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Abstract

This position paper describes the results of our on-going investigation into the possibility and cost of
building a survivable store. It considers optimal resilience systems comprising of 3t+1 base storage units,
t of which may fail by becoming non-responsive or arbitrarily corrupted. Our contribution includes both
algorithms and lower bounds in this model. We illuminate an inherent difficulty of achieving optimal
resilience in the form of two lower bounds, on read and on write complexities. We also provide the
first optimal-resilience wait-free algorithms that match these bounds in performance. Finally, we suggest
some directions for future research.

Introduction. Replicating storage is a fundamental mechanism for fault tolerance. When storage can
exhibit arbitrary corruption, replication can mask corrupted elements and guarantee survivability. The
formal model capturing this setting is an asynchronous system with multiple processes accessing fault-prone
shared memory objects [3, 2, 14]. We assume that a threshold t of the memory objects may fail by being
non-responsive or by returning arbitrary values (i.e., by being Byzantine); this failure model was named
non-responsive arbitrary (NR-Arbitrary) faults by Jayanti et al. [14]. An unbounded number of processes
may access the shared memory objects, and these processes may fail by crashing. We focus on wait-free
reliable storage solutions; that is, solutions that guarantee that all operations submitted by correct processes
terminate despite the failure of an unbounded number of processes.

Over the past couple of years, our research in this area has focused on studying the limits of survivable
storage in terms of a resilience threshold and protocol complexity. We contribute a full picture concerning the
possibility and complexity of emulating survivable storage in our model out of n = 3t + 1 memory elements,
including algorithms and lower bounds. Our work shows that optimal resilience algorithms have an inherent
cost: We prove in [8] a lower bound of two rounds for emulating write operations with a resilience of
t ≥ n/4. This is in contrast to algorithms tolerating t < n/4 NR-Arbitrary faults, which can emulate write
operations in a single round. Moreover, we show a lower bound of min(t + 1, f + 2) rounds for emulating
read operations in runs with f failures in systems where the reader does not modify the base objects.

These bounds are tight: In an accompanying paper [1], we provide the first emulation of a wait-free
safe regular register out of 3t + 1 registers, whose read and write complexities are optimal according to the
above lower bounds. That work also presents a full Byzantine shared-memory Paxos algorithm built with
the reliable register emulation.

Motivation. A “storage centric” approach for service replication, discussed by Malkhi in [20], models the
system as a fault-prone shared memory model. This paradigm captures a fair amount of recent work, that
comes in three main flavors:
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1. One flavor is message-passing client-server systems in which servers store information on behalf of
clients and the only communication is between clients and servers. Scalability is achieved by making
servers as light as possible. Examples of systems built using this approach include Fleet [21], SBQ-
L [22], Agile Store [15], Coca [25], and [5].

2. The second flavor is given by today’s peer-to-peer systems. These systems consist of a collection of nodes
spread all over the Internet that store data objects. The storage nodes are accessed by a potentially
large, dynamically changing client universe. Naturally, due to their Internet-wide deployment, the
storage nodes are prone to malicious attacks. Also, a storage node may simply drop out of the system
and be replaced by another node that has no knowledge of updates received by the original node.
This motivates adopting a Byzantine failure model for the storage nodes. Examples of peer-to-peer
systems that adopt storage-centric replication to support availability in face of Byzantine failures
include Rosebud [23] and [18].

3. The third flavor directly expresses an emerging network technology, the Storage Area Network (SAN).
The SAN technology enables cost-effective bandwidth scaling by allowing data to be transferred directly
from network attached disks to clients so that the file server bottleneck is eliminated. Examples of
SAN-based systems that use disks for information sharing and coordination include Compaq’s Petal [17]
and Frangipani [24], Disk Paxos [13], and Active Disk Paxos [9].

Our goal is to enhance this fruitful line of work and to investigate the costs and tradeoffs involved in
designing reliable storage solutions for scalable decentralized systems that may be deployed in one of the two
settings described above. Our focus is on a survivable distributed storage system that tolerates arbitrary
corruption and unresponsiveness (i.e., NR-Arbitrary faults) in up to a third of its disks (or servers) as well
as process crashes. (Tolerating NR-Arbitrary faults in a third or more of the disks is impossible [22]).

Previous techniques. Previous work that constructed wait-free objects in this failure model used 4t +
1 [21], 5t+1 [14], or even 6t+1 [11] base objects. A natural question to ask is whether the resilience threshold
t < n/4 is tight in this model. Intuitively, one would hope for a resilience bound of t < n/3. Several previous
works have addressed this question, and have achieved better resilience by weakening the model in different
ways – by adding synchrony [5]; by storing authenticated (signed) self-verifying data at the servers [21, 22];
by hinging on active storage servers [22], or by providing solutions that may block indefinitely if clients do
fail [22, 4]. However, t < n/4 is the best resilience threshold previously achieved for wait-free constructions
in the model considered herein.

