any possible
implementation of a given condition, as was done (e.g.,Jn [3

The DSM abstraction can in turn be decomposed into severdulas, which include a DSM
protocol, a local storage module and a network interfac#uasrated in Figure 1 (the local storage
module is usually used as a local cache endowed with a pErsestproperty, the shared virtual
memory being distributed across the local storages).

ACM SIGACT News 93 June 2008 Vol. 39, No. 2

Application ‘

DSM Abstraction

read/wite fack/return

Local Storage DSM Protocol

Network Interface

Figure 1: A typical modular view (for a node) of DSM.

The important thing is that once the functional modular apph was taken to this problem,
it facilitated understanding exactly the semantics preditbr the application by each consistency
model [2]. Moreover, it allowed for clear comparisons begwalifferent consistency conditions,
and for rigorous correctness proofs of both applicationd iamplementations. In particular, it
enabled designing applications and proving their coresgrwith respect to a given consistency
condition without relying on specific implementation détair assumptions. To a large extent, it
also simplifies implementing a consistency condition, siih@ighlights what is needed and why.

3 Agreement problems in semi-synchronous distributed envi-
ronments

Agreement is a fundamental issue in distributed computimgdistributed systems, processes
often collaborate in order to achieve a common goal. Thisilisinvolves reaching some level of
agreement, e.g., on the next state of the system, on the merdecof action, on the allocation of a
resource, etc.

A precondition to designing and reasoning about solvingl@ms in distributed systems is
having an adequate model for it. Initially, two extreme nisdeere defined for distributed systems:
synchronousndasynchronousin the former, all actions occur within a known deadline #mete
is a shared global clock available to all processes. In ttier]Jgprocesses have no access to any
global clock and there is no bound of the latency of events.

Yet, with the exception of specially crafted real-time gyss, most standard distributed sys-
tems do not continuously and dependably exhibit the strrahy assumptions of the synchronous
model. On the other hand, it was shown that basic agreemebtgmns cannot be solved in
purely asynchronous environments [10]. Moreover, it waseobed that realistic standard-based
distributed systems typically obey some level of synchrdaying large fractions of their life-
time. This lead to the definition of models with explicit ting assumptions (e.g., thaned-
asynchronouf] model, or the synchrony models described in [8]). Howglecause these mod-
els have explicit timing assumptions in them, it is hardetéweelop generic portable protocols, and
it is hard to formally investigate and state the minimal egstequirements for solving agreement

ACM SIGACT News 94 June 2008 Vol. 39, No. 2

problems (see Appendix B).

A cleaner modular solution was proposed by Chandra and Towlkg introduced in their
seminal work the notion of failure detector{5]. That is, Chandra and Toueg observed that the
difficulty of reaching agreement in asynchronous disteblgystems stems from the fact that it is
not possible to distinguish a failed process from a slow arteeése environments. Thus, they pro-
posed to enrich the environment with a failure detector nmdlihe interface of a failure detector
includes a method which returns a list of suspected (altiweig, a list of trusted) processes. Given
this interface, it is possible to define the functional, ieTpkntation independent, semantics of the
failure detector module with respect to the values returmeen invoking its method. In particular,
Chandra and Toueg defined several typesavhpletenesandaccuracyproperties. Completeness
defines the degree to which failed processes should be edtludthe list of suspected processes
while accuracy defines limitations on falsely suspectiigegbrocesses. As an example, a failure
detector of the class denotéd eventually suspects all the crashed processes (compisienad
ensures that after some unknown but finite time there is a&cbprocess that is no longer sus-
pected (eventual weak accuracy). The failure detectorcgabrenabled identifying precisely what
are the minimal levels of completeness and accuracy thaegrered to solve various agreement
problems (e.g.9)S has been shown to be the weakest class of failure detectaunlesothat allow
solving consensus despite the net effect of asynchrony ieasth ¢ailures). Moreover, the failure
detector approach was used to develop robust portablegmistavhose correctness depends only
on the functional behavior of the failure detector modul@ aot on its implementation or the other
environment assumptions.

‘ Application ‘
Consensus Abstraction — i opose () feci de (u)

fd query
Local Storage Consensus Protocol Failure Detecto%

return ()

Network Interface

Figure 2: A modular view (for a node) of an asynchronous systariched with a failure detector.

Traditionally, it was thought that the only way to implementailure detector module is by
assuming that the underlying system obeys some minimatgjrmssumptions, at least most of the
time. With this assumption, it is possible to run some sot leéartbeatased protocol in order to
detect failures.

Interestingly, it turned out that the class of failure datecnodules)S, which enables solving
Consensus in otherwise asynchronous distributed settoagsbe also implemented in timeless
environments [19]. The only requirement is that the ordewlnch each process receives replies
to queries it sends all other processes obeys some minimatramts. This highlights the thesis
advocated in this paper, since without the functional madapproach, it would have been very

ACM SIGACT News 95 June 2008 Vol. 39, No. 2

difficult to obtain this result. Moreover, all protocols theere designed to solve Consensus based
on ¢S work correctly in both environments, each with its correggiag implementation of &S
module. This again exhibits the benefits of the functionatiodar approach.

