
Consensus and Collision Detectors
in Wireless Ad Hoc Networks

Gregory Chockler
grishac@csail.mit.edu

Murat Demirbas
demirbas@mit.edu

Seth Gilbert
sethg@mit.edu

Calvin Newport
cnewport@mit.edu

Tina Nolte
tnolte@mit.edu

MIT Computer Science and Artificial Intelligence Lab
Cambridge, MA 02139, USA

ABSTRACT
We consider the fault-tolerant consensus problem in wire-
less ad hoc networks with crash-prone nodes. We develop
consensus algorithms for single-hop environments where the
nodes are located within broadcast range of each other. Our
algorithms tolerate highly unpredictable wireless commu-
nication, in which messages may be lost due to collisions,
electromagnetic interference, or other anomalies. Accord-
ingly, each node may receive a different set of messages in
the same round. In order to minimize collisions, we design
adaptive algorithms that attempt to minimize the broadcast
contention. To cope with unreliable communication, we aug-
ment the nodes with collision detectors and present a new
classification of collision detectors in terms of accuracy and
completeness, based on practical realities. We show exactly
in which cases consensus can be solved, and thus determine
the requirements for a useful collision detector.

We validate the feasibility of our algorithms, and the un-
derlying wireless model, with simulations based on a realis-
tic 802.11 MAC layer implementation and a detailed radio
propagation model. We analyze the performance of our al-
gorithms under varying sizes and densities of deployment
and varying MAC layer parameters. We use our single-hop
consensus algorithms as the basis for solving consensus in a
multi-hop network, demonstrating the resilience of our algo-
rithms to a challenging and noisy environment.

∗This work is supported by MURI–AFOSR SA2796PO 1-
0000243658, USAF–AFRL #FA9550-04-1-0121, NSF Grant
CCR-0121277, NSF-Texas Engineering Experiment Station
Grant 64961-CS, and DARPA F33615-01-C-1896.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODC’05, July 17–20, 2005, Las Vegas, Nevada, USA.
Copyright 2005 ACM 1-59593-994-2/05/0007 ...$5.00.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—Wireless communication

General Terms
Theory, Algorithms, Reliability

Keywords
Wireless ad hoc networks, sensor networks, collision detec-
tion, consensus, fault-tolerance

1. INTRODUCTION
As wireless technology has improved and miniaturized,

there has been an increasing interest in large-scale, widely-
deployed sensor networks. Many service and applications in
these environments (e.g., TDMA scheduling, remote man-
agement and re-programming of sensors, temperature and
climate control, assembly line monitoring, etc.) require wire-
less devices to coordinate their actions in the face of fail-
ures resulting from hardware malfunction, physical damage,
battery depletion, or enforced hibernation. Fault-tolerant
agreement (or consensus) is a quintessential building block
for these applications as it facilitates maintenance of consis-
tent replicated state on which the participants can act in a
consistent manner.

In this paper, we study the fault-tolerant consensus prob-
lem in wireless ad hoc networks with crash-prone nodes. For
most of the paper, we focus on solving consensus in single-
hop networks where the nodes are located within commu-
nication range of each other and are tightly synchronized.
Due to these assumptions, consensus might appear to be
trivially solvable. However, as we discuss below, real wire-
less networks pose several additional difficulties that rule out
the trivial solutions.

First, communication in wireless networks is unreliable:
collisions and other wireless interference might cause signifi-
cant message disruption. Second, the deployment of devices
cannot be carefully controlled, so the number of deployed de-
vices (and, perhaps, the density of the deployment) is a pri-
ori unknown. Moreover, the devices may be “anonymous”,

meaning that they have no unique identifiers. As a result of
collisions, an arbitrary number of messages that have been
broadcast in a round can be lost. Furthermore, without an a
priori knowledge of the number of participants, the message
loss cannot be reliably detected.

To circumvent the problem of unrestricted message loss,
we assume that, eventually , if the broadcast contention is
low enough in a given round, then the MAC layer is able
to ensure that there are no collisions. The fact that this
property only holds eventually prevents nodes from simply
assuming that a broadcast was successfully received based
only on a known number of concurrent broadcasters.

Under this assumption, we focus on developing adaptive
algorithms where the number of broadcasting participants
is dynamically adjusted toward the collision-free contention
level, without actually knowing the value of this threshold
or the number of participants. The two main advantages
of this approach are (1) improved fault-tolerance for MAC
layers that can sustain higher contention levels, and (2) the
ability to use fixed length rounds, which is important in
practice.

Collision Detectors
To cope with undetectable message loss, we augment the
nodes with collision detection. Collision detectors monitor
the broadcast medium and attempt to deliver notifications
when message loss is detected. They do not provide any in-
formation with respect to the number of lost messages or the
identities of their senders. Moreover, there is no guarantee
that a node performing a transmission can detect collisions
(unlike, for example, Ethernet networks [29]).

Inspired by [7], we classify collision detectors according to
their completeness, the ability to detect actual collisions,
and accuracy , the ability to report only actual collisions
(no false positives). For each collision-detector class that
we introduce, we show how to solve consensus and provide
matching lower bounds.

We consider two accuracy properties: permanent accu-
racy and eventual accuracy. While always accurate collision
detectors are more powerful, eventually accurate collision
detectors are more realistic, since they result in algorithms
that are robust in the face of false positives caused by elec-
tromagnetic noise and broadcasts by nearby nodes. The lat-
ter is particularly important for multi-hop algorithms that
use single-hop consensus as a building block: In these algo-
rithms, neighboring instantiations of single-hop consensus
can interfere with each other, leading to false collision de-
tection.

Since most current collision detector implementations can
occasionally miss a collision, we also consider two ways of
weakening the assumption of completeness. In particular,
we consider: (1) a majority complete collision detector that
only detects a collision if a majority of messages in a round is
lost, and (2) a 0-complete collision detector that only detects
a collision if every message in a round is lost.

We consider the six collision detector classes obtained by
combining the completeness and accuracy properties above
(see Table 1). We analyze the computational power of each
of these classes in terms of the following parameters: (1) an
ability to solve consensus, (2) the solution complexity, and
(3) robustness to message loss (see Table 2). Our results pro-
vide a separation among all of these classes in terms of the
parameters above. An important contribution of our anal-

ysis is in providing feedback to hardware/firmware design-
ers with respect to the requirements for collision detectors.
While there recently has been significant progress in imple-
menting collision detection [13, 34, 43], there has been little
formal analysis of the minimal requirements. We show that
reasonable and readily implementable collision detectors are
sufficient.

