Byzantine Disk Paxos:
Optimal Resilience with Byzantine Shared Memory*

Ittai Abraham! Gregory Chockler? Idit Keidar$ Dahlia Malkhif

September 2, 2005

Abstract

We present Byzantine Disk Paxos, an asynchronous shared-memory consensus algorithm
that uses a collection of n > 3t disks, ¢ of which may fail by becoming non-responsive or
arbitrarily corrupted. We give two constructions of this algorithm; that is, we construct two
different ¢-tolerant (i.e., tolerating up to ¢ disk failures) building blocks, each of which can be
used, along with a leader oracle, to solve consensus. One building block is a t-tolerant wait-free
shared safe register. The second building block is a t-tolerant regular register that satisfies a
weaker termination (liveness) condition than wait freedom: its write operations are wait-free,
whereas its read operations are guaranteed to return only in executions with a finite number of
writes. We call this termination condition finite writes (FW), and show that wait-free consensus
is solvable with FW-terminating registers and a leader oracle. We construct each of these ¢-
tolerant registers from n > 3t base registers, ¢t of which can be non-responsive or Byzantine.
All the previous t-tolerant wait-free constructions in this model used at least 4t 4+ 1 fault-prone
registers, and we are not familiar with any prior FW-terminating constructions in this model.

We further show tight lower bounds on the number of invocation rounds required for optimal
resilience reliable register constructions, or more generally, constructions that use less than
4t + 1 fault-prone registers. Our lower bounds show that such constructions are inherently more
costly than constructions that use 4t + 1 registers, and that our constructions have optimal
round complexity. Furthermore, our wait-free construction is early-stopping, and it achieves the
optimal round complexity with any number of actual failures.

Keywords: shared-memory emulations, t-tolerant object implementations, Byzantine failures,
wait freedom, consensus, lower bounds.

fSchool of Computer Science and Engineering, The Hebrew University of Jerusalem.
Email: {ittaia,dalia}@cs.huji.ac.il.
Lab for Computer Science and Artificial Intelligence. Massachusetts Institute of Technology.
Email: grishac@theory.lcs.mit.edu.
$Department of Electrical Engineering, The Technion — Israel Institute of Technology.
Email: idish@ee.technion.ac.il.
*Accepted for publication in Distributed Computing. Preliminary version appears in Proceedings of the 23rd
ACM Symposium on Principles of Distributed Computing (PODC ’04), July 2004, pages 226—235.

1 Introduction

We consider an asynchronous system with multiple processes accessing fault-prone shared mem-
ory objects [AMT93, AGM*95, JCT98]. We study implementations of reliable objects from base
objects that may fail by being non-responsive [AMT93, JCT98] or by returning arbitrary val-
ues [AGM™95, JCT98] (i.e., by being Byzantine); this failure model is called non-responsive ar-
bitrary (NR-Arbitrary) faults [JCT98]. We focus on t-tolerant implementations [JCT98], that is,
implementations that are correct as long as up to ¢ base objects fail [JCT98]. In addition to memory
failures, we assume that any number of the processes accessing the shared objects may crash.

This model is important in capturing a fair amount of recent work on Byzantine fault-tolerant
“data centric” distributed storage, where data is stored at widely-dispersed servers, and is accessed
by a large collection of ephemeral clients. Note that running a Byzantine fault-tolerant message-
passing algorithm among all clients is not a viable option in such settings due to the ephemeral
nature of clients. Data centric replication arises in three different application domains: (i) scalable
client-server systems, e.g., Fleet [MRO00], SBQ-L [MADO02], Agile Store [LAV03], Coca [ZSvR02],
and [Baz00], in which servers store information on behalf of clients and all (or most) communication
is between clients and servers, allowing servers to be highly scalable; (ii) Byzantine fault-tolerant
peer-to-peer storage systems, e.g., Rosebud [RL04] and [LQLZ04]; and (iii) storage area networks,
e.g., PASIS [GWGRO04], where shared disks are used for data sharing as well as for synchronization.
Since each server is entrusted with the data of many clients, modeling servers as prone to Byzantine
faults protects clients from server intrusion. On the other hand, servers can use access control to
ensure that clients access their own data only; tolerating Byzantine client failures is therefore
meaningless, since a Byzantine client can corrupt its own data regardless of any measure taken by
the protocol. Since our work is motivated by settings where processes access the shared memory
over a network, our primary complexity metric is the number of memory access rounds, that is, the
largest number memory operations invoked on a single base object.

Our goal is to enhance this fruitful line of work into a survivable distributed storage system
that tolerates arbitrary corruption and unresponsiveness (i.e., NR-Arbitrary faults) in up to a third

of its disks (or servers) as well as process crashes. (Tolerating NR-~Arbitrary faults in a third or

more of the disks is impossible [MADO02]). Although a number of projects have set out to tackle
this problem (e.g., E-vault [GGJRO00], Fleet [MR00], Agile Store [LAV03], SBQ-L [MADO02], Coca
[ZSvR02], PASIS [GWGRO04], as well as [ABOO03] and [Baz00]), to date, this goal has not been
achieved in our setting.

Consensus is a fundamental building block that may be used to realize such distributed storage
systems. For solving consensus with shared disks, we turn to shared memory failure-detector
based consensus algorithms [LH94, GLO03], and in particular, the shared-memory version of Disk
Paxos [GL03], which employs shared wait-free single-writer multi-reader (SWMR) regular registers!
and a leader oracle; a leader oracle is a failure detector of class €2, which outputs one trusted
process at each process, and guarantees that eventually a single correct process is permanently
trusted by all correct processes. Thus, the problem of solving consensus (assuming a leader oracle)
can be reduced to implementing a wait-free SWMR regular register. When disks are subject to
unavailability faults only, a reliable wait-free register is easily implemented from a collection of
2t + 1 crash-prone registers, each stored on one disk, by reading and writing from/to a majority of
disks [GLO3].

Coping with NR-Arbitrary faults is more challenging. Since the introduction of this fail-
ure model, researchers have constructed t-tolerant wait-free shared registers using 4t + 1 [MR98,
GWGRO04], 5t + 1 [JCT98], or even 6t + 1 [CMRO1] fault-prone base objects. Several works have
achieved better resilience by weakening the model in different ways — by adding synchrony [Baz00];
by storing signed self-verifying data [MR98, MADO2]; or by providing solutions that may block
indefinitely if processes fail [MADO02, ABO03|. However, ¢t < n/4 is the best resilience achieved
thus far by t-tolerant wait-free constructions for the model considered herein.

In contrast, the literature is abundant with message-passing consensus algorithms that tolerate
Byzantine failures of less than a third of the processes. Therefore, an appealing way to go about
searching for a more resilient solution would be to try and adapt the techniques used in those

algorithms to our model. (Since our model does not incorporate digital signatures, we restrict our

LA wait-free object is one that is live in the presence of any number of process failures. A regular register guarantees
that every read operation returns the value that was written by a write operation invoked not earlier than the last
write operation that returns before the read is invoked, or the initial value if no value is written before the read.

attention to consensus algorithms that do not use authentication). We observe that this resilience is
achieved by means of echoing (e.g., [BT85, DLS88]). Unfortunately, echoing cannot help us address
the challenge we have set out to solve in this paper. Indeed, if a correct process can correctly echo
information to all other processes, this is essentially like having a wait-free register through which
the process conveys the information to the other processes. And implementing such a register from
fault-prone ones is exactly what we seek to do in this paper.

Having ruled out the use of standard techniques to improve the resilience threshold, we pro-
ceed to examine whether there exist inherent limitations that prevent algorithms in our model
from achieving better resilience. We observe that all existing algorithms for fault-prone shared
memory models (e.g., [MR98, MADO02, Baz00, JCT98, ABO03, GWGR04|) implement (emulate)
write operations in a single round; that is, they invoke one write operation on each base object.
Moreover, all the solutions that assume ¢ < n/4, also implement read operations in a single round
(e.g., [MR98, Baz00, JCT98, GWGRO04]). In Section 7, we show that such good performance is not
attainable by optimal-resilience solutions. Specifically, Section 7.1 proves that if ¢ > n/4, then it
is impossible to emulate the write operations of a t-tolerant wait-free register by invoking a single
round of operations on base objects. Our proof applies to emulations of all meaningful register
types, as it is proven for a binary single-writer single-reader safe register’ [Lam86]. We further
show, in Section 7.2, that if n = 3t 4+ 1, then every algorithm in which the reader does not modify
the base objects’ states has at least one execution in which at least ¢ + 1 rounds of read operations
are invoked in order to emulate a single read operation of a t-tolerant single-writer single-reader
safe register. More generally, for any 0 < f < ¢, there is an execution in which f objects are
Byzantine faulty in which the algorithm invokes min(¢ + 1, f + 2) rounds of base object operations.
We further conjecture that even if readers can modify the base objects, then it still holds that
either the read or the write emulation must take min(t+ 1, f 4+2) rounds. Our bounds explain why
previous algorithms, which did not perform more than one round of operations, and did not have

readers modify base objects, could not have achieved optimal resilience.

2A safe register guarantees that every read operation that does not overlap any write operation returns the latest
written value, or the initial value if no value was written; the result of a read operation that does overlap a write
operation may be arbitrary.

In Section 5, we present a t-tolerant wait-free SWMR register construction that uses as little
as 3t + 1 base registers that may suffer arbitrary corruption. As dictated by the lower bounds of
Section 7, we implement (emulate) write operations in two rounds, that is, our emulation invokes
two operations on some of the base objects. Our read emulation is early-stopping, and it incurs
the optimal min(f + 2,¢ + 1) rounds, where f is the actual number of Byzantine faults in the
given execution. Specifically, we construct a t-tolerant wait-free SWMR safe register; multi-writer
registers can be constructed from single-writer ones [VA86]. Using known reductions from regular
to safe registers (see e.g., [Lam86] and a survey in [HV02]), we can thus achieve a t-tolerant
wait-free regular register, which in turn, can be used to solve consensus with a leader oracle [LH94,
GLO03]. Nevertheless, it is worth noting that implementing a regular register using safe ones requires
additional space (as multiple safe registers are used to construct a single regular one), induces
additional rounds of memory access, and adds additional complexity, as most existing constructions
are fairly elaborate.

We therefore further seek a simpler, self-contained, and efficient implementation of a regular
register. The key to such a solution is a very simple yet surprisingly powerful shift of paradigm: we
weaken the termination condition the register is required to satisfy. Specifically, we define a new
termination condition called finite writes termination (FW-termination), which guarantees progress
only in executions with a finite number of writes. In other words, write operations always terminate,
whereas read operations are guaranteed to terminate whenever they occur in parallel with a finite
number of writes. In order for FW-terminating registers to guarantee progress for the readers, a
contention management mechanism is required, so as to limit the number of writes occurring in
parallel with read operations. Nevertheless, we observe that in the context of consensus, this can
be provided by a leader oracle, which is necessary for consensus anyway [LH94, DFG02, CHT96].

Indeed, this leads us to implement a t-tolerant FW-terminating reliable regular register out of
ones that can suffer NR-Arbitrary faults, and to use such registers for implementing consensus.
The result is a simple, efficient, and self-contained adaptation of Disk Paxos, which tolerates NR-
Arbitrary faults of up to a third of the disks. As our FW-terminating construction is simpler than

the wait-free one, we present it first in the paper, in Section 4.

From a formal perspective, solving wait-free consensus with shared objects that are not wait-
free is in itself a contribution. In [LH94, GL03, DFG02], it was shown that wait-free consensus is
possible with wait-free read/write registers and a leader oracle. We show, for the first time, that
registers satisfying a weaker progress condition (i.e., have more allowable behaviors) suffice. This
approach integrates well with the Paxos general philosophy, which decomposes consensus into a
safety building block (called Synod in [Lam98]) and a progress component (leader election). In
shared memory this deconstruction was substantiated in [BDFGO03, CM02], where coarse-grained
shared objects encapsulating the Synod algorithm were identified. In this paper, the approach of
separating safety requirements from liveness ones is applied right down to the lowest level objects
of which Paxos is constructed: the read/write registers.

