Fault-Tolerance in Storage-Centric Systems

Dissertation submitted for the degree of
“Doctor of Philosophy”
by

Gregory V. Chockler

Submitted to the Senate of the Hebrew University in Jerusalem (2003)

August 11, 2004

This work was carried out under the supervision of
Prof. Dahlia Malkhi.

Contents

2.1
2.2

2.3

4.1
4.2
4.3
4.4

1 Introduction
1.1 Overview of the main results
1.1.1 Universal service replication
1.1.2 The communication vs. resilience tradeoff for the
NR-arbitrary model o oo
1.1.3 Fault-tolerant CORBA using a storage-centric paradigm
2 Related Work

The Consensus Problem L.
Consensus with Benign Faulty Storage and Infinitely Many Clients
2.2.1 SAN Technology

Mutual Exclusion in Time-Based Shared-Memory Environments

2.4 Implementing Fault-Tolerant Objects from Byzantine Fault-Prone Storage

2.5 Consensus with Byzantine Fault-Prone Storage

2.6 Fault-Tolerant CORBA
3 The Model

3.1 The failure modes

3.2 Accessing objects in the presence of non-responsive failures
I Tolerating Benign Failures

Universal Service Replication with Benign Faulty Storage'

Introduction
System model
The Ranked Register

The Consensus implementation

!This chapter is based on the PODC’02 paper by Chockler and Malkhi [CM02].

10
11
12
13
15
15
15

19
20
20

23

4.4.1 Consensus using a ranked register object 31

4.5 Implementing a ranked register object00 34
4.5.1 A single ranked register object oL 34
4.5.2 A fault-tolerant construction of a ranked register object for NR-Crash 36
4.6 Lower Bounds 38
4.6.1 The necessity of Q(y/n) read-write registers for implementing a wait-
free (2-based consensus among n processes 38
4.6.2 The necessity of 2(n) read-write registers for implementing a ranked
register accessible by n processes L. 40
5 Eventually Safe Leader Election in Shared Memory Model? 45
5.1 Introduction 45
5.2 System Model 47
5.2.1 The Basic Model o 48
5.2.2 The Augmented model L. 48
5.3 The Lease Implementation 49
5.4 Leaserenewals. 53
5.4.1 NDrenewal 53
5.4.2 OND renewal 55
5.5 Leader Election 58
II Tolerating Malicious Failures 61

6 Inherent Cost of Optimal Resilience in the Presence of Malicious Storage® 63

6.1 Introduction e 63
6.2 System Model 66
6.3 The Safe Register Implementation 66
6.4 Lower Bounds 72
6.4.1 Lower Bound on WRITE Emulations 73

6.4.2 Lower Bound on READ Emulations 74

6.5 Conclusions 79
6.5.1 Allowing Readers to Modify Objects 80

7 Deconstruction Revisited 81
7.1 The safe ranked register object o oL 81

2This chapter is based on the paper by Chockler and Malkhi [CM03].
3This chapter is based on the paper by Chockler, Keidar and Malkhi [CKMO03].

vi

7.2 A write-once atomic registero 82

7.3 Consensus using a safe ranked register object 83
7.4 Implementing a safe ranked register objecto 85
7.5 Implementing a write-once atomic registero 87
IIT Realizing the Data-Centric Fault-Tolerance 91
8 Aquarius: A Storage-Centric approach to CORBA Fault-Tolerance* 93
8.1 Imtroduction 93
8.1.1 Designing Robust Services using Storage-Centric Replication 94

8.2 The Chapter Outline 95
8.3 Replication methodology o oo 95
8.3.1 Operation ordering 95

8.4 System Architecture 96
8.4.1 Overview e 96

8.4.2 Proxy 98

8.4.3 Quorum Object Adapter (QOA) 99

8.5 Implementation 100
8.5.1 Bootstrap 100

85.2 Ordering e 101

8.5.3 Handling Proxy Failures 101

8.5.4 Summary of optimizations and enhancements 103

8.6 Performance 103
8.7 A database application 105
8.8 Future Directions 105
8.9 Pseudo Code Of The Ordering Protocol 106

9 Conclusions 109

4This chapter is based on the WRSM’03 paper by Chockler, Malkhi, Merimovich and Rabi-
nowitz [CMMRO3].

Vil

viil

Abstract

This dissertation investigates the issues of reliability and high-availability in storage-centric
distributed systems where a dynamic, possibly unbounded group of transient client pro-
cesses utilize commonly accessible storage for achieving common goals (such as agreement
and coordination). The storage-centric paradigm is especially suitable for designing Internet
services featuring wide spread and high-degree of decentralization. It also faithfully mod-
els today’s state-of-the-art storage area network (SAN) technology where storage units are

directly attached to a high speed network that is accessible to clients.

Storage-centric systems are fundamentally different from traditional cluster-based envi-
ronments. There are several reasons to this of which the most important are: (1) an inherent
inability of the storage units to communicate, (2) a high dynamism of client processes, and
(3) a possibility of storage unit failures in addition to the process failures. This calls for
a completely new collection of methods and tools for achieving reliability in these systems.
The main objectives of this dissertation are: (1) to develop a comprehensive methodology for
supporting universal service replication in failure-prone storage-centric systems; (2) to inves-
tigate the inherent cost of this methodology under various failure models; and (3) to show
its feasibility by implementing a practical fault-tolerant system based on the storage-centric
design paradigm.

Our study of storage-centric environments is based on a precise mathematical formalism
given by an asynchronous shared memory model with objects prone to non-responsive (NR)
failures. According to this formalism, the shared storage units are modeled as shared objects,
and clients are modeled as processes. We consider two types of shared object failures: a non-
responsive crash (NR-crash) and non-responsive arbitrary (NR-arbitrary). The first type
models benign faulty storage servers, whereas the second type models arbitrary, possibly
malicious, storage failures. In these two failure models, we are interested in high-level object
constructions that are (1) fault-tolerant in the sense that they mask the underlying object
failures, and (2) wait-free in the sense that the high-level operations never get stuck despite

any number of process (client) failures.

In this environment, we show a new agreement protocol that extends the well-known
Paxos protocol of Lamport to support unbounded number of dynamic client processes. The
protocol is resilient to any number of client failures and to a threshold of NR-~crash or NR-
arbitrary failures. It makes use of a shared memory object, called a ranked register, that
promotes understanding and analysis of Paxos and of general coordination in distributed
systems. To support coordination among unbounded number of clients, our ranked register
object implementation relies on shared object with read-modify-write operations. The use

of strong memory objects is necessitated by the existing space lower bounds of consensus

X

implementations. It is further justified by the space complexity lower bound of ranked
register object implementations presented in this thesis.

To ensure liveness, we complement our agreement protocol with an eventually-safe leader
election primitive. For the first time, we provide an implementation of eventually-safe leader
election from the bare shared memory environment, under an eventual partial synchrony
assumption. Our implementation is simple, efficient, and provides for coordination among
unbounded number of clients while utilizing a single shared register. It introduces as a
building block the abstraction of an eventual lease that augments the time-based mutual
exclusion algorithm of Fischer with expiration and renewals.

We investigate the cost of achieving optimal resilience (¢ < n/3) by fault-tolerant wait-
free object emulations in the presence of NR-arbitrary storage failures. We show for the first
time a wait-free safe register construction utilizing n > 3¢ shared memory objects up to ¢
of which can incur NR-arbitrary failures. We also establish a fundamental tradeoff between
the failure resilience and the number of communication rounds required to construct a safe
register out of NR-arbitrary faulty objects.

Finally, we demonstrate the practical value of our replication methodology, by utilizing it
in the implementation of a CORBA fault-tolerance [Obj00] infrastructure, called Aquarius.
We evaluate the Aquarius’ performance, and demonstrate its utility by implementing a fault-
tolerant SQL database on top of it.

Chapter 1

Introduction

Only a decade ago, issues of replication, high availability and load balancing were the focus
of small, closely coupled cluster projects. Consequently, techniques for cluster management
and small replication systems are abundant. However, the advent of the Internet led to wide
spread and highly decentralized access of services and content that calls for new paradigms
and methods for reliable information storage and retrieval. One of such paradigms is a

storage-centric distributed computing.

A storage-centric system consists of a fixed collection of storage servers a threshold of
which may be faulty. Each server is responsible solely for implementing certain objects, e.g., a
single shared register, that is accessible by any number of clients. This paradigm provides for
coordination and information sharing among transient clients, possibly numerous, through
the group of servers. It does not require servers to interact among themselves, and it avoids
the complexity of failure monitoring and reconfiguration which is manifested, e.g., in group
communication middlewares [Pow96, CKV01]. Several distributed systems existing today
were designed according to the storage-centric paradigm. Examples include Fleet [MRO00],
SBQ-L [MADO02], Agile Store [LAV01], Coca [ZSR02], and [Baz00].

Another application domain where the storage-centric paradigm applies, reflects recent
advances in hardware technology that have made possible a new approach for storage sharing,
in which clients access disks directly over a storage area network (SAN). In a SAN, disks are
directly attached to a high speed network that is accessible to clients. The clients access raw
disk data, which is mediated by disk controllers with limited memory and CPU capabilities.
Clients run file system services and name servers on top of raw I/0. Since clients (or a group
of designated SAN servers) need to coordinate and secure their accesses to disks, they need
to implement distributed access control and locking for the disks. However, once a client
obtains access to a file, it accesses data directly through the SAN, thus eliminating the

slowdown bottleneck at the file system server. IBM’s Storage Tank [Bur00] is an example

1

of a commercially available SAN system that solves many of the coordination, sharing and
security issues involved with SANs. Other examples include Compaq’s Petal [LT96] and
Frangipani [TML97], Disk Paxos [GL03], and Active Disk Paxos [CM02]. The recently
developed iSCSI protocol and standard [SMST03] enhance the storage device connectivity
beyond the SAN boundaries leading to a new generation of storage-centric services with a
truly global device sharing.

The storage-centric paradigm also represents a convenient framework for adding replica-
tion to existing Internet based client /server services for improved robustness and availability.
The only necessary additions are a thin server-side wrap providing a facility for storing and
retrieving temporary ‘meta-data’ and a client-side agent for coordinating the client access
to the service replicas. In Chapter 8, we demonstrate utility of this method by employing
it for seamless integration of fault-tolerance infrastructure into an existing CORBA [Obj99]
based middleware.

This dissertation focuses on the issues of fault-tolerance and high availability in storage-
centric systems. The thesis pursued by this dissertation is (1) to develop a comprehensive
methodology for realizing universal service replication in failure-prone storage-centric sys-
tems, (2) to investigate the inherent cost of this methodology under various failure models,
and (3) to show its feasibility by implementing a practical fault-tolerant system based on

the storage-centric design paradigm.

1.1 Overview of the main results

Our study of storage-centric environments is based on a precise mathematical formalism
given by an asynchronous shared memory model with objects prone to non-responsive (NR)
failures. This formalism was first introduced by Jayanty et al. in [JCT98] (see Chapter 3 for
a detailed description). According to this formalism, the shared storage units (servers) are
modeled as shared objects, and clients are modeled as processes. From here on, we will use
the terms storage units and shared objects interchangeably.

We consider two types of shared object failures: non-responsive crash (NR-crash) and
non-responsive arbitrary (NR-arbitrary) failures. The first type models benign faulty storage
servers, whereas the second type models arbitrary, possibly malicious, storage failures. In
these two failure models, we will be interested in high-level object constructions that are (1)
fault-tolerant in the sense that they mask the underlying object failures, and (2) wait-free
in the sense that the high-level operations never get stuck despite of any number of process
(client) failures.

For the NR~crash model, all our constructions achieve the optimal resilience of ¢ < n/2

faulty objects. In the NR-arbitrary model, we also provide constructions that do not match

the optimal resilience of ¢ < n/3 faulty objects. This is motivated by the lower bounds shown
in Chapter 6 that establishes an inherent tradeoff between the resilience and the number of
communication rounds.

In addition, we will be interested in uniform constructions that do not depend on a priori
knowledge of the number of clients and/or their identities. This requirement is important as
it results in scalable constructions where the memory requirements of the underlying objects
do not grow with the number of accessing clients.

In the following, we discuss in more detail the main results and contributions of this

work.

1.1.1 Universal service replication

We provide a comprehensive framework for implementing universal service replication in
storage-centric systems with fail-prone storage accessed by possibly unbounded universe of
fail-prone clients.

At the core of the universal service replication is an agreement protocol that ensures that
the operations which access (and possibly modify) the service state are applied in the same
order at all replicas thus keeping their states consistent. However, in order to allow the agree-
ment protocol to make progress, it is well known that the environment must be eventually
synchronous for sufficiently long [FLP85]. Intuitively, this requisite enables a unique leader
to be established and enforce a decision. This separation between safety and liveness is at
the core of the Paxos approach [Lam98, Lam01la, PLL00, Lam96] to implementing universal
service replication: First, provide an implementation of an agreement protocol that never
violates safety but is prone to livelock when the system is unstable; Second, complement
the always-safe agreement protocol with an eventually-safe leader election primitive. Our
implementation of the universal service replication in storage-centric systems follows this
decomposition. Below we discuss our implementations of agreement and leader election in

more detail:

The always-safe agreement implementation

The always-safe but possibly-not-live agreement protocol of Paxos, called Synod, is a 3-phase
commit protocol [Ske81, Ske82] that uses the 1st phase to determine a proposition value, the
2nd phase to fix a decision value, and the 3rd phase to commit to it. The Synod protocol
was recently adapted for utilization in storage-centric (shared-memory) environments by
the Disk Paxos (Disk Synod) protocol [GL03]. In this work we provide several important

contributions that enhance this line of research:

e We provide an adaptation of Paxos that supports infinitely many clients;

e The memory complexity of our solution is constant;

e Our construction makes use of a shared memory object, called a ranked register, that
promotes understanding and analysis of Paxos and of general coordination in dis-

tributed systems.

e Our agreement protocol is built directly over the ranked register object, providing for

an efficient one-tier implementation;

e We prove a lower bound showing that read-modify-write objects are necessary for

supporting infinitely many clients with bounded memory.

Our agreement protocol for the NR-crash model are presented in Chapter 4. In Chapter 7,
we present an agreement protocol that tolerates NR-arbitrary object failures. The NR-crash
resilient agreement protocol matches the optimal ¢ < n/2 resilience bound. Although our
NR-arbitrary resilient agreement protocol achieves only a sub-optimal resilience of ¢ < n/5,
it is efficient in terms of both the number of communication rounds and the server memory
requirements. This is justified by the results of Chapter 6 that establish a fundamental

tradeoff between the resilience and the number of communication rounds.

The eventually-safe leader election implementation

Algorithms for mutual exclusion in the presence of failures must be based on timeliness
assumptions, as they have to be able to attain progress in spite of process failures while
executing in their critical section. However, while the shared memory literature is abundant
with time-based mutual exclusion algorithms, to the best of our knowledge, the eventually-
safe leader election was never considered in the shared memory context. In contrast, the
problem of implementing leader election/failure detectors in message-passing systems has
recently become an active research area (see e.g., [ADGFTO03]). In Chapter 5 and in [CMO03],
we address for the first time, the problem of implementing eventually-safe leader election from
the bare shared memory environment, under an eventual partial synchrony assumption. Our
implementation is simple, efficient, and provides for coordination among a priori unknown
number of clients while utilizing a single shared register.

Our approach to implementing an eventually-safe leader election introduces as a building
block the abstraction of an eventual lease. Informally, a lease is a shared object that supports
a CONTEND operation, such that when CONTEND returns ‘true’ at any process, it does not
return ‘true’ to any other process for a pre-designated period. The lease automatically
expires after the designated time period. In addition, our lease supports a RENEW operation

which allows a non-faulty leader to remain in leadership (indefinitely).

4

A lease is substantially different from a mutual-exclusion object: By its very nature, it
becomes possible for other processes to recover an acquired lease regardless of the actions of
the others, including the case that the process that held the lease has failed.

Additionally, a lease may not be safe for an arbitrarily long period. Indeed, in an eventu-
ally (or intermittently) partially synchronous settings, any lease’s pre-designated exclusion
period entails no safety guarantee during periods of asynchrony. However, when the sys-
tem stabilizes, all previous (possibly simultaneous) leases expire, and safety is recovered by
the very nature of leases. Thus, despite any transient periods of instability, leases guar-
antee that once a system becomes synchronous for sufficiently long, it will be possible for
processes to acquire exclusive leases. Renewals also provide automatic recovery: Only one
renewal emerges successfully after system stabilization, despite any unstable past periods,
and despite the possible existence of multiple simultaneous lease holders before the stability.

Our lease implementation utilizes a single wait-free shared multi-reader/multi-writer reg-
ular register [Lam86]. Such a register can be efficiently constructed out of n > 2¢ base
objects up to ¢ of which can incur NR-crash failures, and is possible (at higher cost) in the

NR-arbitrary model.

1.1.2 The communication vs. resilience tradeoff for the
NR-arbitrary model

Our construction of universal service replication in the NR~arbitrary model is efficient in
terms of communication complexity, but has a low resilience threshold of t < n/5. The same
low resilience vs. good communication complexity pattern can also be found in previous
work that constructed wait-free objects in the NR-arbitrary model. For example, the safe
register constructions of [MR00] and [JCT98] used 4¢+1 and 5¢+ 1 base objects respectively,
and the universal service construction of [CMRO1] used 6t + 1 base objects.

A natural question to ask is whether the resilience threshold ¢ < n/4 (where n is the
number of fault-prone objects) is tight in this model. Intuitively, one would hope for a
resilience bound of t < n/3. (It is easy to see that in this model it is impossible to ob-
tain better resilience than t < n/3 [MADO02]). Several previous works have addressed this
question, and have achieved better resilience by weakening the model in different ways —
by adding synchrony [Baz00]; by storing authenticated (signed) self-verifying data at the
servers [MR00, MADO2]; or by assuming that clients never fail and providing solutions that
may block indefinitely if clients do fail [MADO02, ABOO03]. However, ¢t < n/4 is the best re-
silience threshold previously achieved for wait-free constructions in the NR-arbitrary model.

In Section 6.4.1 of Chapter 6, we prove that if ¢ > n/4, then it is impossible to emulate

the WRITE operations of a wait-free register by invoking a single round of operations on

the base objects. Our proof applies to binary single-writer single-reader safe registers; the
weakest meaningful register type [Lam86].

Moreover, in Section 6.4.2 of Chapter 6, we show that if n = 3¢ + 1, then any algorithm
in which the reader does not modify the base objects’ states may need to invoke as many as
t 4+ 1 rounds of read operations on base objects in order to emulate a single READ operation
of a single-writer single-reader safe register. More generally, for any 0 < f < ¢, there is a
run in which f objects are Byzantine faulty in which the algorithm invokes min(t+ 1, f + 2)
rounds of base object operations.

The above results demonstrate that although the optimal failure threshold of ¢t < n/3
is achievable, it incurs a significant overhead in terms of communication rounds invoked by
the read and write implementations. Our universal service constructions as well as several
the constructions of [JCT98, MR00, CMRO1] avoid this overhead by lowering the resilience
threshold.

1.1.3 Fault-tolerant CORBA using a storage-centric paradigm

To demonstrate the practical value of our replication methodology, we utilize it for imple-
menting a CORBA fault-tolerance [Obj00] infrastructure, called Aquarius. The Aquarius
architecture follows the storage-centric design paradigm: each object replica is managed by
a thin wrap that provides a facility for storing and retrieving temporary ‘meta-data’ per ob-
ject. Clients access replicas through stateless proxy servers. In order to coordinate updates
to different copies of an object, proxies run a storage-centric agreement protocol utilizing
object wraps as storage units.

The Aquarius architecture puts minimal additional functionality on object replicas, who
neither communicate with one another, nor are aware of each other. Proxies are also not
heavy. Their interaction is through rounds of remote invocations on quorums of object repli-
cas. The design has several important advantages. First, it alleviates the cost of monitoring
replicas and reconfiguration upon failures. Second, it provides complete flexibility and au-
tonomy in choosing for each replicated object its replication group, failure threshold, quorum
system, and so on. In contrast, most implementations of state machine replication pose a
central total-ordering service which is responsible for all replication management (see, e.g.,
[Pow96, CKV01] for good surveys). Third, it allows support for Byzantine fault tolerance
to be easily incorporated into the system by employing an NR-arbitrary agreement protocol
combined with Masking Quorum systems [MR98] and response voting. Finally, limiting re-
dundancy only to the places where it is really needed (namely, object replication) results in
an infrastructure with only a few necessary components thus simplifying the system deploy-

ment and reducing its code complexity. (Our CORBA implementation uses 4K lines of Java

6

code for each of the client and server implementations).

The design and implementation of Aquarius is described in detail in Chapter 8.

Chapter 2

Related Work

This dissertation describes the results of our investigation into the possibility and cost of
building fault-tolerant services in storage-centric systems. The environment model that
faithfully reflects the storage-centric setting is an asynchronous shared memory system where
processes interact by means of a finite collection of shared objects some of which can be faulty.
Computing in shared memory systems with faulty objects was studied in the works by Afek
et al. [AGMT95] and Jayanti et al. [JCT98|. In particular, shared memory systems with
non-responsive object failures considered in this dissertation were introduced in [JCT98|.

Our study focuses on solving the Consensus problem [LSP82]. We discuss the Consensus

problem and approaches to its solutions in Section 2.1.

Part I of this dissertation deals with solving Consensus in storage-centric environments
with crash failure-prone storage with an emphasis on providing solutions which are oblivious
to the number of participating client processes. More specifically, Chapter 4 focuses on
guaranteeing safety of the Consensus decision in the presence of infinite number of processes.

The existing work relevant to the results in Chapter 4 is discussed in Section 2.2.

The liveness of the Consensus algorithm in Chapter 4 depends on the availability of a
failure detector of class 2 [CHT96] that guarantees that eventually all the correct processes
permanently trust the same correct process as a leader. Chapter 5 deals with implementing
an € failure detector in a partially synchronous shared memory model with a priori unknown
number of participating processes. Our implementation borrows some of its ideas from the
vast body of work on time-based mutual exclusion. We survey the prior work on this subject

in Section 2.3.

In Part II of this thesis we turn to the treatment of Byzantine fault-prone storage. The
results in Chapter 6 establish tight lower bounds on the round complexity of implementing
a wait-free safe [Lam86] register from n > 3t+ 1 base objects upto ¢ of which can suffer from

Byzantine failures. The existing work on emulating fault-tolerant objects from Byzantine

fault-prone storage is discussed in Section 2.4.

In Chapter 7 we tackle the problem of implementing Consensus with Byzantine fault-
prone storage. Our solution follows the deconstruction approach of Chapter 4 and achieves
the ¢ < n/5 failure resilience. Section 2.5 discusses the relevant existing work in this area.

Finally, Part III of this thesis shows an implementation of a storage-centric fault-tolerance
infrastructure for distributed CORBA objects. CORBA fault-tolerance has received signif-
icant attention in recent years, both in research and standardization, culminating with the
recently adopted Fault-Tolerant CORBA (FT-CORBA) standard [Obj00]. In Section 2.6 we

survey the existing work on this subject.

2.1 The Consensus Problem

The Consensus problem [LSP82] is one of the most fundamental problems in distributed
computing. Consensus is the building block for replication paradigms such as state ma-
chine replication [Lam78, Sch90], group membership (see [Pow96, CKV01]| for survey), vir-
tual synchrony [BJ87], atomic broadcast [CT96], total ordering of messages [KD00, FLS01],
etc. Consensus is known to be unsolvable in most realistic models such as asynchronous
message passing systems [FLP85] and asynchronous shared memory with read-write regis-
ters [LAA87, Her91, DDS87] if even a single process can fail by crashing. Wait-free con-
sensus is also unsolvable in shared memory environments with non-responsive object fail-
ures [JCT98| regardless of the number, size and type of the shared objects used by the
implementation. Consequently, it is unsolvable in storage-centric systems prone to non-
responsive storage failures regardless of the functionality supported by storage units.

While it is usually straightforward to guarantee the consistency of a consensus decision
alone (safety), the difficulty is in guaranteeing progress in face of uncertainty regarding
process and storage failures. The usual approaches to circumventing Consensus impossibility
include strengthening the basic model by assuming different degrees of synchrony (see e.g.,
[DDS87, DLS88, CF99]), augmenting the system with unreliable failure detectors [CT96],
and employing randomization (see a survey in [CD89, Asp03]).

Our approach to solving Consensus uses one of the most widely deployed implementations
of the state machine replication [Lam78, Sch90], the Paxos algorithm [Lam98, LamOla,
PLL00, Lam96]. At the core of Paxos is a consensus algorithm called Synod. The Synod
protocol deals with the Consensus impossibility by guaranteeing progress only when the
system is stable so that an accurate leader election is possible. This assumption is equivalent
to assuming a failure detector of class 2 [CHT96] which was shown in [CHT96] to be the
weakest failure detector that can be used to solve Consensus.

10

2.2 Consensus with Benign Faulty Storage and Infinitely
Many Clients

Chapter 4 of this dissertation focuses on guaranteeing safety of the Consensus decision in
the presence of infinite number of processes. Other results in this model and a classification
based on levels of simultaneity can be found in [MT00, GMTO01]. The work presented in this
chapter was inspired by the Disk Paxos protocol of Gafni and Lamport [GL03] that provides
an adaptation of the original Paxos algorithm to Storage Area Network (SAN) environments
(the aspects of the SAN technology that are relevant to our study are surveyed in Section 2.2.1
below).

In Disk Paxos, the protocol state is replicated at network attached disks some of which can
crash or become inaccessible. The participating processes access the state replicas directly
over a SAN. Disk Paxos assumes simple commodity disks which support only primitive read
and write operations. It supports a bounded and known number of clients, and uses disk
memory proportional to their number. In contrast, we stipulate storage that is capable of
serving higher semantics objects (such as storage servers or Active Disks [RFGNO01, AUS98]),
which provide us with the strength needed to guarantee safe decisions in face of an unbounded
number of clients. The amount of memory we utilize per storage component is fixed regardless

of the number of participating clients.

The Consensus solution in Chapter 4 first breaks the Paxos protocol using an abstraction
of a shared object called a ranked register. The idea of decomposing the Paxos protocol in
this way is due to Boichat et al. [BDFGO1]. In particular, [BDFGO1] proposes a modular
deconstruction of Paxos based on a simple shared memory register called round-based register.
Intuitively, both the round-based register and the ranked register objects encapsulate the
notion of Paxos ballots' which are used by the protocol to ensure value consistency in presence
of concurrent updates. While being in line with the general deconstruction idea of Boichat
et al., our ranked register object nevertheless provides weaker guarantees and supports a
slightly different interface. A detailed comparison is provided in Section 4.3. A different
deconstruction of the Paxos protocol is provided in [BDFGO03]. This deconstruction employs
a more abstract shared-object definition, called { Register. The { Register avoids referring
to ranks (or rounds), and thus is a higher level abstraction that does not directly include
implementation details. On the other hand, as discussed in [BDFGO03|, the ¢ Register admits
inefficient implementations. This is prevented in the specification of our ranked register

object.