Experimental Results
We demonstrate the utility of our single-hop consensus prim-
itive by using it to develop a simple and efficient multi-hop
consensus protocol. In this protocol, the multi-hop network
is divided into a series of non-overlapping grid squares, and
each node knows its approximate location in the grid. We
use single-hop consensus within each grid square to reach
a local decision which is then propagated to the other grid
squares. This reduces the sensitivity to varying deployment
densities by effectively aggregating the initial values. It
therefore both reduces bandwidth for the propagation phase
of the algorithm, and compartmentalizes much of the com-
plexity of consensus.

We implemented our single and multi-hop algorithms in
a simulator featuring a detailed radio propagation model
and a realistic MAC layer implementation. We used the
simulated implementation to thoroughly analyze the perfor-
mance of the algorithms and assess the significance of vari-
ous parameters (such as the number of participating nodes,
the round length, the low-level collision-avoidance scheme,
etc.) on their efficiency. The evaluation results are encour-
aging and validate our claim that our algorithms are adap-
tive to varying densities and varying levels of communication
contention. They show that our single-hop consensus proto-
col sustains up to 100 nodes with only a marginal increase
in the number of rounds required to reach consensus and the
latency of the multi-hop algorithm is minimally affected by
the increase in the node density.

2. RELATED WORK
There has been extensive prior research on fault-tolerant

consensus in synchronous (see [27]), partially synchronous
(e.g., [14]), asynchronous with failure detectors (e.g., [7,24])
and fully asynchronous (e.g., [16]) message passing systems
with reliable or eventually reliable point-to-point channels.
In particular, [14, 24] overcome message loss by assuming
that eventually there is a connected majority component.
This assumption is unavailable in the wireless ad hoc envi-
ronments we consider.

Santoro and Widmayer [35, 36] study consensus in the
presence of unreliable communication, and show that con-
sensus is impossible if as few as (n−1) of the n2 possible
messages sent in a round can be lost. In this paper, we
circumvent this impossibility result by exploiting collision-
detection information. Also, algorithms in [36] are not appli-
cable in our setting since they rely on a priori known number
of participants, and do not tolerate node failures.

Aspnes et al. [4] present a solution for consensus in wire-
less networks with anonymous but reliable nodes, and re-
liable communication. Although anonymity is not a pri-
mary focus of our paper, most of our algorithms are, in fact,
anonymous as they do not use node identifiers. In addi-
tion, our algorithms work under more realistic environment
assumptions as they tolerate unreliable communication and
node crashes.

Complete maj-Complete 0-Complete

Accurate AC maj-AC 0-AC
Eventually Accurate �AC maj-�AC 0-�AC

Table 1: A summary of collision detector classes.

Koo [21] presents a tight lower bound for the minimum
fraction of Byzantine neighbors that allows atomic broadcast
to be solved in radio networks where each node adheres to a
pre-defined transmission schedule. This result is potentially
relevant to our multi-hop consensus protocols, although we
do not consider Byzantine failures and assume unreliable
broadcast.

While the problem of consensus has only recently been
studied in wireless ad hoc networks, there is a long history
of work on the reliable broadcast problem, which can po-
tentially be used as a building block for solving consensus.
A number of early papers (e.g., [19,38,41]) study the prob-
lem in Ethernet [17, 29] networks, where nodes can reliably
detect collisions when messages are lost. Moreover, it is
assumed that a transmitter can always detect whether its
message was received successfully. In contrast, in wireless
networks, messages can be overwhelmed by a stronger trans-
mission signal, thus leading to undetectable collisions, and
a transmitting node has no way of determining whether its
message arrived successfully.

Starting with a seminal paper by Bar Yehuda et al. [6], and
followed by many others (e.g., [5, 8, 23]), reliable broadcast
was studied in synchronous radio networks where a node is
guaranteed to deliver a message in a given time slot if and
only if exactly one of its neighbors is transmitting a message
in this slot. In contrast to this model, we allow for unpre-
dictable collision patterns which in particular, might result
in non-uniform message loss. Such non-deterministic behav-
ior is frequently observed in real networks [22,43,45], and in
fact arises in our simulations. We also do not assume any
advance knowledge of a node’s neighbors and therefore, can-
not attribute lost messages to specific nodes in the networks.
A variety of other variants to the reliable broadcast prob-
lem in a model similar to that of [6] have been considered
in [3,9,12,20].

We now briefly discuss the current state-of-the art in wire-
less network technology that motivates our environmental
assumptions. First, it is well-known that wireless broad-
cast networks are inherently unreliable. Several recent ex-
perimental studies [18,22,42,45] suggest that even with so-
phisticated collision avoidance mechanisms (e.g., 802.11 [1],
B-MAC [34], S-MAC [44], and T-MAC [39]), and even as-
suming low traffic loads, the fraction of messages being lost
can be as high as 20− 50%.

The algorithms in this paper rely on collision detectors
to overcome uncertainties in message loss. The importance
and practicality of having collision information available to
applications was argued in [43]. Several existing MAC lay-
ers, such as B-MAC [34], already support some collision de-
tection capability. Moreover, the recent study by Deng et
al. [13] suggests that there is no technical obstacle to adding
collision detection support to the current 802.11 protocol.
Although implementing perfectly complete collision detec-
tion still appears challenging, the weaker requirement of
“majority completeness” appears feasible with today’s hard-
ware/firmware, since most of the undetectable message loss

occurs when pairs of messages overlap. In fact, almost all
currently implemented collision detectors appear to meet
the requirements of “0-completeness,” the weakest collision
detector considered in this paper.

3. THE SYSTEM MODEL
We consider a single-hop wireless broadcast network con-

sisting of fixed but a priori unknown collection of nodes
P = {p1, p2, . . . } where all nodes are located within com-
munication range of each other. The number of nodes is a
priori unknown, and nodes do not have unique identifiers.

Nodes communicate by broadcasting messages. A node
pi broadcasts messages by invoking bcast(m)i, where m is
an arbitrary message, and receives messages by invoking
recv()i. We assume that the system is synchronous: both the
nodes’ clock skews and the inter-node communication delay
are bounded by known constants. For simplicity, we assume
that the processing is divided into synchronous rounds. In
each round r, each node pi executes the following steps: (1)
broadcasts at most one message, (2) receives a subset of
messages that were broadcast by the nodes in P in round
r, and (3) performs a state transition based on its current
state and the set of received messages.