4 Peer to peer systems

Peer to peer computing has received increasing attentientbe past years and remains a rela-
tively recent area of distributed computing compared todisé&ributed systems described so far.
The main characteristic of peer to peer systems over pre\da@iributed systems is to be server-
less. More precisely, end users (nodes) potentially att&®tlient and server. They communicate
directly with each other, and provide the system with s&@wim a collaborative manner, rather
than relying on dedicated servers for this. The promise ef p@ peer approaches is scalability
and long term survivability. Scalability is achieved by blvag the system to operate while each
node only needs to know about a small fraction of the wholéesys To this end, an overlay net-
work, connecting nodes in a logical manner, is built on topa physical network. Distributed Hash
Tables-based implementations, such as Pastry or Chord dwminated at first, e.g., [21, 23, 26]
(see Appendix C). Since then, many other approaches, supbsagp-based unstructured overlay
networks have been proposed. Peer to peer systems areatesigrope with dynamics and get
automatically reorganized upon node joins and departures.

Yet, despite being an emergent domain, existing researgeento peer still suffers from the
same unsatisfactory engineering practices of initial wamkother distributed computing domaihs.
There is a lack of clear separation between levels of aligires; and clear specifications of such
systems. More specifically, no clear specification of theceganditions under which the system
will behave as promised is providéd.

This paper advocates the use of the functional modular dgosition for peer to peer systems.
The proposed architecture may not be the ultimate one, butsset as a proof of concept. We
show that by taking the functional modular approach, we paaify a generic peer to peer system.
The different modules of this generic architecture can thernnstantiated, each with a specific
implementation. The presentation that follows is voluihtanformal. Its aim is only to show how
peer to peer systems can benefit from the modular approach.

4.1 Problem statement

We assume a system operating in a distributed environmenpased of a finite but unbounded
and changing set of processes. We refer to each change irttbémocesses asanfiguration
change Peer to peer systems can be used for many purposes. Ydigefeake of simplicity and
for consistency with the previous sections (Section 2 arudi@e3), we consider a system whose
goal is to implement @emi-reliable unified storagabstraction. That is, we call a collection of
sequences of read and write operations, each of these seguexecuted by a single process, a

2This is, of course, with the exception of [7], as discussetthénintroduction.
3We would like to emphasize that while the actual impleménieatof these systems might be written in object ori-
ented programming languages, their design, at least apéap in research papers describing them, are not modular.

ACM SIGACT News 96 June 2008 Vol. 39, No. 2

‘ Application
Unified Storage Abstraction read/wite MNack/return

route
Local Storage Unified Storage Protocol Overlay Module

return

Network Interface

Figure 3: Modular view (for a node) of a peer to peer system.

partial execution We call anuninterrupted partial executioa partial execution during which
there are no failures or configuration changes. We thenmedfat for each uninterrupted partial
executions of the system, it is possible to find a total ordethat extends the real time ordering
of all operations irv such that each read operation for a given objaeturns the value written by
the last write ta that precedes it ipp. This is similar to the notion dinearizability (see Appendix
A) restricted to an uninterrupted partial execution.

Notice that this specification is weak in the sense that isdus require anything w.r.t. op-
erations that occur during periods in which the system igalohs. Finding a meaningful formal
specification that captures the entire lifespan of the sayséed yet is simple to grasp, is left as an
open challenge to the readers of this article.

The reason we are only interested in semi-reliable storageat most peer to peer systems
implement a location service. The goal of a location serigde allow finding an object. Thus, a
possible way to implement such a location service is to haeh ebject write its location in the
semi-reliable storage. Then, for lookup, a node tries td tba location of the object from the
semi-reliable storage until it gets an answer.

4.2 Architecture

Figure 3 illustrates a modular view of a peer to peer systemsuch a system, all nodes are
symmetric. This figure has the same structure as the twoqarevones. The only difference is
that, on each node, the corresponding application processses a unified storage abstraction
(instead of a DSM or an agreement abstraction). The unifedgé abstraction is made up of four
parts: aunified storagegorotocol, anoverlaymodule (see below), Bpcal storagemodule, and a
network interface

The unified storage module consults the overlay module fopearead/query and write/update
request ordered by the application. To this end, the ovenlagule exposes a single method called
r out e, which accepts an object identifier and the current proakssd returns the next pro-
cess(es) id(s) to whom the message should be routed to. delstime the application invokes a
read or a write, the unified storage module invokesrtbat e method and forwards the message
to the corresponding process(es). This continues until the e method returns the same process

ACM SIGACT News 97 June 2008 Vol. 39, No. 2

id as the calling process. The latter indicates to the ungtedage module that it is the one re-
sponsible for storing the object. For this, the unified ggermodule uses the local storage module.
The corresponding protocol is summarized in Figure 4 (w4timitialized to0 before the execution
begins). Note that for clarity of presentation, in Figure @onsider that only one process id is
returned at each step.