!Ballots roughly correspond to rounds and to ranks in the round-based and the ranked register objects
respectively.

11

2.2.1 SAN Technology

Our work on Consensus in storage-centric systems was motivated in part by advances in
storage technology and the SAN paradigm. A storage area network enables cost-effective
bandwidth scaling by allowing the data to be transferred directly from network attached
disks to clients so that the file server bottleneck is eliminated. The Network Attached Secure
Disks (NASD) [GNAT98] of CMU is perhaps the most comprehensive joint academy-industry
project which laid the technological foundation of network attached storage systems. NASD
introduced the notion of an object storage device (OSD) which is a network attached disk
that exports variable length “objects” instead of fixed size blocks. This move was enabled
by recent advances in the Application Specific Integrated Circuit (ASIC) technology that
allows for integration sophisticated special-purpose functionality into the disk controllers.
The NASD project also addresses other aspects of the network attached disk technology
such as file system support [GNAT97], security [GGT97] and network protocols [GNA19S8].

Active Disks [RFGNO1, AUS98]| is a logical extension of the OSD concept which allows
arbitrary application code to be downloaded and executed on disks. One of the applications
of the active disks technology is enhancing disk functionality with specialized methods, such
as atomic read-modify-write, that can be used for optimization and concurrency control of

higher-level file systems.

Issues concerned with data management in SAN based file systems, such as synchro-
nization, fault tolerance and security, are investigated in [Bur00] in the context of the IBM

Storage Tank project.

Other work which addresses scalability and performance issues of network storage systems
(not necessarily concerned with network attached disks) include NSIC’s Network-Attached
Storage Device project [Con], the Netstation project [HMF98] and the Swarm Scalable Stor-
age System [HMS99]. Petal [LT96] is a project to research highly scalable block-level storage
systems. Frangipani [TMLI7] is a scalable distributed file system built using Petal. xFS:
Serverless Network File Service [ADNT96] attempts to provide low latency, high bandwidth
access to file system data by distributing the functionality of the server (e.g. cache coherence,

locating data, and servicing disk requests) among the clients.

Concurrency control was identified as one of the critical issues in the network attached
storage technology because of inherent lack of a central point of coordination [AGGO0].
The concurrency control in the Petal [LT96] virtual disk storage system and the Frangi-
pani [TML97] file system is achieved using replicated lock servers which utilize Paxos for
consistency. Consequently, Disk Paxos is a natural candidate for enabling lock management
in network attached storage systems. In this chapter we show that by enhancing network

attached disk functionality with two simple read-modify-write operations, which are realistic

12

to support with the OSD and Active Disk technologies, it is possible both to adapt Disk

Paxos to support an unbounded number of clients and to reduce its communication cost.

2.3 Mutual Exclusion in Time-Based Shared-Memory

Environments

The two most commonly used timing assumption in the context of time-based mutual ex-
clusion are the known delay model of [AT99, AT96b, AT96a| and the unknown delay model
of [AAT97]. The known delay model was first formally defined in [AT96b]. The first mu-
tual exclusion algorithm explicitly based on the known delay assumption was the famous
Fischer algorithm, which was first mentioned by Lamport in [Lam87]. In [Lam87|, another
timing based algorithm is presented. This algorithm assumes a known upper bound on time
a process may spend in the critical section.

Alur et al. consider in [AAT97] the unknown delay model: The time it takes for a process
to make a step is bounded but unknown to the processes. The paper presents algorithms
for mutual exclusion and Consensus in this model. A remarkable feature of these algorithms
is their ability to preserve safety even in completely asynchronous runs. However, they
are guaranteed to satisfy progress only if the system behaves synchronously throughout the
entire run. The mutual exclusion algorithm of [LS92] combines the ideas of Fischer and
Lamport’s fast mutual exclusion algorithm [Lam87] to derive a timing based algorithm that
guarantees progress when the system stabilizes while being safe at all times. However, the
algorithm of [LS92] is not fault-tolerant.

The eventually known delay (OND) timing model considered in Chapter 5 is an extension
of a standard asynchronous shared memory model to include partial synchrony assumptions.
The OND model assumes that there exist a non-negative real number p < 1 and a positive
integer 0 such that eventually, the process hardware clock drift rate equals p, and the time
it takes for a process to complete a shared memory access is bounded by §. Note that the
OND model differs from the two delay models above as it assigns different time bounds for a
local process step and a shared memory access. This distinction is important in our case for
in a storage-centric setting, each shared object is emulated by a collection of object replicas
stored at remote servers, and therefore, every shared memory access bears the cost of a re-
mote access. The OND model is closely related to several semi-synchronous message-passing
models defined in the past. In particular, it is similar to a model with partially synchronous
processes and communication which is one of the partially synchronous models considered
in [DLS88]. It also resembles the timed asynchronous model of Cristian and Fetzer defined

in [CF99]. An interesting future direction would be to provide a formal treatment of the

13

OND model-based algorithms within the existing and emerging real-time modeling frame-
works such as [AL94], or the Timed I/O Automata (TIOA) model of [DKKV03, KLSV04].

As far as we know the (OND) model was never considered in the shared memory con-
text. Most of the existing time-based mutual exclusion algorithms are either not fault-
tolerant [AT96b, AT96a], or resilient only to the timing failures [LS92, AAT97]. The fault-
tolerant (wait-free) timing based algorithms of [AT99] are not suitable for the OND model
as they might violate safety and/or liveness even during synchronous periods if the delay
constraints do not hold right from the beginning of the run.

Other properties that are of interest to us is the ability of timing based algorithms to
support exclusion among arbitrarily many client processes and to work with weaker regis-
ters and/or a small number thereof. The latter is particularly important in failure prone
environments as in these environments the registers must be first emulated out of possibly
faulty components. In this respect the original solution by Fischer is superior to all the
other algorithms as it is based on a single multi-writer multi-reader register. In fact, as
we show in this chapter, the register is only required to support regular semantics (in the
sense of [SPW03]), and hence may be emulated efficiently even in a message passing setting.
This solutions was therefore chosen as a basis for our lease implementation. The algorithms
of [LS92] and [LS92] are also oblivious to the number of participants and use two and three
shared atomic registers respectively.

The goodness of timing based mutual exclusion algorithms are frequently assessed in
terms of their performance in contention free runs. In particular, a good algorithm is ex-
pected to avoid delay statements when there are no contention. The performance of the
timing based algorithms under various levels of contention is analyzed in [GMO02]. The pa-
per examines (both analytically and in simulations) the expected throughput of timed based
mutual exclusion algorithms under various statistical assumptions on the arrival rate and
the service time. The question of further optimizing our solutions for contention free runs is
left for future research.

The eventually accurate leader election primitive in Chapter 5 is constructed on top of
light-weight lease objects which are useful synchronization primitives in their own right.
Gray and Cheriton were the first to employ leases in [GC89] for constructing fault-tolerant
distributed systems. Lampson advocates in [Lam96, Lam01b] the use of leases to improve the
Paxos algorithm. Boichat et al. [BDGO02] introduce asynchronous leases as an optimization
to the atomic broadcast algorithms based on the rotating coordinator paradigm. Chockler et
al. [CMRO1] show a randomized backoff based algorithm for implementing leases in a setting
similar to the OND model of this chapter. However, the algorithm of [CMRO01] guarantees
progress only probabilistically, and relies on shared objects that can measure the passage

of time. Finally, Cristian and Fetzer [CF99] show an implementation of leases in timed

14

asynchronous message passing systems.

2.4 Implementing Fault-Tolerant Objects from Byzan-

tine Fault-Prone Storage

The results in Chapter 6 establish tight lower bounds on the round complexity of implement-
ing a wait-free safe [Lam86] register from n > 3t 4+ 1 base objects upto ¢ of which can suffer
from Byzantine failures. Martin et al. showed in [MADO02| that n > 3t + 1 base objects
are necessary to implement a 1-writer-1-reader safe register. However, t < n/4 was the best
resilience threshold previously achieved for wait-free constructions in data-centric models
with Byzantine fault-prone storage: The wait-free safe register constructions of Malkhi and
Reiter [MRO0], and that of Jaynti et al. [JCT98] are resilient to at most n/4 and n/5 Byzan-
tine base object failures respectively. Other works achieved better resilience by weakening
the model in different ways — by adding synchrony [Baz00]; by storing authenticated (signed)
self-verifying data at the servers [MR00, MADO02]; or by assuming that clients never fail and
providing solutions that may block indefinitely if clients do fail [MAD02, ABOO03].

2.5 Consensus with Byzantine Fault-Prone Storage

In Chapter 7 we turn to implementing Consensus with Byzantine fault-prone storage. Our
solution follows the deconstruction approach of Chapter 4: It employs a Paxos-like agreement
protocol based on a weaker variant of ranked register object combined with an unreliable
failure detector of class €2. The resulting algorithm tolerates upto t < n/5 Byzantine faulty
storage components. This result improves the Consensus algorithm in [CMRO01] that required
n > 6t + 1 storage servers. The Byzantine Paxos protocol by Castro and Liskov [CL02] (see
also [LamO01b]) achieves the optimal failure resilience of t < n/3. However, their algorithm
incurs the cost of three message delays to reach consensus in stable runs. In contrast, our
algorithm when transformed to a message-passing model incurs only two message delays in
stable runs thus matching the lower bound of [KR03]. The recent work [GV04] suggest that

this resilience vs. round complexity tradeoff is inherent.

2.6 Fault-Tolerant CORBA

CORBA fault-tolerance has received significant attention in recent years, both in research
and standardization, culminating with the recently adopted Fault-Tolerant CORBA (FT-
CORBA) standard [Obj00]. The existing fault-tolerant CORBA implementations rely on

15

group communication services, such as membership and totally ordered multicast, for sup-
porting consistent object replication. The systems differ mostly at the level at which the
group communication support is introduced. Felber classifies in [Fel98] existing systems
based on this criterion and identifies three design mainstreams: integration, interception and
service. Below we briefly discuss these approaches and give system examples.

With the integration approach, the ORB is augmented with proprietary group commu-
nication protocols. The augmented ORB provides the means for organizing objects into
groups and supports object references that designate object groups instead of individual ob-
jects. Client requests made with object group references are passed to the underlying group
communication layer which disseminates them to the group members. The most prominent
representatives of this approach are Electra [LM97] and Orbix+Isis [[ON94].

With the interception approach, no modification to the ORB itself is required. Instead,
a transparent interceptor is over-imposed on the standard operating system interface (sys-
tem calls). This interceptor catches every call made by the ORB to the operating system
and redirects it (if necessary) to a group communication toolkit. Thus, every client opera-
tion invoked on a replicated object is transparently passed to a group communication layer
which multicasts it to the object replicas. The interception approach was introduced and
implemented by the Eternal system [MMSN98].

With the service approach, group communication is supported through a well-defined
set of interfaces implemented by service objects or libraries. This implies that in order for
the application to use the service it has to either be linked with the service library, or pass
requests to replicated objects through service objects. The service approach was adopted by
Object Group Service (OGS) [FGS98, Fel98].

Among the above approaches, the integration and interception approaches are remarkable
for their high degree of object replication transparency: It is indistinguishable from the point
of view of the application programmer whether a particular invocation is targeted to an
object group or to a single object. However, both of these approaches rely on proprietary
enhancements to the environment, and hence are platform dependent: with the integration
approach, the application code uses proprietary ORB features and therefore, is not portable;
whereas with the interception approach, the interceptor code is not portable as it relies on
non standard operating system features.

The service approach is less transparent compared to the other two. However, it offers
superior portability as it is built on top of an ORB and therefore, can be easily ported to
any CORBA compliant system. Another strong feature of this approach is its modularity.
It allows for a clean separation between the interface and the implementation and therefore
matches object-oriented design principles and closely follows the CORBA philosophy.

Two more recent proposals, Interoperable Replication Logic (IRL) [BM03] and the CORBA

16

fault-tolerance service (FTS) of [FH02], do not clearly fall in any one of the above categories.
IRL [BMO03] proposes to confine the replication logic support (such as total ordering, mem-
bership, etc.) within a separate tier for which stronger timing properties can be assumed
or enforced. This decouples the replication support from dealing with asynchrony inherent
to wide area network environment thus removing constraints on individual object replica
placement. IRL provides for high degree of modularity and transparency by allowing the
replication support to be introduced and evolved with only minimal changes to the existing
clients and object implementations. Aquarius borrows the idea of the three tier architecture
from IRL. However, in contrast to IRL, the middle tier of Aquarius consists of independent
entities that are not aware of each other and do not run any kind of distributed protocol
among themselves. The advantages of this architecture are further discussed in Section 8.5.

The core idea of the FTS [FHO02] proposal is to utilize the standard CORBA’s Portable
Object Adaptor (POA) for extending ORB with new features such as fault-tolerance. In par-
ticular, FTS introduces a Group Object Adaptor (GOA) which is an extension of POA that
provides necessary hooks to support interaction of the standard request processing mech-
anism and an external group communication system. The resulting architecture combines
efficiency of the integration approach with portability and interoperability of the service ap-
proach. Aquarius utilizes the object adaptor approach for implementing the server side of

the replication support (see Section 8.5).

17

18

Chapter 3

The Model

We consider an asynchronous shared memory system consisting of processes interacting with
each other by means of a finite collection of shared objects, O, ..., O,. Objects and processes
are modeled as I/O automata [LT89]. Every shared memory object has an initial state and
a sequential specification defining the object’s behavior when it is accessed sequentially. A
sequence of operations on a shared object is legal if it belongs to the sequential specification of
that object. E.g., a sequence of operations on a read/write shared object is legal if each read
operation returns the value written by the most recent write operation if such exists, or an
initial value otherwise. Processes and objects are modeled as state machines. A concurrent
system is a composition of a collection of process and object state machines. The state of a
concurrent system is a vector of states, reflecting the states of the processes and objects in

the system.

Operations on memory objects have non-zero duration, commencing with an invocation
and ending with a response. The event invoke(P;, op, O;) (respond(P;,res,O;)) models the
invocation (resp. response) of an operation op on an object O; by a process P,. A run
of a concurrent system is a sequence (finite or infinite) of alternating states and events
Spe1S189€s . .. such that: (1) s is an initial state; and (2) s;, @ > 0, is the result of applying
e; to each component of s;_;.

A history of a given run « is the subsequence of events in «, the history of an object
O; in « is the subsequence consisting of only the invocations and respond events of Oj,
and the history of a process P; in « is the subsequence consisting of only the invocations
and respond events of P;. An invocation request I = invoke(P;,op,O;) in « is said to be
complete in o, if o includes its matching respond(P;, res, O;) event. Otherwise, I is said to
be incomplete in ov. An event e is said to be enabled in a state s if there is a transition from
s labeled with e. A run is fair if every event that is continuously enabled, eventually occurs.

A run « is called well-formed if the history of every process P; in « consists of alternating

19

invocations and matching responses, beginning with an invocation. A run « is called weakly
well-formed if for every process P; and object O;, the history of P; in « consists of alternating
invoke(P;, op, O;) and respond(P;, res, O;) events, beginning with invoke(P;, op, O;).

In the rest of this dissertation, we consider only well-formed, or when multiple object
replicas need to be accessed in parallel, weakly well-formed runs (see Section 3.2 below). In

addition, fair runs will be assumed in the proofs of liveness properties.

3.1 The failure modes

Processes may fail by stopping (crashing). The implementation should be wait-free in the
sense that the progress of each non-faulty process should not be prevented by other processes
concurrently accessing the memory nor by failures incurred by other processes. The shared
memory objects may suffer two types of failures [JCT98]: non-responsive crash (NR-crash)
and non-responsive arbitrary (NR-arbitrary) failures. An object that incurs a NR-crash
failure behaves correctly until it fails, and once it fails it never responds to any invocation.
An object that incurs a NR-arbitrary exhibits completely unrestricted behavior. Such an

object may fail to respond to an invocation, or may respond with an arbitrary value.

3.2 Accessing objects in the presence of non-responsive

failures

A process invoking an operation on an object remains blocked until the object responds.
Thus, if a process is restricted to a single thread of control, when it invokes an operation
on an object that fails to respond, the process remains blocked indefinitely. This makes
it impossible to construct fault-tolerant implementations in the presence of non-responsive
object failures. To circumvent this problem, we allow processes to consist of more than one
thread of control. A common object access pattern (used throughout this dissertation) is to
invoke an operation op concurrently on each object in a set S, and then wait for some of the
invoked objects to respond. This can be done by having a main thread spawn off additional
threads to handle the invocations of op on the different objects. In the rest of this dissertation,
we omit the details of implementing concurrent object invocations using multiple threads,
and simply say that a process invokes an operation on multiple objects. Although multi-
threading allows a process to initiate several invocations concurrently on different objects,
a process is still not allowed to initiate more than one invocation concurrently on the same
object: i.e., each run is required to satisfy the weak well-formedness requirement above.

Note that due to asynchrony, a process cannot know the current status of invocations

20

that were initiated in separate threads until they return. That is, when a process P; spawns
a thread t; to invoke an operation op on an object O; the following three situations are
indistinguishable to P;: (1) the invoke event has not yet occurred (because ; is slow); (2)
invoke(P;, op, O;) has occurred, but O; did not yet respond (because O; is slow); and (3) O;
has failed.

21

22

Part 1

Tolerating Benign Failures

23

Chapter 4

Universal Service Replication with

Benign Faulty Storage!

4.1 Introduction

In this chapter we present a solution for universal service replication using a storage-centric
approach. In this approach, a highly available service is implemented by a replicated set of
servers, a threshold of which may be faulty. Each server is responsible solely for implementing
certain objects, e.g., a single shared register, that is accessible by any number of clients.
Our paradigm provides for coordination and information sharing among transient clients,
possibly numerous, through the group of servers. It does not require servers to interact
among themselves, and it avoids the complexity of failure monitoring and reconfiguration
which is manifested, e.g., in group communication middlewares [Pow96, CKV01].

From here on, we refer to shared storage units in our storage-centric system simply as
objects. As in many other distributed settings, a fundamental enabler in this environment for
clients to coordinate their actions is an agreement protocol. It is well known that in order to
solve agreement in a non-blocking manner three phases are needed [Ske81, Ske82|. This leads
to the usage of the Paxos protocol [Lam98, Lam0la, PLL00, Lam96] and its variants, as is
done, e.g., in Petal [LT96] and Frangipani [TML97|. Briefly, the Paxos protocol is a 3-phase
commit protocol that uses the 1st phase to determine a proposition value, the 2nd phase to
fix a decision value, and the 3rd phase to commit to it. The Paxos protocol was recently
adapted for utilization in the shared-memory model in the Disk Paxos protocol [GLO03]. In

this work we provide several important contributions that enhance this line of research:

e We provide an adaptation of Paxos that supports infinitely many clients;

!This chapter is based on the PODC’02 paper by Chockler and Malkhi [CM02].

25

e The memory complexity of our solution is constant;

e Our construction makes use of a new shared memory object, called a ranked register,
that promotes understanding and analysis of Paxos and of general coordination in

distributed systems.

e Our agreement protocol is built directly over the ranked register object, providing for

an efficient one-tier implementation.

Of the above contributions, the most tangible one is the extension to support infinitely
many clients. Both the original Paxos protocol and its Disk variant are geared toward a
fixed and known number of clients. In particular, in Disk Paxos, each client must use a pre-
designated memory to write values, and must read the values written by all other potential
clients. Consequently, adding new clients to the system is a costly operation that involves
real-time locking [GLO03]. Also, the complexity of memory (disk) operations is linear in the
number of clients.

In contrast, our solution is ignorant of the number of participating clients and their
identities. In its core, it consists of a Paxos-like consensus algorithm built over a ranked
register object, combined with an unreliable leader oracle which is a failure detector of class
Q [CHT96]. It utilizes read-modify-write shared objects to support unbounded number of
clients. Our use of strong memory objects is justified by the result in Sections 4.6.1 and 4.6.2:
In Section 4.6.1, we show that Q(y/n) n-writer-n-reader registers are required to implement
a wait-free n-process consensus in an asynchronous shared memory system augmented with
a failure detector in €; and the lower bound in Section 4.6.2 proves that at least 2(n) shared
n-writer-n-reader registers are required to implement the ranked register object in failure-free
runs. Hence, to circumvent these lower bounds and provide a solution which is independent
of the number of participating clients, we employ read-modify-write memory objects.

Note that the strengthened memory model is justified in practice. First, servers may
support arbitrarily complex object semantics, and as for disks, this approach is motivated
by recent development in controller logic that enhances the functionality of disks for SAN
and provide for Active Disks, capable of supporting stronger semantics objects (see, e.g.,
[GNA98]). In particular, specialized functions that require specific semantics not normally
provided by drives can be provided by remote functions on Active Disks. Examples include
a read-modify-write operation, or an atomic create that both creates a new file object and
updates the corresponding directory object. Such advanced operations are already used for
optimization of higher-level file systems such as NFS on NASD [GNAT97].

The existence of strong shared memory objects does not obviate the need for an agreement

protocol. Admittedly, if we had even one reliable read-modify-write object, we could leverage

26

coordination off it to solve agreement, as shown by Herlihy in [Her91]. However, objects
stored by servers or disks could become unavailable. Unfortunately, it is impossible to use a
collection of fail-prone read-modify-write objects to emulate a reliable one [JCT98]. Hence,
our construction is necessarily more involved. It should be noted that using a collection of
shared objects also has the benefit beyond high availability. Even in the case that disks are
considered reliable, distributing client accesses among multiple objects prevents unnecessary
contention. Hence, our solution provides for both high availability, and for load sharing

among storage servers.

Our solution first breaks the Paxos protocol using an abstraction of a shared object
called a ranked register, which is driven by a recent deconstruction of Paxos by Boichat et
al. in [BDFGO1]. (We compare our ranked register object with the round-based register
of [BDFGO1] in Section 4.3). Briefly, a ranked register object supports rr-read and rr-write
operations that are both parameterized by a rank whose values are taken from a totally
ordered set fixed in advance (e.g., the Paxos ballots are integers). The main property of this
object is that a rr-read with rank r; is guaranteed to “see” any completed rr-write whose
rank 7y satisfies r; > r9. In order for this property to be satisfied, some lower ranked rr-write
operations that are invoked after a rr-read has returned must abort. Armed with this ab-

stract shared object, we show the following two constructions:

1. We provide a simple implementation of Paxos-like agreement using the abstraction of one
reliable shared ranked register object that supports infinitely many clients. Briefly, in these
implementations a participating client chooses a (unique) rank, rr-read s the ranked register
with it, and then writes the ranked register either with the value it read (if exists) or with
its own input. If the rr-write operation succeeds (i.e., it does not abort), then the process

decides on the written value. Else, it retries with a higher rank.

2. The reliable shared ranked register object cannot be supported for an unbounded number
of clients using only finite read/write memory (proof is provided in Section 4.6.2). Further-
more, no single fail-prone object may implement it. Therefore, we provide an implementation
of a ranked register object shared among an unbounded number of clients. The implemen-
tation employs a collection of read-modify-write registers, of which a threshold may become
non-responsive. The fault tolerant emulation performs each rr-read or rr-write operation
on a majority of the disks, and takes the maximally ranked result as the response from an
operation. The number of objects required for the emulation is determined only by the level

of desired fault tolerance, regardless of the number of participating clients.

27

Our approach is readily implementable in a SAN with Active disks. To this extent, it may
serve as an important specification of the kind of functionality that is desired by SAN clients
and that disk manufacturers may choose to provide. Additionally, our approach faithfully
represents another realistic setting, the classic client-server model, with a potentially very
large and dynamic set of clients. This is the setting for which scalable systems like the Fleet
object repository [MRO0] were designed. We advocate the storage-centric approach in more

detail in two recent position papers [CMDO03, Mal02].

4.2 System model

We consider an asynchronous shared memory system consisting of a countable collection of
client processes interacting with each other by means of a finite collection of shared objects.
The processes are designated by numbers 1,2,.... Clients may fail by stopping (crashing).
The implementation should be wait-free in the sense that the progress of each non-faulty
client should not be prevented by other clients concurrently accessing the memory as well
as by failures incurred by other clients. The failure model for the shared memory objects if
NR-crash.

According to [JCT98], wait-free consensus is impossible in such a setting. This result
holds regardless of the number, size and type of the shared objects used by the implementa-
tion. Therefore, similar to the Paxos approach, we overcome this impossibility by augmenting
the system with a leader oracle. The oracle guarantees the eventual emergence of a unique
non-faulty leader, though when this happens is unknown to the clients themselves.

We employ a distributed Boolean leader oracle £ defined as follows: Each process i
accesses L via its local module £; whose output at any given time is a Boolean value (true
or false) indicating whether the process i trusts itself as a unique leader. A Boolean leader

oracle guarantees that the following property holds eventually:

Property 1 (Unique Leader). There exists a correct process i such that L; permanently

outputs true, and for each process j # i, L; permanently outputs false.

Note that Boolean leader oracles differ from more common Q[CHT96, LH94] failure
detectors since the output of a failure detector in €2 is the trusted process identifier and not
a Boolean value. Although, it is easy to see that the two classes are equivalent in a shared

memory environment with read/write registers?, Boolean leader oracles are nevertheless,

2L is derived from D € Q by having each process i to output true if the D; outputs i, and false otherwise.
In the opposite direction, D €) can be simulated from £ by having each process i such that £; outputs
true, to write i to a shared multi-writer/multi-reader read/write register X, and output the value read from
X.

28

more suitable for our setting as they may have anonymous client processes whose number is

unlimited and unknown.

4.3 The Ranked Register

Our Consensus object construction (see Section 4.4) employ a special type of shared memory
object, called a ranked register, which for now we assume is failure-free. In Section 4.5, we
show how to implement a fault tolerant ranked register object.

Intuitively, the ranked register object encapsulates the notion of ballots which are used
by the Paxos protocol to ensure value consistency in presence of concurrent updates. The
idea of modeling the Paxos protocol this way is due to [BDFGO1]. However, while the
ranked register object interface bears similarities to the round-based register of [BDFGO1],
its specification is weaker than that of [BDFGO01]. We discuss the differences below. The
register provides a clean isolation of the essential properties of Paxos into a well-defined
building block, thus simplifying reasoning about the protocol behavior.