Contributions and road map. Section 2 presents the formal system model and defines the
register types considered in this paper. Section 3 provides informal intuition for the formal results
presented later in the paper: it discusses previous register emulations in the NR-Arbitrary fault
model, illustrates the challenges in working with optimal resilience, and exemplifies our results
(lower bounds and upper bounds). We then turn to introduce Byzantine Disk Paxos, a shared-
memory consensus algorithm that tolerates NR-Arbitrary faults of up to a third of the system. We
present two constructions of Byzantine Disk Paxos. In Section 4, we present a direct construction
of a t-tolerant FW-terminating regular register from Byzantine shared memory. Section 6 identifies
such registers as building blocks for consensus. In Section 5, we present an emulation of a t-tolerant
wait-free register out of 3t + 1 corruptible ones. In Section 7, we prove tight lower bounds on the
round complexity of emulations that use less than 4¢+1 base objects, showing that the construction
in Section 5 has optimal round complexity as well as resilience, and that the write emulation of
the FW-terminating register in Section 4 is also optimal. Our complexity lower bounds are proven
for implementations of the weakest meaningful register type, namely a binary SWSR safe register,
from atomic objects of arbitrary type. Our constructions employ regular SWMR base registers; the
fact that these constructions achieve optimal complexity implies that using atomic objects would
provide no added value. Our constructions do not work with safe base registers; although it is

possible to emulate regular registers from safe ones, this would induce additional complexity.

2 The System Model

We consider an asynchronous shared memory system consisting of a collection of processes interact-
ing with a finite collection of objects. Objects and processes are modeled as I/O automata [LT89].
An I/O automaton’s state transitions are triggered by actions. Actions are classified as input, out-
put, and internal. The automaton’s interface is determined by its input and output actions, which
are collectively called external actions. An action 7 of an automaton A is said to be enabled in state
s if A has a state transition of the form (s,7,s’). The transitions triggered by input actions are
always enabled, whereas those triggered by output and internal actions, (collectively called locally
controlled actions), depend solely on the automaton’s current state.

Let A be an I/O automaton. An execution « of A is a (finite or infinite) sequence of alternating
states and actions sg, 71, s1, ..., where sg is A’s initial state, and each triple (s;_1, 7, s;) is a state
transition of A. The trace of an execution « of A is the subsequence of a consisting of the external
actions in . An infinite execution « of A is fair if every locally controlled action of A either occurs
infinitely often in « or is disabled infinitely often in «. A finite execution « of A is fair if no locally
controlled action of A is enabled at the end of a. A fair trace of A is the trace of a fair execution of
A. An automaton’s external behavior is specified in terms of the properties of its traces. Liveness
properties are required to hold only in fair traces.

An object automaton’s interface is determined by its fype, which is a tuple consisting of the
following components: (1) a set Vals of values; (2) a set of invocations; (3) a set of responses; and
(4) a sequential specification, which is a function from invocations x Vals to responses x Vals,
specifying the object’s semantics in sequential executions.

An asynchronous shared memory system is a composition of a (possibly infinite) collection of
process automata Py, P,,... and a finite collection of object automata O1,02,...0,. Let O; be
an object of type 7, and a (b) be an invocation (resp. response) of 7. Process P; interacts with
O; using actions of the form a; (resp. b;), where a; is an output of P; and an input of O; (resp. b;
is an output of O; and an input of F;).

We say that the interaction between a process and an object is well-formed if it consists of

alternating invocations and responses, starting from an invocation. In this paper, we only consider

systems in which the interaction between P; and O; is well-formed for all ¢ and j. Well-formedness
allows an invocation occurring in an execution « to be paired with a unique response (when such
exist). If an invocation has a response in «, the invocation is said to be complete; otherwise, it
is incomplete. If two invocations are incomplete after some prefix of «, then they are said to be
overlapping in «. Note that well-formedness does not rule out concurrent operation invocations
on the same object by different processes. Nor does it rule out parallel invocations by the same
process on different objects, which can be performed in separate threads of control.

Objects may suffer NR-Arbitrary failures [JCT98], i.e., may fail to respond to an invocation,
or may respond with an arbitrary value. We consider ¢-tolerant implementations [JCT98], which
remain correct (in the sense that the emulated object satisfies its specification) whenever at most
t base objects suffer NR-Arbitrary failures.

Any number of the processes may fail by stopping. The failure of a process P; is modeled using a
special external event stop;. Once stop; occurs, all locally controlled actions of P; become disabled

indefinitely. A process that does not fail in an execution is correct in that execution.

2.1 Registers

A read/write register (or simply, register) type supports an arbitrary set of values, Vals, with an
arbitrary initial value vy € Vals. Its invocations are read and write(v), v € Vals. Its responses
are v € Vals and ack. Its sequential specification, f, requires that every write overwrites the
last value written and returns ack (i.e., f(write(v),w) = (ack,v)), and every read returns the last
value written (i.e., f(read,v) = (v,v)). In this paper, we consider only single-writer registers, i.e.,
registers that can be written by a single pre-designated process. Registers can be either single-writer
multi-reader (SWMR), meaning that they can be read by any number of processes, or single-writer
single-reader (SWSR), in which case only one designated processes can read from them.

We now define several register properties. Let o be a (well-formed) sequence of invocations and

responses of reads and writes.

Safe register. o is safe [Lam86] if every complete read operation that does not overlap any write

operation returns the register’s value when read was invoked (i.e., the latest written value or

the initial value v if no value was written). A register is called safe if it has only safe traces.

Regular register. o is regular [Lam86] if it is safe, and in addition, a read operation that does
overlap some write operations returns either one of the values written by overlapping writes
or the register’s value before the first overlapping write is invoked. A register is reqular if it

has only regular traces.

Wait Freedom. o satisfies wait freedom if every invocation by a correct process in ¢ is complete.

A register is wait-free if all its fair traces satisfy wait freedom.

FW-termination. o satisfies F'W-termination if every write invocation by a correct process in
o is complete, and moreover, either every read invocation by a correct process is complete,
or infinitely many writes are invoked in o. A register is FW-terminating if all its fair traces

satisfy FW-termination.

Note that our liveness definitions (wait freedom and FW-termination) require operations by
correct process to complete regardless of the number of process failures, since failed processes are
not required to take any steps in fair executions (as their locally controlled actions are all disabled).

We now examine the relationship of FW-termination with previously suggested termination con-
ditions by comparing the sets of behaviors they allow. We observe that the set of FW-terminating
traces is a strict subset of both lock freedom (sometimes called non-blocking) and obstruction
freedom [HLMO3] (or deterministic solo termination). An FW-terminating trace is lock-free since
progress is always guaranteed: if there is a write invocation, it is guaranteed to complete, and if
there is none, all read invocations are guaranteed to complete. An FW-terminating trace is also
obstruction free, since when a read invocation is allowed to take steps by itself, other processes can-
not initiate infinitely many write invocations in parallel with the read, and hence FW-termination
ensures that the read completes, as required by obstruction-freedom. FW-termination is a strict
superset of wait freedom, since a read operation that is concurrent with infinitely many writes is
not required to complete. This relationship is illustrated in Figure 1.

We note that FW-termination is similar to giving priority to the writers in the readers-writers

problem, but differs from it in that if a writer fails while accessing the shared object, FW-

termination guarantees progress to the readers, whereas in the readers-writers problem, a single

write operation that does not relinquish the shared object keeps all readers are blocked.

obstruction- free trace

Figure 1: Relationship among different termination conditions.

Finally, although we have defined FW-termination above specifically for read/write registers,

we note that our definition may be extended to model any single-writer multi-reader data structure.

3 Exemplifying the Results

This section provides informal intuition for the lower bounds and algorithms presented in this
paper. Section 3.1 describes previously suggested register emulations from Byzantine storage, and
uses them in order to illustrate the challenge in achieving optimal resilience. Section 3.2 then
intuitively describes the techniques we use in our algorithms.

In order to distinguish between the emulated register’s interface and that of the underlying base

registers, we henceforth denote the emulated read (resp. write) operation as READ (resp. WRITE).

3.1 Previous Solutions and Remaining Challenges

Traditionally, in asynchronous algorithms, one waits for at most n — ¢ responses to each re-
quest, since waiting for more objects may violate liveness. Thus, an emulated WRITE(v) op-
eration issues write requests to all base objects, and returns once the lower-level write oper-
ations on n — t of the n base objects return. WRITE operations are implemented exactly in

this manner in all previously suggested constructions tolerating NR-Arbitrary memory faults,

e.g., [MR98, MADO02, JCT98, ABO03, GWGR04]. Note that of the n — ¢t base objects that re-
spond, ¢ may be faulty, whereas the ¢ that have not responded may be simply slow. Thus, when a
WRITE operation completes, there can be ¢ correct base objects that do not store the written value.
Likewise, a READ invocation typically sends read requests to all base objects and waits for n — ¢
responses. If as in [MR98, GWGRO04], n > 4¢, then the set of n — t read objects includes at least
2t + 1 correct objects, of which at least ¢ + 1 were updated by every complete WRITE. Since no
incorrect value can be read from ¢ 4 1 objects, if written values are associated with monotonically
increasing timestamps, READ can safely return the highest timestamped value read from ¢ + 1 base
objects [MR98, GWGRO04]. Jayanti et al [JCT98] eliminate the need for timestamps by using a
resilience threshold of n > 5t and returning values read from 2¢ 4+ 1 base objects.

However, working with n < 4t is more challenging. Let us examine the special case that t = 1
and resilience is optimal, i.e., n = 4, and only safe semantics are required. In this case, after
WRITE(v) completes, it is possible that only 2 correct base objects have stored v. Safety mandates
that if a READ operation is invoked after WRITE(v) returns, and no further WRITE operations are
invoked, then the READ must return v. The READ operation probes the base objects and waits for
responses from n—t = 3 of them (in order to ensure liveness). The responses may be as follows: one
correct object that did not store v returns an old value sg, one incorrect object also returns sg, and
only one correct object returns v. (This scenario is illustrated in Figure 8(c) in Section 7.1, where
we formally prove our lower bound on WRITE emulations). The reader has no way of distinguishing
this situation from one where v was never written and is returned by a faulty object. Therefore,
the reader cannot return.

One may attempt to overcome this situation by simply waiting for more responses. In the above
scenario, the reader can in fact wait for an additional response, since it has already heard from the
only faulty object, and the fourth object is correct and will eventually respond as well. However,
the reader cannot distinguish the scenario above from a situation in which WRITE(v) is in progress
during the READ, and all three responses are from correct objects. In this case, the reader cannot
wait for a response from the fourth object, which may be faulty. Since the reader can neither safely

return any value nor wait for an additional response, it must invoke another round of base object

10

read operations. More generally, in Section 7.2, we formally prove that if the reader does not write
to the base objects, there are executions in which READ must invoke at least ¢ + 1 rounds of read
operations on base objects.

If one assumes that processes cannot fail, then the WRITE(v) operation (implemented by writing
to 3 base objects, as described above) eventually completes. If no further WRITEs occur and READ
continues to initiate additional read rounds, then eventually, 2 correct objects return v in some
read round and another object returns a value with a smaller timestamp, and READ can return
safely v. This is the approach taken by Attiya and Bar-Or [ABOO03], where READ operations are
guaranteed to eventually terminate assuming that processes do not fail and a finite number of
WRITEs are invoked. A similar approach is implemented by Martin et al. [MADO02], where the
shared objects reside on servers that implement a subscription model and push all register updates
to the subscribed clients instead of having the clients continuously issue read rounds. (Note that
this model is different from the shared memory model we consider in this paper.) By allowing this
additional functionality at the servers, Martin et al. guarantee termination even when there are
infinitely many WRITES.

Unfortunately, if processes can fail, the above approach violates liveness. (Martin et al. [MADO02]
overcome this liveness problem by allowing servers to communicate with each other, which is
impossible in the shared memory model). If a writer fails (crashes) in the course of the WRITE(v)
invocation, then the system can permanently remain in a state where exactly one correct object has
stored v (see Figure 8(b)). In this situation, even if the reader continues to initiate read rounds and
no other processes take steps, the reader will not be able to complete the READ. In Section 7.1 we
formally prove that, indeed, in order to tolerate process failures, WRITE must invoke two operations

on some base object.

3.2 Intuitive Description of Our Algorithms

We now illustrate the general idea behind our optimal-resilience algorithms for the special case that
n=4andt=1.