Nodes can fail by crashing at any point during the execu-
tion of the algorithm. However, nodes cannot crash in the
middle of executing the bcast instruction. A node that does
not crash throughout an entire run is said to be correct .
Otherwise, it is said to be faulty .

The broadcast communication within each round satisfies
the basic integrity and no-duplication properties guarantee-
ing that every received message was previously broadcast,
and that each message is received at most once. The com-
munication medium is prone to collisions. As a result of a
collision, a node can loose an arbitrary subset of messages
that have been broadcast in a round. Moreover, collisions
may affect nodes in a non-uniform way: For example, when
a node broadcasts a message, some nodes may receive it
while others may not.

Since some degree of reliable message delivery is a prereq-
uisite for many applications (and in particular, for consen-
sus), it is commonly assumed that the underlying commu-
nication layer supports collision-free communication when
transmissions do not overlap (see e.g., [5, 6,8,23]). In prac-
tice, however, existing wireless MAC layers often employ
best-effort protocols (such as exponential back-off) that sup-
port collision-free communication even if multiple nodes si-
multaneously broadcast messages. We model this as follows:

Property 1 (Eventual Collision Freedom). There
exists a positive integer b, such that in each execution, there
exists a round recf so that the following is satisfied: For each
round r ≥ recf , if at most b nodes broadcast messages in r,
then all correct nodes receive all the messages that have been
broadcast in r.

Note that this property implies the following property as-
sumed in prior work: namely, for each round r ≥ recf , if

only one node broadcasts in r, then every message is reli-
ably delivered.

In order to take advantage of Eventual Collision Freedom,
our algorithms use a special type of contention-management
mechanism, called a wake-up service, that determines which
nodes should broadcast in a given round. A contention man-
ager is a service that can be queried in each round to de-
termine whether a node should be active or passive in the
round. We say that a contention manager provides good ad-
vice if it recommends that at least one, and no more than b,
correct nodes are active, where b is the unknown parameter
whose existence is posited by Eventual Collision Freedom.
A contention manager is called a wake-up service if it guar-
antees to eventually provide good advice. Formally:

Property 2. There exists a round rwake such that for
each r ≥ rwake, the wake-up service provides good advice in
round r.

A wake-up service can be implemented using a randomized
back-off protocol, as the one outlined in Section 8.

4. COLLISION DETECTORS
As we prove elsewhere [10], consensus is impossible in

collision-prone environments, even with Eventual Collision
Freedom, if the number of participants is a priori unknown.
We therefore assume that the MAC layer of every node
pi ∈ P is augmented with a collision detector. A node pi

learns about a possible collision in round r when the set of
messages received in round r includes a collision notification
±. In this case, we say that pi detects a collision in round
r. Note that collision notifications only indicate a possible
message loss in a round. In particular, they do not provide
any information with respect to the number of lost messages,
and the identities of their senders.

Inspired by the way in which [7] presents failure detectors,
we classify collision detectors in terms of the completeness
and accuracy properties satisfied by each collision detector
in the class. A collision detector satisfies completeness if the
following holds:

Completeness: For every round r of each execution, if pi

does not receive some messages that were broadcast in r,
then pi detects a collision in r.

A collision detector satisfies accuracy if the following holds:

Accuracy: For each round r of every execution and a node
pi ∈ P , if pi detects a collision in r, then pi does not receive
some messages that were broadcast in r.

As we discuss in the introduction, in many practical sce-
narios, the MAC layer can reliably detect collisions only if a
certain fraction of the messages being broadcast in a round
is lost. To this end, we consider collision detectors satisfying
the following: Let M(r) denote the number of bcast events
that occur in round r. A collision detector satisfies majority
completeness (maj-Completeness) if the following holds:

maj-Complenetess: For each round r of every execution
and a node pi ∈ P : If pi receives ≤ M(r)/2 messages in r,
then pi detects a collision in r.

A collision detector satisfies 0-Completeness if the following
holds:

0-Completeness: For each round r of every execution in
which M(r) > 0 and a node pi ∈ P : If pi does not receive
any messages in r, then pi detects a collision in r.

Finally, in order to account for situation in which arbitrary

Eventual Collision No Collision

Freedom Freedom

AC Θ(1) Θ(log |V |)
maj-AC Θ(1) Θ(log |V |)
0-AC Θ(log |V |) Θ(log |V |)
�AC Θ(1) Impossible

maj-�AC Θ(1) Impossible

0-�AC Θ(log |V |) Impossible

Table 2: Solving consensus with different collision detector
classes. In Sections 5.1 and 5.2 we present the results for
Eventual Collision Freedom, and in Section 5.3 we discuss
the results for systems with unrestricted collisions.

noise can be mistaken for collisions, we will consider collision
detectors satisfying the following property:

Eventual Accuracy: For each execution, there exists a
round racc such that for each round r′ ≥ racc, and each
process pi ∈ P : If pi detects a collision in r′, then pi does
not receive some messages that were broadcast in r′.

For the sake of the presentation, we will refer to collision
detectors satisfying completeness as reliable, and to those
satisfying either variant of weak comleteness as unreliable.
The collision detectors considered in this paper are summa-
rized in Table 1.

5. CONSENSUS ALGORITHMS
In the consensus problem, each node in P starts with an

input value from a fixed set V , and outputs a decision value
so that the following is satisfied: (1) Agreement : No two
correct nodes in P decide on different values; (2) (Strong)
Validity : If a node in P decides a value v ∈ V , then v is the
initial value of a node in P ; and (3) Termination: All correct
nodes in P eventually decide. In Section 7, we will consider
the following weaker validity property: Weak Validity : If
v ∈ V is an input value of some node in P , then there exists
an execution where v is decided.

In this section, we show how to solve consensus using even-
tually accurate collision detectors and a wake-up service.
Our results are summarized in Table 2.

To simplify the presentation, in the following we will use
the term Earliest Stabilization Time (EST) to refer to round
r = min{r′ ≥ max{recf , rwake, racc}}.

5.1 Consensus: Reliable Collision Detectors
The pseudo-code in Algorithm 1 is an implementation of

consensus using a collision detector in �AC (and by exten-
sion AC). The algorithm tolerates any number of node fail-
ures and terminates in at most five rounds after EST.