We now give a formal specification of the ranked register object. Let Ranks be a totally
ordered set of ranks with a distinguished initial rank ry such that for each r € Ranks, r > ry;
and Vals be a set of values with a distinguished initial value vy. We also consider the set of
pairs denoted RVals which is Ranks x Vals with selectors rank and value. A ranked register
is a multi-reader, multi-writer shared memory object with two operations: rr-read(r); by
process i, r € Ranks, whose corresponding response is value(V');, where V' € RVals. And
rr-write(V'); by process i, V' € RVals, whose reply is either commit; or abort;. Note that in
contrast to a standard read/write register interface, both rr-read and rr-write operations on
a ranked register take a rank as an additional argument; and its rr-write operation might
abort, whereas the write operation on a standard read/write register always commits (i.e.,
returns ack).

In the following discussion we often say that a rr-read operation R returns a value V/
meaning that the register responds with value(V) in response to R. We also say that
a rr-write operation W commits (aborts) if the register responds with commit (abort) in
response to W.

For simplicity, we assume that each run starts with Wy = rr-write({ro, L)) which commits.
Furthermore, we will restrict our attention to runs in which invocations of rr-write on a ranked
register use unique ranks. More formally, we will henceforth assume that all runs satisfy the

following:

Definition 1. We say that a run satisfies rank uniqueness if for every rank r € Ranks, there

exists at most one v € Vals and one process i such that rr-write((r,v)); is invoked in the

29

run.

In practice, rank uniqueness can be easily ensured by choosing ranks based on unique
process identifier and a sequence number. The main reason we use this restriction is to
simplify establishing the correspondence between the values written with specific ranks and
the values returned by the rr-read operation.

We now give a formal specification of the ranked register object. We start by introducing

the following definition:

Definition 2. We say that a rr-read operation R = rr-read(rs); sees a rr-write operation

W = rr-write((r1,v)); if R returns (r',v") where r' > ry.
The ranked register object is required to satisfy the following three properties:

Property 2 (Safety). Every rr-read operation returns a value and rank that was written in
some rr-write invocation. Additionally, let W = rr-write((ry,v)); be a rr-write operation that

commits, and let R = rr-read(ry);, such that ro > r1. Then R sees W.

Property 3 (Non-Triviality). If a rr-write operation W invoked with the rank ry aborts,
then there exists a rr-read (rr-write) operation with rank ro > 11 which is invoked before W

returns.

Property 4 (Liveness). If an operation (rr-read or rr-write) is invoked by a non-faulty

process, then it eventually returns.

Allowing rr-write to abort sometimes is crucial for its implementability. Suppose that a
rr-read operation with rank r returns a value written by a rr-write operation with a rank
r'" < r. Later, when a subsequent rr-write with a rank »' < r” < r is invoked, it must abort
due to this rr-read.

Also note that our ranked register object specification is very weak: In particular, it
allows in some situations for rr-write operation to commit even though there exists another
previously committed rr-write with a higher rank. The reason for that not being a problem
stems from the way the ranked register object is used by the Consensus implementation in
Section 4.4.1. In particular, each process in our Consensus implementation invokes rr-write
only after it invokes rr-read with the same rank and this rr-read returns. Thus, the ranked
register Safety property ensures that in every finite execution prefix, each value written
by a committed rr-write must be returned by one of the rr-read operations with a higher
rank if such exist. Consequently, in each run of the Consensus implementation, any rr-write
operation, which is invoked after rr-read with a higher rank has returned, would necessarily

abort.

30

Our specification of ranked register is weaker compared with the round-based register of
[BDFGO1]. The round-based register uses notions of partial operation ordering in the defini-
tion of the write-commit property (“if write(k, v) commits, and no subsequent write(k’, v')
with £ > k and v' # v is invoked, then any read(k”) that commits, commits with v if
k" > k7, stressed text added here for clarity). To see that this definition is too strong, con-
sider the following scenario. Suppose that a write w; = write(ky,v;) is invoked and is still
in progress when another write is invoked, wy = write(ky, vo), with k; > ko, v # vy. In this
case, wo may commit. However, a subsequent read may “see” wy, and the value of w; may
be returned, contradictory to the requirement. In fact, the distributed implementation of
round-based register in [BDFGO1] does not prevent this. Moreover, it does not seem possible
to prevent this in our setting. Finally, we should note that just by dropping ‘subsequent’
from the specification results in different problems. It is our view that there is no easy way
to form the ranked register object specification using operation ordering, and hence, the

specification above is qualitatively different from that of the round-based register.

4.4 The Consensus implementation

In this section we present the implementation of Consensus based on the ranked register
object defined in the previous section. The algorithms in this section use the ranked register
object as a black box.

In addition to a shared ranked register, our algorithms also employ atomic shared regis-
ters. It should be noted that these objects can be implemented in our models in a similar
manner to the ranked register implementation, and hence we omit their explicit construc-

tions.

4.4.1 Consensus using a ranked register object

We now outline an agreement protocol which employs a shared ranked register object. The
pseudocode of the Consensus implementation is depicted in Figure 4.1. Each process
iterates through the following steps until the decision is reached: First, ¢ checks whether
some process has decided and written the agreement value into the decision register. If yes,
this value is returned. Otherwise, 7 calls a local procedure, chooseRank which is assumed
to output monotonically increasing values r € Ranks, and then waits until the output of £;
becomes true. Once this happens, the local DECIDE routine is invoked. It takes as arguments
¢’s initial value and the chosen rank. It returns the agreement value or aborts. The DECIDE
routine is guaranteed to return an agreement value at the latest when a non-faulty leader

has been elected and allowed to force a decision (i.e., Property 1 holds).

31

Shared: Ranked registers rr initialized by rr-write((rg, L)) which commits;
Regular multi-writer /multi-reader register decision,

with values in RVals, initialized by write((ro, L))
Local: V' € RValsU {abort}, r € Ranks;

Process 7:

propose(v), Vals — Vals
T4 T0;
while(true) do
V' <« decision.read();
if (V.ivalue # L)
return V.value;
if (£; = true) then
r < chooseRank(r);
V' <~ DECIDE((r, v));
if (V' # abort)

return V.value;

od

Function DECIDE((r, v)), RVals — RVals U {abort}:

V < rr.ar-read(r);;

if (V.value = 1) then
Vowalue < v;

V.rank < r;

if (rr.re-write(V'); = commit) then
decision.write(V);
return V;

fi

return abort;
Figure 4.1: Consensus using a ranked register object

We now outline the correctness argument of the agreement algorithm. Recall that W is an
initialization rr-write operation, assumed to commit at the start of any execution. Ignoring

this initialization, the next lemma shows that once a consensus value commits, it remains

32

fixed as the decision value throughout the execution.

Lemma 1. For any finite execution o, let Wi = rr.rr-write((r,v1)), Wi # Wy be the
lowest ranked rr-write invocation which commits in a. Then, in any extension of a in which

W = rr.rr-write({r,v)), r > ry, is invoked, v = v;.

Proof. Our proof strategy is to build a chain of rr-write’s from W, to W, such that each W
writes the value that it reads from the preceding rr-write in the chain. We then show that
the same value is written in all of these rr-write’s by induction on the length of such chains.

Indeed, let R = rr.rr-read(r) be the rr-read corresponding to W that is executed before
W is invoked. By safety, R returns the pair (r1,w;) or a higher ranking pair (ry, wy) that was
written in some Wy, = rr-write(ry, wy). Since ry > 71, again the corresponding rr.rr-read(ry,)
returns (r;,w;) or a higher ranked written value. And so on. Eventually, we obtain a
unique chain Wy, Wy, ..., W, W, such that for each of Wy, .., W, W, the corresponding rr-read
returns the value/rank pair written by the preceding rr-write in the chain.

We now show by induction on the length & of the chain that W writes v;. If £k =1, then
R returns v, and by the agreement protocol W writes v;.

Otherwise, suppose for all chains of length < k£ it holds that the last rr-write writes v{, and
consider the chain above of length k. For Wy, the (unique) chain from Wy is Wy, W, ..., Wy.
By the induction hypothesis, W writes v;. Hence, again R reads v; and according to the

protocol, W writes v;. O
The following theorem immediately follows from Lemma 1 (and the protocol):

Theorem 1. The algorithm in Figure 4.1 guarantees that for any two processes i and j such
that propose(v); returns V' and propose(v'); returns V', V. =V'; and V is the argument of

some propose operation which was invoked in the run.
Next, we show liveness.

Theorem 2. If some correct process invokes propose, then eventually all correct processes

decide.

Proof. First note that the atomic register semantics imply that once some process decides
and completes its write operation to the decision register, all other process will eventually
read this value and decide.

Otherwise, by definition of £, there exists time 71" such that Property 1 holds at all times
t > T. Assume that decision is not written before 7. Since by the theorem precondition, at
least one correct process is taking steps after T', Property 1 implies that there exists a correct
process ¢ such that at all times ¢ > T', £, outputs true, and for all j # 7, £; outputs false.

33

By non-triviality of the ranked register object, rr-write is guaranteed to commit once it is
called with a rank which is the highest among all the ranks ever chosen by any process in the
system. Since chooseRank returns monotonically increasing ranks, such a rank is eventually
returned by chooseRank at i. Once, rr-write commits, ¢ writes the committed value to the

decision register. Once this happens, all the correct processes eventually decide. O

4.5 Implementing a ranked register object

In this section, we deal with the problem of implementing a wait-free shared ranked register
object. First, in Section 4.5.1, we specify how a single ranked register object is imple-
mented from a read-modify-write object. Second, in Section 4.5.2, we present a wait-free

self-construction of the ranked register object for the NR-Crash failure model.

4.5.1 A single ranked register object

Our shared memory model assumes the existence of atomic shared objects such as read-
modify-write registers. By this, we capture the assumption that each “disk” is capable
of accepting from clients subroutines with I1/O operations for execution, and indivisibly
performing them. The disk itself may become unavailable, and hence, the shared memory
objects it provides may suffer non-responsive crash faults. For this reason, no single read-
modify-write object suffices for solving agreement on its own (as in Herlihy’s consensus
hierarchy, see [Her91]). Rather, we first use each read-modify-write object to construct a
ranked register object (which may also incur a non-responsive crash fault), and then, use a
collection of ranked register objects to construct a non-faulty ranked register object, from
which agreement is built.

Let X = (Ranks x Ranks x Vals) U {(ro,ro, L)} with selectors rR, wR and wval. The
implementation of a ranked register object uses a single read-modify-write shared object
x € X of unbounded size whose field x.r R holds the maximum rank with which a rr-read
operation has been invoked; z.wR holds the maximum rank with which a rr-write operation
has been invoked; and x.val holds the current register value. The implementation pseudocode
is depicted in Figure 4.2. It is quite straight-forward: read returns the current value of
the register, and records its own rank. Write checks whether a higher ranking read was
invoked, aborts if yes, and if not, modifies the value of the register and records its own rank.
For clarity, invocations of read-modify-write operations rmw-readand rmw-writeare enclosed

within “lock” and “unlock” statements, to indicate that they execute indivisibly.

Lemma 2. The pseudocode in Figure 4.2 satisfies Safety.

34

Types: X = (Ranks x Ranks x Vals) U {(rg,ry, L)} with selectors 7R, wR and val
Shared: =z € X.
Initially = = (rg, ro, L)

Local: V' € RVals, status € {ack,nack}.

Process i:
rr-read (r);: Read-modify-write procedures:
lock x: rmw-read (r):
V' <= rmw-read (r) if (zrR <)
unlock z TrR <1
return V return (z.wR, x.val)
rr-write((r, v));: rmw-write(r, v):
lock z: if (xrR<rAzwR<r)
status < rmw-write(r, v) rwR 7
unlock z z.val v
if (status = ack) return ack
return commat return nack

return abort

Figure 4.2: An implementation of a single ranked register object

Proof. That a rr-read operation can only return a valid value that was actually used in
a rr-write operation or (ry, L) is obvious from the code. Now consider a rr-write operation
Wy = rr-write((ry, v1)); that commits and let Ry = rr-read(r2);, 72 > 1 be a rr-read operation
which returns (r,v). Let mw; denote the rmw-write() procedure called from within W; and
mry the rmw-read() procedure invoked within Ry. Since the read-modify-write semantics
of x ensures sequential access, mry must be sequenced after mw;. For otherwise, x.rR >
ry > 11 so that mw; returns nack and W; aborts. Thus, R, returns the tuple written by a
rmw-writeprocedure mw' which is either mw; or some rmw-writeprocedure sequenced after
mw;. Let r’, v' be the arguments passed to mw’. Then, ' > r;, since otherwise, z.wR > r; >
r’ so that the value of x remains unchanged. Moreover, by the rank-uniqueness assumption,

r" = ry implies that mw' = mw;. Therefore, (r,v) = (r',v') and either (', v") = (ry,v;), or

35

r’" > r; as needed. O
Lemma 3. The pseudocode in Figure 4.2 satisfies Non-Triviality.

Proof. According to the pseudocode, a rr-write operation W with rank r aborts if the
rmw-write() procedure w called within W returns nack. This happens if w sees z.rR > r
or z.wR > r. This is only possible if some rmw-write() procedure with rank ' > r, or a
rmw-read() procedure with rank 7' > r is sequenced before w. This could happen only as a
result of some previously returned or concurrent rr-read (rr-write) with rank »" > r (' > r).
By the rank-uniqueness assumption, no two rr-write operations are ever invoked with the
same rank. Therefore, W can abort only due to some previously returned or concurrent

rr-read or rr-write with rank r' > r as needed. O
Lemma 4. The pseudocode in Figure 4.2 satisfies Liveness.

Proof. Liveness trivially holds since both rr-read and rr-write always return something (i.e.,

the implementation is wait-free). O
We have proven the following theorem:

Theorem 3. The pseudocode in Figure 4.2 is an implementation of a ranked register object.

4.5.2 A fault-tolerant construction of a ranked register object for
NR-Crash

In this section we present a wait-free implementation of a ranked register object from ranked
register objects that may experience non-responsive crash faults. The register supports an
unbounded number of clients. Our construction utilizes n shared ranked register objects
up to [(n — 1)/2] of which can incur non-responsive crash. The pseudocode appears in
Figure 4.3. This construction is also straight-forward: Reading and writing are both done
at a majority of the ranked register objects. As for rr-write, if any of the ranked register

objects which are accessed returns abort, the operation aborts.
Lemma 5. The pseudocode in Figure 4.3 satisfies Safety.

Proof. That a rr-read operation can only return a valid value that was actually used in
a rr-write operation or (ry, L) is obvious from the code. Now consider a rr-write operation
Wi = rr-write((ry, v1)); that commits and let Ry = rr-read(r2);, 2 > 1 be a rr-read operation
which returns (r, v). Since both W and R, access at least [(n+1)/2]| ranked register objects,

there exists a single register rr, accessed by both W; and R,. Moreover, the Safety of rry

36

Shared: Ranked register objects rr;, 1 < <n
Local: Multisets S; C RVals, Sy C {commit, abort}.

rr-read (r):
Si 0
|| invoke rr-read(r) on rr; for each i;
for each returned response resp, store resp in Si;
wait until |S;| > [(n+1)/2];
(ryv)y <= (r',0") < (' 0" € Sy AT = maz i yyes, T

n

return (r, v)

rr-write((r,v)):
Sy <0
|| invoke rr-write({r,v)) on rr; for each ;
for each returned response resp, store resp in Sy;
wait until |Sy| > [(n+1)/2];
if (abort € Sy)
return abort

return commat

Figure 4.3: A fault-tolerant ranked register object construction for NR-Crash

ensures that the tuple (r',v') returned by rrg.rr-read(rs); must satisfy r' > r;. Since Ry

returns the tuple with maximum rank, » > ' > r; as needed. O
Lemma 6. The pseudocode in Figure 4.3 satisfies Non-Triviality.

Proof. According to the protocol, a rr-write operation W' = rr-write((r,v)); aborts if there
exists k such that rry.r-write({r,v)); aborts. By the Non-Triviality of rr, this can happen
only if some invocation rry.r-write((r',v")); (rry.re-read(r’);) with ' > r occur before or
concurrently to rrg.rr-write((r,v));. This can only be the case if some rr-write or rr-read

operation with rank r’ has been completed before or is concurrent to W. 0
Lemma 7. The pseudocode in Figure 4.3 satisfies Liveness.

Proof. Each rr-write or rr-read operation is guaranteed to terminate since at most [(n+1)/2]

ranked register objects are required to respond, no more than |(n — 1)/2] ranked register

37

objects can incur non-responsive crash, and each individual non-faulty ranked register object
is wait-free. m

We have proven the following theorem:

Theorem 4. The pseudocode in Figure 4.3 is a wait-free construction of a ranked register
object out of n ranked register objects such that at most |(n—1)/2]| can incur non-responsive

crash faults.

4.6 Lower Bounds

In this section we show two lower bounds on memory complexity of constructing services
from n-reader-n-writer registers. The first result shows that at least Q(y/n) are required to
implement a wait-free consensus in an asynchronous shared memory system with a failure
detector of class Q. This lower bound is a simple corollary from [FHS98|. It justifies our use
of read-modify-write objects in the wait-free consensus algorithm of Section 4.4 to support
an unbounded number of clients with constant memory consumption.

The second result proves that at least (2(n) n-reader-n-writer registers are necessary for
implementing the ranked register object used by the consensus implementation of Section 4.4.
This result justifies our use of read-modify-write objects for implementing a ranked register
object accessible by unbounded number of clients. Our prove employs the register covering
technique of Lynch and Burns [BL93]. Note that this memory bound is also tight because a
ranked register can be implemented using n 1-writer-n-reader registers using the technique
similar to the Disk Paxos protocol of Gafni and Lamport [GLO3].

4.6.1 The necessity of (2(y/n) read-write registers for implementing

a wait-free (2-based consensus among n processes

We first show that any wait-free ()-based consensus algorithm for n processes can be used
to derive an asynchronous obstruction-free consensus algorithm. The obstruction freedom
progress guarantee is defined as follows: Fix x to be a shared object and o be a sequence of

invocations and responses of x.

Definition 3 (Obstruction Freedom). o satisfies obstruction freedom if every invocation
by a correct process is complete unless it is concurrent to an incomplete invocation by a

correct process. x is obstruction-free if all its fair runs satisfy obstruction freedom.

We now show how any wait-free consensus algorithm for an asynchronous shared memory

model augmented with a failure detector of class €2 can be transformed to an asynchronous

38

obstruction-free consensus algorithm. Let A be an automaton composed of process automata
Py, ..., P,, n-reader-n-writer objects, O1,...,0,,, m > 0. We model a failure detector £ as
an abstract environment automaton whose inputs are of the form query;, and outputs are
leader(j);, where 1 < i,j < n. Each process P;, 1 <i < n interacts with £ by means of the
matching output actions query; and input actions leader(j);.

In order to obtain an asynchronous obstruction-free consensus implementation we first

introduce a collection of automata Lq,..., L,, where each L; is implemented as follows:

States: status € {idle, queried}, initially idle;

query;:
Effect:
status <— queried;
leader(j);:
Pre:
status = queried,;
J =1
EAff:
status < idle;
We then obtain an automaton A by adding automata L4, ..., L, to A so that each process

automaton P; of A is composed with L;. We prove the following:

Lemma 8. Suppose that A x L is an implementation of a wait-free consensus object for all

L € Q. Then, A implements an obstruction-free consensus object.

Proof. We first argue that A satisfies agreement and validity. Let o be a finite execution of
A. Since a failure detector of class €2 is allowed to exhibit an arbitrary behavior in a finite
execution, for every finite execution a of A, there exists a failure detector £' € € such that
a is an execution of A x L'. Since A x £ must satisfy agreement and validity for all £ € 2,
it must satisfy these two properties for A x £ as well. Hence, both agreement and validity
hold in a.

It remains to show that A satisfies obstruction freedom. Suppose to the contrary. Let a
be a fair run of A such that there exists a correct process ¢ that runs alone after some finite
prefix o of a. By assumption, process i does not decide in . We construct an execution
B of A as follows: The execution [starts with all the events of o/. It is then followed by
crash; events for all processes j # ¢ that have not yet crashed in o'. The remainder of /3

consists of all the events that occur in « after o/. Since failure detectors in €2 are allowed

39

to exhibit an arbitrary behavior in finite runs, and because eventually they are required to
permanently trust a single correct object, there exists a failure detector £ € € such that
is a run of A x L'. Since A x L satisfies wait freedom for all £ € Q, A x L' satisfies wait
freedom as well. Hence, process ¢ must decide in 5. However, a and S are indistinguishable
to process i. Consequently, since by assumption process i does not decide in «, it cannot

decide in 3 as well. A contradiction. O

We now re-state the lower bound of [FHS98]. This lower bound applies to the asyn-

chronous consensus implementation satisfying the following weak termination guarantee:

Definition 4 (Solo Termination [FHS98, JTTO00]). An object x is solo-terminating if
every finite trace of x can be extended into a fair trace o such that o satisfies obstruction
freedom (see Definition 3 above).

The lower bound of [FHS98] is as follows:

Theorem 5 (Fich, Herlihy and Shavit [FHS98]). A solo-terminating implementation

of n-process consensus requires Q(y/n) n-reader-n-writer registers.

The space complexity lower bound for a wait-free consensus in an asynchronous shared
memory system with a failure detector of class €2 is a direct consequence of Theorem 5 and

Lemma 8.

Theorem 6. A wait-free implementation of n-process consensus in an asynchronous shared
memory system augmented with a failure detector of class Q requires Q(y/n) n-reader-n-

writer registers.

Proof. By Lemma 8, there exists a shared memory preserving reduction from the obstruction-
free asynchronous consensus in an asynchronous shared memory system to the wait-free n-
process consensus in an asynchronous shared memory system augmented with a failure de-
tector of class (2. By Theorem 5, a solo-terminating implementation of n-process consensus
requires Q(y/n) n-reader-n-writer registers. Since an obstruction-free consensus implemen-
tation is also solo-terminating, it requires at least as many registers. Hence, a wait-free im-
plementation of n-process consensus in an asynchronous shared memory system augmented

with a failure detector of class €2 requires Q(y/n) n-reader-n-writer registers as well. O

4.6.2 The necessity of 2(n) read-write registers for implementing

a ranked register accessible by n processes

Our construction of a fault tolerant ranked register object requires strong (read-modify-

write) base objects. In this section we address the natural question of whether this strong

40

memory model is necessary. We prove that a ranked register object cannot be implemented
using a bounded number of atomic read /write registers (of unbounded size) in the presence of
unbounded number of clients, even if clients are failure-free. The main result of this section
is expressed in Theorem 7 below. It shows that any algorithm that implements the ranked
register object specification in a shared memory system with n processes must use at least n
atomic read/write registers. It then follows that if the number of processes is not bounded,
the number of shared read/write registers needed to implement the ranked register object is
also unbounded.

In order to prove this result, we utilize the technique of [BL93] to prove lower bounds on
the number of atomic registers needed to solve mutual exclusion. Though the proof technique
below is standard, it should be noted that there is no known direct reduction from mutual
exclusion to a ranked register object, and hence, the results of [BL93] do not apply directly
to the impossibility of constructing a ranked register object. In fact, we conjecture that the
ranked register object is strictly weaker than the mutual exclusion problem, and hence, that
no such reduction is possible.

We also note that it is possible to obtain the ranked register implementation space lower
bound by applying the result of [JTTO00], that shows that any randomized non-blocking
linearizable implementation of a perturbable object type accessible by n processes requires at
least n — 1 read-write registers® Note however, that this will result in a lower bound which
is not as tight as ours. Also, proving an object type T being perturbable requires reasoning
about all possible linearizable implementations of an object of type 17" which would obscure
the otherwise simple and intuitive argument below.

We start with some definitions. We say that two system states s and s’ are indistin-
guishable to process 7, denoted s s , if the state of process i and the values of all shared
variables are the same in s and s’. We say that process i covers shared variable z in system

state s if 7 is about to write on x in s.

Lemma 9. Suppose that there exists an algorithm that implements a ranked register using
only shared atomic read/write registers. Let s be a reachable system state in which r is the
highest rank that appears in any operation. Then a rr-write operation W = rr-write({r', v'));

by process © with r' > r must write some shared variable which is not covered in s.

Proof. Assume in contradiction that no non-covered shared variable is written by 4 in the
course of W. We construct a system execution which violates the Safety property of the

ranked register object as follows:

3The result in [JTTO0] is even more general as it holds for perturbable type implementations from any
combinations of objects in the set {resettableconsensus} U {historylessobjects}. In particular, read-write
registers are historyless objects.

41

We first run from s each process which covers some shared variable exactly one step so
that they write the shared variables they cover. Let s’ be the resulting system state.

Next, we construct an execution fragment o starting in s’ and not involving ¢ by invoking
a rr-read(r") operation R at some process j # i whose rank r” satisfies r” > r/. By the
Liveness and the Safety properties of the ranked register object, R must return a value
written by some rr-write operation with rank at most r.

We now construct another execution fragment sy which starts from s as follows: We run
¢ solo until W commits; since no higher rank appears in s, by the Non-Triviality property
W must indeed commit. By assumption, it writes only shared variables that are covered in
s. From the resulting state, we run each process which covers some shared variable exactly
one step so they overwrite everything written by ¢ in its solo run. Let s” be the resulting
state. Since s” 2 s' for all j # i, we can extend as by running a; from s”.

By the Safety property of the ranked register object, the rr-read operation R must return
the value written by W in this execution. However, it returns a value written by a rr-write

operation with rank at most r thus violating safety. A contradiction. O

We now set off to prove the lower bound. We use the following strategy: We first prove
using Lemma 10 that with any algorithm implementing the ranked register object for n > 1
processes, it is possible to bring the system to a state where at least n — 1 shared variables
are covered while running only n — 1 processes. In this state we invoke a rr-write operation
whose rank is higher than the the rank of every operation invoked so far. Since this rr-write
operation must commit (Non-Triviality), by Lemma 9, it must write to some shared variable
which has not been covered yet. This implies that another shared variable is needed in

addition to the n — 1 covered ones.

Lemma 10. Suppose that there exists an algorithm that implements a ranked register for
n > 1 processes using only shared atomic read/write registers. Let s be any reachable system
state. Then for any k, 1 < k < n —1, there exists a state sp which is reachable from s using

steps of processes 1. ..k only, such that at least k distinct variables are covered in sy.

Proof. The proof is by induction on k.

Basis: £ = 1. Let s be any system state. We first run process 1 until it returns from the
last operation invoked on 1, if any. This must happen due to the Liveness property of the
ranked register object. Let ¢ be the resulting system state.

In ¢, we let process 1 invoke a rr-write operation W whose rank is higher than the ranks
of all operations invoked so far. By Non-Triviality, W must commit. By Lemma 9, W must
write some shared variable which is not covered in state s. We then run 1 until it covers this

variable. The resulting state s; satisfies the lemma requirements.