Upon Wi t e(o, v) from the applicatioro
tslo] < ts[o] + 1;
p; < overlayr out e(p;,0);
send (WRITE,o,v,(ts[o], 1)) to pi;
return

Upon Read(o) from the applicatiordo
p; < overlayr out e(p;,0);
send (QUERY,0,p;) to py;
wait until (RESPONSEo,v,(t, 5)) is received;
ts[o] «— max(tslo],t);
returnv

Upon receiving QUERY,o,p;) from the networldo
next« overlayr out e(p;,0);
if next= p; then send (RESPONSEo,v,(ts[0], 7)) tO py;
% note thap is the originator of QUERY,0,px).
% Sop; directly sends the responsezp
% (ts]o], j) is the timestamp that; associated witl
% if o does not exist locally, its local timestamp
% is 0 and the value is the default initial value
else send (QUERY,o,p;) to next
endif

Upon receiving WRITE,0,v,(ts, j)) from the networldo

next« overlayr out e(p;,0);

if next=p; thenif (¢s, j) is larger than the timestamp pf's copy ofo
then update the value of the local copy @fo v
update the timestamp of the local copyodb (s, j)
% if o does not exist locally, this initializes its copy

endif
ese send (WRITE,0,v,ts) to next
endif

Figure 4: A generic peer to peer protocol (code for npde

4.3 Theoverlay module

In order to define the properties of the overlay module, we diesine the following concepts: A
targeted invocation sequentea sequence of invocations of theut e method such that all

ACM SIGACT News 98 June 2008 Vol. 39, No. 2

route return

first_ alive
Overlay Protocol Failure Detectoﬁ

- - return ()
pot enti al nei ghbors
next _nei gbhor ack/return

Routing Protocol

Figure 5: Decomposing the overlay module.

invocations are called with the same object identifier, andhe process id passed to thie+
1) invocation is the one returned by tié& invocation in the sequence. We say that a targeted
invocation sequenceonvergesdf it includes two consecutive invocations of theut e method
that return the same process id. If the sequence convergesaliithe first process id that appears
in such a pair of consecutive invocations in this sequene&dnverged processFinally, for a
given execution of the system, we say that two targeted at@t sequences awmdisturbedif
there are no failures and no configuration changes duringnkiee interval from the earliest of
these invocations until the time at which the latest of thetamns.

Based on these definitions, theut e method of the overlay module must satisfy the following
properties (these requirements are the functional spatdit of the overlay module):

¢ Route Convergence: There exists a functign) such that any targeted invocation sequence
of length at leasy (n) converges.

e Route Consistency: Any two static undisturbed targeteddation sequences in which the
r out e method is invoked with the same object id converge to the saimeerged process
Note that depending on the application and the system cexregidthe invocation of the route
method may return several processes.

Periodically do
candidates— RP.pot ent i al - nei ghbor s(p;);
emptyfinger,
foreach entryk in candidateslo
fingefk] «— FD.Fi r st - al i ve(candidatefk])
enddo

Upon r out e(p;,0bj) do
return (RP.next - nei ghbor (finger,obj))

Figure 6: Overlay module.

Therefore the overlay module should specijythe structure of peer to peer overlay network
and (ii) the routing protocol. Internally, the overlay module is é®n three sub-modules, as

4t is possible to refine this definition to limit what can hapmen during configuration changes and failures.

ACM SIGACT News 99 June 2008 Vol. 39, No. 2

illustrated in Figure 5: the overlay protocol, the routingdnle, and a failure detector module.
The overlay protocol is aided by the other two modules. Thedithis “high level” description is
to show the benefit of the modular decomposition approachenNhapping various peer to peer
systems to the model we have introduced, many of them difféme functionf (n) of the defini-
tion of Route Convergence (or tlowerlay network diametgrand in the size of the list returned
by thepot ent i al - nei ghbor s method (or thenode degreén the overlay). Our decomposi-
tion allows investigating lower bounds on obtaining thes®pprties, as well as comparing known
protocols based on a common ground.

In the next section, we provide more details on each of thesgonents. More specifically, we
provide examples of several potential implementationsosfsible overlay and routing modules.
Obviously, these two modules are strongly related as forengiverlay structure, a specific routing
protocol might be the most relevant. Likewise the choice gpecific overlay structure or routing
protocol may be dependent of the application targeted.tistdecomposition both covers existing
approaches and leaves space for new ones.

4.3.1 Overlay protocol

This protocol specifies the way the peer to peer overlay métwgostructured. Existing peer to
peer overlay networks mostly differ in the structure theypase to the logical overlay topology.
At one end of the spectrum lie trstructured overlay networksvhile at the other end, we find
fully unstructured overlay network#lany possible intermediary structures might be consilere
Usually, the more structured a peer to peer overlay is, theerafficient the routing protocol
becomes, but it offers less flexibility or expressiveness.