In contrast, the literature is abundant with message-passing consensus algorithms that are resilient to
Byzantine failures of less than a third of the processes. Therefore, an appealing way to go about searching
for a more resilient solution would be to try and adapt the techniques used in those algorithms to our model.
Two basic techniques are used in achieving this threshold in consensus algorithms: authentication (using
signatures) of all transmitted data (e.g., [12, 7]) or echoing (e.g., [6, 12]). Authentication can indeed be used
to construct memory objects that are resilient to t < n/3 failures (see [21]). However, our model does not
incorporate a signature scheme as needed for authentication. The second approach is to have each process
echo all the values it receives to all the processes (e.g., see [12]). Unfortunately, echoing cannot help us
address the challenge we have set out to solve. Indeed, if a correct process can correctly echo information
to all other processes, this is essentially the same as having a wait-free register through which the process
conveys the information to the other processes. And implementing such a register from fault-prone storage
is exactly what we seek to do.

Lower bounds. Having ruled out the use of standard techniques to improve the resilience threshold,
we proceeded to examine whether there are any inherent limitation that prevent algorithms in our model
from achieving better resilience. We observe that existing algorithms for fault-prone shared memory models
(e.g., [21, 22, 5, 14, 4]) implement (emulate) read and write operations in a single round; that is, they
invoke one read or write operation on each base object. Our first lower bound in [8] proves that if t ≥ n/4,
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then it is impossible to emulate the write operations of a wait-free register by invoking a single round of
operations on the base objects. Our proof applies to binary single-writer single-reader safe registers, the
weakest meaningful register type [16], and arbitrarily typed base objects.

We further show that if n = 3t + 1, then any algorithm in which the reader does not modify the
base objects’ states may need to invoke as many as t + 1 rounds of read operations on base objects in
order to emulate a single read operation of a single-writer single-reader safe register. More generally, for
any 0 ≤ f ≤ t, there is a run in which f objects are Byzantine faulty in which the algorithm invokes
min(t + 1, f + 2) rounds of base object operations.

Constructions. Our lower bounds are matched by an algorithm in an accompanying paper [1], thus
providing a complete picture of shared-memory survivability with 3t + 1 registers. A single-writer multi-
reader safe register is the most basic building block that can be used for constructing various object types.
E.g., there are well-known constructions of regular and atomic registers from safe ones [16]. These, in turn,
can be used to construct higher level objects; e.g., consensus can be solved with regular registers if the system
is augmented with a leader oracle [19].

Discussion. We now explain how our lower bounds apply to the two existing optimal resilience register
constructions of [22, 4]. First, in both [22] and [4], the writer invokes only a single round of object operations
(assuming a single writer). This raises the question of how the necessity of two object invocation rounds is
circumvented. The reason for this is that the emulation algorithms described in these two papers are not
required to satisfy wait-freedom. In particular, the reader might never return in runs where the writer fails
in the middle of writing a value but the reader is correct and invokes read after the writer fails.

In order to circumvent the read lower bound, the algorithm of [22] assumes a push-like communication
model for the read implementation, where the reader subscribes to the object updates when it first contacts
a base object. Subsequently, each correct base object keeps informing each of its subscribers of all the
modifications it undergoes. In contrast, our communication model (for both read and write) is the standard
shared memory request-response model (i.e., pull-like), and therefore, the reader is forced to continuously
invoke additional read rounds in order to discover these modifications. Finally, the number of rounds invoked
by the read emulation of [4] may be unbounded, and therefore, matches our lower bound of min(t+1, f +2)
rounds. This is not surprising since the read implementation of [4] is not allowed to modify the base object
states and therefore, (as our lower bounds imply) will not be able to terminate in less than min(t + 1, f + 2)
rounds in some runs.

Future directions. One of the research goals we will pursue in the near future is to design a survivable
storage system, in which the user has complete autonomy in defining the replication group for each file or
data object, and in which all protocols are confined to the objects they operate on. Toward that end, we have
recently devised light-weight storage-centric leases in [10], and an effort is under way to conduct performance
measurements of leases in real-life LANs.

In the process of designing survivable storage solutions, we will strive to identify good building blocks
(abstractions) of which such systems can be composed. For example, the results summarized in this paper
indicate that wait-free registers have an inherent cost. An interesting future direction is to search for weaker
basic abstractions that would be cheaper and simpler to implement, and yet would serve in the construction
of survivable storage solutions. Of course, in order to realize this research direction, one must try to build a
reliable store with the desirable semantics out of the suggested abstractions.
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