42

Inductive step: Suppose the lemma holds for k£, where 1 < k < n — 2. Let us prove it
for £ + 1. Using the induction hypothesis, we run k processes from s until the state s is
reached where at least k distinct shared variables are covered. Starting in sj, Starting in ¢,
we run process k + 1 until the last operation invoked on k£ 4 1 returns. This must happen
due to Liveness. Let ¢ be the resulting state.

In ¢ we let process k+1 invoke a rr-write operation W whose rank is higher than the ranks
of all operations invoked so far. By Non-Triviality, W must commit. Moreover, by Lemma, 9,
W must write some shared variable which is not covered in s;. So we run k£ + 1 until it covers

this shared variable. The resulting state si,; satisfies the lemma requirements. O
We are now ready to prove the main theorem:

Theorem 7. If there exists an algorithm that implements a ranked register object for n > 1

processes, then it must use at least n shared atomic read/write registers.

Proof. Assume in contradiction that there exists an algorithm which implements a ranked
register object for n > 1 processes using n — 1 shared read/write registers.

Let s be the initial system state. Note that there are no covered variables in s. We use
the result of Lemma 10 and run n — 1 processes from s until the state s,_; is reached where
the processes cover n — 1 distinct shared variables. We then invoke a rr-write operation W
on process n whose rank is higher than the ranks of all operations invoked so far. By Non-
Triviality, W must commit. By Lemma 9, W must write some shared variable which is not

covered in s,,_;. However, all n —1 shared variables are covered in s,_;. A contradiction. [

43

44

Chapter 5

Eventually Safe Leader Election in
Shared Memory Model!

FEverything is Eventual...
The title of a story by Stephen King

5.1 Introduction

In order to allow wait-free agreement to be solved, it is well known that the environment
must be eventually synchronous for sufficiently long. Intuitively, this requisite enables a
unique leader to be established and enforce a decision. In this chapter we focus on the
problem of implementing such eventually-safe leader election from the bare shared memory
environment, under an eventual partial synchrony assumption.

Our approach introduces as a building block the abstraction of an eventual lease. In-
formally, a lease is a shared object that supports a CONTEND operation, such that when
CONTEND returns ‘true’ at any process, it does not return ‘true’ to any other process for a
pre-designated period. The lease automatically expires after the designated time period. In
addition, our lease supports a RENEW operation which allows a non-faulty leader to remain
in leadership (indefinitely).

A lease is substantially different from a mutual-exclusion object: By its very nature, it
becomes possible for other processes to recover an acquired lease regardless of the actions of
the others, including the case that the process that held the lease has failed. Additionally,
a lease may not be safe for an arbitrarily long period. Indeed, in an eventually (or inter-
mittently) partially synchronous settings, any lease’s pre-designated exclusion period entails

no safety guarantee during periods of asynchrony. However, when the system stabilizes, all

!This chapter is based on the paper by Chockler and Malkhi [CM03].

45

previous (possibly simultaneous) leases expire, and safety is recovered by the very nature
of leases. Thus, despite any transient periods of instability, leases guarantee that once a
system becomes synchronous for sufficiently long, it will be possible for processes to ac-
quire exclusive leases. Renewals also provide automatic recovery: Only one renewal emerges
successfully after system stabilization, despite any unstable past periods, and despite the

possible existence of multiple simultaneous lease holders before the stability.

Our leases achieve the following desirable properties.

Recoverability: Any acquired lease automatically expires, and thus any lease held by a
faulty process is recoverable. By comparison, a vast amount of research centers around the
mutual exclusion problem, which focuses on granting eternal locks to contending processes
without recovery. In such systems, if a lock is acquired by a process that later fails, there is
no way to recover it back. Recoverability realizes the vision of modern, scaling distributed
systems such as Jini. The philosophy there taboos locking, and advocates putting automatic

expiration dates on all data objects to prevent garbage from piling up.

Uniformity: Leases may have anonymous client processes whose number is unlimited and
unknown. In contrast, known abstractions such as the failure detectors, including the €2

leader oracles of [CT96], are defined for a group of known members,

Eventual-safety: The system may go for arbitrarily long without stability, and hence, no
safety. After the system becomes synchronous (and for as long as it stays in this state) each
successful CONTEND or RENEW operation provides a pre-designated exclusive period to the
contender, such that no other CONTEND/RENEW operation succeeds during this period. In

this way, the system automatically re-stabilizes despite any transient asynchrony.

Renewal: An important feature of leases is their support of renewal by the current leader.
This leads to efficient utilization of the lease by a leader who holds the lease and continues
doing useful work. Even in case that multiple leases are held simultaneously during periods of
instability, renewals guarantee that after stability, only a single leader succeeds in repeatedly

renewing its lease.

Our lease immediately provides for eventually-safe leader election, which is at the heart
of the shared memory version of the Paxos protocol [GLO03]. The Paxos protocol guards the
safety of decisions at all times, while the leader election oracle provides eventual progress.
In this way, leases enable solving the Consensus problem we considered at the outset.

The lease object also has direct uses in storage area networks (SAN), in which clients

access shared storage units directly over an Internet to provide high bandwidth and cost

46

savings. First, a key service of a file system built for SANs is to manage leases that arbitrate
access to shared files. Second, leases provide the bootstrapping of protocols like that of
[GL03], in providing exclusive access to a dynamic directory listing that contains the names

of clients.

Our leases provide uniform leader election, i.e., do not require any known bound on
the number of client processes. Thus, coupled with the uniform shared-memory consensus
protocol of Chapter 4, we obtain a uniform shared memory consensus protocol for partially

synchronous systems.

This chapter provides the first implementation of leases from regular shared multi-reader /multi-
writer read/write registers [SPW03]. The implementation builds largely on the timing-based
simple mutual exclusion protocol of Fischer (see [Lam87]), but extends it in a number of
important aspects. First, it handles process failures. Second, it adapts it to a shared mem-
ory model we employ, called the Fventual Known Delay Timed (OND) model. This model
considers remote memory operations to have non-zero duration. In addition to arbitrarily
long period of asynchrony, the model captures both process failures and emulations of shared
registers from fail-prone shared objects. Third, it provides a RENEW operation. Last, we
build a leader-election module on top of leases, and demonstrate its applicability for solving

the consensus problem.

In summary, the contribution of this chapter is in the specification of leases, in providing

an implementation, and in demonstrating their uses.

5.2 System Model

In this chapter, we will assume a basic asynchronous shared memory model consisting of
finite but a priori unknown universe of processes pi, po, ... communicating by means of a fi-
nite collection of reliable shared objects, O, ..., O,. The objects constructed in this chapter
utilize a single reliable wait-free multi-writer/multi-reader regular register?. Our definition
of multi-writer regularity (see Section 5.2.1) follows the basic formalism of [SPWO03]. In Sec-
tion 5.2.2, we augment the basic model with necessary timeliness assumptions by adapting
message-passing semi-synchronous models of [DLS88, CF99] to the shared memory environ-

ment.

2 A fault-tolerant construction of a multi-writer/multi-reader regular register out of faulty memory objects
can be found elsewhere (see e.g., [SPWO03]).

47

5.2.1 The Basic Model

An execution of an object is a sequence of possibly interleaving invocations and responses.
For an execution o and a process p;, we denote by o|i the subsequence of o containing
invocations and responses performed by p;. An execution o is admissible if the following is
satisfied: (1) Every invocation by a correct process in o has a matching response; and (2)
For each process p;, o|i consists of alternating invocations and matching responses beginning
with an invocation. In the rest of this chapter, only admissible executions will be considered.

Given an execution o, we denote by ops(o) (resp. write(c)) the set of all operations
(resp. all write operations) in o; and for a read operation r in o, we denote by writes, , the
set, of all write operations w in ¢ such that w begins before r ends in 0. The operations in
ops(o) are partially ordered by a —, relation satisfying 0 —, o0y iff 0; ends before 0, begins
in 0. In the following, we will often omit the execution subscript from — if it is clear from
the context.

Our definition of regularity for a multi-reader/multi-writer read/write shared object is
similar to the MWR2 condition of [SPWO03]. It is as follows:

Definition 5 (Regularity). An execution o satisfies reqularity if there exists a permutation
7 of all the operations in ops(o) such that for any read operation r, the projection m, of w

onto writes, ., U {r} satisfies:

1. 7, is a legal sequence.

2. m, is consistent with the — relation on ops(o).

A read/write shared object is regular if all its executions satisfy reqularity.

5.2.2 The Augmented model

In the augmented model, each process is assumed to have access to a hardware clock with
some predetermined granularity. We also assume that each process can suspend itself by
executing a delay statement. Thus, a call to delay(t) will cause the caller to suspend its
execution for ¢ consecutive time units. The system is called stable over a time interval [s, t],
called a stability period, if the following holds during [s, t]: (1) The processes’ clock drift with
respect to the real-time is equal to a known real constant p < 1. For simplicity we assume
that processes are eventually synchronous, i.e., p = 0 (it is easy to extend our results to
clocks with p # 0); and (2) The time it takes for a correct process to complete its access to
a shared memory object, i.e., to invoke an operation and receive a reply, is strictly less than

a known positive integer 0.

48

In the following, we will be interested mainly in properties exhibited by the system during
stability periods. To simplify the presentation, we will consider a timed model, which we
call an FEventually Known Delay Timed model, or OND, with stability periods of infinite
duration: i.e., we assume that for each run there exists a global stabilization time (GST)
such that the system is stable forever after GST (i.e., during [GST, c0]). In the remainder
of the presentation, all properties and correctness proofs regard operations that start after
GST.

We will also consider a special case of the OND model, which we call a Known Delay

Timed model, or ND, that requires each run to be stable right from the outset.

5.3 The Lease Implementation

A A-Lease object supports a single operation CONTEND and is required to satisfy the fol-
lowing properties after GST:

Property 5 (Safety). If a CONTEND operation L by a process p returns at time t, then
there exists no CONTEND operation L' by a process q # p, that returns within the interval
[t,t+ A

Property 6 (Progress). If a correct process invokes a CONTEND operation at time t, then

some CONTEND operation eventually returns after t.

The A-Lease object implementation appears in Figure 5.1. It utilizes a single shared
multi-reader multi-writer regular register x.

We now prove that the implementation in Figure 5.1 satisfies the A-Lease object prop-
erties.

We first note that due to the very nature of leases, the implementation cannot tell the
difference between a faulty process and a correct process whose lease has expired. Therefore,
throughout the proofs, we will restrict our attention to the runs where failures never occur.
In addition, we make use of the following assumptions and notations. Let L be a CONTEND

operation. We denote the sequence of read/write operations by which L terminates by:
L., (delay A +50), L.r", Law, (delay 2§), L.r .

That is, denote by L.w the last write operation invoked during L (i.e., the last time line 9 in
Figure 5.1 is activated). Denote by L.r the read operation that follows L.w (on line 11), and
by L.r" the read operation that immediately precedes L.w (invoked from line 6). Let L.r'
be the read operation during L that precedes L.r"” (invoked either on line 1 or on line 11).
Finally, for the execution considered in all proofs, let 7 be a serialization of the operations

that upholds the regularity of x.

49

Shared: Regular register x € T'S;
Local: z1,29 € T'S.

—
—_

Ty < read(r);

until zo = ts;

Process :
CONTEND;:
(1) z9 + read(x);
(2) do
(3) do
(4) T 4 To;
(5) delay(A + 50);
/* A+ 60 for the OND renewals */
(6) Ty < read(x);
(7) until x; = xo;
(8) Generate a unique timestamp ts;
9) write(x, ts);
(10 delay(26);
(
(
(

)
)
)
13) return;

Figure 5.1: The A-Lease Implementation.

Lemma 11. Let Ly be a CONTEND operation invoked by process p that returns at time ty.
Denote sg = tg + A the expiration time of Lo. Then there exists no CONTEND operation L

such that L.w appears in 7 after Lo.w, and L.r" is invoked before sq + ¢.

Proof. Assume to the contrary, and let L be a CONTEND operation such that L.w is the first
write in 7 that breaks the conditions of the lemma.

Clearly, L.w does not precede Ly.r in 7, ., for else Ly.r cannot return the value written
by Lg.w. Furthermore, since all write operations w such that w — Ly.r must appear in 7z,
before Lgy.r, and because by assumption Lg.w precedes L.w in w, L.w + Lg.r. Putting this
together with the fact that the response of Lo.w and the start of Lg.r are separated by a 26
delay, we have Ly.w — L.r" (see Figure 5.2(a)). Hence, Ly.w € 7y, .

Next, we show that Lg.w is the last write preceding L.r"” in 7y ,». Let L' # L be a
CONTEND operation such that L'.w is between Lg.w and 7z, in 77 ,». By assumption, L'.r"

must be invoked after sy +d. Since, by definition of 7y, .», L'.w must be invoked before L.r"

20

Ly

(b):

86 80+6

Figure 5.2: Possible placements of overlapping CONTEND operations Ly and L.

returns, L.r" returns after sy + ¢, as depicted in Figure 5.2(b). Since L'.w is invoked after
so+ 0, and since by assumption, L.r’ finishes before sq+ 6, we get that L.r" — L'.w. Putting
this together with the assumption that L'.w precedes L.r"” in 7y ., we obtain that L.r" and
L.r" will return different values in which case the lease implementation implies that the write
statement is not reached. Hence, L.w could not have been invoked. Thus, Ly.w is the last
write preceding L.r" in 7y . implying that L.r" returns the value written by Lg.w.

By construction, L.r" is preceded by a 50 + A delay preceded by another read operation
L.r" such that the timestamp values returned by these two read’s are identical. However, it
is easy to see that Ly.w is contained in full between these two reads. Indeed, we already
know that Lg.w — L.r". We now show that L.r" — Ly.w. Indeed, the earliest time that
Lo.w can be invoked is sg — A — 44. Since by assumption L.r” is invoked before sq + 9, L.r'
returns before sp+0 — (A+5J) = sp — A — 49 (see Figure 5.2(b)). Therefore, L.r" — Ly.w.
Thus, regularity of and the timestamp uniqueness imply that L.r" and L.r"” return different

timestamps in which case the lease implementation implies that the write statement is not

reached. Hence, L.w could not have been invoked. A contradiction. O

We are now ready to prove Safety.

Lemma 12 (Safety). The implementation in Figure 5.1 satisfies Property 5.

Proof. Let L be a CONTEND operation by process p that returns at time ¢. Denote s = t+ A.
Suppose to the contrary that another CONTEND operation L' returns at time ¢’ within the

ol

interval [t, s].

First, L'.r" must be invoked before s+ 9. By Lemma 11, putting Ly = L we get that L.w
does not precede L'.w in w. Second, L.r" must be invoked before ', and a fortiori, before
'+ A+94. Applying Lemma 11 again, with Ly = L', we get that L.w’ does not precede L.w

in 7. A contradiction. O
We now turn our attention to proving Progress. We first prove the following technical fact.

Lemma 13. Let q be a process that performs an operation w, = write that returns at time
t. If no process returns from a CONTEND operation after t, then for each s > t, the interval

[s, s + 5d] contains a complete write invocation (i.e., from its invocation to its response).

Proof. Suppose to the contrary. By assumption, no write operation is invoked between s
and s+46. Let W be the last write invoked before s, or possibly the set of concurrent, latest
writes invoked before s. Formally, W is the set of all w such that (1) w is invoked before
s; and (2) for any write w' invoked by s + 44, w /4 w'. W is not empty because w; starts
before s, and no write is invoked in the interval [s, s + 44].

Let w € W, and let » = read be the corresponding read operation, invoked by the same
process 20 after w. We claim that (i) W — r, and (ii) there does not exist any write event
w in 7, that follows W in 7 such that W — w and w is invoked before r returns.

To see that (i) holds, let w' € W. Since w 4 w', we have that w' terminates at most §
after w; since r starts 2§ after w’s termination, w’ — r. To see (i7), first note that if W — w,
then by definition w cannot be invoked before s. Second, by assumption, no write is invoked
between s and s+ 46, but r terminates by s+ 46 at the latest. So w cannot be invoked before
r returns, and hence is not in .

Hence, by the regularity of x, all reads corresponding to write$ in W must return the value
of the last write in m from W. The read corresponding to this write then sees x unchanged,

and its initiator is allowed to obtain the lease. A contradiction. O
Lemma 14 (Progress). The implementation in Figure 5.1 satisfies Property 6.

Proof. Let p be a correct process that invokes a CONTEND operation at f. Suppose for
contradiction that no CONTEND operation returns after t.

First, eventually some process, say ¢;, invokes an operation wy = write. This is due to
the fact that the wait-loop at the start of the CONTENDalgorithm (lines 5.13-7) terminates
when no write$ are performed.

By Lemma 13, if there is no successful CONTEND after w; is invoked, then every instance
of the loop by ¢; observes at least one new written value, so ¢; does not perform any further
writes. Let an operation wy = write by ¢ be observed by ¢;. Again, so long as there is no
successful CONTEND, by Lemma 13, ¢ performs no further writes. And so on.

52

Since the number of processes is finite, eventually all processes are in their wait loop and

no process writes. This is a contradiction. O

5.4 Lease renewals

In many situations, it is important to enable the current lease holder to renew its lease
without contention. For example, this is the case when a lease holder requires more time
to complete an operation than the alloted period. Another example is the use of leases to
obtain a leader, in which case we wish the leader to perpetuate so long as it is alive.

In this section we address lease renewals. We consider two renewal types: The first
one is suitable for the ND model, and is extremely efficient. The second one works in the
OND model, and guarantees stabilization of renewal: Only one renewal emerges successfully
after GST, despite any unstable past periods, and despite the possible existence of multiple
simultaneous lease holders before GST. The OND renewal protocol is somewhat more costly.

For the OND model, the renewal strategy introduces a slightly modified interface with the
RENEW operation returning a Boolean value indicating whether the renewal was successful

or not. (For the ND model, a return from a renew operation is always considered successful).

We say that a process renews its lease if it calls a renew operation as soon as its previously
granted lease of A time units expires. The A-Lease implementation with renewals is required

to satisfy the following properties:

Property 7 (Renewal Safety). 1. If a lease contend or renew operation L returns suc-
cessfully at a process p at time t, then for any lease operation L' (contend or renew)

invoked by a process ¢ # p, L' does not return successfully in the interval [t,t + A].

2. Assume that a renewal operation L by a process p is invoked at time t, and returns
successfully at time ty. Then there exists no successful contend or renewal operation

L' by a process q # p that returns during the interval [t1,ts].

Property 8 (Renewal Liveness). If a lease contend or renew operation returns successfully

at a correct process p at time t, and process p invokes renew at time t, then the renew succeeds.

5.4.1 ND renewal

The renewal implementation in the ND model is extremely simple: A process whose pre-
viously granted lease expires can renew it for another A time units by simply executing
lines 89 of the A-Lease implementation in Figure 5.1. More precisely, we define the renew

operation as follows:

93

renew:
Generate a unique timestamp ts;

write(x, ts);

We now prove the correctness of the ND renewal scheme. Since liveness trivially holds,

we are only left with proving safety.

Lemma 15. Consider a sequence { = Lornirns...rn, of lease operations by process p.
Suppose that Ly is a successful CONTEND operation that returns at time ty, and rn; is a
successful RENEW operation that returns at time t;. Then there exists no CONTEND operation
L by process q # p such that L.w is invoked within the interval [ty, ty + A + 26].

Proof. By induction on length of ¢. For the base case, let £ = Lyrn;. Suppose to the
contrary that there exists a CONTEND operation L such that L.w is invoked within [t,#; +
A + 26]. First, note that Ly.w — L.w, and therefore, Lg.w precedes L.w in m. Therefore,
by Lemma 11, L.r” must be invoked after to + A + §. Since rni.w is invoked at ¢y + A,
it must return by ¢y + A + 6, and therefore, rn;.w — L.r". Since L.r" is invoked before
t1 + A+ 20, L.r' returns before t; + A + 2§ — (A + 50) = ¢; — 36. Since rn;.w must be
invoked at t; — 0 the earliest, L.r" — rny,.w. Therefore, by regularity of x and timestamp
uniqueness, L.r" and L.r" will return different values violating the necessary condition for
the write statement of the CONTEND implementation to be reached. Hence, L.w cannot be
invoked. A contradiction.

Assume that the result holds for all sequences ¢ of length £ — 1, and consider a sequence
¢ = [rny. Assume to the contrary. By the inductive assumption, L.w must be invoked
after t,_1) + A + 25. Therefore, rng.w — L.r". On the other hand, L.7" must be invoked
before t;, + A + 20. Therefore, L.r" must return before ¢, — 30. Since the earliest time
rng.w can be invoked is t, — &, L.r' — L.w. Therefore, by regularity of x and timestamp
uniqueness, L.r’" and L.r" will return different values violating the necessary condition for
the write statement of the CONTEND implementation to be reached. Hence, L.w cannot be

invoked. A contradiction. O

Lemma 16. Suppose that a process p returns from a RENEW operation rn at time t. Then,

there ezists no process q¢ # p whose RENEW operation rn’ returns within the interval [t, t+ A].

Proof. Suppose to the contrary that rn’ returns at time ¢’ within the interval [¢, t+ A]. Note
that both p and ¢ must have been invoked contend operations L and L’ in the past to acquire

their initial leases. Suppose that L and L' return at times ¢ < ¢t and ¢ < t' respectively.

54

Assume, w.l.o.g, that ¢ < ¢’. By Lemma 15, putting ¢y = ¢ and ¢, = t + A, and because
t' <t+ A, we get that the lease period of L' overlaps with [tg, sg]. A contradiction. O

The following lemma follows immediately from Lemma 15 and Lemma 16.

Lemma 17 (ND Renewal Safety). The ND renewal implementation satisfies Property 7
(Renewal Safety).

We proved the following:

Theorem 8 (ND Renewal Safety and Liveness). The ND renewal implementation
satisfies Property 7 (Renewal Safety) and Property 8.

5.4.2 OND renewal

The RENEW operation implementation for the QND model is shown in Figure 5.3. For sim-
plicity, we require that timestamps consist of two fields: the process id and a monotonically

increasing counter.

renew:
1
2
3
4

x < read(z);
if (z,.id # ts.id) then
return false;

ts.counter < ts.counter + 1;

(@)

write(x, ts);

)
)
)
)
)
) delay(20);
)
)
)
0

(=2}

7
8
9
10) else

11) return false;

x1 < read(z);
if (z; = ts) then

return true;

(
(
(
(
(
(
(
(
(
(
(

Figure 5.3: OND Renew Implementation.

Throughout the proof of correctness of the OND renewal scheme, we make use of the
following notation. Let L be a CONTEND or RENEW operation. As in the previous section,

we denote the sequence of read/write operations by which L terminates by:
(in CONTEND only: L.r', delay A +60), L.r", Law, (delay 25), L.r .

95

That is, L.w is the last write operation invoked within L, and L.r"”, L.r and the read opera-
tions immediately preceding and following L.w, respectively. If L is a CONTEND operation,
then in addition, the read operation preceding L.r" is denoted L.r’.

Finally, for the execution considered in all proofs, let 7 be a serialization of the operations

that upholds the regularity of x.

Lemma 18. Let Ly be a lease operation (contend or renew) invoked by process p that returns
successfully at time ty. Denote sy =ty + A the expiration time of Ly. Then there exists no

write operation w in w after Lo.w, such that w is invoked before sq + 6.

Proof. Assume to the contrary, and let L.w be the first write in © that breaks the lemma.

Clearly, L.w does not precede Ly.r in 7y, ., for else Ly.r cannot return the value written
by Lg.w. Furthermore, since all write operations w such that w — Ly.r must appear in 7,
before Lgy.r, and because by assumption Lg.w precedes L.w in w, L.w + Lg.r. Putting this
together with the fact that the response of Ly.w and the start of Ly.r are separated by a 20
delay, we have Ly.w — L.r" (see Figure 5.4). Hence, Ly.w € 7y, .

Furthermore, by assumption L.w is the first write such that (1) L.w follows Lg.w in m;
and (2) L.w is invoked before sy + 0. Since Lg.w € 7y, any write w # L.w that follows
Lo.w € 7y ,» must be invoked after so + d. Since, by definition of 7 ,», w must be invoked
before L.r"” terminates, L.r"” terminates after sy + 0. Consequently, L.w would be invoked
after sy + ¢ contradicting the assumption. Since L.w & 7y, ,», the only remaining possibility

is that Lg.w is the last write in 7y, and so L.r" returns the value of Ly.w.

Figure 5.4: Overlapping renewals.

Next, we consider the case that L is a CONTEND operation separately from the case that
it is a RENEW operation. First, consider that L is a RENEW operation. Then the analysis
above shows that L.r" returns the timestamp written in Ly.w, hence L is unsuccessful.

Second, assume that L is a CONTEND operation. Here, L.r" is preceded by a 60 + A
delay preceded by another read operation L.r': and the timestamp values returned by these
two read’s are identical. However, it is easy to see that Lg.w is contained in full between
these two reads. We already know that Lg.w — L.r". We now show that L.r' — Lg.w.

26

Indeed, the earliest time that Ly.w can be invoked is s — A — 4. Since by assumption L.w
is invoked before sy + ¢, L.r" is invoked before sy +d — (A + 6J) = so — A — 5. Therefore,
L.r" = Ly.w. Thus, regularity of z and the timestamp uniqueness imply that L.r" and L.r"
return different timestamps in which case the lease implementation implies that the write

statement is not reached. Hence, L.w could not have been invoked. A contradiction. O
We are now ready to prove Safety:

Lemma 19 (Property 7.1). Assume that a lease operation L (CONTEND or RENEW) by
process p returns successfully at time t. Let s = t + A. Then there exists no successful

CONTEND or RENEW operation L' by a process q # p that returns during the interval [t, s].

Proof. Suppose to the contrary that L' returns successfully at time ¢’ within the interval
[t,s]. First, L'.w must be invoked before s + . By Lemma 18, putting Ly = L we get that
L.w does not precede L'.w in 7. Second, L.w must be invoked before ¢/, and a fortiori, before
'+ A+9. Applying Lemma 18 again, with Ly = L', we get that L.w’ does not precede L.w

in 7. A contradiction. O

Lemma 20 (Property 7.2). Assume that a RENEW operation L by a process p is invoked
at time t; and returns successfully at time ty. Then there exists no successful CONTEND or

RENEW operation L' by a process q # p that returns during the interval [t1,ts].

Proof. Suppose to the contrary that L' returns at a time ¢’ within the interval [¢;,t5]. First,
L'.w must be invoked before s + §. By Lemma 18, putting Ly = L we get that L'.w must
precede L.w in 7. Furthermore, applying Lemma 18 again with Lq = L', we get that L.w
must be invoked after ¢ + A + ¢. Therefore, L'.w — L.r" so that L'.w € 7y ,», and L'.w
precedes L.r" in 7y .