The overlay structure is fully defined by the lo&alowledgeof the system, precisely provided
by the set of neighbors (Id and IP address) that each nodeaire&nThe overlay protocol is fully
specified by the set of neighbors maintained at each nodeif\apg the structure of the peer to
peer overlay network, the join and the maintenance prosocol

Structured overlay networks In structured peer to peer networks, the peers are orgaimzed
pre-defined structure such as tree, a hypercube, a ringl@tbis end, peers get assigned coordi-
nates in an id space, usually in a random and uniform way. digsires that the ids are uniformly
distributed in that space. This assumption, by avoidingvskidistribution of ids, enables to evenly
balance the load between peers in the systems.s€&hef neighborsnaintained at each node is
strongly dependent on the structure of the overlay. In sired peer to peer overlays, strict con-
straints are imposed on the choice of neighbors, usualbutyir the identifier. For example in a
ring-based overlay, each node should know about its predecasd@uccessor in the one dimen-
sion identifier space. In CAN [22], each node should know &litsypredecessor and successor
along each dimension indadimensional coordinate space. In Pastry, node-IDs digit numbers

of base2® [21]. Each Pastry node maintains two sets of neighbors naaiekf setand arouting
table The leaf set contains a fixed number of entries whose nodar®sumerically closer to the
local node ID. In Pastry routing tables, the entry in the gell] has the firsi — 1 digits of its node

ID same as the local node-ID and tfedigit as;;.

ACM SIGACT News 100 June 2008 Vol. 39, No. 2

Thejoin protocolspecifies the actions taken upon join. The aggressivendie @in protocol
has a strong impact on the time required upon join to convergards the targeted structure. Node
joins are usually handled by the basic routing mechanismeM&new node joins the overlay, it
uses the routing protocol to find the closest node to its owlanD inserts itself adjacent to that
node in the overlay. Some additional operations may be redquo make the set of neighbors
converged more quickly.

Finally, the maintenance protocol specifies the way thecira is maintained, more specif-
ically, this protocol enables to cope with system dynamiEsr instance, Pastry implements a
lightweight maintenance protocol when periodically, eaiie exchanges a line, chosen ran-
domly, of its routing table with a neighbor, chosen randqgnoliythis specific line. A specific
repair protocol is implemented when a failure is detectethduhe routing operation.

Unstructured overlay networks In unstructured overlays, each node maintains a setaobi-
trary neighbors. Random graph-like topologies have reckain increasing interest as they provide
a sound basis to implement reliable dissemination for exanfpeveral protocols have been pro-
posed to build and maintain unstructured overlay netwatk®] 24]. In that space, gossip-based
protocols have received an increasing interest. In sudopots each node periodically exchanges
information with another node randomly chosen from its hbamy set. This periodic exchange
between peers spreads the information in the system in @emp manner. Gossip-based algo-
rithms have been used to create random-like topologies [$6)eral instances exist and differ
by the way they select the peer to communicate with, the fipeers they exchange and the way
the compute their new set of neighbors. The join proceduextiemely simple and consists for
a new node to contact a peer in the network and bootstrap teoset of neighbors. The periodic
maintenance protocol ensures that the neighbor set cant@erandom set of neighbors.

Some protocols such as SCAMP [11] provides each peer witht afsandom neighbors.
The originality of SCAMP is to provide each node with/og(n)) neighbors without any node
knowing explicitly the size of the network. SCAMP does noplament specific maintenance (the
(un)structure is achieved through the join protocol only).

Weakly structured overlay networks In small-world based topologies, each node in a mesh,
knows itsclosest neighbors and has additional shortcuts in the graph. Thegtsyic routing
performance depends on the way shortcuts are chosen (rg2&bpor following a specific distri-
bution such as thé-harmonic distribution [17]). Small-world topologies witandom shortcuts
can be achieved using a simple random peer sampling praancod specific clustering protocol
[15]. Small-world topologies with a harmonic distributiohshortcuts can be implemented by a
biased peer sampling protocol and a similar clusteringgmait[4]. Interestingly, these protocols
achieves the targeted structure in a few cycles. Therefaimple join operation is usually not
enough to achieve such a topology and the maintenance ptisampulsory.

5The proximity metric may be application-dependent.

ACM SIGACT News 101 June 2008 Vol. 39, No. 2

4.3.2 Therouting protocol

The routing module has two methods, namplyt ent i al - nei ghbor s andnext - nei ghbor .
Thepot ent i al - nei ghbor s accepts a process identifier and returns an array of ordsts ot
processes. Theext - nei ghbor accepts as parameters an object identifier and a list of psese
and returns the id of one or several of the processes appgeatits input list.

While the overlay protocol enables to build a peer to peerlaydollowing a given structure,
the routing protocol provides the means to navigate suchvariay. The main metric considered
to evaluate a routing protocol is the complexity and the agheeness of the result. While many
routing protocols may be considered, the most used in thee r@maains th@reedyprotocol. In
such a routing protocol, each routing step gets the mes$aggr ¢o the destination. In the context
of unstructured overlay though, a greedy protocol achievesuting convergence with @(n)
complexity (wheren is the system size). In order to improve on latency, floodingestricted
flooding is possible.

Structured overlay networks Many structured overlays rely onkay-based routingrotocol.
Chord routing protocol is provided in Annex C. In CAN, the rs&ge progresses along a route in
ad-dimensional space along one of the dimension in a greedyenaim Pastry, the messages are
routed through nodes with increasing prefix matching théikeson.