The algorithm consists of two phases: a proposal phase
and a veto phase. In the proposal phase, every active node
sends out its estimate. The passive nodes do not broadcast.
If a node hears no collisions, it updates its estimate to the
minimum value received. If a node detects a collision, or
if a node hears more than one estimate, then it performs a
veto in the second phase. If in the veto phase there are no
veto messages received or collisions detected, then a node
can decide.

Algorithm 1: An adaptive consensus algorithm
with a �AC collision detector.

1 Process Pi:
2 estimate ← the initial value of process Pi

3 phase ← proposal
4 For each round r, r ≥ 1 do:
5 if (phase = proposal) then
6 Let active be the advice of the wake-up service
7 if active then bcast(estimate)
8 messages ← recv()
9 if (± /∈ messages) then

10 estimate ← min{v ∈ messages}
11 phase ← veto
12 else if (phase = veto) then
13 if (± ∈ messages) or (|messages| > 1) then
14 bcast(veto)
15 veto-messages ← recv()
16 if (veto-messages = ∅) then
17 if (|messages| = 1) then
18 decide(estimate) and halt
19 phase ← proposal

Theorem 1. Algorithm 1 is an implementation of con-
sensus for nodes augmented with a collision detector in �AC.
It terminates in at most 5 rounds after EST.

Proof (Sketch). Let r be the earliest round in which
a node decides, and let pi be a node that decides in round
r. In proposal round r− 1, node pi receives a message from
every active node, since it receives no collision notifications.
Moreover, every message contains the same estimate. Since
pi heard no messages or collisions in the veto round r, every
other non-failed node must also have received every message
in round r − 1 and updated its estimate. Therefore pi’s
decision value is the only possible decision value.

Next, we show termination. Eventual collision freedom,
eventual accuracy, and Property 2 imply that eventually the
system reaches EST, at which point there are fewer than b
active nodes. During these rounds, the first proposal phase
results in every participant choosing an estimate, and after
the second proposal phase no node vetoes, hence every node
decides.

5.2 Consensus: UnreliableCollisionDetectors
In this section we consider consensus protocols for nodes

augmented with an unreliable collision detector.

Consensus with maj-�AC collision detectors
We show that Algorithm 1 is correct with a collision detector
in maj-�AC:

Theorem 2. Algorithm 1 is an implementation of con-
sensus for nodes augmented with a collision detector in maj-
�AC. It terminates in at most 5 rounds after EST.

Proof (Sketch). As in the case of a �AC collision de-
tector, if any node broadcasts during the veto phase, no
node will decide in that round, since every node either re-
ceives a majority of the messages broadcast (which are all
veto messages), or a collision notification.

As in Theorem 1, consider the first round, r, at which any
node decides. Since no node performs a broadcast during the

Algorithm 2: An adaptive consensus algorithm
with a 0-�AC collision detector.

1 Process Pi:
2 estimate ← the initial value of process Pi

3 phase ← prepare
4 size ← number of bits used to represent initial values
5 For each round r, r ≥ 1 do:
6 if (phase = prepare) then
7 if (active) then bcast(estimate)
8 messages ← recv()
9 if (|messages - {±}| > 0) then

10 estimate ← min{v ∈ messages}
11 decide ← true
12 bit ← 1
13 phase ← propose
14 else if (phase = propose) then
15 if (not decide) or (estimate[bit] = 1) then
16 bcast(veto)
17 messages ← recv()
18 if (|messages| > 0) then
19 if (estimate[bit] = 0) then
20 decide ← false
21 bit ← bit + 1
22 if (bit > size) then phase ← accept
23 else if (phase = accept) then
24 if (not decide) then bcast(veto)
25 messages ← recv()
26 if (decide = true) and (|messages| = 0) then
27 decide(estimate) and halt
28 phase ← prepare

veto phase r, every node receives only a single estimate —
and no collision notifications — during the proposal phase
r − 1. Moreover, each node receives a majority of the mes-
sages broadcast in round r−1, since maj-�AC detects when
≥ half the messages are lost. Since every majority set in-
tersects, all received the same unique estimate. Therefore,
at the end of round r − 1 all participants adopt the same
estimate. It is therefore easy to see that no other decision
value is possible.

Termination follows as in the case of �AC, since once the
wake-up service provides good advice, collisions cease during
the proposal rounds.

Consensus with 0-�AC collision detectors
We now present Algorithm 2 which solves consensus with
a collision detector in 0-�AC. It terminates in O(log|V |)
rounds after EST. In Section 6, we show that this lower
bound is tight.

Algorithm 2 has three phases. In the first phase, each
active node proposes an estimate. Every node adopts the
minimum estimate it receives, resolving to reject if it hears
any collisions or more than one value. In the second phase,
the nodes attempt to check that they all have the same
estimate. There is one round for each bit in the estimate;
if a node has an estimate with a one in the bit associated
with that round, then it broadcasts a message. If a node
has an estimate with a zero in the bit associated with that
round, it listens for broadcasts, and decides to reject if it
hears any broadcasts or collisions. Finally, the nodes enter
the accept phase. In this phase, any node that wants to

reject broadcasts a veto. If any node performs a veto, then
all the nodes return to the propose phase and start again.

Theorem 3. Algorithm 2 solves consensus for nodes aug-
mented with 0-�AC and terminates 2(log |V | + 2) rounds
after EST.

Proof (Sketch). If node pi decides v in round r, then
all nodes have estimate value v at the end of round r. All
nodes must have began round r with decide = true, or else
they would have broadcast a veto and pi would have received
at least one message or a collision notification, leading pi not
to decide. If all nodes began round r with decide = true,
then all nodes broadcast on the same schedule during the
preceding propose rounds, therefore all nodes most have the
same estimate value v. Termination is straightforward, as
soon as eventual collision freedom, eventual accuracy, and
good advice hold.

5.3 Collision-resistant consensus protocols
It is a natural question to ask whether some collision de-

tector classes can be powerful enough to solve consensus
even in the face of unrestricted message loss. Surprisingly,
the answer to this question is yes. A simple variant of Al-
gorithm 2 can be used to solve strong validity consensus in
O(log|V |) rounds with a collision detector in AC.