First, suppose that L.w is the first write operation by p in 7 after L'.w. Hence, there is
no write operation by p in 7y, .~ following L'.w. Then by regularity of x, and because L is
a RENEW operation, L.r" returns a timestamp written by a process g # p, contradicting to
the fact that L is successful.

Next, suppose that there exists a write operation L”.w by p in 77~ that follows L'.w.
Since L is a RENEW operation, L” must be the successful lease (RENEW or CONTEND)
operation immediately preceding L. Applying Lemma 18 with Ly = L', we get that L".w
must be invoked after ¢+ A-+¢ implying that L starts after t'+A+0 (i.e., t; > ' +A+4d). O

We proven the following

Theorem 9 (Renewal Safety). OND renew implementation satisfies Property 7 (Renewal
Safety).

57

Finally, we prove Liveness:

Lemma 21. Assume that a correct process p obtains the lease in a CONTEND or RENEW
operation L at time t. Then, a RENEW operation rn invoked by p at s = t + A, returns

successfully.

Proof. For rn to be successful, first rn.r” must return the timestamp written by L.w. This
holds by the fact that L.r returns the value of L.w, and by Lemma 18, since no other write
operation that follows L.w in 7 is invoked before s + A + 4.

Second, rn.r needs to return the value written by rn.w. Suppose to the contrary that
some lease operation L' overwrites rn.w. Let L'.w be the first write in @ by process ¢ # p
that follows L.w and precedes rn.r in 7., .

By Lemma 18, L'.w is invoked after s + ¢. Hence, L.w — L'.r". Since L'.w is the
first write to follow L.w, and since L'.r" — L'.w, we have that L'.r" returns the timestamp
written by p in L.w. By construction, this occurs only if L’ is a CONTEND (not RENEW)
operation. Still, for L'.w to be invoked, L'.r" and L'.r" must return the same timestamp.
We now show this is impossible.

We already know that L.w — L'.r". By construction, L'.r" follows a delay of A + 66
after the termination of L'.7’. If L'.r" is invoked no later than s + 24, then L'.7’" terminates
by s — A —46. Since the earliest that L.w is invoked is t — 49, we have L'.r" — L.w. We get
that L.w is a write that occurs completely between L'.r" and L'.r", and so they must return
different timestamps.

We are left with the possibility that L'.r"” is invoked after s + 2. Because L'.w precedes
rn.r in m.,,, the latest that L'.r” may be invoked is s+ 5d. Hence, L'.r' terminates by s — .
We now get that rn.w is a write that occurs completely between L'.r" and L'.r", and so they
return different timestamps.

Hence, L.r" and L'.r" must see different values, in contradiction to the assumption that

!

L'.w is invoked after L'.r"”. Hence, rn.r returns the same value as rn.w, and the renewal

succeeds. O

5.5 Leader Election

In this section we show the lease-based implementation of a Boolean leader oracle £, that is
required by the universal service replication of Chapter 4 and by the Consensus algorithm of
[GLO03]. Recall that £ is a failure detector of class ® such that the output of a local failure
detector module L£; at each process i is a Boolean value satisfying the following property

eventually:

o8

Shared A-Lease object L;

Local Boolean leader;

(1) forever do

(2) leader < false;

(3) L.lease();

(4) leader <+ true;

(5) delay(A);

(6) while (L.renew()) do
(7) delay(A);

(8) od

(9)

When queried:

return leader;

Figure 5.5: The Lease-based Leader Oracle implementation

Property 9 (Unique Leader). There exists a correct process i such that L; permanently

outputs true, and for each process j # i, L; permanently outputs false.

The lease based implementation of £ appears in Figure 5.5. A complete Consensus
algorithm based on £ appears in Chapter 4 and [CM02].

The following theorem establishes the correctness of the leader oracle implementation in
the OND model.

Theorem 10. The pseudocode in Figure 5.5 eventually satisfies Property 9 in the QND

model.

Proof. Since the leader election code is executed in an infinite loop, eventually some CONTEND
or RENEW operation will be invoked after GST. Moreover, there exists T > G'ST such that
for every lease operation L invoked before GST, either the L’s lease period has already ex-
pired, or L = CONTEND and L never returns after 7. Note that this time must exist since
only a finite number of processes may invoke a lease operation before GST. By the lease
liveness, once a correct process p invokes a lease operation L (CONTEND or RENEW) after T,
L as well as all the subsequent RENEW operations must return successfully. Let 7" be the

time at which L returns. By the lease safety, p will be the only lease holder after T". O

29

60

Part 11

Tolerating Malicious Failures

61

Chapter 6

Inherent Cost of Optimal Resilience

in the Presence of Malicious Storage!

We proceed by extending our study of fault-tolerance in storage-centric systems to the NR-
arbitrary failure model: i.e., an asynchronous shared memory system with multiple processes
accessing fault-prone shared memory objects [AGMT95, JCT98]. In this chapter we show
that achieving optimal resilience threshold of ¢t < n/3 failures in the NR-arbitrary model
incurs a high cost in terms of the communication complexity. In the next chapter, we show
a Paxos-like agreement protocol that avoids the communication overhead by lowering the

resilience threshold to ¢ < n/5 faulty objects.

6.1 Introduction

In this chapter we show for the first time, how to emulate a wait-free shared register in this
model using a collection of 3¢ + 1 fault-prone base objects. We also show that emulations
with this level of resilience require invoking substantially more operations on the base objects
than constructions that have a lower resilience level.

The goal of this chapter is to investigate the costs and tradeoffs involved in designing
reliable solutions for scalable decentralized storage-centric systems storage units prone to
NR-arbitrary failures. This focus mandates that we regard the system as asynchronous. It
also implies that servers storing memory objects (or disks in a large disk farm) can stop re-
sponding. Furthermore, we consider arbitrary corruption (Byzantine failures) of memory (at
either the servers or the disks), since the protection of highly decentralized services is hard.
Hence, we adopt the NR-Arbitrary failure model [JCT98]. We assume that a large number of

ephemeral processes (clients) may access the memory objects, and hence, authenticating all

!This chapter is based on the paper by Chockler, Keidar and Malkhi [CKMO03].

63

the stored data is not feasible. Finally, when processes access their information over a wide
interconnect, temporary disconnections and process crashes are bound to happen. Hence,
we assume that processes may fail to reach completion of operations they initiate, and we
strive to devise wait-free solutions.

Previous work that constructed wait-free objects in this failure model used 4¢+1 [MR00],
5t + 1 [JCT98], or even 6t + 1 [CMRO1] base objects. A natural question to ask is whether
the resilience threshold ¢ < n/4 (where n is the number of fault-prone objects) is tight in this
model. Intuitively, one would hope for a resilience bound of ¢t < n/3. (It is easy to see that
in this model it is impossible to obtain better resilience than ¢ < n/3 [MADO02]). Several
previous works have addressed this question, and have achieved better resilience by weakening
the model in different ways — by adding synchrony [Baz00]; by storing authenticated (signed)
self-verifying data at the servers [MR00, MADO02]; or by assuming that clients never fail and
providing solutions that may block indefinitely if clients do fail [MADO02, ABOO03|. However,
t < n/4is the best resilience threshold previously achieved for wait-free constructions in the
model considered herein.

In contrast, the literature is abundant with message-passing consensus algorithms that are
resilient to Byzantine failures of less than a third of the processes. Therefore, an appealing
way to go about searching for a more resilient solution would be to try and adapt the
techniques used in those algorithms to our model. Two basic techniques are used in achieving
this threshold in consensus algorithms: authentication (using signatures) of all transmitted
data (e.g., [DLS88, CL02]) or echoing (e.g., [BT85, DLS88|). Authentication can indeed
be used to construct memory objects that are resilient to ¢ < n/3 failures (see [MRO00]).
However, our model does not incorporate a signature scheme as needed for authentication.
The second approach is to have each process echo all the values it receives to all the processes
(e.g., see [DLS88]). Unfortunately, echoing cannot help us address the challenge we have set
out to solve in this chapter. Indeed, if a correct process can correctly echo information to all
other processes, this is essentially the same as having a wait-free register through which the
process conveys the information to the other processes. And implementing such a register
from fault-prone storage is exactly what we seek to do in this chapter.

Having ruled out the use of standard techniques to improve the resilience threshold, we
proceeded to examine whether there are any inherent limitation that prevent algorithms in
our model from achieving better resilience. We observe that existing algorithms for fault-
prone shared memory models (e.g., [MR00, MADO02, Baz00, JCT98, ABOO03]) implement
(emulate) READ and WRITE operations in a single round; that is, they invoke one read or
write operation on each base object. In Section 6.4.1, we prove that if ¢ > n/4, then it is
impossible to emulate the WRITE operations of a wait-free register by invoking a single round

of operations on the base objects. Our proof applies to binary single-writer single-reader safe

64

registers®; the weakest meaningful register type [Lam8&6].

Moreover, in Section 6.4.2, we show that if n = 3¢ + 1, then any algorithm in which
the reader does not modify the base objects’ states may need to invoke as many as ¢ + 1
rounds of read operations on base objects in order to emulate a single READ operation of a
single-writer single-reader safe register. More generally, for any 0 < f < ¢, there is a run in
which f objects are Byzantine faulty in which the algorithm invokes min(t+ 1, f +2) rounds
of base object operations.

We now explain the challenge in working with a resilience of n = 3t + 1. Traditionally,
in asynchronous algorithms, one waits for at most n — ¢ responses to each request. Since
t objects may be non-responsive, waiting for more objects may violate liveness. Thus, an
emulated WRITE(v) operation returns once the lower-level write operations on n — ¢ base
objects return. But of the n — ¢ base objects that return, ¢ may be actually faulty, whereas
the ¢ that have not responded may be simply slow. In this case, only n — 2t =1 + 1 correct
base objects have stored the value v. If a READ operation is invoked after WRITE(v) returns,
and no further WRITE operations are invoked, then safety semantics mandates that the READ
return V. The READ operation probes the base objects, and waits for responses from n —t of
them (again, in order to ensure liveness). The set of n — ¢ responders may overlap the set of
t + 1 correct objects that have v by as little as one object. Since data is not authenticated,
the reader has no way of distinguishing a value v that is returned by k& < t+1 correct objects
from an arbitrary value v’ concocted by k corrupt objects.

In order to overcome this difficulty, we observe that in some situations, after n — ¢
responses are received, waiting for additional responses will not violate liveness. To illustrate
the crux of our technique, consider the example above, where there are no WRITE operations
overlapping the READ. If the reader sees only £ instances of v, then there are two possible
cases: Either (1) v is indeed a correct value, in which case there must be ¢+ 1 — £ additional
correct objects that store v, whose responses were not collected by the reader; or (2) v is
forged, in which case k£ of the responses are from faulty objects, and there are k correct
objects whose responses were not collected by the reader. In either case, a reader can wait
for more responses until each value v either occurs in ¢ 4+ 1 responses, or does not appear
in 2¢ + 1 responses. Unfortunately, when there may be WRITE operations overlapping the
READ, matters become significantly more subtle. This simple solution does not work, since
the WRITE of v might be in progress, in which case neither condition will be met, and hence
waiting for more replies would violate liveness. Our algorithm is therefore more elaborate.

In Section 6.3 we give a construction of a wait-free single-writer multi-reader safe register

from 3t + 1 registers, ¢ of which can suffer NR-Arbitrary faults. Our algorithm is optimal;

2 A safe register guarantees that read operations that do not overlap any write operation return the correct

(most recently written) value; a read operation that overlaps a write may return an arbitrary value.

65

the number of rounds of operations it invokes matches the lower bounds of Sections 6.4.1
and 6.4.2. That is, our algorithm emulates WRITE operations using two rounds of base object
write operations, and it emulates READ operations in min(t+ 1, f +2) rounds of base objects
read operations in runs with f Byzantine failures. Moreover, our algorithm has the desirable
property that in synchronous runs, as well as in runs with benign failures only, it always
terminates after at most two rounds of base object invocations, regardless of the number of
failures.

We chose to present an emulation of a single-writer multi-reader safe register, since this
is the most basic building block that can be used for constructing various object types. E.g.,
there are well-known constructions of regular and atomic registers from safe ones [Lam86].
These, in turn, can be used to construct higher level objects; e.g., consensus can be solved

with regular registers if the system is augmented with an oracle failure detector [LH94].

6.2 System Model

We consider an asynchronous shared memory system consisting of processes interacting with
each other by means of a finite collection of shared objects, Oq, ..., O,. Processes may fail by
stopping (crashing). The implementation should be wait-free in the sense that the progress
of each non-faulty process should not be prevented by other processes concurrently accessing
the memory nor by failures incurred by other processes. The shared memory objects may
suffer NR-Arbitrary faults [JCT98]. That is, a faulty object may fail to respond to an
invocation, or may respond with an arbitrary value.

The strongest specification of a system’s behavior under concurrent invocations is [in-
earizability. The history of an object in a run « is linearizable if each operation invocation
op in « can be reduced to a point between op’s invocation request and its corresponding
response, such that the resulting sequence is legal. An atomic object is an object that has
only linearizable histories.

It is possible to specify weaker behaviors under concurrent invocations. In this chapter,
we consider safe registers. The history of a safe register is not necessarily linearizable, but
if we remove all read operations that overlap write operations from the history of a safe

register, the resulting history is linearizable.

6.3 The Safe Register Implementation

In this section we present a construction of a single-writer multi-reader safe register out of

n > 3t + 1 base registers, up to t of which can experience NR-Arbitrary (Byzantine) faults.

66

For simplicity, we assume that the base registers are atomic (i.e., linearizable), although it
is easy to see that the implementation also works correctly with regular registers (as defined
in [Lam86]). To distinguish between the high-level reads/writes of the emulated register and
the internal reads/writes of the base registers, we will denote the high-level operations of the
emulated register using small capitals as READ and WRITE.

As dictated by the lower bound of Section 6.4.1, the WRITE operation invokes two rounds
of write operations on the base registers. The first is called the pre-write phase, and the
second, the write phase. Each value written to a base register in either phase is written
together with a monotonically increasing timestamp, taken from a totally ordered set T'S,
with the minimum element ts;. Thus, each base register z; holds a pair of pairs z;.pw
and x;.w, which hold the value-timestamp pairs written in the latest pre-write and write
respectively. The shared base registers and their types are defined in Figure 6.1. In each
phase, write operations are invoked on all base registers (for registers that did not yet respond
in the first phase, the second phase operation remains pending until they do) and n —t acks

are awaited. The WRITE implementation is shown in Figure 6.2.

Types: TSVals =TS x Vals, with selectors ts, val,;
X =TSVals x T'SVals, with selectors pw, w;
Shared registers z; € X, 1 <1 < mn,

initialized to ({(tsg, vo), (ts0, vo))-

Figure 6.1: Base registers used in safe register construction.

WRITE(v):
choose ts € T'S larger than previously used;
|| invoke write (ts,v) to x;.pw, for each z;;
wait until n — ¢ base registers respond with ack;
|| invoke write (ts,v) to x;.w, for each x;;
wait until n — ¢ base registers respond with ack;

return ack;

Figure 6.2: The safe register WRITE emulation.

The READ implementation appears in Figure 6.3. The algorithm is early-stopping: it
invokes at most min(t + 1, f + 2) rounds of read operations on the base registers, which is
a tight lower bound. The part of the code that ensures this bound on the number of rounds

is shown in gray, and will be discussed later. We begin by discussing the correctness of the

67

Local variables:
P[l,...t+1],WIl,...,t +1] C{l...n} x TSVals, initially 0
Sent[w] C {1...n} for w € TSVals, initially 0 /* Objects that have sent w */
C C TSVals, initially () /* Candidate values to return */
J € Integers, initially 1

Predicate and macro definitions:
invalid((w)) =31 < j : | {(7/,w') e W[l]jw' #w} | > 2t +1
Valid(S) = {w € S|—invalid(w)}
highCand({ts,v)) = (ts,v) € Valid(C) A (ts = sup{ts'|{ts',v") € Valid(C)})
safe((ts,v)) = | {i| 3 < j 3(i,ts",v") € P[JUW]l] : ts' > tsV (ts' =ts ANv' =0v)}| >t +1

READ():
(1) while (true) do
(2) || invoke read(z;) on all objects z;;

for each returned response z;, store {(i, z;.pw)} in P[j] and {(, z;.w)} in W[j];
(3) wait until |W[j]| >n—tA
Ve € Valid(C): safe(c) v (|{k|3(k, w) € W[j]} \ Sent[c]| > n —t);
/* Values read in this round are candidates to return: */

(4) C {w3k, w) € Wil}

(5) foreach ¢ € Valid(C) do

(6) Sentc] < Sent[c] U {k|{k,c) € W[j]};
(7) if (highCand(c) A safe(c)) then

(8) return c.val;

9) od

(10) if (Valid(C) = 0) then

(11) return some arbitrary value in Vals;
(12) j«Jj+1

(13) od

Figure 6.3: Early-stopping safe register READ emulation. Code for reducing the number of

invoked rounds shown in gray.

algorithm, by looking only at the part of the code shown in black.

The reader repeatedly invokes rounds of read operations to the base objects. The algo-
rithm stores the responses to the round j read in the sets P[j] and Wj] as follows: when a

response x; arrives for the round j read, {(i, z;.pw)} is stored in P[j] and {{i, x;.w)} in W[j].

68

In each round, the algorithm waits for at least n —¢ responses from base objects (line 3). The
set C' includes values that are “candidates” for returning from the read. These are values
that appear in the z;.w fields of responses gathered in the latest completed read round (line
4). Since each read round reads from at least n—t > 2¢+1 base objects, any value that is not
included in set C' was either not completely written before the READ began (its WRITE could
have begun but couldn’t have completed), or was already over-written (that is, a subsequent
WRITE has begun). A value-timestamp pair from the set C' is called a candidate.

A candidate is deemed inwvalid if there is a round in which there are at least 2t 4 1 object
responses that do not include it. If a value is invalid, then it was either not completely
written the READ began, or was already over-written. In either case, READ is not required to
return it. The set Valid(C') includes all the candidates that are not invalid. Among those, the
leading candidate to return is the one with the highest timestamp. This is because if several
values were completely written before the READ begun, READ has to return the latest one,
although the set Valid(C') may include some of the older ones because some of the objects
responding to the READ may be out of date. (Recall that WRITE returns after having written
to n — t base objects, of which ¢ may be faulty, hence there may be ¢ correct objects that
still have old values). The predicate highCand(c) is true for a candidate ¢ € Valid(C) if ¢
has the highest timestamp in Valid(C').

Now, consider a candidate ¢ such that highCand(c) is true. It is safe for READ to return
c.val if there are at least ¢t + 1 objects that have responded to any of the read rounds with
either ¢ or a higher timestamped value. The predicate safe captures this condition. The
following lemma shows that the values returned by READ operations comply with the safe

register semantics:

Lemma 22 (Safety). If READ does not overlap any WRITE operation, it returns the latest

written value, or the initial value if no value was written.

Proof. Let (v,ts) be the latest value whose WRITE completed before READ was invoked, or
(vo, tsp) if no WRITE has completed. Assume further that no WRITE overlaps the READ.
Therefore, there are at least ¢ + 1 correct objects that have (v,ts) in their w and pw fields
throughout the duration of the READ operation. Since each round waits for at least 2t 4 1
responses, at least one object responds with (v, ts) in each round, and (v, ¢s) is included in
C' from the first time line 4 is executed onward. Moreover, (v, ts) never becomes invalid, so
it is also in Valid(C'). In particular, Valid(C') is never empty when checked in line 10, so the
algorithm never returns in line 11. Finally, observe that no (v',ts") # (v, ts) can be highCand
and safe, because no correct object will return any value with ts' > ts or ts' = ts Av' # v.

Hence, no other value can be returned in line 8. 0

Since the only requirement imposed by the safe register semantics on register implemen-

69

tations is for every READ operation that does not overlap any WRITE operation to return
the latest written value, or the initial value if no value was written, Lemma 22 implies that
the algorithm in Figures 6.2 and 6.3 implements a safe register.

The part of the algorithm shown in black is also live, since it continues to gather responses
in all the rounds and use these values to check the predicates. Eventually, all the correct
base registers will respond to all the rounds. Thus, every candidate value will eventually be
either invalidated (when 2t + 1 objects will respond without it) or will become safe (when
t + 1 objects will respond with it or with a later value). Nevertheless, this part of the code
(without the gray part) can initiate an unbounded number of rounds. To avoid this, the
gray part introduces an extra waiting condition that must be satisfied before the algorithm
is allowed to initiate an additional round.

We now discuss the gray part of the code. The data structure Sent[w] for a value-
timestamp pair w holds indices i of base objects that have responded with w in their x;.w
field so far (it is updated in line 6). Consider a candidate ¢ that was sent by k objects in

previous rounds (that is, |Sent[c]| = k); there are two cases:

1. At least one of these k objects is correct. In this case, the pre-write phase of WRITE(c)
must have completed before the current round is initiated (because the correct object
responded with ¢ in its x;.w field in the previous round). Therefore, there are at least
t+1 correct objects where ¢ was pre-written before the current read round. Each such
object " will eventually respond with either ¢ or a higher timestamped value in its

xy.pw field. Therefore, waiting for ¢ to become safe does not violate liveness.

2. These k objects are all faulty. In this case, it is safe to wait for responses in the current
round from n — ¢ other objects. That is, it will not violate liveness to wait for the
condition: {k|3(k,w) € W[j]} \ Sent[c]| > n —t to hold true.

The additional waiting condition in line 3 waits for one of the above to hold, and therefore

does not violate liveness, as stated in the following lemma:

Lemma 23 (Non-blocking). The algorithm never blocks indefinitely the wait statement in

line 3.

Sketch. The first condition requires that n — ¢ responses arrive. Since there are at least n —¢
correct objects, this condition will eventually be satisfied. The second conditions requires
that for all ¢ € Valid(C'), at least one of the following become true: either ¢ will become safe,
or n —t objects that did not respond with ¢ in their w fields in previous rounds will respond
to the current round. If Valid(C') is empty, we are done. Otherwise, for every ¢ € Valid(C),

one of these conditions will be satisfied as explained above. O

70

To understand why this waiting condition ensures that the algorithm invokes at most 41
rounds, observe that once every candidate is either safe or invalid, READ returns. Consider
a candidate. The first clause waits for it to become safe. If this is achieved, this candidate
cannot stop the algorithm from returning. Otherwise, the algorithm waits on the second
clause. After waiting for n — ¢ responses from objects that did not previously respond with
¢, either Sent[c| increases, or ¢ gets invalidated, because 2t 4+ 1 objects respond without c.
So for every candidate that is neither safe nor invalid at the end of round j, the set Sent[c]
has grown j times, and therefore includes at least j elements. Once Sent[c] includes t + 1
elements, c is safe, and therefore the algorithm never reaches the end of round ¢ + 1 without
returning.

The early-stopping property of the algorithm is more subtle, and is proven in the following

Lemma.

Lemma 24 (Early-Stopping). In every run in which f objects exhibit Byzantine behavior,
the READ algorithm invokes at most min(t + 1, f + 2) rounds of read operations on base

reqgisters.

Sketch. Consider the point just before line 12 is executed, that is, just before j is being
increased. The current value of j is the number of read rounds already invoked. Since the
algorithm did not return in line 11, Valid(C) #). Let ¢ be a highest timestamped candidate
in Valid(C), i.e., highCand(c) holds. Since ¢ was not returned in line 8, ¢ is not safe. Since
¢ is not invalid, it was returned in every round < j, and each time by a new object (i.e.,
|Sent[c]| has increased j times). Since ¢ is not safe, we know that |Sent[c|]| < ¢ + 1, and
therefore j <t + 1.

If ¢ is never returned by a correct object, then Sent[c] includes at most f elements, and
j < f. Otherwise, let £ < j be the first round during which ¢ is returned by a correct
object (i.e., the first round during which a correct object is inserted into Sent[¢]). Then ¢
was sent by at least k¥ — 1 Byzantine faulty objects before round k, and there are at most
f — k + 1 Byzantine faulty objects that are not in Sent[c]. Consider the set S of objects
that respond to rounds k£ + 1...j. Since Sent[c| continues to increase in each round, S
includes at least 2t + j — k objects excluding the £ — 1 Byzantine objects that sent ¢ before
round k. Since at most f — k£ + 1 members of S are Byzantine faulty, S includes at least
20+j—k—(f—k+1)=2t+j — f — 1 correct objects.

Finally, since the pre-write phase of WRITE(c) has completed before round k + 1 was
initiated, there are at most ¢ correct objects that respond to rounds k£ 4+ 1...5 with values
older than c¢ in their pw field. Therefore, if S includes 2¢ 41 correct objects, then S includes
at least ¢t 4+ 1 that have either ¢ or a higher value in their pw field, and ¢ is safe. Since we
assumed that c is not safe, we get that 2t + 7 — f — 1 <2t + 1, that is, 7 < f + 2.

71

We have shown that if READ does not return by the end of round j, then j < ¢+ 1 and
also j < f + 2. Therefore, READ invokes at most f + 2 rounds. O

From Lemmas 23 and 24, we get that READ is live, and always returns after min(t +
1, f +2) rounds in runs with f Byzantine failures. Note that if there are additional benign
(i.e., crash) failures, the algorithm is not slowed down. In invocations of READ that are
not concurrent with any WRITE invocation, READ invokes at most f 4+ 1 rounds. For space
limitations, we do not prove this here, but it can be proven similarly to Lemma 24.

Moreover, we observe that in synchronous runs, the algorithm always terminates in two
rounds. In order to formally make such a claim, we need to consider a partially synchronous
(or timed-asynchronous) model [DLS88]. In such models, it is possible to wait for messages
until a certain timeout. In periods when the system is synchronous, messages from correct
processes always arrive by this timeout. Achieving good performance in synchronous runs

of an asynchronous system is important, as such runs are common in practice.

6.4 Lower Bounds

In this section we prove lower bounds on the number of rounds that must be invoked in emu-
lations of the weakest meaningful shared memory primitive, a wait-free binary single-reader
single-writer safe (1R1WS) register. We define a round of invocations to be a collection of
operations that are invoked concurrently on a number of base objects (at most once on each
base object).

In Section 6.4.1 we show a lower bound on the number of rounds for emulating WRITE
operations; we will consider only WRITE emulations that do not overlap any READ operation.
Section 6.4.2, deals with READ emulations, both those overlapping WRITE operations and
those that do not overlap any WRITE operation. For the sake of the READ lower bound,
we consider algorithms in which the reader does not modify the base objects at all. This
assumption is satisfied by our algorithm, as well as by previously suggested algorithms in our
model [MADO02, ABO03, MR00, JCT98, Baz00]. In the Section 6.5.1, we informally discuss
the implications of this assumption.