Unstructured overlay networks Greedy routing in unstructured overlays leads to a linear-co
plexity in the size of the network. Potentially all nodes slalobe visited to achieve routing con-
vergence. Flooding protocols are the most used protocdlsamnsists at each peer in flooding the
route message to all its neighbors, until the destinatioeashed. The restricted flooding protocol,
assigns a TTL (time to live) to each lookup operation. The Tddlecremented at each hop and the
route procedure terminates once the TTL reaches 0. Routegence might not be guaranteed
in such cases. Note that routing to a fixed id is definitely hetrhost efficient operation in such
networks. However, unstructured overlay assorted withdilog or restricted flooding protocols
are used for more expressive lookup operations such as aarkgyword-based queries. Another
option is to perform random walks with a bounded TTL. Yet iderfor random walks to have a
good chance of find a given data item within reasonable tihergthas to be a way to bias them,
as is done, e.g., in the GIA system.

4.4 Thefailuredetector module

The failure detector module supports one method (denotedt - al i ve in Figure 5) that ac-
cepts an ordered list of processes and returns the id of #té firocesses on the list that are alive.
The implementation of the overlay based on the routing aildréadetector modules appears in
Figure 6. (see also Appendix D.)

ACM SIGACT News 102 June 2008 Vol. 39, No. 2

5 Conclusion

In summary, the great benefits of the functional modular @ggin are that, after decomposing the
system this way, it is easy to understand both what the sydtezg, and how it does it. This is a
direct consequence of the clean separation between tleatiffabstraction layers. This permits
one to define precisely what is the functional specificatibaach module, and to come up with
a generic protocol that is based only on the functional ptegeeof the underlying modules. This
also enables further investigation into what are the mihreguired environment assumptions, and
to write correctness proofs for the protocols. It also eealbletter comparisons between systems,
as it highlights the essence of their differences.

In the context of peer-to-peer systems, this paper has @Kest step towards such a speci-
fication. Yet, our specification is limited to storage oremhsystems and lookup services. Also,
our specification does not cover the behavior of the systemnglperiods of instability (churn).
Extending our specification and capturing other types of-pe@eer systems is left for future
work.

References

[1] http://ww. gnut el | a. com

[2] Attiya H., Bar-Noy A. and Dolev D., Sharing Memory Roblysin Message-Passing Systerdsurnal
of the ACM 42(1): 124-142, 1995.

[3] Attiya H. and Welch J.L., Sequential consistency verdsusarizability. ACM Transactions On Com-
puter Systemsdl2(2):91-122, 1994.

[4] Bonnet F., Kermarrec A.-M. and Raynal M., Small-worldtwerks: from theoretical bounds to
practical systemsProc. 11th Int'l Conference On Principles Of Distributeds8&ms (OPODIS'07)
Springer-Verlag LNCS 4878, pp. 372-385, 2007.

[5] Chandra T.D. and Toueg S., Unreliable failure detectorseliable distributed systemgournal of the
ACM, 43(2):225-267, 1996.

[6] Cristian F. and Fetzer C., The timed asynchronous systeael.[IEEE Transactions on Parallel and
Distributed Systemd4.0(6):642-657, 1999.

[7] Dabek F., Zhao B., Druschel P., Kubiatowicz J., and $tdicTowards a common API for structured
peer to peer overlay®roc. 2nd Int’l Workshop on peer to peer Systems (IPTPS B8jkeley, CA,
2003.

[8] Dwork C., Lynch N. and Stockmeyer L.J., Consensus in tles@nce of partial synchronjournal of
the ACM 35(2): 288-323, 1988.

[9] Eugster P., Handurukande S., Guerraoui R., Kermarrelgl Aand Kouznetsov P., Lightweight prob-
abilistic broadcastACM Transactions on Computer Syste@4):341-374, 2003.

ACM SIGACT News 103 June 2008 Vol. 39, No. 2

[10] Fischer M.J., Lynch N. and Paterson M.S., Impossipitif distributed consensus with one faulty
processJournal of the ACM32(2):374-382, 1985.

[11] Ganesh A.J., Kermarrec A.-M., and Massoulié L., Pegrg¢er membership management for gossip-
based protocoldEEE Transactions on Computets2(2):139-149, 2003.

[12] Gharachorloo K., Lenoski D., Laudon J., Gibbons P., Bub. and Hennessy J., Memory consis-
tency and event ordering in scalable shared-memory motigasorProc. 17th Int’l Symposium on
Computer Architecture (ISCA90pp. 15-90, 1990.

[13] Gontmake A. and Schuster A., Non-operational chareetigons for Java memory mod@&CM Trans-
actions On Computer Systems (TOCI®)(4):333-386, 2000.

[14] Gosling J., Joy G. and Steele Ghe Java Language Specificatjiohddison-Wesley, 1996.

[15] Jelasity M. and Babaoglu O., T-Man: Gossip-Based @yefbpology Managemeingineering Self-
Organising Systemis(15), 2005.

[16] Jelasity M., Voulgaris S., Guerraoui R., KermarrecM\.-and van Steen M. Gossip-based peer sam-
pling. ACM Transactions on Computer Syste@s(3), 2007.