As dictated by the lower bound described above, our algorithms emulate WRITE by invoking two

11

rounds of operations on base objects. Each base object (register) stores two values. The emulation
of WRITE(v) first performs a pre-write phase, in which v is written to the base registers’ first field,
pw. After getting acks from n — ¢ base objects that have stored v, the write phase writes v to
n — t registers’ second field, w. This solves the problem described above, since if the writer fails
before finishing the pre-write phase, v does not appear in any register’s w field, and eventually,
all 3 correct registers will attest to the fact that v was never fully written, whereas if the writer
fails after completing the pre-write phase, then v is stored in 2 correct registers’ pw fields, and
the reader can therefore know that WRITE(v) was indeed invoked. Finally, if the reader reads two
values, v and sg, each from 2 objects, then READ must return the later one. To this end, each value
is written along with a monotonically increasing timestamp. Our FW-terminating READ emulation
(presented in the next section) continuously invokes read rounds until there is a value that appears
in the pw fields of 2 registers (or more generally, ¢ + 1 registers), and for every higher timestamped
read value v, there are at least 3 registers (more generally, 2t + 1) that do not return v in their w
fields. The number of rounds initiated by this algorithm is unbounded, by design, but the algorithm
is guaranteed to terminate in executions with a finite number of WRITES, even if the writer fails.
In Section 5, we present a t-tolerant wait-free safe register construction that bounds the number
of read rounds. In the special case that t = 1, our t-tolerant wait-free READ emulation invokes at
most two read rounds. In the first read round, READ reads from 3 registers, and collects candidate
return values— these are the values that are read from w fields. It then issues a second read round.
Since this algorithm implements a safe register, it can return an arbitrary value when a WRITE
overlaps the READ. If no WRITE overlaps the READ, then the latest written value is stored at at
least 2 correct registers’ w fields throughout the READ. Therefore, if there is any candidate value
v such that 3 registers respond without v in their w fields, then v can be removed from the set of
candidates. If the set of candidates is empty, there must be a WRITE overlapping the READ, and
any value can be returned. Otherwise, consider the highest timestamped candidate v. If 2 registers
respond with v or higher timestamped values, then v is a valid return value. This is because at least
one of these registers is correct, implying that either v was indeed written, or WRITE(v’) occurred

for some higher timestamped value v/, which is not a candidate. In the latter case, since v’ is not

12

a candidate, WRITE(v’) overlaps the READ. Thus, either way, v can be returned.
In order for READ to return, we thus need to ensure that eventually, each candidate is either
missing from 3 responses, or there are 2 responses that include v or a higher timestamped value.

When ¢t = 1, two read rounds suffice to ensure this. To see why, consider a candidate value v:

1. First, if v was concocted by a faulty register in the first round, then there is an additional
correct register that did not yet respond in the first round, and will eventually respond. Once
this register responds, there will be 4 responses in the first read round, ensuring that every

value either occurs in 2 of them or does not occur in 3 of them.

2. Otherwise, v was read from the w field of a correct register in the first round, implying that
its pre-write phase has completed before it was read. The pre-write could have taken place
concurrently with the first read round, but since the second read round causally follows the
first, the pre-write must have completed and stored v at 2 correct registers before the second
read round. Thus, at least 2 correct registers will eventually respond to the second round

with either v or a later value in their pw field.

As noted above, when t > 1, two read rounds do not always suffice, and the general algorithm is

quite a bit more complex.

4 t-Tolerant FW-Terminating Regular Register Emulation

In this section, we construct a t-tolerant FW-terminating SWMR regular register in a shared
memory system consisting of an arbitrary number of processes and n > 3t SWMR fault-prone
FW-terminating regular registers, z; ... x,. The register emulation is presented in Section 4.1. Its

correctness is proven in Section 4.2, and its efficiency is discussed in Section 4.3.

4.1 Register Emulation

Each base register, x;, stores a pair of values, each associated with a timestamp, taken from a totally

ordered set T'S, with the minimum element tsg. The shared registers are defined in Figure 2.

13

Types:
TSVals =TS x Vals, with selectors ts, val;

Shared regular registers z; € T'SVals x TSV als, 1 < i < n, with selectors pw, w,
initially, ({tso,vo), (tso,vo)) for all 1 <7 < n;

Figure 2: Base registers used in register constructions.

The emulation of the FW-terminating register’s WRITE operation appears in Figure 3. As
dictated by the lower bound of Section 7.1, the WRITE emulation consists of two rounds: First, the
pre-write phase writes the value to the base registers’ pw fields, and then, the write phase writes
the new value to both the registers’ fields. Each value is written together with a monotonically
increasing timestamp. Since the underlying registers can be non-responsive, the process must invoke
operations to different registers in parallel in separate threads, so as to avoid blocking forever when
waiting for a faulty register to respond. Each phase (write and pre-write) is complete once n — ¢
of the registers (threads) respond. Threads that do not respond by the time WRITE is complete
remain active (pending) after it returns.

In order to ensure well-formedness, (i.e., that at any instant, the writer has at most one incom-
plete invocation on each register), subsequent instances of WRITE must refrain from invoking new
operations on registers whose threads are still pending. To this end, we track the status of each base
register x; using two bits. The pending/i] bit indicates whether an invocation on x; is in progress.
To initiate an invocation on x;, the main thread sets enabled/i] to true, and then repeatedly calls
the procedure CHECK in order to invoke write operations on the base registers for which an invoca-
tion is enabled and none is pending, and to check when these invocations are complete. When an
operation on z; is invoked, CHECK sets enabled[i] to false. Thus, a repeat-CHECK-until loop never
invokes more than one operation on each base objects. Once invocations on n — t registers have
responded (i.e., are neither enabled nor pending), the phase is complete.

The notation INVOKE write(z;,v), (resp., INVOKE tmp <« read(x;)) means that a new thread
is spawned to perform a write(v) on register z; (resp., a read of register x; whose response will
be stored in local variable tmp). The notation x; RESPONDED means that the last thread created

by an INVOKE operation on register x; has completed its execution. Note that since we maintain

14

Local variables:
Boolean arrays enabled[n|, pending|n], initially false for all 1 <i < n;
pw, w € TSVals, initially (tsg, vo);
ts € TS,

WRITE (v):
choose ts € T'S larger than previously used;

/* Pre-write phase */
pw — (ts,v);
for 1 <i <mn, enabled[i] < true;
repeat
CHECK;
until |{i : —enabled[i] A —pending[i]}| > n —t;

/* Write phase */
w — (ts,v);
for 1 <i <mn, enabled[i] < true;
repeat
CHECK;
until [{i : —enabled[i] A ~pending[i]}| > n —t;

return ack;

CHECK:
for1 <i<n
if (enabled[i] A —pendingli]) then
(enabled|i], pending[i]) «— (false,true);
INVOKE write(z;, (pw, w));
if (x; RESPONDED) then
pending(i] « false;

Figure 3: Emulation of WRITE operations.

15

well-formedness, at any given instant of time, there is at most one incomplete operation invoked
on register z;. Hence, the notation x; RESPONDED is well-defined.

The READ emulation appears in Figure 4. It repeatedly invokes rounds of read operations on
base registers, until it finds a value that it can safely return. For each register z;, w[i] and pw|i]
hold the latest value read from z;.w and x;.pw, resp. Like the WRITE emulation, READ uses the
pending|i] and enabled[i] bits in order to track the status of active invocations to z; and ensure
well-formedness. Each read round is invoked by setting all the enabled bits to true (line 4), and
repeatedly calling the procedure CHECK until n — ¢ registers respond (lines 5-7). As in the WRITE
emulation, CHECK invokes enabled base register operations and checks the status of pending ones.
Recall that threads invoked in one instance of READ may remain active after that instance returns.
In this situation, subsequent READs must ignore the return values of such old threads, so as not to
violate safety. To this end, the oldfi/ bit is used. When READ is invoked (line 1), this bit is set for
registers that have pending invocations from previous READs. When old threads return, their data
is discarded.

READ defines a number of predicates in order to determine which value is safe to return. The
readFrom(c,7) predicate is true if the value-timestamp pair ¢ € T'SVals was read from z;, either
from the w or from the pw field, by the latest read operation invoked on x;. In order to ensure that
READ does not return a value concocted by faulty registers, the return value must be read from at
least t + 1 registers. This condition is captured by the predicate safe.

In order to ensure regularity, READ must not return old values written before the last WRITE
that precedes the READ. Enforcing this condition is more subtle: although returning the highest
timestamped read value would ensure this, this value cannot be returned unless it is safe. Simply
waiting for the highest timestamped value to become safe may violate liveness, because this value
may come from a faulty register. To overcome this difficulty, we introduce the predicate invalid. This
predicate ascertains that a given value-timestamp pair was not written before READ was invoked,
and can therefore be safely excluded from the set of potential return values. A value-timestamp
pair is deemed invalid if 2¢41 of the registers either return values with lower timestamps or return a

different value with the same timestamp. The algorithm then waits for the highest timestamp-value

16

Local variables:
Boolean arrays enabled[n], pending[n|, old[n], initially false for all 1 < i < n;
Arrays pwln], win], tmpPWn], tmpWn] with elements in T'SVals U {L};
C CTSVals;

Predicate definitions:
readFrom(c,i) 2 c € TSVals A (pw[i] = ¢V w[i] = ¢)
safe(c) 2 | {i : readFrom(c,i)}| >t +1
invalid(c) 2 | {i : 3¢ :readFrom(c/,i) A .ts < ctsV (d.ts=cts Ncdw#cv)} | >2t+1
highestValid(c) = Vc'Vi : (readFrom(c/,i) A c.ts > c.ts A # ¢) — invalid(c)

READ():
1: for 1 <i<n, if(pending[i]) then old[i] < true;

2: for 1 <i<n, pwli],w]i] — L;

3: repeat

4: for 1 <i <n, enabled[i] < true;

5: repeat

6: CHECK;

7 until |{i : —enabled[i] A —pending[i]}| > n —t;
8 C «— {c : safe(c) A highestValid(c)};

9: until (C # 0);

10: return cwal : c € C}

CHECK:
for1 <i<n
if (enabled[i] N —pendingli]) then
(enabled]i], pendingli]) «— (false,true);
INVOKE (tmpPW i], tmpWi]) « read(z;);
if (x; RESPONDED) then
if (—old[i]) then
pwl(i] — tmpPW[i];
wli] «— tmpWTil;
pending|i] < false;
oldi] < false;

Figure 4: Emulation of READ operations of the t-tolerant FW-terminating regular register.

17

pair that is not invalid to become safe, and returns this value. The predicate highestValid(c) holds
for a timestamp-value pair c if all the other read values with a timestamp greater than or equal to
c’s are invalid.

The set C holds value-timestamp pairs that are safe, and for which all the pairs with a higher
timestamp or with the same timestamp and a different value are invalid (line 8). Once C' # (), READ
terminates (line 9) and returns some value in C' (line 10). This guarantees regularity, as proven in
Lemma 4.1 below. The emulation is also FW-terminating, since once no more WRITE invocations
occur, the latest written value eventually becomes safe, and higher timestamped values from faulty
registers are eventually invalidated. This is proven in Lemma 4.2 below.

Note that even if we use wait-free base registers, the register implementation in Figures 3 and 4
is not wait-free. Even with infinitely many WRITE invocations, a reader may never return even in a
fault-free execution. This is because in each read round, one new (concurrently-written) candidate
value may be observed in both the pw and w fields of one base register, while the other correct
registers respond with older values due to asynchrony. The new candidate value is neither safe nor

invalid.

4.2 Correctness

Lemma 4.1 (Regularity). The register whose WRITE emulation appears in Figure 8 and whose

READ emulation appears in Figure 4 is regular.

Proof. We prove that the algorithm has only regular traces. First, observe that if READ returns a
value c.val, then safe(c) holds. Thus, at least ¢ + 1 registers respond with ¢, and at least one of
these is correct. Therefore, ¢ has either been written by WRITE(c.val) or is (tsg,vg). It is left to
show that READ does not return older values than the one written by the latest complete WRITE
before the READ.

If no WRITE completes before READ is invoked, then we are done. Otherwise, let R be a READ
invocation and W = WRITE(v) be the last WRITE that completes before R is invoked. Let ts be the
timestamp written with v. We need to show that R does not return an older value, i.e., that any

return value c.val is not associated with a timestamp c.ts < ts (as timestamps are monotonically

18

increasing). That is, we need to show that if c.val is returned, then c.ts > ts.

Since the write phase of W completes before R is invoked, (ts,v) is written to the pw and
w fields of at least ¢ + 1 correct registers before the read. Since the base registers are regular,
each of these ¢t + 1 correct registers responds to each read operation of R with a pair (pw,w)
such that pw.ts > ts A w.ts > ts. Consider the reader’s state after line 8 (in any iteration) of
R. As n — t responses are awaited in line 7, at least one of the responders is among the correct
registers updated by w. Denote this register as x;. Hence, pw[i].ts > ts A wli].ts > ts. Let ¢ be
the smallest timestamped pair returned by a correct register xj (either in its pw or w field) for
which c.ts > ts. We prove that ¢ is not invalid. Assume the contrary. By definition of invalid, at
least 2t + 1 registers must have responded with values ¢ (in either their pw or w fields) such that
dits < ctsV(c.ts = cts A d.wal # cval). Thus, at least one of these responses must be from a
correct register x; that was updated by w. Therefore, pw[j].ts > ts A w[j].ts > ts. By choice of
¢, either pw[jl.ts = c.ts A pw[jl.val # c.val, or wjl.ts = c.ts N w[j].val # cval. Since x; and xy,
are both correct, two different values were written with the same timestamp, which by the WRITE
code is impossible. A contradiction.