We consider a concurrent system C' implementing a wait-free IR1WS register out of n > 0
base objects. We will assume that the object state cannot be modified concurrently by the
reader and the writer, i.e., that the objects are read/write registers. This does not restrict
the generality of the WRITE lower bounds since we will not require the 1IR1WS emulation
to terminate in the runs in which the writer and the reader take steps concurrently. It also
does not affect the generality of the READ lower bound, since there we assume that only the

writer is allowed to modify the object state. Consequently, since we are not seeking space

72

lower bounds, we can assume a full information model in which all base objects have the
same types and initial states, and are modified the same way in each round. (A concurrent
system consisting of base objects Oy, ...O, of different types 11,...,T, can be emulated in
this model by replacing each base object o; with a read/write register O) that stores a tuple
(hY,... h™), where each h' is a sequence of states sis! ... of the object O;; all registers are
initialized to the same initial value s, which is a tuple (s{,..., sl
state of O;).

In order to prove lower bounds, it suffices to consider a subset of all possible runs. We

) where s is the initial

will look at runs with exactly one READ operation and at most one WRITE operation, where
the initial value of the emulated register is 0, and if WRITE occurs it writes the value 1. We
denote the objects’ initial value by sy, and the last value written by the WRITE(1) operation

as Si.

6.4.1 Lower Bound on WRITE Emulations

In order to strengthen our results, we will replace the wait freedom requirement with a
weaker obstruction freedom termination condition, which requires object operations that run
by themselves long enough to eventually complete.

We will now prove that any algorithm implementing an obstruction-free 1IR1WS register
out of n < 4t base objects up to t of which can incur NR-Arbitrary failures will have runs

with at least two invocation requests completed on the same object.

Theorem 11. Supposen = 4t. Then, for any 0 < f < t, there exists a run of C' that includes
a complete invocation of WRITE(1) and no other invocations, such that during WRITE(1) at

least two invocation requests are completed on some correct base object.

Proof. Let Sy, Sz, S3, and Sy be sets of base objects such that for each i > 1, |S;| = ¢, and
all four sets Sy, Ss, S3, and Sy are pairwise disjoint.

Assume by contradiction that in all runs consisting of a complete WRITE(1) invocation,
and no other invocations, less than two invocations complete on each base object. Without
loss of generality, assume that the first base objects to which WRITE(1) writes are those in
Sy (if it writes to less than ¢ objects, then it writes to a subset of Sy). Let o be a run of C'
where all base objects in S are initially crashed.

We construct a run as in which all the objects in Sy are Byzantine faulty. Run «y starts
with all the activity of a; except that the invocation requests targeted to the objects in
S1 do not occur in ay until the WRITE(1) terminates (i.e., in o the threads that handle
invocations on objects in Sy are slowed down so that all the invocation requests issued in «;
are postponed). Since «s is indistinguishable to the writer from a;, WRITE(1) also terminates

in «ay after completing at most one invocation request at each base object O;.

73

Next, we construct a run 3; where all objects in a set S; are initially crashed. Run (;
is derived from «; by removing the following: (1) all base object invocation events except
those occurring at the objects in the set Sy; and (2) the ack response returned by WRITE(1).
Note that 3, is a valid run of C since it represents the situation in which the writer fails
after receiving responses from some objects in the set S;. We extend [; with a READ
invocation and assume that the reader is correct. All the objects in S; and Sy respond to
read requests of the reader with sy. The objects in S3 are crashed, and hence do not respond.
By obstruction-freedom, READ must eventually terminate and return some value. Let (5 be
an extension of ; ending with the reader’s respond event. Since in (5 the reader sees at
most ¢ object in a state different from sg, (35 is indistinguishable to the reader from a run in
which WRITE(1) has never been invoked and all objects returning s; are faulty. Therefore,
READ must respond with 0 in [s.

Finally, we construct a run ag as follows: we extend ay with the segment of 35 that starts
with the READ invocation request and ends with its corresponding response. Note that ajs is a
valid run of C' because all the objects in Sy are Byzantine faulty, and are therefore allowed to
respond with sy even after WRITE(1) terminates, and since no invoke events occur at objects
in S in ap, the objects in Sy are also allowed to respond with sy. The responses of objects
in S35 are delayed until after the READ returns. By construction, as is indistinguishable to
the reader from f5, and therefore, the return value of READ must be 0 in 3. Since in a3 no
reads are concurrent to writes, by safety, the history of a3 must be linearizable. However,

this would require READ to return 1. A contradiction. O

6.4.2 Lower Bound on READ Emulations

In this section we show a lower bound on a number of rounds of base object invocations
required to emulate READ operations of a binary 1R1WS register. We consider a system
with n = 3t 4+ k base objects, t of which can fail.

We will prove the following theorem:

Theorem 12. For every algorithm A emulating a 1R1WS register in a system with n = 3t+k
base objects, t of which can suffer NR-Arbitrary failures, and in which the reader does not
modify the base objects’ states, there is a run of A in which the READ emulation invokes

\t/k] + 1 rounds of base object operations.

Note: The special case where k£ = 1 represents an optimal resilience algorithm.

We begin by proving the following simple lemma:

Lemma 25. For any 0 < f <, there is a finite run that includes a single complete WRITE

operation, in which f objects fail, and at the end of which t correct base objects’ state are sg.

74

Proof. Consider a run o in which ¢ (faulty) objects crash at the beginning of the run, and
WRITE(1) is invoked. The WRITE must return without hearing from these ¢ objects. Let 7
be the point in ¢ at which WRITE returns. We construct a run ¢’ that until point 7 looks
to the writer exactly like o, but in which the requests sent to ¢ correct objects are delayed
until after 7. The remaining n — ¢t objects all abide by the protocol, and respond exactly as
the n — t correct objects do in o. Since until 7, ¢’ is indistinguishable to the writer from o,
WRITE returns at 7, before the delayed requests reach ¢ correct objects. Hence, when WRITE

returns, these t correct objects’ states are still sg. O

Without loss of generality, we will make the following assumption about the WRITE
emulation: the last write operation invoked by WRITE to base objects attempts to write the
same value to all base objects, and WRITE does not return before 2t + k of them respond.
Modifying a given WRITE implementation in order to satisfy this assumption cannot violate
safety, because it can only require writing more information to more objects; since we assume
a full information protocol, no information is lost. Moreover, waiting for 2t + k responses
does not violate liveness since at least 2t + k correct base objects are guaranteed to respond.

The above assumption implies that when a WRITE(1) operation completes, there exist
t + k correct base objects whose states are equal to the last value written by WRITE. We
denote this state by s;.

We now prove Theorem 12 by constructing a run in which the READ emulation invokes
|t/k| + 1 rounds of base object operations. The run is constructed by induction, where
we show that the algorithm is continuously forced to invoke more rounds. The proof is
illustrated in Figure 6.4.

For k£ > t the theorem trivially holds, because obviously at least one round is required in
order to read a value from the register. We therefore assume that k£ < ¢. We construct, by

induction on ¢ < t/k, a run in which i + 1 rounds are required.

Base case

A READ emulation begins by invoking read operations on all base objects, and waiting for
responses. This is the first round. We construct three different runs which are indistinguish-

able to the reader after receiving 2¢ 4+ k responses to the first round read request:

1. In run oy, a WRITE(1) operation completes before READ begins. Therefore, READ must
return 1. When READ is invoked, at least ¢t + k correct objects’ states are s;. Without
loss of generality, these are objects oy, ..., 0.,. Moreover, at least ¢ correct objects are
in state sy (this is possible by Lemma 25). Without loss of generality, these are objects

75

write(1)

01,...,t+1 = Sl; Or+2,...,n = SO
round 1
01 = Sl;
Opia. .0 2 89
round i-1

0, 8

o o =8,

read 12,

round i

%,

read

Ot+1,...,n S()
round 1
01 = Sl;
0t+2,,.‘,n = So 'Bi—l
round i-1
Oy, i1 =55
0t+2,...,n = SO
|
|
round i round i
0y i 8
0t+2,...,n s SO
write(1)
01’_“,,4 ad Sl, Oi = Sl
—— L=
0t+2,...,n = SO Oi [rd Sl
b v,

Figure 6.4: The runs constructed in the proof of Theorem 12 for £ = 1. Notation: o; = s

denotes the object o; being in the state s at some point of an execution; o; — s denotes the

object o; returning s as a response to a read invocation.

76

Otiki1,---,021k- In response to the first read round, k correct objects, o, ..., 0,
return s; (if & = 1 then only o, returns s1), t correct objects, 0yyki1, ..., Ok return
so, and t objects o9 y11,...,0, are faulty and return sy. The remaining objects do

not respond.

2. In run [, no WRITE ever occurs. Therefore, READ must return 0. When READ is
invoked, all the correct objects are in state s¢. In this run, objects oy, ..., 0 are faulty
and return s; in response to the first read round. 2¢ objects, 041441, - .., 0y, are correct

and return sy. The remaining objects do not respond (at least k of them are correct).

3. In run 7, a WRITE(1) operation occurs concurrently with the READ operation. In this
run, objects oq,...,0; are correct, and the first read request sent to them is delayed
until after the WRITE operation completes and changes their states to s;. They respond
with s; to the first read round. Objects 041x11,...,0, are also correct, but they are
still in state sqg when the read request reaches them, because the read request reaches
them before the first operation sent to them by the WRITE emulation. Therefore, they

respond with sg to the first read round.

As a convention, the subscripts in the names of the runs denote the number of read
rounds they include. Runs «;y, 1, and ~; all include one round of read operations.

Now, observe that in all three runs, the reader receives the same responses from base
objects. In run ay, it is not allowed to return 0. In run [y, it is not allowed to return 1. In
run 7y, it is not allowed to wait for more round 1 responses, because it already heard from
2t + k correct objects, and the remaining ¢ may be faulty. Therefore, a second round must
be initiated. Moreover, note that in run ;, no objects are actually faulty (the reader must

return because they may fail, but so far none have failed).

Inductive step

Assume that 1 < i < t/k. Our inductive hypothesis is as follows: There exist two finite runs

a; 1 and f;_1, both including 7 — 1 rounds of read, such that:

1. In o;_1 WRITE(1) has completed before the READ was invoked; objects oy, ..., 0y are
correct and their state is s; from a time before the beginning of the READ onward;
objects 0pik11,--.,094 are correct and their state is sy throughout «; ;; and the

remaining objects are faulty.

2. In f3;_1 no WRITE ever occurs; objects oy, . .., o1y are faulty; and objects o411, .., 0n,

are correct and their state is sy throughout 3;_;. For objects oi_1)k+41,- .-, 0141 We do

7

not specify whether they are faulty or not since they do not participate in the run yet.

At least k of them must be correct, but we do not specify which ones.

3. The responses that the reader receives in both runs are as follows: In response to every
round j read, for 1 < j <i—1, objects o1, ..., 05, return s; and objects 0,1 511,...,0,

return sg. No other objects respond.
4. The reader invokes a round ¢ read immediately at the end of both of these runs.

It is easy to see that our construction of o and [3; satisfies the induction hypothesis. We
now show how to construct «; and f; from «;_; and ;1.

Note that by our assumption, i < ¢/k, hence (i + 1)k < t + k, and at least 2k objects
have not yet responded to any of the read rounds. The ith read round is invoked at the end
of a; 1 and (3;_;. We construct three runs by adding k responses to all the read rounds as

follows:

1. Run o; extends «;_; by having the correct objects og_1)g41, ..., 0 respond to all the
read rounds with their state s;; and having all the objects that have responded in

previous rounds respond the same way in round <.

2. Run $; extends 3;_; by having the objects o_1)k+1,- - -, 0ix become faulty and respond
to all the read rounds with s;; and having all the objects that have responded in

previous rounds respond the same way in round .

3. Run 7; extends (;_; with a WRITE(1) operation. The WRITE operation completes
promptly, so that the final round of the WRITE occurs at objects o;_1)jk41,. .., O
before these objects even receive the request for the round 1 read. Note that this is
possible, since these objects have not responded to any request in 3;_;, and hence the
request sent to them may have not reached them yet in £;_;. These objects are all
correct in ;, and they respond to all the read rounds with s;. All the objects that

have responded in previous rounds respond the same way in round %.

Again, we have a situation in which in all three runs, the reader receives the same
responses from base objects. That is, these runs are indistinguishable to the reader. In run
«;, the reader is not allowed to return 0. In run f;, it is not allowed to return 1. In run ~;,
it hears from 2t 4+ k correct objects in all the rounds, and is therefore not allowed to wait
for more responses in any round, because the remaining objects may be faulty. Thus, round
t + 1 must be initiated. We add the initiation of round 7 + 1 at the end of a; and f;, and
they both satisfy the induction hypothesis. Theorem 12 follows.

Note that in run =;, (i — 1)k objects are faulty. Therefore, we have also proven the

following lower bound for early-stopping algorithms:

78

Theorem 13. Consider an algorithm A emulating a 1R1WS register in a system with n =
3t+ k base objects, t of which can suffer NR-Arbitrary failures, and in which the reader does
not modify the base objects’ states. For every 1 < i < [t/k]|, there is a run of A in which

(1 — 1)k objects fail and the READ emulation invokes i + 1 rounds of base object operations.

Note also that in run 3;, ik objects are faulty and no READ operation overlaps any WRITE
operation. Therefore we get the following lower bound for invocations of READ that do not

overlap any WRITE:

Theorem 14. Consider an algorithm A emulating a 1R1WS register in a system with n =
3t+ k base objects, t of which can suffer NR-Arbitrary failures, and in which the reader does
not modify the base objects’ states. For every 1 < i < |t/k]|, there is a run of A in which ik

objects fail and the READ emulation invokes © + 1 rounds of base object operations.

When k£ = 1, we get that for 0 < f < ¢, the lower bound on the number of rounds
required to emulate READ in runs with f failures is min(t + 1, f 4+ 2). If a READ invocation
does not overlap any WRITE operation, then the lower bound is f 4 1. Our algorithm shows
that these bounds are tight.

6.5 Conclusions

We have studied asynchronous implementations of wait-free shared memory objects from
base objects that can suffer NR-Arbitrary faults. This failure model is important in cap-
turing much recent work on scalable widely-distributed systems that are based on either
“light” replicated servers (e.g., Fleet [MRO00], Agile Store [LAV01], and Coca [ZSR02]) or
the emerging technology of Storage Area Networks.

In this model, we have presented an optimal resilience wait-free construction for the first
time: our construction uses 3t 4+ 1 base objects, ¢ of which can fail. We have also shown that
optimal resilience algorithms have an inherent cost: we proved a lower bound of two rounds
for emulating WRITE operations with resilience of ¢ > n/4. This is in contrast to algorithms
tolerating ¢ < n/4 NR-Arbitrary faults, which can emulate WRITE operations in a single
round. Moreover, we have shown a lower bound of min(t + 1, f + 2) rounds for emulating
READ operations in runs with f failures in systems where the reader does not modify the
base objects. Whether this lower bound still holds when readers are allowed to modify the
base objects remains an open problem. However, we conjecture that even if readers can
modify the base objects, it still holds that either the READ or the WRITE emulation must
take min(t + 1, f 4+ 2) rounds. We further discuss this conjecture in Section 6.5.1.

79

Both of the bounds we have proven are tight: our shared register construction achieves
both. Moreover, in runs that are synchronous or in which all failures are benign, our algo-

rithm emulates WRITE operations in at most two rounds.

6.5.1 Allowing Readers to Modify Objects

Our lower bound on the number of rounds for READ assumes that the reader does not modify
the base objects. We now revisit this assumption. Consider an algorithm in which the reader
modifies the base objects and the writer reads information from them. How can such an
algorithm be more efficient than an algorithm in which the reader is not allowed to modify
the base objects? Conceivably, the reader may be able to signal to the writer that a read is
in progress, and the writer could conceivably use this signal in order to refrain from writing
to base objects while the reader is reading them. Observe that indeed, our lower bound
proof made use of the fact that WRITE can occur concurrently with the READ.

Whether expediting the READ emulation by allowing readers to write and writers to read
is possible or not remains an open problem. However, we believe that in order to allow
some form of meaningful communication from the reader to the writer, one would need the
abstraction of a 1IR1WS register, where the READ emulation is the writer and the WRITE
emulation is the reader. Intuitively, a safe register is needed in order for the reader to be able
to signal to the writer that read is in progress, and for the writer to be able to distinguish
the case that the reader never signaled that read is in progress from the case that the reader
did signal so before the WRITE began. We conjecture that no form of communication weaker
than a safe register can help reduce the cost of a READ emulation. Therefore, we believe that
a safe register in one direction must be emulated at the “full cost” before a safe register in
the other direction can be emulated faster. We therefore conjecture that if it is possible to
expedite the read in this manner, then the WRITE emulation needs to invoke at least |¢/k|+1

rounds of read operations on base objects. Formally, we make the following conjecture:

Conjecture 1. For every algorithm A emulating a 1R1WS register in a system with n =
3t + k base objects, t of which can suffer NR-Arbitrary failures, there is a run of A in which
either the READ emulation or the WRITE emulation invokes |t/k| + 1 operation rounds.

80

Chapter 7
Deconstruction Revisited

In this chapter we present an implementation of a Paxos-like agreement protocol in the
shared memory environment with objects prone to NR-arbitrary failures. Our implementa-
tion follows the deconstruction approach of Chapter 4: We start by specifying two building
blocks: (1) a weaker variant of the ranked register object, called a safe ranked register (Sec-
tion 7.1), and (2) a write-once atomic register (Section 7.2). We then show an agreement
implementation based on these two building blocks (Section 7.3), and finally, their construc-

tion tolerating up to n/5 NR-arbitrary object failures (Sections 7.4 and 7.5.

7.1 The safe ranked register object

In this section we present a weaker variant of the ranked register object implementable in
the shared memory model with NR-arbitrary memory object failures. Naturally, in such
an environment it might be impossible to reliably recover a register’s content if it is being
simultaneously accessed by several faulty processes. Also, in some situations it can be
impossible to discern the rank with which a certain value has been written, albeit the value
itself can be reliably chosen (e.g., a reader might see ¢ + 1 pairs (r;, v;) such that all v;’s are
the same whereas at least two r;’s are different).

To address these possibilities, we introduce a weaker type of the ranked register object,
called a safe ranked register. Informally, the read from a safe ranked register object is
guaranteed to return a meaningful value only if the previously committed value has not
been (or attempted to be) overwritten by a different value. The formal specification of the
safe ranked register object is given below:

Let Vals = Vals. A safe ranked register object is a multi-reader, multi-writer shared
register with two operations: rr-read(r); by process i, r € Ranks, whose corresponding reply
is value(v), where v € ValsU{L}. And rr-write(V'); by process i, V' € RVals, whose reply is

81

either commit; or abort;. The safe ranked register object is required to satisfy the following

properties:

Property 10 (Integrity). If a rr-read operation R returns v # L, then there exists a

rr-write operation W = rr-write({r,v)).

Property 11 (Safety). Let W = rr-write({r,v1)); be a rr-write operation that commits,
and let
R = rr-read(ry) be a rr-read operation such that ro > ri. If there does not exist a rr-write

operation rr-write({r,v)) such that r > ry and v # vy, then R returns the value vy .

Property 12 (Non-Triviality). If a rr-write operation W invoked with the rank ry aborts,
then there ezists a rr-read(rr-write) operation with rank ro > r1 which is invoked before W

returns.

Property 13 (Liveness). If an operation (rr-read or rr-write) is invoked, then it eventually

returns.

As with the regular ranked register object we assume that each run satisfies rank unique-
ness (Definition 1). Note that the safe ranked register object properties imply that given a
rr-write operation W = rr-write((r, v)) that commits, a rr-read operation R with rank r > r
may return L only if it is concurrent to a rr-write operation W' = rr-write({r’, v')) such that
r'>r and v # v.

7.2 A write-once atomic register

The ranked register object based Consensus implementation for NR-crash (see Figure 4.1)
uses an additional read /write register to store the decision value. This register enables non-
leader processes to obtain the decision value without intervening with the leader’s DECIDE
procedure. It is therefore, essential to ensure the termination property of Consensus. How-
ever, as we have seen in Chapter 6 implementing a register out of objects prone to NR-
arbitrary failures is costly. Fortunately, once the Consensus value is fixed, it will never
change, and therefore, it is enough to provide a read/write register with a weaker, write-
once semantics. In this section we give a specification of this register. Its fault-tolerant
construction is shown in Section 7.5.

A multi-reader /multi-writer read/write register is called a write-once atomic register if

each its admissible execution o satisfies the following

Property 14. If o' is the mazximal admissible prefix of o in which no more than one value

is written, then o' is an atomic register execution.

82

7.3 Consensus using a safe ranked register object

The agreement implementation using a safe ranked register object is shown in Figure 7.1. It

employs a method that is similar to that in Figure 4.1.

Shared: Safe ranked register object rr, initialized by rr-write({rg, vo)) which commits;
Write-once atomic register decision, with values in Vals, initialized to L
Local: V' € ValsU {abort}, r € Ranks;

Process i:
propose(inp), Vals — Vals Function DECIDE((r,v)), RVals — (Vals U {abort}):
T 4— T; V <« rr.rr-read(r);;
while(true) do if (V=1VV =1) then
v < decision.read; V v,
if (v # L) then if (rr.re-write((r,V')); = commit) then
return v; return V;
if (L;.isLeader()) then fi
r < chooseRank(r); return abort;
V' <~ DECIDE((r, inp));
if (V' # abort) then
decision.write(V);
return V;
fi
od

Figure 7.1: Consensus using a safe ranked register object, a write-once register and £

Lemma 26. Let o be an execution of the Consensus construction in Figure 7.1. Let Wy =
rr.rr-write({ry,v1)), be the lowest ranked rr-write invocation that commits in «. Then, if a

rr-write invocation W = rr.rr-write((r,v)), such that r > ry, is invoked in o, then v = vy.

Proof. Let W be the set of rr-write operations invoked with a rank higher than r; in a. We
show by induction on the size of W that each W &€ W writes the value it reads from Wj.
Base case: Let W = {W} where W = rr-write((r,v)). By the code, W is preceded
by a rr-read operation R = rr-read(r) that returns v. Since r > ry, and no other rr-write
operations with a rank higher than r; were invoked, by safety of rr, R returns v;. Hence,

v = v; as needed.

83

Inductive step: Assume that the result holds for any set W such that |W| > 1, and
consider W' = WU{W'}. By the code, W'is preceded by a rr-read operation R’ = rr-read(r').
By the induction hypothesis, no value v # v; was ever written with rank > r;, and by rank
uniqueness no value but v; can be written with rank equal to ;. Therefore, by safety of rr,

R’ returns v; as needed. O

Corollary 1. Let « be an ezecution of the Consensus construction in Figure 7.1. Let Wi =
rr.rr-write({ry,v1)), be the lowest ranked rr-write invocation that commits in «. Then any

write to the decision register writes v;.

Proof. By the code, a value v can be written to the decision register only after a rr-write

operation W = rr-write((r,v)) where r > r; commits. By Lemma 26, v = v;. O
The agreement property of Consensus follows immediately from the above results:
Lemma 27 (Agreement). The construction in Figure 7.1 satisfies Agreement.

Next, we show validity:

Lemma 28 (Validity). The construction in Figure 7.1 satisfies Validity.

Proof. Let o be an execution of the construction in Figure 7.1. By initialization, « starts
with the RR-WRITE operation Wy that writes (rg, vg). Let W be the set of rr-write operations
invoked in a. We show by induction on the size of VW that each W € W writes the initial
value of some process.

Base case: Let W = {W} where W = rr-write((r,v));. By the code, W is preceded by a
rr-read operation R = rr-read(r). Since r > rg, and no other rr-write operations with a rank
higher than ry have yet been invoked, by safety of rr, R returns vy. By the code, v = inp;
as needed.

Inductive step: Assume that the result holds for any set W such that |W| > 1, and
consider W' = W U {W'} such that W' = rr-write((r',v"));. Again, by the code, the value
v" written by W' is determined by the value returned by the preceding rr-read operation
R' = rr-read(r'). By integrity, R returns one of the following: (1) L, (2) vp, or (3) the value
v written by some W € W. If (1) or (2) is true, then v' = inp; as needed. Otherwise, by
the induction hypothesis, it must be the input value of some process j, so that v = v as

required.]
Finally, we show termination:

Lemma 29 (Termination). The construction in Figure 7.1 satisfies Termination.

84

Proof. At the latest, when some correct process £ becomes a unique perpetual leader, it will
go through the successive iterations of the loop in the propose code, increasing its rank at
each iteration. Eventually, its rank will become the highest among all the ranks passed to
the operations invoked so far. By non-triviality, as soon as this happens, ¢ will succeed to
write a value v # L to rr and to decision. Each other process, that has not yet decided, will
eventually invoke decision.read that does not overlap with decision.write(v),, and therefore,

by Property 14 will read the value v # 1 and terminate. O

7.4 Implementing a safe ranked register object

In this section we present a wait-free implementation of a safe ranked register from regular
ranked register objects that may incur NR-arbitrary failures. The register supports an
unbounded number of clients. The construction pseudocode appears in Figure 7.2. The
construction assumes n > 5¢ shared ranked register objects up to ¢ of which can incur
NR-arbitrary failures.

We now argue the implementation correct. We first show safety (Property 11).
Lemma 30 (Safety). The implementation in Figure 7.2 satisfies safety (Property 11).

Proof. Let W, = RR-WRITE((r, v1)) be a rr-write operation that commits, and let RR-READ(773)
such that 7o > r;. Assume that there does not exist a rr-write operation W = rr-write((r, v))
such that » > r and v # vy.

By the rr-write code, the rr;.rr-write((ry,v1)) invocation on at least n — 2t base registers
rr;, of which at least n — 3t > 2t are correct, returns commit. Consequently, by safety of
rri, rri.rr-read(ry) must see' rri.rr-write((ry,v,)) for at least ¢t + 1 base registers rr;.

Since by assumption, v; is never overwritten with a different value by a rr-write operation
with rank > r, and by rank uniqueness, the only rr-write operation with rank = ry is Wy,
there must be at least ¢ + 1 base registers rr; such that rr;.rr-read(re) returns (r,v;) where
r>r.

We show that that there does not exist a pair (s,u) where s > ry and u # vy, such
that the test in line 5 of the RR-READ implementation yields true for (s, u). Assume to the
contrary that such (s, u) exists. Since (s,u) satisfies the test in line 5, there exist at least
t + 1 base registers rr; that responded with (s’, u) such that s > s to rrj.rr-read(rs). Since
at least one of the rr; registers is correct, by safety of rr;, there exists a rr-write invocation
W' with rank s” > s’ that writes the value u # v;. However, we know that s” > s’ > s > ry,
and since u # vy, by rank uniqueness, s” > rq, thus contradicting the assumption that no

such W" may ever exist.