[17] Kleinberg J. The small-world phenomenon: An algorithimerspectiveProc. 32nd ACM Symposium
on Theory of Computing (STOC'QACM press, pp. 163-170, 2000.

[18] Lamport, L. Composition: A Way to Make Proofs HardBevised Lectures from the Int'l Symposium
on Compositionality: The Significant Difference (COMPOR)ringer-Verlag, LNCS #1998, pp. 402-
423, 1998.

[19] Mostefaoui A., Mourgaya E., and Raynal M., Asynchrosguplementation of failure detectoiRroc.
Int'l IEEE Conference on Dependable Systems and NetworkiN{@B) IEEE Computer Press, pp.
351-360, 2003.

[20] Pugh W., Fixing the Java memory modekoc. ACM Conference on Java Grande (JAVA98CM
Press, pp. 89-98, 1999.

[21] Rowstron A. and Druschel P., Pastry: scalable, disteid object location and routing for large scale
peer to peer systemByoc. of IFIP/ACM International Conference on Distribut&gstems Platforms
(Middleware) 2001.

[22] Rathasamy S., Francis P., Handley M., Karp R., and SdreBk A Scalable Content-Addressable
Network.Proc. of the Conference of the ACM Special Interest Group at@ommunications (SIG-
COMM’'01), ACM Press, pp. 161-172, 2001.

[23] Stoica I., Morris R., Liben-Nowell D., Karger D., Kaastk M.F., Dabek F. and Balakrishnan H.,
Chord: A scalable peer to peer lookup protocol for Interipgtiaations.|IEEE/ACM Transactions on
Networking 11(1):17-32, 2003.

[24] Voulgaris S., Gavidia D. and van Steen M., CYCLON: inerpive membership management for
unstructured P2P overlaydournal of Network and Systems Managem#&8¢2):197-217, 2005.

ACM SIGACT News 104 June 2008 Vol. 39, No. 2

[25] Watts D.J. and Stogatz S.H. Collective dynamics of $nvalld networks.Naturg 393, 1998.

[26] Zhao B.Y., Kubiatowicz J.D. and Joseph A.D., Tapesay:infrastructure for fault-tolerant wide-area
location and routingCB/CSD-01-1141, Computer Science Department, U.C. Bgtk001.

A Consistency criteriafor DSM

The definition of a consistency criterion is crucial for th@rectness of a multiprocess program.
Basically, a consistency criterion defines which value loalse returned when a read operation
on a shared object is invoked by a process. The strongestr(iast constraining) consistency
criterion isatomic consistencfA7] (also calledlinearizability when we consider objects more
sophisticated than simple read/write shared variable§)[Adstates that a read returns the value
written by the last preceding write, "last” referring to kiane occurrence order (concurrent writes
being ordered)Causal consistench;A2] is a weaker criterion stating that a read does not get an
overwritten value. Causal consistency allows concurraiites; consequently, it is possible that
concurrent read operations on the same object get diffestaes (this occurs when those values
have been produced by concurrent writes). Causal consjsigencountered in some cooperative
applications. Other consistency criteria (weaker tharsabtonsistency) have also been proposed
[A1,A3].

Sequential consisten¢i5] is a criterion that lies between atomic consistency eadsal con-
sistency. Informally it states that a multiprocess progesercutes correctly if its results could have
been produced by executing that program on a single procegstem. This means that an execu-
tion is correct if we can totally order its operations in saclhay that (1) the order of operations in
each process is preserved, and (2) each read gets the Masughe written value, “last” referring
here to the total order. The difference between atomic stersty and sequential consistency lies
in the meaning of the word “last”. This word refers to reah#i when we consider atomic con-
sistency, while it refers to a logical time notion when we sider sequential consistency (namely
the logical time defined by the total order). The main diffexe between sequential consistency
and causal consistency lies in the fact that (as atomic stamiy) sequential consistency orders
all write operations, while causal consistency does natiredo order concurrent writes.

The figures 7 and 8 show the difference between atomic censigtand sequential consis-
tency. (Solid arrows denote “process” order, while dottedvas denote “read-from” order.) Let
us consider Figure 7. There are two procesgeandp, whose executions are as follows (where
r;(z)a means p,; readsr and obtains the valu€’, and w;(z)a means }; writesa in x”): p; first
writes0 into z, then reads and obtains the valuke and finally reads againand obtains the value
2; po writes twice inz, first the valuel, then the valué.

For this execution to be atomically consistent we must be tblotally order all its operations
in such a way that (1) the real-time order on operations igeeted (e.g., a&; (x)0 is terminated
whenwy(x)1 starts it has to appear before in the total order), (2) caratioperations can be
ordered in any way, and (3) each read operation obtains the wéthe last preceding write (“last”
with respect to this total order). The consistent total ordgx)0, wq(z)1, 1 (x)1, we ()2, ro(z)2

ACM SIGACT News 105 June 2008 Vol. 39, No. 2

can be associated with the execution of Figure 7. Henceatbrically consistent.

wi(z)0 ri(z)1 ri(x)2

real time axis
Figure 7: An atomically consistent execution.