In particular, unrestricted message loss poses a problem
only for the prepare phase of Algorithm 2. If we cannot
guarantee a collision-free prepare round, we cannot guaran-
tee liveness. To circumvent this issue, we replace this exist-
ing phase with code that performs a binary search through
the domain of all possible initial values. At each iteration
of the search, we allot one round for each of the two sub-
sets that we can possibly recurse on. Nodes only broadcast
in rounds corresponding to subsets that contain their initial
value. If noise (message or collision notification) is heard for
both subsets in a given iteration, then the algorithm always
chooses to recurse on the first subset. If no noise is heard
for either subset of a given split (e.g. as the result of node
failures), the search starts from scratch by returning to the
full set of values in the next iteration.

6. LOWER BOUNDS
In this section, we show lower bounds that match the

upper bounds of the previous section. We first examine a
collision detector called half-complete-AC that is always ac-
curate and guarantees to deliver a collision only if the num-
ber of messages received in a round r is strictly less than
M(r)/2, where M(r) is the number of messages brodcast
in r. We show that with a half-complete-AC collision de-
tector, consensus cannot be solved in a constant number of
rounds. This demonstrates that only a slight weakening of
maj-completeness results in a substantial complexity gap. It
also implies that Algorithm 2 is optimal.

We then consider the case where collisions never abate.
In this case, we show that it is impossible to solve consen-
sus without (permanent) accuracy, and then show that even
with (permanent) accuracy consensus cannot be solved in
a constant number of rounds. Together, these results show
that the algorithm described in Section 5.3 is optimal.

Tightness of bounds in Section 5.2
We show that, no algorithm (where the nodes do not have
unique ids) can solve consensus in a constant number of

rounds after EST if half or more of the messages sent in a
round can be lost without detection. To obtain the strongest
possible lower bound, we assume that the nodes have ac-
cess to a wake-up service (see Section 3), and to a collision
detector, called half-complete-AC, which is always accurate
and guarantees to deliver a collision only if the number of
messages received in a round r is strictly less than M(r)/2,
where M(r) is the number of messages brodcast in r. We
prove the following

Theorem 4. Let A be an algorithm that solves consensus
with a wake-up service satisfying Property 2 and a collision
detector in half-complete-AC. Assume w.l.o.g. that |V | > 2.
Then, there exists an execution of A where EST = 1 and
the nodes do not decide before round log(|V |).

We first introduce some definitions: Given a k-round ex-
ecution α, we define the transmission schedule of node pi

in α, denoted ts(α, i), to be the sequence of 0s and 1s of
length k, such that the jth element of ts(α, i) is 1 iff pi

transmits a message in round j. If all the nodes in α fol-
low the same transmission schedule, then we refer to this
common schedule as ts(α). We say that two executions α
and β are equivalent w.r.t. to their transmission schedules,
denoted α ≡ β, if all the nodes in α and β follow the same
transmission schedule, and ts(α) = ts(β). The result follows
from the following key lemma:

Lemma 4.1. For each k, 1 ≤ k ≤ log(|V |) − 1, let Ak

denote the set of all the k-round executions of A. Let Πk

be the partition of Ak to the equivalence classes w.r.t. the
relation ≡. Then, Πk �= ∅, and each P ∈ Πk contains at
least two executions α and β satisfying the following:

1. Both α and β consist of disjoint sets of nodes, denoted
L and R respectively, such that |L| = |R|.

2. All the nodes in L (resp. R) start with the same initial
value v (resp. w), and v �= w.

3. No messages are lost, no collisions are detected, all the
nodes are correct and the wake-up service outputs are
the same at all nodes in both α and β.

4. There exists a k-round execution γ consisting of exactly
the nodes in L ∪R such that the nodes in L (resp. R)
receive the same set of messages as that received in α
(resp. β), and no collision notifications.

5. No node decides in α, β and γ.

Proof (Sketch). The proof is by induction on k. For
k = 1, consider the set Pv of all the 1-round executions where
the nodes are correct and start with the same initial value
v, no messages are lost, no collisions are detected and the
wake-up service outputs are the same at all nodes in every
round. Since all the nodes have the same initial state in
αv ∈ Pv, they all will take a consistent decision as to whether
to transmit a message or not. Moreover, since |V | > 2,
there exist a value w ∈ V , w �= v, and a pair of executions
αv ∈ Pv and αw ∈ Pw such that the sets of nodes L and
R participating in αv and αw are of equal size and disjoint,
and ts(αv) = ts(αw). We then construct γ as required by
the lemma statement. Since the collision detector satisfies
half-completeness, the nodes in L (resp. R) can loose the

messages sent by the nodes in R (resp, L). Hence, γ is a
valid execution of A. Finally, no node can decide in either
α, β or γ, as otherwise, the nodes in L must decide v, and
the nodes in R must decide v �= w violating agreement.

For the inductive step k > 1, we notice that as long as
k < log(|V |), it is always possible to find two executions
αv and αw, v �= w, with the same transmission schedules
belonging to some equivalence class in Πk−1 that can be
extended by one round. Indeed, for k < log(|V |), there
are at most |V |/2 transmission schedules to follow for the
first k rounds. Since there are |V | initial values, and all
the executions where the nodes start with the same initial
value follow the same transmission schedule, there must be
two executions αv and αw, v �= w, that follow the same
transmission schedule. The rest of the proof is similar to
the base case proof.

Proof (Theorem 4). The execution α constructed in
Lemma 4.1 is indistinguishable to the nodes in L from an
execution α′ which is identical to α except b = |L|. In turn,
α′ is identical to some execution where EST = 1. The result
follows.

Tightness of bounds in Section 5.3
In this section, we show that it is impossible to solve consen-
sus without eventual collision freedom if a collision detector
does not satisfy (perpetual) accuracy.

Theorem 5. There does not exist an algorithm that
solves 1-resilient consensus with collision detector in �AC
and a wake-up service if the communication layer does not
guarantee collision freedom (i.e., the message loss is com-
pletely unrestricted) and the set of participants is a priori
unknown.

Proof (Sketch). Assume by contradiction that such al-
gorithm A exists. Let S be the set of nodes participating
in A and assume that at least two nodes in S are correct.
We construct an execution α of A as follows: Partition the
nodes in S into two sets S1 and S2 each of which including
at least one correct node, and the nodes in S1 (resp. S2)
starting with v1 (resp. v2) where v1 �= v2. In every round of
α, let each node in S1 (resp. S2) to loose all the messages
sent by the nodes in (and only in) S2 (resp. S1), and to
detect a collision. We claim that no node can decide in α.
Indeed, for each k-round prefix αk of α, there exists an exe-
cution β1,k (resp. β2,k) where all the nodes in S2 (resp. S1)
are crashed from the beginning; in the first k rounds of β1,k

(resp. β2,k) all the nodes in S1 (resp. S2) receive exactly
the same set of messages and collision notifications as in αk;
and the EST = k + 1. (Note that both β1,k and β2,k are
valid executions of A since the collision detector is allowed
to be inaccurate before EST.) Then, no node in S can decide
after αk since otherwise, all the nodes in S1 (resp. S2) will
decide the same value as the one decided in β1,k (resp. β2,k)
violating agreement.