We have proven that whenever line 8 is executed, there is a timestamp-value ¢ such that
readFrom(c, k) and c.ts > ts and —invalid(c). Therefore, no ¢ such that ¢’.ts < ts can satisfy
the highestValid predicate, and no value with a timestamp smaller than ts can be included in C in

line 8 or returned in line 10. Hence, regularity is satisfied. O

Lemma 4.2 (FW-Termination). The register emulated by the WRITE code in Figure 8 and the

READ code in Figure 4 is FW-terminating.

Proof. Since at most t registers are faulty, by FW-termination, in every fair execution, at least
n — t correct registers respond to every write invocation. Since no more than n — ¢ responses are
awaited in either phase of any WRITE invocation, every WRITE invoked by a correct process in a
fair execution completes.

Let a be a fair execution in which a finite number of WRITE invocations occur. We now prove
that every READ invocation by a correct process in « completes. Since as argued above, the WRITE

invocations all complete, and since the READ emulation does not invoke write operations on base

19

registers, there is a point in « after which no write operations on base registers are invoked, and
by FW-termination of the base registers, a later point 7, by which all write operations invoked on
correct registers are complete.

We first note that READ is not stuck forever in the repeat-until loop in lines (5-7), since n — ¢
responses are awaited in each iteration, at most ¢ registers can be non-responsive, and the correct
registers all respond by FW-termination (since a finite number of writes are invoked on base registers
in). Therefore, READ continues to issue new read rounds as long as it does not return a value.
Assume by contradiction that READ never returns, then it invokes read operations on all correct
registers after time 7. Let 7/ > 7 be a point in a by which every correct register has responded to
at least one read invocation that was initiated after point 7.

Let (ts,v) be the value-timestamp pair written in the last complete WRITE invocation in «, or
(tsg, vp) if there is none. We consider two cases: First, if no later (incomplete) WRITE completes
the pre-write phase (either no later WRITE is invoked, or one is invoked but the writer fails before
completing the pre-write phase), then from point 7" onward, (1) (ts,v) appears at least ¢ + 1 times
in w[«], and is therefore safe; and (2) there are at least 2t + 1 responses in w[*] (from the correct
registers) with either (ts,v) or with a timestamp smaller than ¢s. Therefore, every value-timestamp
pair ¢ such that c.ts > tsV (c.ts = ts A c.val # v) is invalid. Thus, at the end of the next iteration
of line 8, (ts,v) € C. Hence, the termination condition in line 9 is satisfied and READ returns, a
contradiction.

Second, suppose that an incomplete WRITE invocation W' = WRITE((ts’,v’)) occurs, and the
pre-write phase of W' completes. Then after 7/, (ts’,v’) appears at least ¢ 4+ 1 times in pw[«], and is
therefore safe. Moreover, since no value-timestamp pair ¢ such that c.ts > ts'V (c.ts = ts' Ac.val #
v') is ever written, there are at least 2t+1 responses with either (ts’,v’) or a smaller timestamp than
ts’. Thus, highestValid({(ts’,v’)) holds, and after the next iteration of line 8, (ts’,v’) € C. Hence,

the termination condition in line 9 is satisfied and, again, READ returns. A contradiction. O

We have proven the following:

Theorem 4.3 (FW-Terminating Register Emulation). The algorithm consisting of the WRITE

emulation in Figure 8 and the READ emulation in Figure j implements a t-tolerant SWMR FW-

20

terminating reqular register using n > 3t SWMR FW-terminating reqular registers up to t of which

can suffer NR-arbitrary failures.

4.3 Efficiency

Note that although we have proven that the READ emulation terminates in a finite number of rounds
whenever there is a finite number of WRITEs, there is no upper bound on the number of rounds
it can take in asynchronous executions. The proof of Lemma 4.2 implies that in executions with
a finite number of WRITEs, READ always terminates once it gathers responses that follow the last
WRITE from all correct registers. In particular, in an execution without any WRITE invocations,
READ terminates once all correct registers respond to its first round of invocations. However,
since a new read round is initiated whenever n — ¢ responses for the previous round arrive, faulty
registers responding much faster than slow correct ones may cause the READ emulation to invoke an
unbounded number of rounds of operations on the fast base registers before all the correct registers
respond to the first round of invocations.

Nevertheless, we informally observe that in a synchronous execution without a concurrent
WRITE, READ always takes a single round. In order to formally make such a claim, one needs
to consider an eventually synchronous (or timed-asynchronous) model [DLS88, CF99]. In such
models, there is an expected response time A, such that in periods when the system is synchronous
(stable), responses from correct registers always arrive within A time. In order to exploit eventual
synchrony, the reader should wait for responses in each round at least A time before moving to the
next round, even after n — ¢ responses are gathered. That is, the pseudo-code in Figure 4 should
be changed as follows: before line 5, a timer should be set to expire A time later, and the waiting

condition in line 7 should be changed as follows:

7 until |{7 : —enabled[i] A —pendingli]}| > n —t A timer expired,

In synchronous (stable) executions, responses from correct registers always arrive by this time-
out, and READ thus invokes a single round of operations on base registers whenever there is no

overlapping WRITE. Moreover, in synchronous executions with overlapping WRITEs, once all the

21

lower level write operations invoked by these WRITEs on correct registers are complete, it takes
at most one round for all the pending lower level read operations to return, and then one more
round of read operations for READ to complete. Examining the number of rounds invoked in
synchronous executions is significant, since synchronous executions are common in practice, and
therefore achieving good performance in such executions is important.

At the same time, it is important to note that eventual synchrony is not a condition for liveness:

even in asynchronous executions, the algorithm satisfies FW-termination, as proven above.

5 t-Tolerant Wait-free Safe Register Emulation

We now proceed to construct a t-tolerant SWMR wait-free safe register out of n > 3t + 1 wait-free
regular base registers. Note that the register constructed in this section only provides safe semantics,
and is not regular. In order to obtain a regular register, as required, e.g., for consensus algorithms,
standard constructions from the literature can be used (see e.g., [Lam86] and a survey in [HV02]).
The register emulation is presented in Section 5.1. Its correctness is proven in Section 5.2, and its

round complexity is discussed in Section 5.3.

5.1 Register Emulation

The t-tolerant wait-free safe register’s implementation uses the same base registers as the FW-
terminating register implementation (see Figure 2), except that it requires wait-free base registers
rather than FW-terminating ones. The WRITE operation is emulated exactly the same way as that
of the FW-terminating register (see Figure 3). The READ implementation is presented in Figure 5.

The partial function Read W (ReadP W) maps every read timestamp-value pair to all the registers
from which this pair was read from the w (resp. pw) field in the current invocation of READ.
prevRead W holds a copy of ReadW from the end of the previous read round (line 9). The macro
Responded returns the set of registers that responded to read requests thus far.

The algorithm first invokes a round of read operations on all base registers, and awaits n — ¢
responses (lines 4-6). It then invokes additional rounds of base register operations (lines 8-14),

until it finds a value that it can safely return, as will be explained shortly.

22

The set C holds candidate return values. After the first round, C consists of values ¢ that were
read from base registers’ w fields such that at most 2t registers responded without ¢ (line 7). Any
value that is not included in C' is missing from 2¢ 4 1 registers’ w fields, which means that it was
either not completely written before the READ began (its WRITE could have begun but could not
have completed), or was already over-written (the write phase of a subsequent WRITE has begun).
In subsequent rounds, if for some candidate ¢ € C, there are 2t 4+ 1 registers that responded but
never with ¢ in their w field, then c is removed from C (line 14) for the same reason.

We now explain the termination condition of the while loop (line 8). First, if C' = (), then it
must be the case that a WRITE invocation overlaps the READ, since there is no value that appears
in the w fields of more than t registers throughout the READ, and every WRITE always writes to
t+ 1 correct registers. In this case, every return value is safe. The algorithm then breaks from the
loop and returns an arbitrary value, vy (line 17).

If C' is not empty, then the leading candidate to return is the one associated with the highest
timestamp, because if several values were completely written before READ began, then the latest
one should be returned. This is captured by the predicate highCand(c).

Let ¢ be a candidate for which highCand(c) is true. It is safe to return c if ¢ + 1 registers have
responded either with ¢ or with later values (in either field, pw or w). This is because at least one
of these registers must be correct. If that register responds with ¢, then ¢ was indeed written, and
is a correct return value. Otherwise, the correct register returns a value, ¢/, which was written later
than ¢. Since highCand(c) is true, ¢ is not in C, implying that its WRITE did not complete before
the READ. In other words, a WRITE operation (of ¢’) is occurring concurrently with the READ, in
which case a safe register is allowed to return any value. This condition is captured by the predicate
safe. Once there is a candidate ¢ € C such that highCand(c) A safe(c), READ breaks from the while
loop (line 8) and returns c.val (line 16).

Unlike the FW-terminating implementation, the number of read rounds invoked by the algo-
rithm is bounded, even in the presence of an unbounded number of concurrent WRITEs. We now
explain how we limit the number of rounds executed by the algorithm. In order for a return value

to become safe, the algorithm needs to gather responses from the ¢+ 1 correct registers at which the

23

Local variables:

Boolean arrays enabled[n], pending[n], old[n], initially false for all 1 < i < n;

Arrays pw[n], w[n] with elements in T'SVals;
ReadW, ReadPW, prevRead W, partial functions from T'Swvals to P({1...

C C TSVals, initially 0 /* Candidate values to return */
Predicate and macro definitions:
Responded £ {i : Hw,i) € ReadW}
highCand((ts,v)) = (ts,v) € C A (ts = max{ts' : (ts',v') € C})
safe(c) £ |ReadW(c) U ReadPW(c)U Uy 55045 (ReadW(¢') U ReadPW(c'))| > t + 1
READ():
1. for 1 <i<n, if(pendingli]) then old[i] «+ true;
2: ReadPW, Read W «— (;

/* Round 1 */

for 1 <i <mn, enabled[i] < true;

repeat
CHECK;
until |{i : —enabled[i] A —pendingli]}| > n
C «— {w[i] : |Responded \ Read W(wli])| < 2t + 1}

/* Rounds 2 ... */

8: while (C 75 0 A (—3c € C : highCand(c) A safe(c))) do

9: prevRead W < Read W,

10: for 1 <i <n, enabled[i] < true;

11: repeat

12: CHECK;

13: until [{i : —enabled[i] A —pendingli]}| > n —t A
Ve € C . (safe(c) V |Responded \ prevRead W(c)| > n — t);

14: C —{ce€ C : |Responded \ ReadW(c)| < 2t + 1};

15: if (C' # () then

16: return c.val : highCand(c) A safe(c);

17: return vy;

CHECK:

for1 <i<n
if (enabled[i] A —pending|i]) then
(enabled[i], pending[i]) «— (false,true);
INVOKE (pw|i], w[i]) < read(z;);
if (z; RESPONDED) then
if (—old[i]) then
ReadPW(pwli]) «— ReadPW(pwl[i]) U {i};
Read W(wli]) <+ Read W(wl[i]) U {i};
pending|i] « false;
old[i] < false;

Figure 5: t-tolerant wait-free safe register READ emulation.

24

n}), initially 0;

value was written. Although these registers eventually respond to every read round, their responses
may be arbitrarily slow. As explained in Section 4.3 above, if exactly n — ¢t responses are awaited
in each round, then in asynchronous executions, the faulty registers may respond much faster than
t slow correct ones, causing the algorithm to initiate an unbounded number of rounds before the
required ¢ 4+ 1 correct ones respond. The key to limiting the number of rounds the algorithm takes
is therefore waiting for more than n —t responses. Of course, this must be done with care, because
up to t faulty registers may never respond.

In addition to waiting for n — ¢ responses, the repeat loop in lines 11-13 continues to await
responses until for every candidate ¢ in C, either ¢ becomes safe or there are n — t responses from
registers that did not return c¢ in previous rounds. This does not violate progress, because if ¢
was read from a correct register in previous rounds, it will eventually become safe, and otherwise,
there are n — ¢ correct registers that did not respond with ¢ in previous rounds. (This is formally
proven in Lemma 5.2 below). This mechanism ensures that while there are candidates that are not
safe, every read round gathers responses from at least one additional register, and thus, after at
most t + 1 rounds, responses from all the registers are gathered, and every candidate value either

becomes safe or is removed from C' (see Lemma 5.3).

5.2 Correctness
We begin by proving safety.

Lemma 5.1 (Safety). The register whose WRITE emulation appears in Figure 8 and whose READ

emulation appears in Figure 5 is safe.

Proof. We prove that all the traces of the algorithm are safe. Let R be a READ invocation. If some
WRITE operation overlaps R, then R is allowed to return any value, and the lemma vacuously holds.
We therefore assume that no WRITE overlaps R. Let (ts,v) be the value-timestamp pair written
in the latest WRITE invocation that returns before R is invoked, or (tsp,vg) if no WRITE completes
before R. We need to show that R does not return a value other than v.