Differently, the execution described in Figure 8 is onlyseatially consistent. It is possible to
totally order all its operations while respecting only thder inside each process and the read-from
relation: wy ()1, wa(y)2, ra(x)1, wi(x)0, r1(y)2, r1(x)0. As the reader can check, this execution
is not atomically consistent as it is not possible to totaligier its operations while respecting the
realtime order of non-overlapping operations.

wi ()0 %{ 'r'l(i;Z ‘ﬁ{ r1(z)0 ‘

/

wa(x)1 w(y)2 ra(x)1

real time axis
Figure 8: A sequentially consistent execution.

Both atomic consistency and sequential consistency reguaequential “witness” execution.
In each case a read obtains the last written value in thisssgi@liexecution. As already indicated,
“last” is with respect to real-time for atomic consistenaile it is with respect to some logical
time for sequential consistency. That is why these consigteriteria demand different protocols
when one wants to manage cached values in distributed sy$fé6h

[Al] Adve S.V. and Garachorloo K., Shared Memory Models: tofial. IEEE Computer29(12):66-
77,1997.

[A2] Ahamad M., Hutto P.W., Neiger G., Burns J.E. and Kohli®ausal memory: Definitions,
Implementations and Programmirigistributed Computing9:37-49, 1995.

[A3] Attiya H. and Friedman R., A Correctness Condition faghtPerformance Multiprocessors.
SIAM Journal of Computind27(2):1637-1670, 1998.

[A4] Herlihy M.P. and Wing J.L., Linearizability: a Correatss Condition for Concurrent Objects.
ACM Transactions on Programming Languages and Syst&(8):463-492, 1990.

[A5] Lamport L., How to Make a Multiprocessor Computer thair€ectly Executes Multiprocess
ProgramslEEE Transactions on ComputeiS28(9):690-691, 1979.

[A6] Li K. and Hudak P., Memory Coherence in Shared Virtualiveey SystemsACM Transac-
tions on Computer System&4):321-359, 1989.

[A7] Misra J., Axioms for Memory Access in Asynchronous Haede SystemsACM Transac-
tions on Programming Languages and SysteB(ik):142-153, 1986.

ACM SIGACT News 106 June 2008 Vol. 39, No. 2

B Why consensusisimportant in distributed systems

Considering a message-passing asynchronous distribygthswhere nodes can crash, demic
broadcastproblem states that (1) all the nodes that do not crash mligedthe same set of mes-
sages in the same order, and (2) the nodes that crash depweiixaof this sequence of messages.
This sequence includes only messages broadcast by the, modiesiust include at least the mes-
sages broadcast by the correct nodes.

Chandra and Toueg have shown that the atomic broadcasepr@rid the consensus problem
are equivalent in the sense that any of them can be solvedassave are given a protocol solving
the other. Figure 9 shows how such a transformation worksem\#node wants to broadcast
a messagen it invokes the primitivel’O_Broadcast(m) which simply consists in sending
to all the nodes using the underlying primitiUeR_Broadcast(m) (a uniform reliable broadcast
primitive [B4]).

The messages received by a nadee stored in a séf R_Delivered;. Then the nodes use
consecutive consensus instances. During each consestarsd@, each node “proposes” a delivery
order for the messages it has received (and not yet delivér@th the other nodes. As each
consensus instance imposes the same batch of messagethratides, and all the nodes that
have not crashed execute the same sequence of consenauseassthey deliver the messages in
the same order. These messages are stored in a local queaghbyoele, that can then deliver the
same sequence of messages (as determined by the sequeressafjebatches) to the application
process located on this node. This shows that atomic bretidcas the same time a communication
problem (messages have to be delivered) and an agreemétgmrfn the same order). More on
this can be found in [B3,B5].

Also, several file systems and real-world replication medare based on consensus protocols,
e.g., [B1] and [B2].

Application layer

TO_Broadcast(m) %7 TOD?WWO

TO _deliverable; ‘
Define a common delivery order
UR,delw@

V

UR_Broadcast(m) 4]
UR_Deliver()

Figure 9: From consensus to atomic broadcast.

[B1] Burrows M., The Chubby Lock Service for Loosely-CoupBistributed Systems/th Sym-
posium on Operating System Design and Implementation (93006.
[B2] Chandra T.D., Griesemer R., and Redstone J., Paxos Maele An Engineering Perspective.

ACM SIGACT News 107 June 2008 Vol. 39, No. 2

26th ACM Symposium on Principles of Distributed Compytppg 398-407, 2007.

[B3] Chandra T.D. and Toueg S., Unreliable Failure Detexfor Reliable Distributed Systems.
JACM 43(2):225-267, 1996.

[B4] Hadzilacos V. and Toueg S., Reliable Broadcast andtBeélRroblems. Ibistributed Sys-
tems ACM Press (S. Mullender Ed.), New-York, pp. 97-145, 1993.

[B5] Mostéfaoui A. and Raynal M., Low-Cost Consensus-Baséomic Broadcast.7th |IEEE
Pacific Rim Int. Symposium on Dependable Computing (PROBDROEEE Computer Society
Press, pp. 45-52, 2000.