Finally, we can use a similar argument as that used to
prove Theorem 4, to show that the following result holds
(the proof can be found in the full version):

Theorem 6. Let A be an algorithm that solves consensus
with a collision detector in AC, and suppose that the commu-
nication layer does not guarantee collision freedom. Assume
w.l.o.g. that |V | > 2. Then, there exists an execution of A
where the nodes do not decide before round log(|V |).

7. WEAK-VALIDITY CONSENSUS
If consensus is only required to satisfy weak validity, then

it is possible to overcome some of the lower bounds dis-
cussed in Section 6. In particular, in this section, we de-
scribe two algorithms that do not require collision freedom
(Property 1). The first algorithm uses a collision detector in
AC and terminates in constant rounds, and the second one
uses a collision detector in 0-AC and terminates in O(log |V |)
rounds.

Recall that weak validity only requires that there exists
an execution in which the decision is an initial value of some
participant. In particular, node’s may decide on a default
value (even though that value may not be any node’s ini-
tial value). Consider, for example, a transactional database
where the default decision may be to abort the transaction.
In a collision-free execution, the initial value of some node
will be chosen; otherwise, the default value may be chosen.

A minor variant of Algorithm 1 solves weak-validity con-
sensus in two rounds with a collision detector in AC. Each
node executes the proposal and veto phases, as previously
described in Section 5.1. Recall that in Algorithm 1 if a
node detects a veto, then it repeats the two phases of the
protocol. For the weak-validity consensus, however, there is
no need to repeat the protocol; instead, if a node receives
a veto, then it simply decides on the default value. With
a collision detector in AC, this ensures agreement: a node
only chooses the default value when it detects a veto; this
implies that some node detected a collision in the proposal
phase and broadcast a veto; therefore every participant must
detect a veto and choose the default value.

Similarly, a minor variant of Algorithm 2 solves weak-
validity consensus using collision detectors in 0-AC. It re-
quires O(log |V | rounds to complete, where V is the set of
possible initial values. Again, for weak validity, if a node
detects a veto in the accept phase, then it simply decides on
the default value, instead of repeating the protocol.

8. PERFORMANCE EVALUATION
In this section we evaluate the performance of our algo-

rithms by simulation. First, we examine Algorithm 1 un-
der different MAC layer conditions. Second, we examine
a multi-hop consensus protocol based on Algorithm 1, and
then compare it to a simple flood-and-gossip solution.

In our expertiments, we used the ns-2 network simula-
tor [15]1 with integrated CMU wireless extensions [30]. We
modified the CMU 802.11 MAC layer implementation to
generate collision notifications for incoming messages lost
due to interference. Note that we used our MAC layer only
in broadcast mode, which, unlike 802.11 unicast commu-
nication, does not employ RTS/CTS handshaking. In the
single-hop scenarios, our collision detector behaved as AC.
In the multi-hop case, due to colliding messages originating
from nearby regions, the collision detector behaved as �AC.
The transmission range of each node was approximately 20
meters, and the two-ray ground reflection model was used
to achieve realistic radio propagation effects.

8.1 The Wake-up Service
For the purposes of simulation, we implement a wake-up

service using a simple approximation of a well-known back-
off strategy [17,20,31,41]. For each round r during which the

1Release version 2.27

 0

 5

 10

 15

 20

 25

 30

 35

 40

 10 20 30 40 50 60 70 80 90 100

R
ou

nd
s

Nodes

round = 0.1, mac = strong
round = 0.05, mac = strong

round = 0.2, mac = strong
round = 0.1, mac = weak

(a) Average number of rounds needed to reach consensus for Algo-
rithm 1 under varying densities and MAC layer tolerances.

 0

 20

 40

 60

 80

 100

 0.05 0.1 0.15 0.2 0.25

R
ou

nd
s

Density (nodes/m^2)

Multi-Hop Consensus
Flood-and-Gossip

(b) Average number of rounds needed to reach multi-hop consensus
in a 5-hop network with increasing node density.

Figure 1: Simulation results with ns-2 using 802.11 wireless MAC layer augmented with collision detection. Each data point
is the average of five independent simulation runs.

wake-up service is queried, (1) if pi’s wake-up service detects
a collision in r, then with probability 1/2, it recommends
pi to become passive the next time the service is queried.
(2) if pi does not detect any broadcast activity in r, then
with probability 1/2, it recommends pi to become active the
next time the service is queried. (Some slight modifications
would be needed for unreliable collision detectors.) Using
a straightforward Chernoff bound, it is easy to show that
if there are n nodes in the execution, the wake-up service
achieves EST within O(log2 n) rounds after max(recf , racc),
with high probability.

8.2 Single-hop Consensus
Figure 1.a plots the number of rounds required to reach

consensus for Algorithm 1, described in Section 5.1. Even
as the density of the deployment increases, the number of
rounds to decide remains almost constant. In order to test
adaptivity to different MAC layers (and ensure that our sim-
ulated MAC layer was not simply a special case), we varied
the MAC layer parameters, running simulations with three
different round lengths. We also tested our protocol on top
of a “weak” collision avoidance scheme in which the back-
off/carrier sensing features of 802.11 were disabled, leaving
only a simple initial randomized broadcast delay. This was
designed to represent the minimal MAC layer that might be
used by real devices. These changes had little effect on the
algorithm performance.

8.3 Multi-hop Consensus
To demonstrate the utility of Algorithm 1 in challenging

environments with lots of noise and numerous unrelated,
interfering broadcasts, we used it to implement a multi-
hop consensus protocol. The multi-hop scenario rigorously
tests the collision-tolerance properties of the single-hop al-
gorithm: since all the nodes are running the same single-hop
algorithm, the interference is exactly synchronized.