If ts = tsg, then (tsg,vg) appears in both the w and pw fields of all correct registers throughout

the duration of R. Otherwise, by the WRITE implementation, (ts, v) is both pre-written and written

25

to at least n — t base registers before WRITE returns. Therefore, both of the following conditions
hold throughout the duration of R: (1) there are at least ¢t + 1 correct registers that have (ts,v)
in their w and pw fields; and (2) there are at most 2¢ base registers (¢ of which were not updated
by the last preceding write and the remaining ¢ of which are Byzantine) that can respond without
(ts,v). By the READ code, responses from at least n — t registers are awaited in lines 6 and 13.
Therefore, by (1), (ts,v) is included in C in line 7. Moreover, by (2), (ts,v) is never excluded from
C' in line 14. Hence, C' # () from the first time line 7 is executed onward, and the algorithm does
not return in line 17. Finally, observe that no (ts’,v") # (ts,v) can be highCand and safe, because
no correct register returns a value with ts’ > ts or ts’ = ts A v’ # v. Hence, no value other than v

is returned in line 16. O

We now turn to discuss liveness. We first show that every read round eventually terminates.

That is, the algorithm is never stuck forever in a repeat-until loop (lines 4-6 and lines 11-13).

Lemma 5.2 (Non-Blocking). The READ emulation never remains indefinitely in the repeat-until

loops in lines 4—6 and 11-13.

Proof. First note that in each round, at least n — ¢ responses are awaited (lines 6 and 13). This is
always eventually satisfied, since there are at least n — t wait-free correct base registers. Therefore,
the algorithm eventually exits from the loop in lines 4-6. We next show that the extra waiting
condition in line 13 does not violate liveness.

Consider an iteration of the while loop (lines 8-14), and the execution of the repeat-until loop
in lines 11-13 during that iteration. Since the while loop is still being executed, C' # (. Consider a

candidate ¢ € C. Since c is a candidate, prevRead W(c) # () after line 9. There are two cases for ¢:

1. At least one register in prevReadW(c) is correct. In this case, the pre-write phase of WRITE(c)
must have completed on at least ¢t + 1 correct registers before the current round is initiated
(because ¢ has been read from the w field of a correct register in round 1 before line 7 is
executed). Each correct register eventually responds in the current round with either ¢ or a

higher timestamped value, and safe(c) eventually holds.

26

2. All the registers in prevReadW(c) are faulty. In this case, there are at least n — ¢ correct
registers that did not previously respond with c. Since these registers eventually respond, and
since none of them is included in prevRead W(c) during the loop in lines 11-13, eventually,

|Responded \ prevRead W(c)| > n — t becomes true.
Line 13 waits for one of the above to hold, and therefore eventually terminates. O

To see why READ invokes at most ¢ 4+ 1 rounds, observe that once every candidate in C' is safe,
the termination condition of the loop in line 8 is satisfied. If C' is empty, we are done. Otherwise,
consider ¢ € C. Lines 11-13 are executed until either ¢ becomes safe or there are n — t responses
from registers that did not previously respond with ¢. Thus, if ¢ does not become safe in line 13,
then either ReadW(c) grows, or c is removed from C' in line 14, because n —t > 2t 4 1 registers
respond without c. After j read rounds, for every ¢ € C that is not safe at the end of line 14,
ReadW(c) has grown j times, and therefore includes at least j elements. Once ReadW(c) includes

t + 1 elements, c is safe. We conclude that the algorithm is wait-free:
Lemma 5.3 (Wait Freedom). The safe register emulation satisfies wait freedom.

Proof. Every WRITE operation invoked by a correct process returns, as argued in Lemma 4.2.
Consider a READ operation R. By Lemma 5.2, R exits from every repeat-until loop. Moreover, as
argued above, at most t+ 1 rounds of READ operations are invoked before the termination condition

of the loop in line 8 is satisfied, at which point READ completes. U
We have proven the following:

Theorem 5.4 (t-Tolerant Wait-Free Register Emulation). The algorithm consisting of the
WRITE emulation in Figure 8 and the READ emulation in Figure 5 implements a t-tolerant wait-
free SWMR safe register from n > 3t wait-free SWMR reqular registers, up to t of which can be
NR-arbitrary faulty.

5.3 Round Complexity

The algorithm’s early-stopping property is more subtle, and is proven in the following lemma.

27

Lemma 5.5 (Early-Stopping). In every execution in which at most f registers exhibit Byzantine
behavior, (i.e., return incorrect values), the READ emulation invokes at most min(t+1, f42) rounds

of read operations on base registers.

Proof. We will show that if READ initiates a jth read round, then j < ¢+ 1 and also j < f + 2.

For j > 1, consider the initiation of the jth read round, occurring in lines 11-13 (during the
(j — 1)th iteration in the loop of lines 8-14). Since the loop is executed, C #). Let ¢ be the
highest timestamped candidate in C, i.e., highCand(c) holds. Then c is not safe at the beginning
of this iteration (otherwise, the termination condition in line 8 holds). Since ¢ was not removed
from C' in line 14 during previous iterations, it was returned in every round before j, and each time
by a new register (i.e., |[ReadW(c)| has increased j — 1 times). Since c is not safe, we know that
|ReadW(c)| < t+ 1, and therefore j — 1 < t+ 1, that is j <t + 1.

If ¢ was never returned by a correct register, then ReadW(c) includes at most f elements, and
7 < f+41. Otherwise, let & < j be the first round during which c is read from the w field of a correct
register. Then ¢ was sent by at least k — 1 Byzantine faulty registers before round k. Consider the
set S of registers that respond to rounds £+ 1...j5 — 1. In round k + 1, at least 2t + 1 registers
that did not previously respond with ¢ are read (and are therefore included in S). Moreover, since
ReadW(c) continues to increase in each round, S includes at least 2t + j — k — 1 registers excluding
the k —1 Byzantine registers that sent ¢ before round k. Since k — 1 Byzantine faulty registers send
¢ before round k, at most f — k 4+ 1 members of S are Byzantine faulty, and S includes at least
20+j—k—1—(f—k+1)=2t+j— f—2 correct registers.

Finally, since the pre-write phase of WRITE(c) is complete before round k + 1 is initiated, at
most ¢ correct registers respond to rounds k£ 4+ 1...5 — 1 with values older than ¢ in their pw
field. Therefore, if S would include 2t + 1 correct registers, then at least t + 1 of them would have
either ¢ or a higher value in their pw field, and ¢ would be safe. But ¢ is not safe. We get that

2t + 45— f—2<2t, that is, j < f + 2. .

The algorithm’s round complexity is optimal for optimal-resilience algorithms in which read
operations do not modify the base objects. For such algorithms, min(¢ + 1, f + 2) rounds is a tight

lower bound on the number of rounds for read, by the lemma above and Corollary 7.7 below. Note

28

also that only Byzantine failures cause READ to take more rounds; benign (i.e., crash) failures do
not slow the algorithm down. Our next lemma shows that the algorithm takes the optimal number

of rounds for any resilience threshold, matching the lower bound of Theorem 7.6.

Lemma 5.6 (Optimality For Arbitrary Resilience). Let n = 3t + k, k > 0. The READ

emulation invokes at most |t/k| + 1 rounds of read operations on base registers.

Proof. First, consider the case that k > ¢t + 1, i.e., n > 4t + 1. Since at least 3t + 1 registers are
read in the first round, every read value either appears in at least ¢ + 1 responses, in which case
it is safe, or is missing from at least 2¢ + 1 responses, in which case it is not in C. Therefore, the
algorithm never enters the while loop of lines 8-14, and only one read round is invoked.

Next, assume that k¥ < t + 1. If the while loop in lines 814 is entered, then there is at least
one candidate ¢ € C' that is not safe. Since c is a candidate, it is missing from at most 2¢ of the
responses gathered in earlier rounds. Since at least n — t = 2t 4+ k responses are awaited in each
round, ¢ appears in at least k responses of previous rounds. Therefore, if ¢ does not become safe
in this iteration of the loop, at line 14, at least k responses are awaited from objects that did not
previously respond in any read round. Therefore, if a (j + 1)th read round is invoked, then at least
2t + jk objects have responded in previous rounds. Since once 3t + 1 objects respond every read
value is either safe or removed from C, we get that 2t 4+ jk < 3t + 1, i.e., j < (t+ 1)/k. Since j, t,

and k are integers, j < (t+1)/k < |[t/k] + (k —1)/k + 1/k. Hence, j < |t/k| + 1 as needed. [

Our next lemma shows that in invocations of READ that do not overlap any WRITE invocation,
READ invokes at most f+1 rounds. This is also a tight lower bound, by Theorem 7.8. In particular,
in the common case that none of the base registers returns faulty values and no overlapping WRITE

occurs, READ invokes a single round of read operations.

Lemma 5.7 (Early-Stopping Without Concurrent Writes). In every execution in which f
registers exhibit Byzantine behavior and no WRITE operations overlap the READ, the READ emulation

invokes at most f + 1 rounds of read operations on base registers.

Proof. Since no WRITE overlaps the READ, at least t + 1 correct registers return the latest written

value in the every read round, and this value is safe throughout the execution of the loop in lines

29

8-14. Whenever an iteration of the loop begins, this value is not the highest timestamped candidate
(otherwise the loop’s termination condition is satisfied), i.e., there is higher timestamped candidate
c’, which was never written. For ¢ to remain a candidate after read round k, it has to be read in
every round 1...k. Since ¢ was never written, at most f faulty registers return ¢/, and hence after

f + 1 read rounds ¢ is removed from C. O

Finally, we observe that in synchronous executions, READ always terminates in two rounds. In
order to take advantage of the system synchrony, the reader’s wait statements should be augmented

with timeouts as explained in Section 4.3.

6 Wait-free Consensus with FW-Terminating Regular Registers
and (2

In this section, we show that FW-terminating registers can be used, along with a leader oracle, €,
to solve consensus in shared memory. In a consensus problem, each process has an input and may
decide on an output, so that the following conditions are satisfied: (1) wait freedom: each correct
process decides; (2) agreement: every two correct processes that decide decide on the same value;
and (3) wvalidity: every decision is the input of some process. A shared memory consensus object
has a single invocation, decide(v), which takes the invoking process’ input value as a parameter and
returns the decision value. We assume that each process invokes decide at most once.

We present a shared memory consensus algorithm based on those of [LH94, GL03], and prove
that it works correctly with FW-terminating regular registers. Since the algorithm closely resembles
ones in the literature, the contribution of this section is in observing that it works correctly with
FW-terminating registers.

The algorithm is presented in Figure 6. It solves consensus among m processes P4, ..., Py, using
m FW-terminating SWMR regular registers x1, . .., Ty, where x; is writable by P; and readable by
all processes. It employs a distributed leader oracle £, which is a failure detector of class 2 [CHT96],
the weakest for consensus [LH94, DFG02, CHT96]. Each process P; accesses L via its local module

L;, whose output at any given time is the index of the process that is currently considered to be

30

Types: X =N x Vals x {L, pc, c}, with selectors bal, val, stat;

Shared FW-terminating regular registers z; € X, 1 < i < m, initially (0, L, L);
Each x; is writable by P; and readable by all processes.

Algorithm for process :

Local variables: val € Vals, bal € N, £ € N, a; € X for 1 < j <my

DECIDE; (inp):

1: bal « i;

2: val < inp;

3: while (true) do

4: 0— L;;

5: if (¢ = i) then; /* Leader case */

6: write(z;, (bal, L, L));

7: a; «— read(x;), for each j, 1 < j <m;

8: if (max{a;.bal : 1 < j <m} < bal) then

9: if (3j : aj.val # 1) then

10: val — ap.val: 1 <k <mAag.bal = max{a;j.bal : 1 < j<mAajval # L};
11: write(z;, (bal, val, pc));

12: a; — read(x;), for each j, 1 < j < m;
13: if (max{a;.bal : 1 < j <m} < bal) then
14: write(x;, (bal, val, c));

15: return val;

16: bal «— bal + m;

17: else /* Non-leader case */
18: ay « read(zy);

19: if (ay.stat = c) then

20: return as.val;

Figure 6: Wait-free consensus with FW-terminating regular registers and a leader oracle.

trusted by P;. A failure detector of class €} guarantees that there is a time after which a single
correct process is permanently trusted by all correct processes.