C Alook at Chord

Chord [C2] is one of the first peer to peer systems to use bligad hash tables for data location.
The main idea of Chord is to assign to each node and data itéamasired identifier in the range
[0 — 2m~!] for some value ofn. Thus, each hashed identifieris bits long. For example, ifn

is 128, which is often the case, then each identifier is oftledg@8 bit. Choosing such a value for
m ensures that the chances of collisions are negligible areéfibre we can assume that indeed no
two data items are assigned the same identifier.

Finger table for N

N8+1 | N14
N8+2 | N14
N8+4 | N14
N8+8 | N21|

N8+16/ N32
N8+32 N42

N32

Figure 10: The Chord peer to peer protocol assuming 6 (from [C2]).

Next, Chord logically places all hashed identifiers, forbobdes and data items, on a logical
ring, as illustrated in Figure 10. The goal of the system isawe each node pointing to onlyg n
other nodes, and have an overlay diametelogf. as well. Thus, ideally we would like a node
that is assigned an identifieto maintain pointers to all other nodes whose identifiers; are2’
mod 2™ forj € [0, 1,...,logn| (so the last node isitself). However, given that the actual number
of nodes is much smaller than?®, then most potential identifiers are not assigned to any.node
Thus, instead of keeping a pointer to a nddenode: keeps a pointer to nodeuccessor (k),
i.e., to the first node clockwise ator afterwards in the logical ring. This list of nodes thabints
to is referred to as thingertable ofi.

Finding a data item with a hashed identifieis done by having each node with identifier
propagating the request to the first entry in the finger tablesuch that the identifiet’ stored

ACM SIGACT News 108 June 2008 Vol. 39, No. 2

there is the largest node that precedes (or eqdaisjinodulo2™.

Placing Chord in our terminology, thmot ent i al _nei ghbor s method of the DHT would
return an array such that each eritigf the array consists of the range of identifigrsg", . . ., 2F+™
mod 2™]. Thefirst _al i ve method of the failure detector would return the first ideeitifi
that is populated by an alive node. This serves as the eritritee finger table. Finally, the
next _nei ghbor method of the DHT would return the first entry in the finger &thlat recedes
(or equals)! in modulo2™.

Note that to adapt to a different peer to peer protocol (sscRastry [C1] or Tapestry [C3])

all that is needed is to modify the values returned by flo¢ ent i al _-nei ghbor s and the
next _nei ghbor methods.

[C1] Rowstron A. and Druschel P., Pastry: Scalable, Disteld Object Location and Routing for
Large Scale peer to peer SysterRspc. of IFIP/ACM International Conference on Distributed
Systems Platforms (Middlewar&yovember 2001.

[C2] Stoica I., Morris R., Liben-Nowell D., Karger D., Kaastk M.F., Dabek F. and Balakrish-
nan H., Chord: A Scalable peer to peer Lookup Protocol foerhmdt Applications.|EEE/ACM
Transactions on Networking 1(1):17-32, 2003.

[C3] Zhao B.Y., Kubiatowicz J.D. and Joseph A.D., Tapes&w:Infrastructure for Fault-Tolerant

Wide-Area Location and RoutingfCB/CSD-01-1141, Computer Science Department, U.C. Berke
ley, April 2001.

Route(Np,d)=Ng

Np
Py (]

L4 °
Route(Nr,d)=Ns

Ng

Route(Ns,d)=Ns/ Nr Route(Ng,d)=Nr

Ns
Figure 11: The out e invocation process in the generic case.

D Lookingfor adataitem in a peer to peer overlay

Following the description in Section 4, we demonstrate thee invocation process as illustrated
in Figure 11. Suppose the application at nadedecides write a value to data itemd. The
application invokes th&V i t e(d, v) method. As a result, the unified storage protocol invokes th
rout e(N,, d) method that returns with the next node’s identifi¢r. ThenXN, forwards a write
message taV,. When this message arrives at the unified storage protocdl, oit invokes the

ACM SIGACT News 109 June 2008 Vol. 39, No. 2

rout e(N,, d) that returns withV,. The write message is then forwardedXp. The latter in-
vokes the out e(V,., d) method that returns withlv,. Finally, when/V, invokes the out e(V,, d)
method, it returns withV,. This indicates to the unified storage mechanism that isigarsible for
data itemd, and it stores the valuefor d in its local storage module: if there was a previous value,
thenv overwrites it; otherwiselV, initiates a new copy of with valuev. Figure 12 illustrates the
same calling chain, but when the DHT module is instantiate tie Chord protocol.

[D1] Stoica I., Morris R., Liben-Nowell D., Karger D., Kaasék M.F., Dabek F. and Balakrish-
nan H., Chord: A Scalable peer to peer Lookup Protocol foerlmdt Applications.|EEE/ACM
Transactions on Networking 1(1):17-32, 2003.

Route(51,54)=56

N32

Figure 12: An example of out e invocation process when instantiated for the Chord prdtoco
(adapted from [D1]).

ACM SIGACT News 110 June 2008 Vol. 39, No. 2