Our solution for multi-hop consensus proceeds as follows.
The network is divided into a series of non-overlapping grid
squares. Every node knows the pattern of grid squares and
its approximate location in the grid. In practice, this is a
reasonable assumption, as the localization problem in wire-
less ad hoc networks is well studied [28, 32, 33, 40]. All
nodes within a given grid square are within communication

 0

 20

 40

 60

 80

 100

 120

 140

 2000 4000 6000 8000 10000 12000 14000 16000 18000

R
ou

nd
s

Area (m^2)

Multi-hop Consensus

Figure 2: Average number of rounds needed to reach multi-
hop consensus for a density of 0.02667 nodes/m2 (approx.
6 nodes per single-hop area) and increasing network area.

range of each other. First, single-hop consensus is conducted
for each grid square using Algorithm 1. Second, all nodes
execute a Grid Consensus algorithm that gossips the grid
square consensus values throughout the network – using the
wake-up service to reduce contention. Once a node has re-
ceived a value for every grid square, it can decide by applying
a deterministic function to this set. (Please see the full ver-
sion [11] of this paper for the Grid Consensus pseudo-code,
and a more detailed presentation of the multi-hop model
and the correctness proofs.)

We compared our algorithm against a simple flood-and-
gossip strategy similar to [2,25,26]. Nodes decided to flood
their initial value with probability 0.2, and the algorithm
was considered terminated once all the nodes had received
every value that had been broadcast.

We evaluated our solutions in a 3600m2, 5-hop diameter
network divided into sixteen non-overlapping single-hop grid
squares. Figure 1.b shows the number of rounds required for
multi-hop consensus in this environment under increasing
node density. The stability of our solution is notable: As
the density increases from an average of 2 nodes per single-
hop grid square (0.00125 nodes/m2), to an average of 63
nodes per grid square (0.27778 nodes/m2), multi-hop con-
sensus consistently terminates in 15 to 30 rounds even when

as many as 960 nodes are participating. In contrast, the
flood-and-gossip approach worked reasonably well for small
densities, but at larger values it was overwhelmed by the
volume of messages traveling throughout the network.

We also studied the performance of the multi-hop protocol
in larger networks. For a fixed density of 0.02667 nodes/m2

(approximately 6 nodes per single-hop area), we varied the
network diameter from 4-hops to 10-hops, with the largest
network tested featuring 1000 nodes scattered over an area
roughly the size of three American football fields placed side-
by-side. The results, as described in Figure 2, show that up
to an area of 11000 m2 the number of rounds needed to
decide increase at a reasonable rate of one round for every
300 m2 of area added. After this point, the rate increases
to one additional round for every 100 m2 of area added.

A careful analysis attributes this rate increase to a failure
of our wake-up service implementation in larger networks.
Specifically, we deployed our nodes randomly to achieve the
fixed average density. Accordingly, the larger networks were
more likely to contain a few single-hop grid squares, often
near the borders, that contained a very small number of
nodes (i.e., < 3).

Our wake-up service implementation, for both the local
and multi-hop phase of our solution, does not handle these
low density regions efficiently. We found that by increasing
the aggressiveness of our service in these border squares (for
example, increase the probability that a node in a border
square considers itself active) we could gain better perfor-
mance for large networks. Such changes, however, degrade
performance for smaller networks. The best solution seems
to be an adaptive wake-up service that behaves differently
depending on the network dimensions and the node’s known
location in the overlay grid. We leave the investigation of
such an adaptive service for future work.

9. CONCLUDING REMARKS
In this paper we investigated the solvability of consensus

in wireless ad hoc networks under a realistic collision-prone
model with an unknown number of participants. We pre-
sented solutions with efficiency varying with the quality of
collision detection available, and we showed that our bounds
are tight. We believe that our results will impel the phys-
ical layer radio designers to appreciate the importance of
exporting collision detection information to higher levels of
protocol stack.

We considered crash failure of nodes only. In the fu-
ture, we intend to investigate consensus in the presence of
Byzantine nodes. Moreover, we hope to investigate other
algorithms in both single-hop and multi-hop collision-aware
models, and we will corroborate the efficiency of our al-
gorithms by experimenting with real wireless sensor net-
work [37] deployments.

Acknowledgments
We would like to thank Nancy Lynch for conversations that
inspired many of the results in this paper, and Daniela Tu-
lone for discussions about randomized wake-up services.

10. REFERENCES
[1] IEEE 802.11. Wireless lan mac and physical layer

specifications, June 1999.

[2] K. Akkaya and M. Younis. A survey of routing
protocols in wireless sensor networks. Elsevier Ad Hoc
Network Journal, 3(3):325–349, 2005.

[3] N. Alon, A. Bar-Noy, N. Linial, and D. Peleg. On the
complexity of radio communication. In STOC:
Symposium on Theory of Computing, pages 274–285.
ACM Press, 1989.

[4] J. Aspnes, F. Fich, and E. Ruppert. Relationships
between broadcast and shared memory in reliable
anonymous distributed systems. In 18th International
Symposium on Distributed Computing, pages 260–274,
2004.

[5] R. Bar-Yehuda, O. Goldreich, and A. Itai. Efficient
emulation of single-hop radio network with collision
detection on multi-hop radio network with no collision
detection. Distributed Computing, 5:67–71, 1991.

[6] R. Bar-Yehuda, O. Goldreich, and A. Itai. On the
time-complexity of broadcast in multi-hop radio
networks: An exponential gap between determinism
and randomization. Journal of Computer and System
Sciences, 45(1):104–126, 1992.

[7] T. D. Chandra and S. Toueg. Unreliable failure
detectors for reliable distributed systems. Journal of
the ACM, 43(2):225–267, 1996.

[8] B. Chlebus and D. Kowalski. A better wake-up in
radio networks. ACM Symposium on Principles of
Distributed Computing (PODC), pages 266–274, 2004.

[9] B. S. Chlebus, L. Gasieniec, A. Gibbons, A. Pelc, and
W. Rytter. Deterministic broadcasting in ad hoc radio
networks. Distributed Computing, 15(1):27–38, 2002.

[10] G. Chockler, M. Demirbas, S. Gilbert, N. Lynch,
C. Newport, and T. Nolte. Reconciling the theory and
practice of unreliable wireless broadcast. International
Workshop on Assurance in Distributed Systems and
Networks (ADSN), 2005. To appear.

[11] G. Chockler, M. Demirbas, S. Gilbert, C. Newport,
and T. Nolte. Consensus and collision detectors in
wireless ad hoc networks. Technical Report 980, MIT
CSAIL, 2005.