The algorithm is leader-based. A process ¢ that trusts itself (i.e., believes itself to be the
leader), decides upon a value and writes it in x; with the tag ¢ (line 14), whereas other processes
continuously read z, until they find a decision value there (lines 18-20). Before P, decides, it
proposes a decision value (line 11), by writing it in z; with the tag pc. Each proposed value is

associated with a unique ballot bal. We say that a process ¢ proposes (resp. decides) value v at

31

ballot b if ¢ completes line 11 (resp. 14) with val = v and bal = b. To propose a value, Py chooses
the value previously proposed with the highest ballot number, or its own initial value if there is
none (lines 7-10). The leader then reads the other processes’ registers in order to check whether
a concurrent leader has written a higher value. Recall that 2 only eventually guarantees that the
leader is unique; initially, multiple concurrent leaders may exist. The leader’s proposal succeeds if
no higher ballot is read (lines 12-13).

The key to guaranteeing wait freedom despite the use of FW-terminating registers is the fact
that once a unique leader ¢ emerges (as guaranteed by), P, is the only process that invokes
write on any register. Moreover, the ballot numbers stop increasing, and therefore P, invokes a
finite number of writes. Therefore, by FW-termination, all the read operations terminate. We now

formally prove that the algorithm satisfies wait freedom.
Lemma 6.1 (Wait Freedom). In any fair execution, all non-faulty processes eventually decide.

Proof. Let a be a fair execution of the algorithm. Since £ € €2, each correct process ¢ permanently
trusts the same correct process ¢ after some finite prefix oy of . We first show that P, decides
in a. Assume by contradiction that this never happens. By the code, after oy, each process i # /¢
writes x; at most twice (in lines 11 and 14), and then proceeds to read xy (line 18) in a loop
without invoking any other shared memory operations. Therefore, by FW-termination, process ¢
eventually completes all the read operations it invokes on all registers. As long as P, does not
decide, it repeatedly executes lines 6-16. Since baly is increased every time P, executes line 16, and
no other processes j increases bal; after oy, bal, eventually becomes the highest ballot ever written.
Once this happens, the if statements in lines 8 and 13 are evaluated to true, and process ¢ writes a
decision value (with stat = ¢) and returns. A contradiction. We conclude that there exists a prefix
as of o after which P, no longer participates in consensus.

Next, we show that all correct processes decide in . Assume the contrary. Let ag = max(aq, az).
Consider a process i # £ which is still undecided after . Since after ag, P; never trusts itself as a
leader, P; is either blocked in one of the read operations in lines 7, 12 or 18, or loops in lines 18-19.
Since after oy all processes j # ¢ write their registers at most twice, by FW-termination, after as,

P; can only be blocked in a read operation from xy,. However, P, never writes x; after acs. Thus, by

32

FW-termination, there exists a prefix ay > a3 of « after which F; is looping in lines 18-19 without
being blocked in the read in line 18. Since after ay, Py has already completed write(xy, (x, %, ¢))g,
by regularity, the next invocation of read(zy) by P; will respond with ay such that ay.stat = c.

Hence, P; decides. A contradiction. O
We next prove the algorithm’s safety properties, namely agreement and validity.
Lemma 6.2 (Agreement). All decision values are identical.

Proof. Let by be the lowest ballot at which some process decides, and assume that process 7 decides
v1 in this ballot. Suppose that a process k proposes a value vy at a ballot by > b;. We show that
ve = vy, which implies agreement, since a value vo decided in a ballot bs is first proposed in that
same ballot. The proof is by induction on ballot numbers b > b;. The base case b = by is trivially
true, since ballot numbers are unique.

Inductive step: Suppose that the result holds for all b, b; < b < bs, and consider a process k
proposing vo in ballot by. Since P; decides vy at by, it must have proposed v; at b;. Moreover, since
P; decided in line 14, the condition in line 13 evaluated to true, which means that for all register
values a; that P; read in line 12, a;.bal < b;.

Before proposing any value at ballot be, process k must perform write(z, (ba, L, L)) in line
6. This write must return after the read(xy) by ¢ in line 12 has been invoked, because otherwise,
by regularity of zj and because ballots are monotonically increasing at each process, read(xy) by i
must respond with (b, L, 1) such that &' > by > by contradicting the fact that a;.bal < by in line
13. Thus, the read R = read(z;) by k in line 7 is invoked after write(z;, (b1, v1,pc)); is complete.
Since ¢ returns after deciding, it does not overwrite z; after ballot b;. Hence, by regularity of x;, R
returns (by, vy, *).

Consequently, when k completes line 7, a; = (b1, v1, *) and therefore, both of the following hold:
(1) the test in line 9 is true; and (2) the value v’ chosen in line 10 was written with a ballot ¥’ > b;.
Furthermore, since the condition in line 8 is true, b’ < by. By line 6, ai.val = L. Thus, we get
that v/ must have been written at ballot b, such that by < b’ < by. Finally, since for any value

v # 1 such that for some j, z;.val = v, v must have been either proposed or decided by j, and

33

because the value decided at any ballot must be equal to the value proposed at this ballot, v" must
have been proposed with ballot b/, by < I < by. By the induction hypothesis, v' = v1. Therefore,

k proposes vy at bs. O
Lemma 6.3 (Validity). Every decision value is the initial value of some process.

Proof. Immediately follows from the fact that every proposed value is either the proposer’s initial

value or a previously proposed value. Il
We have proven the following:

Theorem 6.4 (Wait-free Consensus with FW-Terminating Regular Registers). The
pseudo-code in Figure 6 solves m-process wait-free consensus using m SWMR FW-terminating
reqular registers in an asynchronous shared memory system augmented with a failure detector of

class €.

Like any €)-based asynchronous consensus algorithm, the algorithm’s running time is unbounded.
This is inevitable, since the leader oracle’s output may be arbitrary for an unbounded length of
time, and while it is, consensus is not solvable. Thus, a discussion of such algorithms’ worst-case
performance is meaningless. One way to reason about the efficiency of algorithms in this model
is to focus on runs in which the oracle’s output is accurate from the outset [KRO1], that is, on
executions throughout which the oracles at all processes output the same correct process £. We
observe that in such executions, only ¢ writes to the register, and it decides after one iteration
of the loop in lines 3-20, which involves writing three times and reading twice. (The last write
phase is not necessary, but we have added it in order to simplify the algorithm and its proof.) The
remaining processes decide after reading £’s last written value.

We can now combine the wait-free consensus algorithm with our register constructions from the
previous sections in order to obtain Byzantine Disk Paxos. Byzantine Disk Paxos uses the notion
of a disk, which is a collection of base objects that share their fates. That is, all the base objects
stored on a given disk D are faulty if and only if the disk D is faulty; each base object pertains to

a single disk.

34

Given a system with 3t + 1 disks, ¢ of which can be arbitrarily corrupted or non-responsive, we
use the construction in Section 4 in order to emulate m t-tolerant FW-terminating registers from
n = 3t + 1 base registers, each stored on a different disk, and use them to solve t-tolerant wait-free

consensus, as illustrated in Figure 7. Thus, we have the following corollary:

Corollary 6.5 (Byzantine Disk Paxos). There is a solution for t-tolerant wait-free consensus

using 3t + 1 disks, t of which can be arbitrarily corrupted or non-responsive, and o failure detector

of class €.

Wait-Free Consensus

|
|
|
| X1 X2 X3
|
|
|
|

FW-terminating regular registers

X1 X1 X1
X2 X2 X2
X3 X3 ; X3

Figure 7: Byzantine Disk Paxos example: First, four disks of which one can be corrupt are used to
emulate three 1-tolerant SWMR FW-terminating registers. The emulated registers are then used
to solve 1-tolerant wait-free consensus among three processes.

7 Lower Bounds on Register Emulations

We now prove lower bounds on memory emulations of reliable objects from ones that can suffer

NR-Arbitrary faults. Obviously, at least 3t 4+ 1 base objects are required in order to emulate a

35

reliable one in this model (see [MADO2]). Our lower bounds focus on emulations that use less
than 4¢ 4+ 1 base objects, since using 4¢ + 1 base objects, one can emulate both READ and WRITE
operations in a single round of base object invocations. In Section 7.1 we prove a lower bound
of two rounds for WRITE emulations, and in Section 7.2 we prove lower bounds on the number of
rounds for READ emulations in which the READ emulation does not write to the base objects.

To strengthen our lower bounds, we prove them for emulations of the weakest meaningful register
type: a SWSR safe register [Lam86] with a binary value domain. Without loss of generality, we
assume that the emulated register’s initial value is 0. We allow for atomic base objects of any type.
We prove the lower bounds for emulations of FW-terminating registers. We note that our lower
bounds apply to obstruction free registers as well, but since obstruction freedom is not the focus of
our paper, we do not make formal claims regarding obstruction free emulations.

Since we are not seeking space lower bounds, we can assume a model in which all base objects
have the same types and initial states. A concurrent system consisting of base objects O, ... O, of
different types 11, . .., T}, can be emulated in this model by replacing each base object O; with a tuple
O; of type Th x - - - x T,, and initializing all base registers to the same initial value sy = (88,00, 8D
where 56 is the initial state of O;. We thus henceforth assume that all base objects are initialized

to the same (arbitrary-type) value, sq.

7.1 Lower Bound on WRITE Emulations

The following simple lemma shows that any algorithm implementing an FW-terminating SWSR safe
register has executions where the WRITE implementation invokes at least one complete invocation

request on some base object.

Lemma 7.1 (One Write Round). Consider a concurrent system C implementing a t-tolerant
FW-terminating SWSR safe register out of n > 0 base objects. Consider a fair execution o where
a correct writer invokes WRITE(1) and no other operations are invoked. Then o consists of at least

one complete invocation request to some correct base object.

Proof. By FW-termination and fairness, WRITE(1) must terminate and return ack at some point

7 in «. Assume by contradiction that o does not include any complete invocation request to a

36

correct base object. Since the writer returns in a without seeing any responses from correct base
objects, all invocation requests that were issued to the correct base objects (if any) were invoked
in separate threads of control, which did not return. We construct an execution o', which starts
with all the activity of a except that no invocation request events to correct objects occur in o/
until point 7 (that is, in o’ the threads that handle correct object invocations in « are slowed down
so that all the invocation requests issued to the correct objects are postponed). We then extend
o/ with a complete READ invocation. Note that by FW-termination READ must complete, because
the reader is correct and no WRITE is in progress. We construct o’ so that any faulty object that
received an invocation request by WRITE(1), does not change its state, and responds to the READ
the same as in an execution in which no WRITE ever occurs. Since ' is indistinguishable to the
reader from an execution where no WRITE operations were ever invoked, the READ response must
be 0. However, since WRITE(1) completes before READ is invoked, safety requires READ to return

1. A contradiction. O

We now prove our main lower bound on WRITE emulations:

st X—— St s
A
S2 S2 S2
S3 S3 X S3
S4 sS4 // \ \ S4
W ~
READ
ty return 0 b
a) Execution aj. b) Execution «s. c) Execution asg.
(a)

Figure 8: Illustrating the lower bound on WRITE emulations.

Theorem 7.2 (Write Lower Bound). Let C be a concurrent system implementing a t-tolerant
FW-terminating SWSR binary safe register out of 0 < n < 4t base objects. Then, for every
0 < f <t, there exists an execution of C in which f base objects are faulty, and which includes a

complete invocation of WRITE(1) and no other invocations, such that during WRITE(1) at least two

37

invocation requests are completed on some base object.

Proof. We partition the n base objects into four disjoint sets, S1, Sa, S3, and Sy, such that |S;| < ¢,
for each ¢ > 1. Assume by contradiction that in all executions consisting of a complete WRITE(1)
invocation and no other invocations, less than two invocations complete on each base object. By
Lemma 7.1, some correct base objects are written by WRITE(1). Without loss of generality, assume
that the first base objects to which WRITE(1) writes are those in Sy (if it writes to fewer objects,
then it writes to a subset of Sy). Let ay be an execution of C' with a single WRITE(1) invocation and
no READ invocations, in which all base objects in S} are crashed. By FW-termination, WRITE(1)
completes by some point ¢y in o (see Figure 8(a)).

Next, we construct an execution ao where all the objects in S are initially crashed. Execution
a begins with a WRITE(1) invocation, the invocations it issues to objects in Sy, and their responses
as they occur in «ay. No invocations on other objects occur. This is a valid execution of C' since
it represents the situation in which the writer fails after receiving responses from some objects in
the set Sy. Moreover, since WRITE does not invoke more than one operation on any correct base
object, the objects in S4 are exactly in the same states as after the complete WRITE in «a;.

We then extend ao with a READ invocation and assume that the reader is correct. All the objects
in S7 and Sy are in state sp when accessed by the READ. The objects in S3 are crashed, and hence
do not respond. Since the reader runs by itself, by FW-termination, READ completes in ao. Since
the reader sees at most ¢t objects (those in Sy) in states different from sy, g is indistinguishable
to the reader from an execution in which WRITE(1) is never invoked and all objects in states other
than sg are faulty. Therefore, READ returns 0 in «g, as illustrated in Figure 8(b).