Tn the sense of Definition 2 in Section 4.2.

85

Shared: ranked register objects rr;, 1 <j <mn

Local to the reader: S C {1...n} x RVals, initially empty.
RR-READ(r):

1) S« 0;

2
3

|| invoke rr-read(r) on rr; for each i;
for each response V; returned by rr;, store (i, V;) in S;
wait until |S| > n — ¢
if (3V € Vals 3R € Ranks [R = maz{r' : |{k : (k,r", V) € SAr" >7r"}| > t+1}]) then

return any value V' satisfying the above test;

(G2
~— — — ~— — ~—

(
(
(
(
(
(6
(7

return L;

Local to the writer: S C {1...n} x {commit, abort}, initially empty.
RR-WRITE((r, v));:

1) S« 0;

2
3

|| invoke rr-write((r,v)) on rr; for each ;

for each response resp; returned by rr;, store (i, resp;) in S;
wait until |S| > n — ¢
if (|[{k : (k,abort) € S}| >t +1) then

return abort;

(G2
—_ D —

6

(
(
(
(
(
(
(7

return commit;

Figure 7.2: A wait-free construction of a safe ranked register object out of n > 5t+1 regular

ranked register objects

Finally, since the test in line 5 is satisfied for (ry,v;), and for any pair (s, u) satisfying
the test in line 5 must hold s > 7 and u = vy, the return value of RR-READ(73) must be v;
as needed. O

Next, we show the remaining properties:

Lemma 31 (Integrity). The implementation in Figure 7.2 satisfies integrity (Property 10).

Proof. By the RR-READ code, if V' # L is returned, then there exist at least ¢ + 1 base
ranked register objects that returned (x, V) one of which, say rr;, is correct. By safety of
rrj, there exists rr;.rr-write((r,V)). By the code, rrj.rr-write((r,V’)) can only be invoked
by RR-WRITE((r, V)) as needed. O

86

Lemma 32 (Non-Triviality). The implementation in Figure 7.2 satisfies non-triviality
(Property 12).

Proof. By the RR-WRITE implementation, a RR-WRITE operation W = RR-WRITE((r, v))
returns abort only if rr-write({r, v)) operations applied to at least ¢ + 1 base ranked register
object have returned abort. Since at least one of these registers, say rr;, is correct, by non-
triviality of rr;, there exists a rr-read (rr-write) invocation rrj.re-read (r') (rrj.re-write((r', *)))
such that 7' > r. By the code, rrj.rr-read(r") (rrj.re-write((r’, *))) can only be invoked by
RR-READ(7') (RR-WRITE((r’, %))) as needed. O

Lemma 33 (Liveness). The implementation in Figure 7.2 satisfies liveness (Property 13).

Proof. Obviously, both the RR-READ and RR-WRITE implementations can never get stuck
unless a rr-read or rr-write from some base register gets stuck. However, this cannot happen

since the base registers satisfy liveness. O
We proved the following

Theorem 15. The implementation in Figure 7.2 is an implementation of the safe ranked
register object out of n > 5t reqular ranked register objects upto t of which can incur NR-

arbitrary failure.

7.5 Implementing a write-once atomic register

A fault-tolerant construction of a write-once atomic register appears in Figure 7.3. It utilizes
n > 4t write-once atomic registers upto ¢ of which can incur NR-arbitrary failures.

We now prove the construction correct. Let o be an admissible execution of the con-
struction in Figure 7.3, and ¢’ be the maximal admissible prefix of o such that there exists

a value v € Vals satisfying the following: If write(u) in invoked in o', then u = v.

Lemma 34. Fach READ operation R in o' returns either v or L. Moreover, if R returns v,
then there exists a WRITE operation W = WRITE(v) such that W is invoked before R returns;
and if R returns L, then for no WRITE operation W, W returns before R is invoked.

Proof. First, for no value v' # v, v’ is ever returned by READ as for otherwise, there exist
t + 1 base registers that returned v’, and therefore, some correct base register x; returned v'.
By atomicity of z;, there exists w' = write(v') invoked on x; such that w' is invoked before
the read from xz; returns. In turn, w’ must be invoked by W' = WRITE(v') such that W' is

87

Shared: Write-once atomic registers z; € Vals, 1 < i < n, initialized to L.

Local: Resp C {1...n} x Vals, initially empty;

WRITE(v):
|| invoke write(v) on x; for each i;
wait until n — t base registers respond with ack;

return ack;

READ():
|| invoke read() on x; for each i;
for each response resp; returned by z;, store (i, resp;) in Resp;
wait until |Resp| > n —t;
if Jv € Resp such that [{k: (k,v) € Resp}| >t+1Av# L then
return v;

return L;

Figure 7.3: A wait-free construction of the write-once atomic register out of n > 4t + 1

write-once atomic registers

invoked before R returns contradicting the assumption that no values other than v are ever
written in o’

In the same vein, if R returns v, then there exist ¢ + 1 base registers that returned v,
and therefore, some correct base register z; returned v. By atomicity of x;, there exists
w = write(v) invoked on x; such that w is invoked before the read from z; returns. In turn,
w must be invoked by W = WRITE(v) such that W is invoked before R returns.

Finally, suppose that R returns L. Assume to the contrary, that there exists W =
WRITE(v) that returns before R is invoked. At the time W returns, write(v) was complete
on at least n —t > 3t + 1 base registers x; of which at least 2¢ 41 are correct. Since no other
value v' # v is ever written to each z; in o', and because R invokes read on at least n — ¢
base objects, at least ¢ + 1 correct base objects will respond with v to the read operations
invoked by R. Of the remaining n — 2¢ objects, at most ¢ may respond with arbitrary values,
and the last n — 3t will respond with v or L. Thus, the only value that can appear ¢t + 1
times in Resp in addition to v is L. By the algorithm, in this case, the reader will always

choose to return v in contradiction to the assumption that R returns L. 0
Lemma 35. o' satisfies atomicity.

Proof. Our proof strategy is to construct a permutation 7 of the operations invoked in o'

88

that is both consistent with the — relation, and legal with respect to the read/write seman-
tics. 7 is constructed as follows: First, let m; be a permutation of the operations invoked in
o' that is consistent with the — relation. Next, based on the fact that by Lemma 34, each
READ operation in ¢’, and therefore in 7, returns either L or v, we transform 7 into m

using the procedure outlined below:

Do

o <— T,

(1) For each READ operation R in ¢’ such that R returns L, and there
exists a WRITE operation W that precedes R in 7, remove R from its

original location and insert it before W.

(2) For each READ operation R in ¢’ such that R returns v, and there

exists a WRITE operation W that follows R in m;, remove R from its

original location and insert it after W.

Until m = 7.

We show that m = my is the permutation required by atomicity. First, we show that x is
consistent with the — relation. Indeed, by Lemma 34, each READ operation that returns L
must be invoked before any WRITE operation returns, the first transformation above leaves
7y consistent with —. Also, by Lemma 34, each READ operation that returns v must return
after any WRITE is invoked. Therefore, the second transformation above keeps 7; consistent
with — as well. Finally, since the transformation procedure does not affect the relative order
of writes, the 7 is consistent with the — relation.

Last, we show that 7 is legal. Indeed, the transformation procedure implies that = =
7'WRITE(v)7n” where 7’ consists of only READ operations that return L, and 7" consists of

WRITE operations that write v and READ operations that return v. Hence, 7 is legal. O

Since both WRITE and READ are obviously non-blocking, the construction in Figure 7.3

is wait-free. Thus, we proved the following

Theorem 16. The construction in Figure 7.3 is a wait-free construction of a write-once
atomic register out of n > 4t write-once atomic registers upto t of which can incur NR-

arbitrary failure.

89

90

Part 111

Realizing the Data-Centric

Fault-Tolerance

91

Chapter 8

Aquarius: A Storage-Centric
approach to CORBA Fault-Tolerance!

8.1 Introduction

The Internet provides abundant opportunity to share resources, and form commerce and
business relationships. Key to sharing information and performing collaborative tasks are
tools that meet client demands for reliability, high availability, and responsiveness. Many
techniques for high availability and for load balancing were developed aiming at small to
medium clusters. These leave much to be desired when facing highly decentralized settings.

In order to take the existing, successful approaches a step forward towards large scale
distributed systems, we identify two core challenge areas related to information technology
tools.

The first is attention to scale and dynamism, in order to exploit reliability and surviv-
ability techniques in the networks of today and the future. This dissertation manifests the
realization that replication based on techniques borrowed from the group communication
world fail to scale beyond a few dozens of servers, and incur a serious cost of cross-server
monitoring for failures. In this chapter we establish the storage-centric paradigm as a viable
alternative to the group communication approach by providing its concrete and detailed
implementation and performance assessment.

The second is deployment in real settings and providing an evolution path for legacy
software. While we strive to keep the work general, we focus on CORBA [Obj99] as a devel-
opment platform. This choice is made so as to provide for inter-operability and uniformity,
and comply with state-of-the-art heterogeneous middlewares. CORBA is a leading standard

!This chapter is based on the WRSM’03 paper by Chockler, Malkhi, Merimovich and Rabi-
nowitz [CMMRO3].

93

for bridging object oriented and distributed systems technologies, simplifying development
of distributed applications. Our results provide important insights that may impact the
emerging Fault-Tolerant CORBA (FT-CORBA) standard [Obj00].

In this chapter we introduce Aquarius, a fault tolerant CORBA software that answers
the two challenges mentioned above. First, Aquarius employs replication techniques from
the previous chapters for survivability and scalability. Second, the design seamlessly wraps
legacy software to provide a smooth migration path for robustifying existing services. The

architecture is demonstrated using a test-case replicated SQL database.

8.1.1 Designing Robust Services using Storage-Centric Replica-

tion

Consider a typical service program that is accessible by many clients over the network. The
challenge is to robustify the service for high availability and load balancing with little or no
intervention to existing client or server code.

The storage-centric approach regards the service as a shared object which is manipulated
by multiple clients. Copies of the object reside on a collection of persistent storage servers,
accessed by an unbounded universe of transient client processes. In order to coordinate
updates to different copies of an object, clients perform an agreement protocol similar to
that described in Chapters 4 (Chapter 7 in case of NR-arbitrary failures).

The design puts minimal additional functionality on data servers, who neither communi-
cate with one another, nor are aware of each other. Essentially, each server needs a thin wrap
that provides a facility for storing and retrieving temporary ‘meta-data’ per object. Clients
are also not heavy. Their interaction is through rounds of remote invocations on quorums
of servers. The approach offers great simplicity for constructing fault-tolerant distributed
systems featuring a high degree of decentralization and scale.

More concretely, this approach has several important advantages. First, it alleviates the
cost of monitoring replicas and reconfiguration upon failures. Second, it provides complete
flexibility and autonomy in choosing for each replicated object its replication group, failure
threshold, quorum system, and so on. In contrast, most implementations of state machine
replication pose a central total-ordering service which is responsible for all replication man-
agement (see, e.g., [Pow96, CKV01] for good surveys). Third, it allows support for Byzantine
fault tolerance to be easily incorporated into the system by employing an NR-arbitrary agree-
ment protocol of Chapter 7 combined with Masking Quorum systems [MR98| and response
voting. Finally, limiting redundancy only to the places where it is really needed (namely,
object replication) results in an infrastructure with only a few necessary components (cf.
Section 8.4) thus simplifying the system deployment and reducing its code complexity. (Our

94

CORBA implementation uses 4K lines of Java code for each of the client and server imple-

mentations).

8.2 The Chapter Outline

This chapter is structured as follows: Section 8.3 describes the storage-centric methods we
employ. Section 8.4 describes the overall design of Aquarius, and details of the implementa-
tion are provided in Section 8.5. Section 8.6 presents performance measurements of Aquarius.
Section 8.7 describes a replicated database built using Aquarius. Section 8.8 outlines possible

future developments.

8.3 Replication methodology

Our methodology for supporting consistent, universal object replication utilizes the agree-
ment protocol of Chapter 4. The stability assumptions are encapsulated into a separate
leader election module.

For the sake of presentation, we assume the NR-crash failure model and consider a single
application object replicated at n > 2t servers up to ¢t of which can crash. We make use
of an RPC communication facility that supports asynchronous invocations and guarantees
that an operation issued by a correct client eventually reaches all its correct targets. The
algorithm tolerates any number of client failures. We first give a brief description of the

ordering algorithm. We then outline the implementation of leader election.

8.3.1 Operation ordering

The operation ordering is carried out by the client side of the algorithm whose pseudocode is
depicted in Figure 8.7 in the appendix. The client utilizes replicated servers for storing appli-
cation requests and ordering decisions. The implementation employs two separate threads:
one for disseminating application requests to the servers (the dissemination thread), and the
other one for ordering previously submitted requests (the ordering thread). At the core of
the ordering thread is an agreement protocol similar to that described in Chapter 4 with
the decision value being an ordering of operations, represented by a sequence of operation
identifiers (prefix). In the worst case, the algorithm invokes three communication phases:
The first phase is used to discover the latest decision value which is then extended with
newly submitted operations to obtain the next decision value. This new value is then pro-
posed and committed to the servers. The clients employ unique ranks (similar to the Paxos

ballots) to prevent concurrent leaders from proposing conflicting decisions and to reliably

95

determine a decision value to extend. We note that the actual implementation employs sev-
eral optimizations that reduce the number of communication rounds in failure free runs to
one.

To ensure progress, the ordering thread employs a simple backoff based probabilistic
mutual exclusion mechanism similar to that of [CMRO1]* that works as follows: Whenever
an ordering attempt fails because of an intervening ordering attempt by a higher ranked
client (PROPOSE returns nack), the ordering thread backs off and then repeats its ordering
attempt. The backoff period is chosen randomly from the interval [A, A f(attempt)]|, where
A is the upper bound on the time required to order a single operation, attempt counts
the number of unsuccessful ordering attempts, and f is a function monotonically increasing
over attempt (e.g., f = 2%emPt for exponential backoff). By choosing backoff times from
monotonically increasing intervals, the method ensures exclusion among a priori unknown
(but eventually bounded) number of simultaneously contending clients. Note however, that
the mechanism does not guarantee starvation freedom if the clients keep submitting new
operations. The Aquarius implementation overcomes this problem by introducing persistent
client side agents (proxies) and extending the basic backoff protocol to support long-lived
leader election.

The server side of the ordering algorithm (see Figure 8.8 in the appendix) is very simple:
It supports only three operations: GET to read the replica’s state; PROPOSE to store a
possibly non-final ordering proposal whose rank is the highest so far; coMMIT to finalize the
order and apply the operations to the application object.

8.4 System Architecture

8.4.1 Overview

Our implementation of the storage-centric approach forms a middle-tier of client-proxies,
whose role is to act on behalf of client requests. Proxy modules may be co-located with
client processes, but need not be so. There are several reasons for logically separating

between clients and proxies.

Persistence: Proxies can be administered with prudence, and thus a proxy that becomes
a leader of the ordering protocol may prevail for a long period. This entails considerable
savings in the bootstrap of the ordering scheme. In contrast, clients might enter and leave

the system frequently, generating contention for the leadership position.

2The alternative was to use a deterministic algorithm of Chapter 5. Evaluating and comparison of the
probabilistic and deterministic approaches is the subject of the ongoing work.

96

Client:l Proxy:0 Server:l

Applicationn Applicationn
Clientn Serverl
Proxyl Q0 Al
CORBA ORBI CORBA ORBI CORBA ORBI
| Interceptord In
Interceptora |

|

Figure 8.1: The Aquarius Architecture

Efficiency: A proxy may serve multiple clients, as well as multiple objects. Several im-
portant optimizations result from this (as described in more detail below), e.g., batching

dissemination requests and ordering operations.

Transparency: The client code requires little or no change. For legacy applications this
means that they will simply use the remote CORBA reference as they did before, without

any changes.

Extendibility: The proxy is an ideal location for extended functionality, as it is in the
critical path of the protocol. For example, we envision running in the future monitoring and

profiling tools on the distributed application.

On the server side, the storage-centric approach requires simple functionality. This simplic-
ity allows us to use the Object Adapter approach, introduced in [FH02]. CORBA defines an
object adapter, called the Portable Object Adapter (POA), for use in client-server applica-
tions. This adapter can be extended and customized according to the application’s specific
needs. Aquarius defines the Quorum Object Adapter (QOA) which adds the functionality
required by the ordering protocol without modifying the application server code.

On the client side, each request is assigned a unique ID used in the ordering protocol.
This unique ID is added transparently using the CORBA Portable Interceptor mechanism.

This request is sent to the proxy and forwarded to the application servers. No change is

97

/” Dissemination Send requests tol\

: . . servantsl
| _Request arrives] Disseminationd >
(on ORB thread)n Workerl e
Incoming requests queuel ™
é Order/ngﬂ B State change notificationn g
g Orderingl \ g
= Workert 3-Phase commitd =
O > @
9]
Request Processoff
Return result to clientd PRequestl] Returnedn
g — == e = e quorumi rocessorl
(on ORB thread)n o Workerl requestsl v
N /]

Figure 8.2: The Aquarius Proxy Architecture

required in the client’s code.

These then are the main components of the Aquarius system: the QOA that supports
the additional server functionality, the proxy that handles dissemination and ordering, and
Portable Interceptors that transparently transfer the unique IDs. This architecture is in the
spirit of the storage-centric approach, maintaining state on the servers and executing the
protocol on the proxy, while enjoying the advantages of a three-tier architecture requiring

minimal changes to existing code.

8.4.2 Proxy

The Aquarius proxy is a stateless server - it holds no persistent data, and requires no stable
storage. This allows a backup proxy to assume the leadership position in case of a proxy fail-
ure without reconfiguration. The new leader automatically acquires all relevant information
in the process of executing the ordering protocol.

The proxy consists of two parallel threads of execution, each with its own separate data
and interface. The first, called the dissemination thread, is responsible for disseminating
client requests to all replica servers, and to process their responses. The second thread,
called the ordering thread, is responsible for creating a total order of all client requests. The
proxy receives client requests via the CORBA Dynamic Skeleton Interface (DSI) which allows
it to receive client calls from any application. The message is then forwarded asynchronously
via the CORBA Dynamic Invocation Interface (DII) to all replica servers. Once the results

from the replicas return, the proxy returns the agreed upon result to the client.

98

CORBA Object Request Brokers (ORBs) commonly support two threading paradigms:
THREAD-PER-REQUEST and THREAD-POOL. In the THREAD-PER-REQUEST model, a new
thread is created to dispatch each request. In the THREAD-POOL model, a pool of threads
is allocated during bootstrap. For each incoming request a thread is removed from the pool
and is used to dispatch the request. Once the request is completed, the thread returns to
the pool. If no thread is available for a request, it is queued until a thread is ready. Both
these models are inadequate for the tasks required of the Aquarius proxy. Since requests
can block until they are ordered a THREAD-POOL may easily be exhausted, halting all future
operations in the proxy. The THREAD-PER-REQUEST model is not affected by this problem,
but it does not scale well. Therefore a different approach is employed.

The Aquarius proxy uses a fixed number of threads which run fast, non-blocking op-
erations. All incoming requests are queued and dispatched by the dissemination thread.
Ordering requests are sent and received by the ordering thread, and a third thread, called
the request processor, is responsible for collecting replica responses and returning results to
the clients. This model uses minimal resources while ensuring the proxy does not halt.

The Aquarius system can manage any number of replicated objects, where each object can
have any number of replicas, and be accessed by any number of proxies. For each object, one
of the participating proxies is designated as the leader proxy that runs the ordering protocol
for that replication group. The other proxies are considered followers, and implicitly rely on

the leader to order their requests.

8.4.3 Quorum Object Adapter (QOA)

In a standard, non fault-tolerant CORBA application, the server object factory instantiates
an implementation object and activates it in a CORBA Portable Object Adapter (POA).
It then publishes the reference to this object. In Aquarius, the object factory must activate
the object in a QOA. This is the only change required in the server. Note that the logic of
the implementation remains unchanged. Only the factory class, which is usually a separate
and much simpler module, is changed.

The QOA acts as a wrapper to the implementation object and an additional CORBA
object, which is responsible for handling the server side of the total order protocol. This
additional object simply maintains the ordering state of the replica, and changes it according
to the ordering calls. It is the simplicity of these calls that allows us to embed them in an
object adapter.

Dispatching of client calls in the QOA is handled using the CORBA RequestDispatcher
mechanism: ordering operations are dispatched by the ordering object, and any other oper-

ation is kept in storage until they are ready to be executed by the application server object.

99

Orderingl

Replicatedn Replicatedn Replicatedn

Application Al Application Al Application Bn Objectn
Object 10 Object 20 Objectn (Servant)n
(Servant)d (Servant) (Servant)

Quorum Object Adapter (QOA)I |
|

CORBA ORBI

Figure 8.3: The Aquarius Quorum Object Adapter Architecture

Operations are ready to be executed once their unique id is committed by the QOA and
there is no other unique id prior to it in the total order which has not been executed.
Note that the execution of operations is delegated to a separate thread, so as not to block

the ordering object from processing further ordering requests.

8.5 Implementation

8.5.1 Bootstrap

An Aquarius proxy is responsible for creating or accessing object replicas. These replicas
can be created by a call from the proxy, in which case they are created within the context of
an Aquarius QOA or they can be existing replicas, created previously by an Aquarius proxy.
The proxy then creates an object group reference, which looks like a standard CORBA
reference, and that can used by any client.

All bootstrap operations use the interfaces defined in the FT-CORBA specification [Obj00].
Specifically, the GenericFactory interface is used for creating replicas and groups, and the
PropertyManager interface is used for specifying configuration parameters.

Once replicas are created and a group reference exists for them, the proxy is responsi-
ble for disseminating any requests made on the object group reference to all participating
replicas. Any number of proxies can access the object replica-group. Each proxy creates its
own object group reference, but all use the same group of replicas. One of these proxies is

considered the leader, and is responsible for executing the ordering protocol. The proxies

100

are independent of each other, and are unaware of any other proxies in the system.

8.5.2 Ordering

The ordering protocol is a three phase commit protocol, as defined in [CMRO1]. The param-
eters of each phase in the protocol are arrays of unique IDs which detail the total order of
the operations, and pointers to the current position of the total order.

Forming the ordering on message IDs is an optimization of the storage-centric approach,
as it decouples the dissemination and ordering messages. Each message is assigned a unique
ID. The ordering protocol does not require the actual message contents, only its ID, serving
to minimize the size of the messages in the ordering protocol. In Aquarius this is supported
transparently using CORBA Portable Interceptors, which add the unique ID to the message
header without any change to the application’s client or server code.

A asynchronous notification mechanism between servers and proxies allows the proxy
ordering thread to be idle most of the time. As request messages arrive at the replicas, they
generate a state change in the server QOA, which notifies one proxy — the current presumed
leader — of the change. This initiates the ordering protocol at the proxy leader. Once the
message has been committed at the QOA, it is dispatched to the application code, which
then executes the request and returns its reply to the proxy that sent it.

In order to support these notifications without registering the proxy at each of the QOAs,
a proxy leader calls a remote operation on each of the replicas which only returns if a request
is pending at this QOA. If no such operation is pending, the request blocks until a request
arrives. This operation is equivalent to the get () operation of the ordering protocol, except
that it blocks until it can return useful information. The additional remote call adds very
little overhead at each of the QOAs while saving the bandwidth required for continuous

execution of the ordering protocol.

8.5.3 Handling Proxy Failures

In order to ensure fault-tolerance all components in the system must be replicated, and the
Aquarius proxy is no exception. With multiple proxies in place, a client can overcome a
proxy failure by simply switching to any other proxy which is a client for the object, or by
instructing a proxy to join this group (this can be implemented transparently with client-
side Portable Interceptors, as described in [FH02]). The situation is more complicated if the
proxy that fails is also the leader. In this case, ordering operations stops and the QOAs will
not execute any application code. Therefore a new leader must be elected.

A proxy that is part of a group can suspect that the proxy leader for the group has failed

if a user-defined timeout has expired since it disseminated a client request to the object

101

(" Proxyl \(Server (Replica)n h
| Clientd | |Dissemination|] ||Ordering|]|| Req. Processor | | QOAI || Ordering Servantl ||App|ivation Servantn
Opetation()d
DisseminationTo Replicasl
1 1
\\J J_ (async.)n
State Changel
NN NS — e ——
get()o

e_ ____________

propose()n

propose()l

e_ ____________

commit()0

commit()0
> Commit finisheds
Operation()
ke e e e e] (async.)
S —— K ——— e - - L
Reached Result Quorum 70 T
) TSI Sy R ——
\ AN J

Figure 8.4: The Aquarius Sequence Diagram

102

replicas. All proxies that suspect such a failure will attempt to become leaders by executing
the ordering protocol. Only one will succeed, and it becomes the new leader, while the others
will fail on a RankEzception and remain followers. The statelessness of the ordering protocol

makes this possible, since a new leader can simply resume where the last one failed.

8.5.4 Summary of optimizations and enhancements

While implementing the system we found some practical improvements of value:

Garbage collection: Maintaining and transmitting the state of the ordering protocol
over time requires a growing amount of resources. Aquarius minimizes this by adding the
notion of a ’stable line’. This in the most recent command that has been executed by all
servers. The state before this request can be discarded. This saves considerable amounts of
information that must be sent between the proxy and the QOAs.

Message batching: The proxy can batch the ordering of multiple messages, sent by
multiple clients in one ordering message, thus saving the bandwidth and round trip time
required for the remote calls.

Notifications: The notifications described above are a practical solution required for
the proxy architecture, which also increases the efficiency of the system.

Threading model: The specially designed threading model described above requires a
constant amount of memory allowing for greater scalability, while ensuring that the proxy

never blocks.

8.6 Performance

This section outlines measurements for the Aquarius system in a test environment. The
system was implemented using ORBacus 4.1.0 [ION] and the Java language, using JDK
1.3.1. The experiments were performed on Pentium III PCs over a 100Mbps local area
network. Each PC is equipped with a 500Mhz CPU, 256MB of RAM, and runs the Debian
Linux (kernel 2.4.18) operating system.

A simple client/server was developed for the experiments. The server contains a single
remote operation that receives a buffer of varying size as a parameter. This allows us to
measure the round trip time of a request as affected by the size of the request. Two sets
of tests were run: the first tests the performance of the system with one client and proxy,
and an increasing number of application servers (equivalently, the replication degree). The
second test increases the number of concurrent clients while working with a single proxy and
five application servers. The results of both tests are depicted in Figure 8.5 and Figure 8.6,

respectively.