[12] A. Clementi, A. Monti, and R. Silvestri. Round robin
is optimal for fault-tolerant broadcasting on wireless
networks. J. Parallel Distributed Computing,
64(1):89–96, 2004.

[13] J. Deng, P. K. Varshney, and Z. J. Haas. A new
backoff algorithm for the IEEE 802.11 distributed
coordination function. In Communication Networks
and Distributed Systems Modeling and Simulation
(CNDS ’04), 2004.

[14] C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in
the presence of partial synchrony. Journal of the
ACM, 35(2):288–323, 1988.

[15] K. Fall and K. Varadhan. The ns Manual, April 2002.
www.isi.edu/nsnam/ns/ns-documentation.html.

[16] M. J. Fischer, N. A. Lynch, and M. S. Paterson.
Impossibility of distributed consensus with one faulty
process. Journal of the ACM, 32(2):374–382, 1985.

[17] R. Gallager. A perspective on multiaccess channels.
IEEE Trans. Information Theory, IT-31:124–142,
1985.

[18] D. Ganesan, B. Krishnamachari, A. Woo, D. Culler,
D. Estrin, and S. Wicker. Complex behavior at scale:

An experimental study of low-power wireless sensor
networks. UCLA Computer Science Technical Report
UCLA/CSD-TR, 2003.

[19] J. F. Hayes. An adaptive technique for local
distribution. IEEE Trans. Commun., 26(8):1178–1186,
1978.

[20] S. Olariu K. Nakano. A survey on leader election
protocols for radio networks. Proceedings of the
International Symposium on Parallel Architectures,
Algorithms and Networks (ISPAN), pages 71–79, 2002.

[21] C-Y. Koo. Broadcast in radio networks tolerating
byzantine adversarial behavior. ACM Symposium on
Principles of Distributed Computing (PODC), pages
275–282, 2004.

[22] D. Kotz, C. Newport, R. S. Gray, J. Liu, Y. Yuan, and
C. Elliott. Experimental evaluation of wireless
simulation assumptions. In Proceedings of the 7th
ACM International Symposium on Modeling, Analysis
and Simulation of Wireless and Mobile Systems, pages
78–82, 2004.

[23] E. Kranakis, D. Krizanc, and A. Pelc. Fault-tolerant
broadcasting in radio networks. In Proceedings of the
6th Annual European Symposium on Algorithms,
pages 283–294, 1998.

[24] L. Lamport. Paxos made simple. ACM SIGACT
News, 32(4):18–25, 2001.

[25] P. Levis, N. Patel, D. Culler, and S. Shenker. Trickle:
A self-regulating algorithm for code propagation and
maintenance in wireless sensor networks. First
USENIX/ACM Symposium on Networked Systems
Design and Implementation, 2004.

[26] C. Livadas and N. Lynch. A reliable broadcast scheme
for sensor networks. Technical Report
MIT-LCS-TR-915, MIT CSAIL, 2003.

[27] N. Lynch. Distributed Algorithms. Morgan Kaufman,
1996.

[28] K. Mechitov, S. Sundresh, Y-M. Kwon, and G. Agha.
Cooperative tracking with binary-detection sensor
networks. Technical Report UIUCDCS-R-2003-2379,
University of Illinois at Urbana-Champaign, 2003.

[29] R. M. Metcalfe and D. R. Boggs. Ethernet:
distributed packet switching for local computer
networks. Commun. ACM, 19(7):395–404, 1976.

[30] CMU Monarch. The CMU Monarch Project’s Wireless
and Mobility Extensions to NS, 1998.

[31] K. Nakano and S. Olariu. Uniform leader election
protocols in radio networks. In ICPP ’02: Proceedings
of the 2001 International Conference on Parallel
Processing, pages 240–250. IEEE Computer Society,
2001.

[32] D. Niculescu and B. Nath. Ad hoc positioning system
(APS) using AOA. IEEE INFOCOM The Conference
on Computer Communications, 22(1):1734–1743, 2003.

[33] D. Niculescu and B. Nath. DV based positioning in ad
hoc networks. Kluwer journal of Telecommunication
Systems, 22(1–4):267–280, 2003.

[34] J. Polastre and D. Culler. Versatile low power media
access for wireless sensor networks. The Second ACM
Conference on Embedded Networked Sensor Systems
(SENSYS), pages 95–107, 2004.

[35] N. Santoro and P. Widmayer. Time is not a healer. In

Proceedings of the 6th Annual Symposium on
Theoretical Aspects of Computer Science, pages
304–313. Springer-Verlag, 1989.

[36] N. Santoro and P. Widmayer. Distributed function
evaluation in presence of transmission faults. Proc. Int.
Symp. on Algorithms (SIGAL), pages 358–367, 1990.

[37] Crossbow Technology. Mica2. www.xbow.com/
Products/Wireless Sensor Networks.htm.

[38] B. S. Tsybakov and V. A. Mikhailov. Free synchronous
packet access in a broadcast channel with feedback.
Prob. Inf. Transmission, 14(4):1178–1186, April 1978.

[39] T. van Dam and K. Langendoen. An adaptive
energy-efficient MAC protocol for wireless sensor
networks. The First ACM Conference on Embedded
Networked Sensor Systems (SENSYS), pages 171–180,
2003.

[40] K. Whitehouse. The design of Calamari: an ad-hoc
localization system for sensor networks. Master’s
thesis, U.C. Berkeley, 2002.

[41] D. E. Willard. Log-logarithmic selection resolution
protocols in a multiple access channel. SIAM Journal
of Computing, 15(2):468–477, 1986.

[42] A. Woo, T. Tong, and D. Culler. Taming the
underlying challenges of multihop routing in sensor
networks. The First ACM Conference on Embedded
Networked Sensor Systems (SENSYS), pages 14–27,
2003.

[43] A. Woo, K. Whitehouse, F. Jiang, J. Polastre, and
D. Culler. Exploiting the capture effect for collision
detection and recovery. The Second IEEE Workshop
on Embedded Networked Sensors (EmNetS-II), May
2005.

[44] W. Ye, J. Heidemann, and D. Estrin. An
energy-efficient mac protocol for wireless sensor
networks. In Proceedings of the 21st International
Annual Joint Conference of the IEEE Computer and
Communications Societies (INFOCOM), 2002.

[45] J. Zhao and R. Govindan. Understanding packet
delivery performance in dense wireless sensor
networks. The First ACM Conference on Embedded
Networked Sensor Systems (SENSYS), pages 1–13,
2003.