We next construct an execution ag in which all the objects in Ss are Byzantine faulty and
the remaining objects are correct. Execution ag starts with all the activity of a1 except that the
invocation requests targeted to the objects in S; do not occur in a3 until ¢y (i.e., in ag, the threads
that handle invocations on objects in S are slowed down so that all the invocation requests issued
in o are postponed). Since until g, as is indistinguishable to the writer from a;, WRITE(1) also
terminates in ag after completing at most one invocation request at each base object.

We then extend as with the segment of as that starts with the READ invocation request and

38

ends with its corresponding response. Note that «g is a valid execution of C' because (i) the objects
in Sy are Byzantine faulty, and are therefore allowed to respond as if their state is sop even after
WRITE(1) terminates; (ii) no invocations by the writer occur at objects in Sp in a3, and therefore
these objects’ states are sp when READ occurs; (iii) the responses of objects in S5 are delayed until
after the READ returns; and (iv) the objects in Sy are in the same states as in «y. This scenario
is depicted in Figure 8(c). By construction, s is indistinguishable to the reader from s, and
therefore, the READ must return 0 in 3. But since in ag, the READ follows WRITE(1) and does not

overlap any WRITE, by safety, READ must return 1. A contradiction. Il

7.2 Lower Bound on READ Emulations

In this section we show a lower bound on a number of rounds of base object invocations required to
emulate READ operations of a binary t-tolerant FW-terminating SWSR safe register. We consider
a system with n = 3t + k base objects, ¢t of which can fail. The special case where k = 1 represents
an optimal resilience algorithm.

Since our complexity metric is the number of rounds, we can assume that operations are invoked
in rounds, and each round attempts to invoke operations on all base objects; if on some base object
there is a pending invocation, then the new invocation awaits the completion of the pending one.

Our lower bound results only apply to algorithms in which the reader does not modify the base
objects’ states. The significance of this assumption is that the reader cannot communicate to the
writer that a READ is in progress, and hence WRITE must behave the same way regardless of whether
or not there is a READ in progress. We conjecture that even if readers can modify the base objects,
it still holds that either the READ or the WRITE emulation must take min(¢ + 1, f 4+ 2) rounds. We
discuss this conjecture at the end of this section. We note that in all register emulations suggested
thus far in this model, (e.g., [MR98, Baz00, JCT98, GWGRO04]), readers do not modify the base
objects, and therefore the lower bound is of interest regardless of whether our conjecture holds.

To derive the lower bound, we focus on a subset of executions in which at most one WRITE is
invoked, and if invoked, it WRITEs 1. Given our assumption that the reader does not modify the

base objects, we get that WRITE behaves the same way in all such executions.

39

Since there is a single process modifying the base objects, we can assume, without loss of
generality, that the base objects are read/write registers. Moreover, as we are not seeking a space
lower bound, we can assume a full information model in which the writer attempts to write the same
value to all base objects in each round. This does not limit the generality, since if the writer intends
to write values vy,..., v, to objects o1, ..., 0k, resp., it can simply write the tuple (v1,...,vg) to
all base objects, and the reader can ignore the irrelevant elements of each tuple.

We further assume, without loss of generality, that WRITE does not return before 2t 4+ k£ base
objects respond to its last round of write invocations. Note that waiting for 2¢ + k responses does
not violate liveness since at least 2t + k correct base objects are guaranteed to respond. This
assumption implies that when WRITE(1) completes, there exist ¢ + k correct base objects whose
states are equal to the last value written by WRITE. As noted above, this value is the same in all
the executions we consider. We denote this state by s;. As before, we denote the base objects’
initial state as sg.

We begin by proving the following simple lemma:

Lemma 7.3. For any 0 < f <t, there is a finite execution that includes a single complete WRITE
operation, in which f objects fail, and at the end of which the states of t correct base objects are

S0-

Proof. Consider an execution o in which ¢ (faulty) objects, o1, ..., 0; crash at the beginning of the
execution, and WRITE(1) is invoked. By FW-termination, WRITE must return without hearing from
01,...,04. Let 7 be the point in o at which WRITE returns. We construct an execution o’ that until
point 7 looks to the writer exactly like o, but in which o4, ..., 0; are correct, and the requests sent
to these objects are delayed until after 7. The remaining n — t objects (f of which are faulty) all
abide by the protocol, and respond exactly as they do in o. Since until 7, ¢’ is indistinguishable to
the writer from o, WRITE returns at 7, before the delayed requests reach o1, ...,0;. Hence, when

WRITE returns, ¢ correct objects’ states are still sq. O

We now prove lower bounds on the number of rounds in READ emulations. Our lower bounds

will be derived from the following key lemma, which inductively constructs executions in which

40

the READ emulation is forced to invoke more and more read rounds. The executions constructed
in the lemma below are illustrated in Figure 9 for the special case that k& = 1; the responses to
write invocations are omitted, whereas for read invocations, only responses are shown. Incomplete

invocations of any kind are not shown.

Lemma 7.4 (Read Lower Bound). Assume that k < t. For 1 < i < t/k, there exist three
finite executions cy, 3;, and y;, in each of which a READ emulation has issued i + 1 rounds of read

1nvocations, such that:

1. In a; WRITE(1) completes before READ is invoked; objects o1,...,0i1k are correct and their
state is s1 from a time before the beginning of the READ onward; objects 0¢yji1,-..,00 1k are

correct and their state is sg throughout c;; and the remaining t objects are faulty.

2. In 3; no WRITE ever occurs; objects o1, ..., 0 are faulty; and objects o041 p41,...,0n, are cor-
rect and their state is sg throughout B;. All the invocations directed to objects 041, . .-, Otk
are delayed, i.e., are not invoked in B;. For these objects, we do not specify whether they are
faulty or not since they do not participate in the execution yet. Note that at least k of them

must be correct, but we do not specify which ones.

3. In 1, all objects are correct. For i > 1, objects o1,...,0¢_1) are faulty in ~; and the

remaining objects are correct.

4. The responses that the reader receives in all three executions in rounds 1,...,7 are as follows:
In response to every round j read, 1 < j < 4, objects o¢4k+1,-..,0n TELUTN SO PN TOUNd j,
objects o1, ..., 05 return s1 in round j, and each object oy for (j + 1)k < £ < ik returns sy,

but this response only arrives in round £. No other objects respond.

5. The last events of each of these executions are round i+ 1 read invocations on all base registers

that responded to all the previously issued read invocations.

41

a4
N

(Round 1 Round i—lw Round i
01...Ot+1:SI 01 Ol-..Oi_l 01...Oi
S1 Sy S1

Ou2... Oy1= 59
Oz... Oy Ogz... Oy O... Oy

ggzwz ... Oy So So So

READ
WRITE(1)
(a) Execution «.
ﬁi -1 ﬁ—l
(. W (Round 1 Round i-1 W Round i
Round 1 Round i-1 Round 1 o 0.0 o o
gol gOl...Oi.l QOIOI @‘1 @Jl i1 Q}l il
S S Si S S1 Si O= s
s
Oﬁz. .. O“ O‘+2. .. On Ot+2 On OHZ' o O“ OHZ' . O“ Ot+2- .. On !
So So So So So So A
READ READ /
WRITE(1)
(b) Execution g;. (c¢) Execution ~;.

Figure 9: Illustrating the lower bound on READ emulations for the special case that k = 1.

42

Proof. Base case

A READ emulation begins by invoking read operations on all base objects, and waiting for responses.
This is the first round. We construct three different executions that are indistinguishable to the

reader after receiving 2t 4+ k responses in the first round.

1. In execution «y, a WRITE(1) operation completes before READ is invoked. Therefore, READ
must return 1. When READ is invoked, at least t+k correct objects’ states are s;. Without loss
of generality, these are objects o01,...,0.1. Moreover, ¢t correct objects are in state so (this
is possible by Lemma 7.3). Without loss of generality, these are objects 0¢1 k41, -.,021%. In
response to the first read round, k correct objects, o01,...,0x, return s; (if £ = 1 then only
01 returns sy), t correct objects, 0¢4k+1, ..., 024k return s, and t objects 09y k41, ..., 0p are

faulty and also return sg. The remaining objects do not respond.

2. In execution 1, no WRITE ever occurs. Therefore, READ must return 0 (the register’s initial
value), and all the correct objects are in state sp. In this execution, objects o1, ..., 0 are
faulty and return s; in the first read round. 2t objects, 0;1%11,.- ., 0n, are correct and return

so. The read invocations on the remaining objects do not take place.

3. In execution 71, a WRITE(1) operation occurs concurrently with the READ. In this execution,
all objects are correct. The first read request reaches objects 041 x11,...,0, before WRITE is
invoked, and they therefore respond with sg. The first read request sent to objects o1,..., 0
is delayed while the WRITE is executing. By FW-termination, the WRITE eventually completes
and changes the states of objects o1,...,0r to s1. The read invocations on objects o1, ..., 0k

then take place, and they respond with s;.

In all three executions, the reader receives the same responses from base objects. In «q, it is
not allowed to return 0. In (1, it is not allowed to return 1. In ~q, it is not allowed to wait for
more round 1 responses, because it already heard from 2t + &k correct objects, and the remaining ¢
may be faulty, and since the WRITE completes, and no new WRITEs are invoked, FW-termination
mandates that READ complete as well. Therefore, a second round of base object invocations is

initiated at the end of each of the three executions.

43

Inductive step

Assume that 1 < i < t/k. We use our inductive hypothesis for «;_; and 3,1, and show how to
construct «y, f;, and ~; from «;_1 and §;—1. Note that (i + 1)k <t + k (since i < t/k), and thus,
there are at least 2k objects have not yet responded to any of the read rounds in «;_1 and §;_1:
O(i—1)k+15 - - - » O(ix1)k+1- We construct the three executions by having k additional objects respond

to all the read rounds, as follows:

1. Execution «; extends o;—1 by having the correct objects o(;_1)r41,- -, 0ix Tespond to all the
read rounds with their state s;; and having all the objects that have responded in previous

rounds respond the same way in round 1.

2. Execution f3; extends ;1 by having the objects 0(;_1)g41, - - -, 0 become faulty and respond
to all the read rounds with s;; and having all the objects that have responded in previous

rounds respond the same way in round .

3. Execution ~; extends 3;—1 as follows: first, all the objects that have responded in previous
rounds respond the same way in round 7. Meanwhile, the invocations to all remaining objects
continue to be delayed. A WRITE(1) operation is then invoked and, by FW-termination,
completes and changes the states of objects o(;_1)g+1,- - -, 0ir t0 s1. Subsequently, the reader’s
delayed threads are resumed, and read invocations take place at objects o¢_1)x11,-- -, Oik-

These objects are all correct in ;, and they respond to all read rounds with s;.

Again, we have a situation in which in all three executions, the reader receives exactly the
same responses. That is, these executions are indistinguishable to the reader. In execution «;, the
reader is not allowed to return 0. In execution f;, it is not allowed to return 1. In execution ~;, it
hears from 2¢ + k correct objects in all the rounds, and is therefore not allowed to wait for more
responses in any round, because the remaining objects may be faulty. By FW-termination, READ
must complete. Thus, round ¢ + 1 must be initiated. We add the initiation of round ¢ + 1 at the

end of «;, B;, and ~;, and the lemma follows. [l
From Lemma 7.4, we derive the following theorems:

44

Theorem 7.5 (Read Lower Bound). For every algorithm A emulating a t-tolerant SWSR safe
register in a system with n = 3t + k base objects, t of which can suffer NR-Arbitrary failures, and
in which the reader does not modify the base objects’ states, there is an execution of A in which the

READ emulation invokes |t/k| + 1 rounds of base object operations.

Proof. For k > t the theorem trivially holds, because obviously at least one round is required in
order to read a value from the register. When k£ < ¢, by Lemma 7.4, there exists an execution,

|4/k|, in which [t/k] + 1 rounds are invoked. O

Next, we observe that in execution ~;, (i — 1)k objects are faulty. Therefore, Lemma 7.4 also

implies the following lower bound for adaptive (early-stopping) algorithms:

Theorem 7.6 (Early-Stopping Read Lower Bound). Consider an algorithm A emulating
a t-tolerant SWSR safe register in a system with n = 3t + k base objects, t of which can suffer
NR-Arbitrary failures, and in which the reader does not modify the base objects’ states. For every
1 < < |t/k], there is an execution of A in which (i — 1)k objects fail and the READ emulation

invokes © + 1 rounds of base object operations.