103

—~ 100 —

N WA OO O N ©® ©
o O O O O o O o
| | | | | | | |

Round Trip Time (in miliseconds
S
|

o

I I I I I I I 1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Replication Degree

Figure 8.5: Round trip time according to replication degree and request size

-~ 130 —
120 —
110 —
100 —
90 —
80 —
70 —
60 —
50 —
40 —
30 —
20 —
10 —

Round Trip Time (in miliseconds

o

I I I I 1
0 1 2 3 4 5 6 7 8 9

Number Of Clients

Figure 8.6: Round trip time according to number of clients and request size (Using one proxy

and 5 application servers)

104

8.7 A database application

Recent years witnessed a great interest in replicated systems, databases in particular. The
need to maintain the availability of commercial data led to the development of several
database replication techniques. All major database vendors support some sort of repli-
cation for their products. Other companies offer middleware that enables replication.

Our approach offers an easy-to-construct replication middleware. The combination of
such a middleware with a standard, non-replicated, database is a cheap alternative to com-
mercial products.

We have built a prototype replicated database using our methods over the HSQL [HSQ)]
database, an open source relational database system written in Java. HSQL is a JDBC-
compliant SQL database, but has no replication support. By combining HSQL with the
Aquarius system, replication is achieved with very little additional code. A simple server
object was written in Java, that supports a single remote operation. This operation receives
an SQL query, and returns its result. The server itself requires only two hundred lines of
code, including server initialization and configuration. The resulting system shows good
scalability, and supports 50 operations per second for 5 replicas on the test environment
described above.

8.8 Future Directions

Future work on the Aquarius system includes several possible directions.

Quorum definitions: The pluggable quorum management module allows new quorum
systems to be tested for efficiency. In addition, the module responsible for communicating
with quorums may be extended beyond strict quorums access. Two possible examples is
allowing asynchronous backup of a slower secondary site (without slowing the primary site)
or supporting dirty reads (read operations that do not require a quorum of replies, risking
reading old information).

Recovery: Transferring the state of an object replica-group to a new replica, or to a faulty

one that recovers.

Monitoring and Security: Proxies are an excellent location for handling system moni-
toring and maintaining access control lists. Portable Interceptors can be used to add these

features transparently to the system.

105

8.9 Pseudo Code Of The Ordering Protocol

Boolean finish = false;
Dissemination thread:
When an operation op is submitted for ordering:
Assign op a unique id;
Invoke SUBMIT(id, op) on all servers;
Wait until some server responds with (id, res);
finish < true;

Return res;

Ordering thread:
do
Wait until (isLeader V finish);
While (isLeader A = finish) do
Pick a unique, monotonically increasing rank r;
Invoke GET(r) on n servers;
Wait for more than n/2 servers s; to respond with (r;, prefix;, pending;);
Let Pending = |, pending;;
Let prefix = prefix; such that r; = maz;r;;
For each id € Pending which is not included in prefix
prefix <— append(prefix, id);
Invoke PROPOSE(r, prefix) at all servers;
Wait for more than n/2 servers s; to respond with ack/abort;
If more than n/2 servers respond with ack
Invoke coMMIT(r, prefix) on all servers;
od
Until (finish)

Figure 8.7: Storage-centric operation ordering: The client side

106

Sets pending, Ops, initially empty;
Sequences prefix”, prefix, initially empty;

Ranks getRank, propRank, initialized to a predefined initial value;

SUBMIT(id, op): WAITANDAPPLY (id):
pending < pending U {id}; Wait until:
Ops < Ops U {(id, op)}; (1) id appears on prefix’;
Execute WAITANDAPPLY (id) (2) all operations preceding id
in a separate thread; in prefix® were applied;

(3) (id,op) € Ops for some operation op;
Apply op to the application object
and return the result to client;

GET(r): PROPOSE(r, prefix):
if (r > getRank) if (getRank < rV propRank < r)
getRank < r; propRank < r;
return (propRank, prefix”, pending); prefizP < prefix;
return ack;

return nack;

COMMIT(r, prefix):
if (propRank < r)
prefiz < prefix;

return ack;

Figure 8.8: Storage-centric operation ordering: The server side

107

108

Chapter 9

Conclusions

This dissertation has presented the results of our investigation into the possibility and
cost of building fault-tolerant services in storage-centric systems. We have conducted our
study within a precise mathematical framework given by an asynchronous shared memory
model with objects prone to non-responsive (NR) failures. We have considered two types of
shared object failures: non-responsive crash (NR-crash) and non-responsive arbitrary (NR-
arbitrary) failures. The first failure mode models benign faulty storage servers, whereas the

second one models arbitrary, possibly malicious, storage failures.

Our focus has been on solving the Consensus problem. We have shown solutions for
Consensus in storage-centric systems subject to benign and Byzantine storage failures under
the assumption of unreliable failure detector of class €2. Our solutions are based on a novel
ranked register object that promotes understanding and analysis of Paxos and of general
coordination in distributed systems. We have also shown an implementation of a failure
detector of class €2 in a partially synchronous shared memory model, thus providing a com-
plete solution to the Consensus problem under realistic environment assumptions. Both our
consensus and failure detector implementations are oblivious to the number of participating
client processes.

We have investigated the cost of implementing wait-free objects out of of n > 3¢ Byzantine
fault-prone storage servers. To this end, we have established a tight lower bound on the
round complexity of wait-free read-write register implementations resilient to ¢ < n/3 base
object failures (optimal resilience). We have also demonstrated that the implementation
round complexity increases significantly when the failure resilience increases from ¢ < n/4
tot < n/3.

Finally, we have demonstrated a practical value of the storage-centric design paradigm

by utilizing it for implementing a CORBA fault-tolerance infrastructure, called Aquarius.

For the future, we believe that fault-tolerance in storage-centric model will continue to be

109

a fruitful research area for both theoreticians and practitioners alike. From the theoretical
standpoint, an interesting research direction will be to extend the Byzantine fault-tolerant
Consensus solutions to support malicious client failures. Also, the relationship between the
storage-centric and message-passing models is not yet fully understood. In this respect,
an interesting research problem will be to establish a correspondence between the pure
message-passing and the storage-centric models that will allow the upper and lower bounds
to be carried over between the models. From the practical perspective, it will be interesting
to investigate the applicability of the storage-centric paradigm in new application domains,
such as today’s peer-to-peer systems. Another interesting direction with both theoretical and
practical flavors will be to enhance storage-centric systems to support atomic transactions

involving multiple replicated object instances.

110

Bibliography

[AATO7]

[ABOO3]

[ADGFT03]

[ADNT96]

[AGG00]

[AGMT95]

[ALO4]

[Asp03]

Rajeev Alur, Hagit Attiya, and Gadi Taubenfeld. Time-adaptive algorithms
for synchronization. SIAM Journal on Computing, 26(2):539-556, April 1997.

Hagit Attiya and Amir Bar-Or. Sharing memory with semi-byzantine clients
and faulty storage servers. In 22nd Symposium on Reliable Distributed Systems
(SRDS), October 2003.

Marcos K. Aguilera, Carole Delporte-Gallet, Hugues Fauconnier, and Sam
Toueg. On implementing omega with weak reliability and synchrony assump-
tions. In Proceedings of the 22nd ACM Symposium on Principles of Distributed
Computing, July 2003.

Thomas E. Anderson, Michael Dahlin, Jeanna M. Neefe, David A. Patterson,
Drew S. Roselli, and Randolph Wang. Serverless network file systems. ACM
Transactions on Computer Systems, 14(1):41-79, February 1996.

Khalil A. Amiri, Garth A. Gibson, and Richard Golding. Highly concurrent
shared storage. In IEEE, editor, Proceedings of 20" International Conference on
Distributed Computing Systems (ICDCS’2000), pages 298-307, Taipe, Taiwan,
R.O.C, 2000. IEEE Computer.

Yehuda Afek, David S. Greenberg, Michael Merritt, and Gadi Taubenfeld. Com-
puting with faulty shared objects. Journal of the Association of the Computing
Machinery, 42:1231-1274, 1995.

Martin Abadi and Leslie Lamport. An old-fashioned recipe for real time.
ACM Transactions on Programming Languages and Systems, 16(5):1543-1571,
September 1994.

James Aspnes. Randomized protocols for asynchronous consensus. Distrib.
Comput., 16(2-3):165-175, 2003.

111

[AT96a]

[AT96b)]

[AT99)]

[AUS9S]

[Baz00]

[BDFGO1]

[BDFGO03]

[BDG02]

[BJS7]

[BL93]

[BM03]

Rajeev Alur and Gadi Taubenfeld. Contention-free complexity of shared mem-
ory algorithms. Information and Computation, 126(1):62-73, 1996.

Rajeev Alur and Gadi Taubenfeld. Fast timing-based algorithms. Distributed
Computing, 10(1):1-10, 1996.

Rajeev Alur and Gadi Taubenfeld. How to share a data structure: A fast
timing-based solution. In &th IEEE Symposium on Parallel and Distributed
Processing, pages 470-477, 1999.

Anurag Acharya, Mustafa Uysal, and Joel Saltz. Active disks: Programming
model, algorithms and evaluation. In Proceedings of the 8th International
Conference on Architectural Support for Programming Languages and Operat-
ing Systems (ASPLOS VIII), ACM SIGPLAN, pages 81-91. ACM SIGARCH
v26/SIGOPS v32 n5/SIGPLAN v 33 n 11, November 1998.

Rida A. Bazzi. Synchronous byzantine quorum systems. Distributed Computing,
13(1):45-52, 2000.

Romain Boichat, Partha Dutta, Svend Frolund, and Rachid Guerraoui. Decon-
structing paxos. Technical Report DSC ID:200106, Ecole Polytechnic Fédérale
de Lausanne (EPFL), January 2001.

Romain Boichat, Partha Dutta, Svend Frolund, and Rachid Guerraoui. Decon-
structing paxos. SIGACTN: SIGACT News (ACM Special Interest Group on
Automata and Computability Theory), 34, 2003.

Romain Boichat, Partha Dutta, and Rachid Guerraoui. Asynchronous leasing.
In 7th IEEE International Workshop on Object-oriented Real-time Dependable
Systems (WORDS 2002), San Diego, California, January 2002. Invited paper.

Ken P. Birman and Thomas A. Joseph. Exploiting virtual synchrony in dis-
tributed systems. In Proceedings of the 111" ACM Symposium on OS Principles,
pages 123-138, Austin, TX, USA, 1987. ACM SIGOPS, ACM.

James E. Burns and Nancy A. Lynch. Bounds on shared memory for mutual
exclusion. Information and Computation, 107(2):171-184, December 1993.

Roberto Baldoni and Carlo Marchetti. Three-tier replication for ft-corba in-
frastructures. Software Practice and Fxperience, 33:767-797, May 2003.

112

[BT85]

[Bur00]

[CDS8Y]

[CF99]

[CHT6]

[CKMO3]

[CKV01]

[CL02]

[CM02]

[CMO3]

[CMD03]

Gabriel Bracha and Sam Toueg. Asynchronous consensus and broadcast pro-
tocols. Journal of the ACM, 32(4):824-840, October 1985.

Randal Burns. Data management in a distributed file system for Storage Area
Networks. PhD thesis, Department of Computer Science, University of Califor-
nia, Santa Cruz, March 2000.

Benny Chor and Cynthia Dwork. Randomization in Byzantine agreement. In
Advances in Computing Research 5: Randomness and Computation, pages 443—

497. JAI Press, 1989.

Flaviu Cristian and Christof Fetzer. The timed asynchronous distributed system
model. IEEE Transactions on Parallel and Distributed Systems, 10(6), 1999.

Tushar Deepak Chandra, Vassos Hadzilacos, and Sam Toueg. The weakest
failure detector for solving consensus. Journal of the ACM, 43(4):685-722, July
1996.

Gregory V. Chockler, Idit Keidar, and Dahlia Malkhi. The inherent cost of
optimal resilience wait-free storage from byzantine components. Submitted for
publication, August 2003.

Gregory V. Chockler, Idit Keidar, and Roman Vitenberg. Group communica-
tion specifications: A comprehensive study. ACM Computing Surveys, 4(33):1-
43, December 2001.

Miguel Castro and Barbara Liskov. Practical Byzantine fault tolerance and
proactive recovery. ACM Transactions on Computer Systems, 20(4):398-461,
November 2002.

Gregory V. Chockler and Dahlia Malkhi. Active disk paxos with infinitely many
processes. In Proceedings of the twenty-first Annual Symposium on Principles of
Distributed Computing (PODC-02), pages 78-87, New York, July 2002. ACM

Press.

Gregory V. Chockler and Dahlia Malkhi. Light-weight leases for large-scale
coordination. Submitted for publication, August 2003.

Gregory V. Chockler, Dahlia Malkhi, and Danny Dolev. A data-centric ap-

proach for scalable state machine replication. In A. Schiper, A. A. Shvartsman,

113

[CMMRO03]

[CMRO1]

[Con]

[CT96]

[DDS87]

[DKKV03]

[DLS8S]

[Fel98)

[FGSO8]

H. Weatherspoon, and B. Zhao, editors, Future Directions in Distributed Com-
puting, volume 2584 of Lecture Notes in Computer Science, pages 159-163.
Springer-Verlag, 2003.

Gregory V. Chockler, Dahlia Malkhi, Barak Merimovich, and David Rabi-
nowitz. Aquarius: A Data-Centric approach to CORBA fault-tolerance. In
The Workshop on Reliable and Secure Middleware (WRSM), in the Interna-
tional Conference on Distributed Objects and Applications (DOA), Sicily, Italy,
November 2003. To appear.

Gregory V. Chockler, Dahlia Malkhi, and Michael K. Reiter. Backoff protocols
for distributed mutual exclusion and ordering. In Proceedings of the 21st In-

ternational Conference on Distributed Computing Systems (ICDCS-01), pages
11-20, Los Alamitos, CA, April 2001. IEEE Computer Society.

National Storage Industry Consortium. http://www.nsic.org/nasd.

Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for reli-
able distributed systems. Journal of the ACM, 43(2):225-267, March 1996.

Danny Dolev, Cynthia Dwork, and Larry Stockmeyer. On the minimal syn-
chronization needed for distributed consensus. JACM, 34(1):77-97, January
1987.

Roberto Segala Dilsun K. Kaynar, Nancy Lynch and Frits Vaandrager. Timed
i/o automata: A mathematical framework for modeling and analyzing real-time
systems. In Proceedings of the 24th IEEE International Real-Time Systems
Symposium (RTSS 2003), pages 166-177, Cancun, Mexico, December 2003.
IEEE Computer Society.

Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Consensus in the pres-
ence of partial synchrony. Journal of the ACM, 35(2):288-323, April 1988.

Pascal Felber. The CORBA Object Group Service. PhD thesis, Ecole Polytech-
nic Fédérale de Lausanne (EPFL), 1998.

Pascal Felber, Rachid Guerraoui, and André Schiper. The implementation of a
CORBA object group service. Theory and Practice of Object Systems, 4(2):93~
105, 1998.

114

[FH02|

[FHS9S]

[FLP85]

[FLS01]

[GC8Y]

[GGTI7]

[GLO3]

[GMO2]

[GMT01]

[GNA*97]

[GNA*98]

Roy Friedman and Erez Hadad. Fts: A high-performance corba fault-tolerance
service. In The Seventh IEEFE International Workshop on Object-Oriented Real-
Time Dependable Systems (WORDS 2002), pages 61-68, 2002.

Faith Fich, Maurice Herlihy, and Nir Shavit. On the space complexity of ran-
domized synchronization. J. ACM, 45(5):843-862, 1998.

Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of
consensus with one faulty process. Journal of the ACM, 32(2):374-382, 1985.

Alan Fekete, Nancy Lynch, and Alex Shvartsman. Specifying and using a
partitionable group communication service. ACM Transactions on Computer
Systems, 19(2):171-216, 2001.

Cary G. Gray and David R. Cheriton. Leases: An efficient fault-tolerant mech-
anism for distributed file cache consistency. In Proc. 12th ACM Symposium on
Operating Systems Principles, Litchfield Park, Arizona, December 1989.

Howard Gobioff, Garth A. Gibson, and Doug Tygar. Security for network
attached storage devices. Technical Report CMU-CS-97-185, CMU, October
1997.

Eli Gafni and Leslie Lamport. Disk paxos. Distributed Computing, 16(1):1-20,
February 2003.

Eli Gafni and Michael Mitzenmacher. Analysis of timing-based mutual exclu-
sion with random times. SIAM Journal on Computing, 31(3):816-837, June
2002.

Eli Gafni, Michael Merritt, and Gadi Taubenfeld. The concurrency hierar-
chy, and algorithms for unbounded concurrency. In 20th ACM SIGACT-
SIGOPS Symposium on Principles of Distributed Computing (PODC’2001),
August 2001.

Garth Gibson, David Nagle, Khalil Amiri, Fay Chang, Howard Gobioff, Erik
Riedel, David Rochberg, and Jim Zelenka. Filesystems for network-attached
secure disks. Technical Report CMU-CS-97-112, CMU, March 1997.

Garth Gibson, David Nagle, Khalil Amiri, Jeff Butler, Fay Chang, Howard
Gobioff, Charles Hardin, Erik Riedel, David Rochberg, and Jim Zelenka. A
cost-effective high-bandwidth storage architecture. In Proceedings of the 8th

115

[GV04]

[Her91]

[HMF98]

[HMS99]

[HSQ]
ION]

[TON94]

[JCTO8]

[JTT00]

[KDO0O]

[KLSV04]

International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS VIII), ACM SIGPLAN, pages 92-103. ACM
SIGARCH v26/SIGOPS v32 n5/SIGPLAN v 33 n 11, November 1998.

Rachid Guerraoui and Marko Vukolic. Private communication and manuscript

in progress. 2004.

Maurice Herlihy. Wait-free synchronization. ACM Transactions on Program-

ming Languages and Systems, 13(1):124-149, January 1991.

Steve Hotz, Rodney Van Meter, and Gregory Finn. Internet protocols for
network-attached peripherals. In Ben Kobler, editor, Sizth NASA Goddard
Conference on Mass Storage Systems and Technologies in Cooperation with
Fifteenth IEEE Symposium on Mass Storage Systems, March 1998.

John H. Hartman, Ian Murdock, and Tammo Spalink. The swarm scalable stor-
age system. In 19th IEEFE International Conference on Distributed Computing
Systems (ICDCS ’99), pages 74-81. IEEE, May 1999.

Hsql database. http://www.hsqldb.org.
IONA. ORBacus. http://www.iona.com/products/orbacus_home.htm.

IONA Technologies Ltd. and Isis Distributed Systems, Inc. IONA and Isis. An
Introduction to Orbiz+I1SIS, 1994.

Prasad Jayanti, Tushar Deepak Chandra, and Sam Toueg. Fault-tolerant wait-
free shared objects. Journal of the ACM, 45(3):451-500, May 1998.

Prasad Jayanti, King Tan, and Sam Toueg. Time and space lower bounds for
nonblocking implementations. SIAM J. Comput., 30(2):438-456, 2000.

Idit Keidar and Danny Dolev. Totally ordered broadcast in the face of network
partitions. In D. Avresky, editor, Dependable Network Computing, chapter 3.
Kluwer Academic Publications, 2000.

Dilsun K. Kaynar, Nancy A. Lynch, Roberto Segala, and Frits Vaandrager. The
Theory of Timed I/O Automata. Technical Report MIT-LCS-TR-917a, MIT
Laboratory for Computer Science, Cambridge, MA, apr 2004. Manuscript in

progress.

116

[KR03]

[LAAST]

[Lam78]

[Lam36]

[Lam87]

[Lam96]

[Lam98]

[Lam01a]

[LamO1Db]

[LAVO1]

[LHO4]

Idit Keidar and Sergio Rajsbaum. A simple proof of the uniform consensus
synchronous lower bound. Information Processing Letters, 85:47-52, January
2003.

Michael C. Loui and Hosame H. Abu-Amara. Memory requirements for agree-
ment among unreliable asynchronous processes. In Franco P. Preparata, ed-
itor, Advances in Computing Research, Parallel and Distributed Computing,
volume 4, pages 163-183. JAI Press, Inc., Greenwich, Conn., 1987.

Leslie Lamport. Time, clocks, and the ordering of events in a distributed system.
Communications of the ACM, 21(7):558-565, July 1978.

Leslie Lamport. On interprocess communication, Parts I and 1. Distributed
Computing, 1(2):77-101, 1986.

Leslie Lamport. A fast mutual exclusion algorithm. ACM Transactions on
Computer Systems, 5(1):1-11, February 1987.

Butler W. Lampson. How to build a highly available system using consensus.
In Babaoglu and Marzullo, editors, 10th International Workshop on Distributed
Algorithms (WDAG 96), volume 1151 of Lecture Notes in Computer Science,
pages 1-17. Springer-Verlag, Berlin Germany, 1996.

Leslie Lamport. The part-time parliament. ACM Transactions on Computer
Systems, 16(2):133-169, May 1998.

Leslie Lamport. Paxos made simple. Distributed Computing Column of
SIGACT News, 32(4):34-58, December 2001.

Butler W. Lampson. The ABCD’s of paxos (1 page). In PODC: 20th ACM
SIGACT-SIGOPS Symposium on Principles of Distributed Computing, New-
port, Rhode Island, USA, August 2001. Lamport Celebration Lecture 2.

Subramanian Lakshmanan, Mustaque Ahamad, and H. Venkateswaran. A se-
cure and highly available distributed store for meeting diverse data storage
needs. In Proceedings of the 2001 International Conference on Dependable Sys-
tems and Networks (DSN ’01), pages 251-260. IEEE, July 2001.

Wai-Kau Lo and Vassos Hadzilacos. Using failure detectors to solve consensus
in asynchronous shared-memory systems. In 8th International Workshop on
Distributed Algorithms (WDAG), volume 857 of Lecture Notes in Computer
Science (LNCS), pages 280-295. Springer-Verlag, Berlin, Germany, 1994.

117

[LMO97]

[LS92]

[LSP82]

[LT89]

[LT6]

[MADO2]

[Mal02]

[MMSNOS]

[MROS]

[MROO]

Sean Landis and Silvano Maffeis. Building reliable distributed systems with
CORBA. Theory and Practice of Object Systems, 3(1):31-43, 1997.

Nancy A. Lynch and Nir Shavit. Timing-based mutual exclusion. In Robert
Werner, editor, Proceedings of the Real-Time Systems Symposium - 1992, pages
2-11, Phoenix, Arizona, USA, December 1992. IEEE Computer Society Press.

Leslie Lamport, Robert Shostak, and Marshall Pease. The Byzantine gen-
erals problem. ACM Transactions on Programming Languages and Systems,
4(3):382-401, July 1982.

Nancy Ann Lynch and Mark Tuttle. An Introduction to Input/Output Au-
tomata. CWI Quarterly, 2(3):219-246, 1989.

Edward K. Lee and Chandramohan A. Thekkath. Petal: Distributed
virtual disks. In Proceedings of the Seventh International Conference
on Architectural Support for Programming Languages and Operating Sys-
tems (ASPLOS VII), Computer Architecture News, pages 84-93. ACM
SIGARCH/SIGOPS/SIGPLAN, October 1996.

Jean-Philippe Martin, Lorenzo Alvisi, and Michael Dahlin. Minimal byzantine
storage. In Proceedings of 16th International Symposium on Distributed Com-
puting (DISC), Lecture Notes in Computer Science (LNCS), Toulouse, France,
October 2002. Springer-Verlag, Berlin, Germany.

Dahlia Malkhi. From byzantine agreement to practical survivability. In Inter-
national Workshop on Self-Repairing and Self-Configurable Distributed Systems
(RCDS 2002), Osaka, Japan, October 2002.

Louise E. Moser, P. Michael Melliar-Smith, and Priya Narasimhan. Consistent
object replication in the Eternal system. Theory and Practice of Object Systems,
4(2):81-92, 1998.

Dahlia Malkhi and Michael K. Reiter. Byzantine quorum systems. Distributed
Computing, 11(4):203-213, 1998.

Dahlia Malkhi and Michael K. Reiter. An architecture for survivable coor-
dination in large-scale systems. IEEE Transactions on Knowledge and Data
Engineering, 12(2):187-202, March/April 2000.

118

[MT00]

[Obj99]

[Obj00]

[PLLO00]

[Pow96]

[RFGNO1]

[Sch90]

[Ske81]

[Ske82]

[SMS*03]

[SPW03]

[TMLI7]

Michael Merritt and Gadi Taubenfeld. Computing with infinitely many
processes. In 1/th International Symposium on Distributed Computing
(DISC’2000), volume 1914 of Lecture Notes in Computer Science, pages 164—
178. Springer-Verlag, Berlin Germany, 2000.

Object Management Group. The Common Object Request Broker: Architecture
and Specification, 2.3 edition, June 1999.

Object Management Group. Fault Tolerant CORBA Specification, ptc/2000-
04-04 edition, April 2000.

Roberto De Prisco, Butler W. Lampson, and Nancy A. Lynch. Revisiting the
PAXOS algorithm. Theoretical Computer Science, 243(1-2):35-91, July 2000.

David Powell, editor. Group communication, volume 39(4), April 1996.

Erik Riedel, Christos Faloutsos, Garth A. Gibson, and David Nagle. Active
disks for large-scale data processing. IEEE Computer, 34(6):68-74, June 2001.

Fred B. Schneider. Implementing fault-tolerant services using the state machine
approach: A tutorial. ACM Computing Surveys, 22(4):299-319, 1990.

Dale Skeen. Nonblocking commit protocols. In Y. Edmund Lien, editor, Pro-
ceedings of the 1981 International Conference on Management of Data, pages
133-142, Ann Arbor, Michigan USA, 1981. ACM SIGMOD, New York.

Dale Skeen. Crash Recovery in a Distributed Database System. Ph.D. thesis,
University of California, Berkeley, May 1982.

Julian Satran, Kalman Meth, Costa Sapuntzakis, Mallikarjun Chadalapaka,
and Efri Zeidner. 1SCSI. IP Storage Working Group, IETF, draft-ietf-ips-iscsi-
20 edition, January 2003. Internet draft.

Cheng Shao, Evelyn Pierce, and Jennifer Lundelius Welch. Multi-writer consis-
tency conditions for shared memory objects. In 17th International Symposium
on Distributed Computing (DISC’2003), 2003.

Chandramohan A. Thekkath, Timothy Mann, and Edward K. Lee. Frangi-
pani: A scalable distributed file system. In Proceedings of the 16th Symposium
on Operating Systems Principles (SOSP-97), pages 224-237, New York, USA,
October 1997. ACM Press.

119

[ZSR02] Lidong Zhou, Fred B. Schneider, and Robbert Van Renesse. COCA: A secure
distributed online certification authority. ACM Transactions on Computer Sys-
tems, 20(4):329-368, November 2002.

120