For the special optimal resilience case, (i.e., k = 1), we get a lower bound of f + 2 rounds in
executions with f < t failures by substituting f for ¢ — 1 in Theorem 7.6; the ¢ + 1 lower bound

follows from Theorem 7.5. We get the following corollary:

Corollary 7.7. Consider an algorithm A emulating a t-tolerant SWSR safe register in a system
with n = 3t + 1 base objects, t of which can suffer NR-Arbitrary failures, and in which the reader
does not modify the base objects’ states. For every 0 < f <'t, there is an execution of A in which

f objects fail and the READ emulation invokes min(t + 1, f 4+ 2) rounds of base object operations.

Finally, observe that in execution [3;, ik objects are faulty and no READ operation overlaps any

WRITE operation. We thus get the following lower bound for READs that do not overlap any WRITE:

Theorem 7.8 (Read Lower Bound without Concurrent Writes). Consider an algorithm A
emulating a SWSR safe register in a system with n = 3t + k base objects, t of which can suffer

NR-Arbitrary failures, and in which the reader does not modify the base objects’ states. For every

45

1 <i < [t/k], there is an execution of A in which ik objects fail and a READ emulation that does

not overlap any WRITE invokes i + 1 rounds of base object operations.

When k = 1, this yields a lower bound of f + 1 rounds on READ emulations that do not overlap
any WRITE. The t-tolerant wait-free algorithm presented in Section 5 shows that all the bounds

proven in this section are tight.

7.2.1 Allowing Readers to Modify Objects

The lower bounds above assume that the reader does not modify the base objects. We now revisit
this assumption. Consider an algorithm in which the reader modifies the base objects and the writer
reads information from them. How can such an algorithm be more efficient than an algorithm in
which the reader is not allowed to modify the base objects? Conceivably, the reader may be able
to signal to the writer that a read is in progress, and the writer could conceivably use this signal in
order to refrain from writing to base objects while the reader is reading them. Observe that indeed,
our lower bound proof makes use of the fact that WRITE can occur concurrently with the READ.
Whether expediting the READ emulation by allowing readers to write and writers to read is
possible or not remains an open problem. However, we believe that in order to allow some form
of meaningful communication from the reader to the writer, one would need the abstraction of
a SWSR safe register, where the READ emulation is the writer and the WRITE emulation is the
reader. Intuitively, a safe register is needed in order for the reader to be able to signal to the writer
that read is in progress, and for the writer to be able to distinguish the case that the reader never
signaled that read is in progress from the case that the reader did signal so before the WRITE began.
We conjecture that no form of communication weaker than a safe register can help reduce the cost
of a READ emulation. Therefore, we believe that a safe register in one direction must be emulated
at the “full cost” before a safe register in the other direction can be emulated faster. We therefore
conjecture that if it is possible to expedite the read in this manner, then the WRITE emulation

needs to invoke at least [t/k] + 1 rounds of read operations on base objects:

Conjecture 7.1. For every algorithm A emulating a t-tolerant SWSR safe register in a system

with n = 3t+ k base objects, t of which can suffer NR-Arbitrary failures, there is an execution of A

46

in which either the READ emulation or the WRITE emulation invokes |t/k]| 4+ 1 operation rounds.

8 Conclusions

We have studied asynchronous implementations of wait-free shared memory objects from base
objects that can suffer NR-Arbitrary faults, focusing on the number of rounds of base object
invocations as our primary complexity metric. This failure model and performance metric are
important in capturing much recent work on scalable widely-distributed systems that are based
on either lightweight replicated servers (e.g., Fleet [MRO0] and Agile Store [LAV03]) or on the
emerging technology of Storage Area Networks (e.g., PASIS [GWGRO04)).

We have addressed a previously open question — whether it possible to construct ¢-tolerant
wait-free shared registers in this model using as little 3t + 1 base objects, ¢t of which can fail.
We have shown that such constructions are indeed possible, but also inherently more costly than
constructions that use 4t + 1 or more fault-prone base registers: First, when n < 4t, emulating
WRITE operations requires two rounds of base object write invocations. Second, we have shown a
lower bound of min(t+ 1, f 4+2) rounds for emulating READ operations in executions with f failures
in systems where the reader does not modify the base objects. Since in all known constructions for
the NR-Arbitrary fault model readers do not modify the base objects, the lower bound has broad
applicability. Whether this lower bound still holds when readers are allowed to modify the base
objects remains an open problem. However, we have conjectured that even if readers can modify the
base objects, it still holds that either the READ or the WRITE emulation must take min(¢+ 1, f +2)
rounds.

We have presented, for the first time, an optimal resilience t-tolerant wait-free construction (i.e.,
using 3t 4+ 1 base objects, t of which can fail) of a safe register in the shared memory model. Our
safe register construction is early-stopping, and its round complexity is optimal, as we prove in the
Section 7. Based on known reductions from safe registers to regular ones, our construction yields
a Byzantine version of the Disk Paxos consensus algorithm, which employs as little as 3t 4+ 1 disks,
t of which can be arbitrarily corrupted or non-responsive, and a leader oracle.

Nevertheless, emulating a regular register from safe ones incurs additional rounds of operation

47

invocations. Moreover, our safe register construction is quite elaborate, as are known efficient
reductions from safe registers to regular ones. Therefore, from a practical perspective, it is desirable
to derive simpler solutions, directly constructing regular registers.

We have addressed this challenge by defining a weaker termination condition called FW-
termination, which allows read operations not to terminate if infinitely many writes are invoked.
We have presented a simple and elegant construction of an t-tolerant FW-terminating regular reg-
ister, which we have shown, suffices for solving consensus with a leader oracle. Note that by design,
the number of rounds executed by the READ emulation of the t-tolerant FW-terminating register
can be unbounded. Nevertheless, in synchronous executions, which are most common in practice,
the READ operations of the t-tolerant FW-terminating register always terminate in two rounds.
Our t-tolerant FW-terminating construction is therefore quite practical — it is simple, direct, and

likely to perform well in a real system.

Acknowledgments

We are thankful to Partha Dutta, Rachid Guerraoui, Maurice Herlihy, Petr Kouznetsov, Victor
Luchangco, Nancy Lynch, Mark Moir, and Nir Shavit for many interesting discussions and insightful

comments.

References

[ABOO03] H. Attiya and A. Bar-Or. Sharing memory with semi-byzantine clients and faulty
storage servers. In The 22nd Symposium on Reliable Distributed Systems (SRDS),
2003.

[AGM195] Y. Afek, D.S. Greenberg, M. Merritt, , and G. Taubenfeld. Computing with faulty
shared objects. Journal of the ACM, 42(6):1231-1274, November 1995.

[AMT93] Y. Afek, M. Merritt, and G. Taubenfeld. Benign failures models for shared memory. In
Proceedings of the 7th International Workshop on Distributed Algorithms, pages 69-83.
Springer Verlag, September 1993. In: LNCS 725.

48

[Baz00]

[BDFGO03]

[BT85]

[CF99)

[CHT96]

[CMO02]

[CMRO]

[DFG02]

[DLSSS]

[GGIRO0]

[GLO3]

R. Bazzi. Synchronous byzantine quorum systems. Distributed Computing, 13(1):45-52,
2000.

R. Boichat, P. Dutta, S. Frolund, and R. Guerraoui. Deconstructing paxos. Distributed
computing column of the ACM SIGACT News, 34(1):47-67, 2003.

G. Bracha and S. Toueg. Asynchronous consensus and broadcast protocols. Journal of

the ACM, 32(4):824-840, October 1985.

F. Cristian and C. Fetzer. The timed asynchronous distributed system model. IEEE

Transactions on Parallel and Distributed Systems, pages 642—657, June 1999.

T. D. Chandra, V. Hadzilacos, and S. Toueg. The weakest failure detector for solving
consensus. Journal of the ACM, 43(4):685-722, 1996.

G. Chockler and D. Malkhi. Active disk paxos with infinitely many processes. In
Proceedings of the 21st ACM Symposium on Principles of Distributed Computing
(PODC"02), 2002.

G. Chockler, D. Malkhi, and M. K. Reiter. Backoff protocols for distributed mutual
exclusion and ordering. In Proceedings of the 21st International Conference on Dis-

tributed Computing Systems, pages 11-20, 2001.

C. Delporte, H. Fauconnier, and R. Guerraoui. Failure detection lower bounds on regis-
ters and consensus. In Proceedings of the 16th International Symposium on Distributed

Computing (DISC), October 2002.

C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in the presence of partial syn-

chrony. Journal of the ACM, 35(2):288-323, April 1988.

Juan A. Garay, Rosario Gennaro, Charanjit Jutla, and Tal Rabin. Secure distributed

storage and retrieval. Theoretical Computer Science, 243(1-2):363-389, 2000.

E. Gafni and L. Lamport. Disk paxos. Distributed Computing, 16(1):1-20, 2003.

49

[GWGRO04] G. Goodson, J. Wylie, G.Ganger, and M. Reiter. Efficient byzantine-tolerant erasure-

[HLMO03]

[HV02]

[JCT9g)

[KRO1]

[Lam86]

[Lam9g]

[LAV03]

[LHO4]

coded storage. In Proceedings of the International Conference on Dependable Systems

and Networks (DSN-2004), June 2004.

M. Herlihy, V. Luchangco, and M. Moir. Obstruction-free synchronization: Double-
ended queues as an example. In Proceedings of the 23rd International Conference on

Distributed Computing Systems (ICDCS), page 522. IEEE Computer Society, 2003.

Sibsankar Haldar and Paul Vitanyi. Bounded concurrent timestamp systems using

vector clocks. J. ACM, 49(1):101-126, 2002.

P. Jayanti, T. Chandra, , and S. Toueg. Fault-tolerant wait-free shared objects. Journal
of the ACM, 45(3):451-500, 1998.

I. Keidar and S. Rajsbaum. On the cost of fault-tolerant consensus when there are no
faults — a tutorial. Technical Report MIT-LCS-TR-821, MIT Laboratory for Computer
Science, May 2001. Preliminary version in SIGACT News 32(2), pages 4563, June

2001 (published May 15th 2001).

L. Lamport. On interprocess communication — part ii: Algorithms. Distributed Com-

puting, 1(2):86-101, 1986.

L. Lamport. The part-time parliament. ACM Transactions on Computer Systems,

16(2):133-169, 1998.

S. Lakshmanan, M. Ahamad, and H. Venkateswaran. Responsive security for stored
data. IEEE Trans. on Parallel and Distributed Systems, 14(19):818-828, September
2003.

W. K. Lo and V. Hadzilacos. Using failure detectors to solve consensus in asyn-
chronous shared-memory systems. In Proceedings of the Sth International Workshop
on Distributed Algorithms (WDAG), pages 280-295. Springer-Verlag, 1994. In: LNCS
857.

50

[LQLZ04]

[LT89]

[MADO2]

[MROS]

[MROO]

[RLO4]

[VASG]

[ZSvR02]

S. Lin, M. Chen Q. Lian, and Z. Zhang. A practical distributed mutual exclusion
protocol in dynamic peer-to-peer systems. In 3rd International Workshop on Peer-to-

Peer Systems (IPTPS’04), 2004.

N. A. Lynch and M.R. Tuttle. An introduction to Input/Output Automata. CWI

Quarterly, 2(3):219-246, 1989.

J-P. Martin, L. Alvisi, and M. Dahlin. Minimal byzantine storage. In Proceedings of

the 16th International Symposium on Distributed Computing (DISC), October 2002.

D. Malkhi and M. Reiter. Byzantine quorum systems. Distributed Computing,
11(4):203-213, 1998.

D. Malkhi and M. Reiter. An architecture for survivable coordination in large dis-
tributed systems. IEEE Transactions on Knowledge and Data Engineering, 12(2):187—
202, 2000.

R. Rodrigues and B. Liskov. Rosebud: A Scalable Byzantine-Fault-Tolerant Stor-
age Architecture. Technical Report MIT-LCS-TR-932, MIT Laboratory for Computer
Science, 2004.

P. Vitanyi and B. Awerbuch. Atomic shared register access by asynchronous hardware.

In 27th IEEE Symp. Found. Comput. Sci., pages 233-243, 1986.

L. Zhou, F. B. Schneider, and R. van Renesse. Coca: A secure distributed on-line

certification authority. ACM Transactions on Computer Systems, 20(4):329-368, 2002.

o1

	Introduction
	The System Model
	Registers

	Exemplifying the Results
	Previous Solutions and Remaining Challenges
	Intuitive Description of Our Algorithms

	t-Tolerant FW-Terminating Regular Register Emulation
	Register Emulation
	Correctness
	Efficiency

	t-Tolerant Wait-free Safe Register Emulation
	Register Emulation
	Correctness
	Round Complexity

	Wait-free Consensus with FW-Terminating Regular Registers and
	Lower Bounds on Register Emulations
	Lower Bound on write Emulations
	Lower Bound on read Emulations
	Allowing Readers to Modify Objects

	Conclusions

