
Byzantine Disk Paxos

Optimal Resilience with Byzantine Shared Memory

Ittai Abraham
Hebrew University

ittaia@cs.huji.ac.il

Gregory V. Chockler
∗

CSAIL/MIT

grishac@theory.lcs.mit.edu

Idit Keidar
Technion

Dahlia Malkhi
Hebrew University

dalia@cs.huji.ac.il

ABSTRACT
We present Byzantine Disk Paxos, an asynchronous shared-
memory consensus protocol that uses a collection of n >
3t disks, t of which may fail by becoming non-responsive
or arbitrarily corrupted. We give two constructions of this
protocol; that is, we construct two different building blocks,
each of which can be used, along with a leader oracle, to
solve consensus. One building block is a shared wait-free safe
register. The second building block is a regular register that
satisfies a weaker termination (liveness) condition than wait
freedom: its write operations are wait-free, whereas its read
operations are guaranteed to return only in executions with
a finite number of writes. We call this termination condition
finite writes (FW), and show that consensus is solvable with
FW-terminating registers and a leader oracle. We construct
each of these reliable registers from n > 3t base registers, t of
which can be non-responsive or Byzantine. All the previous
wait-free constructions in this model used at least 4t + 1
fault-prone registers, and we are not familiar with any prior
FW-terminating constructions in this model.

Categories and Subject Descriptors
B.3.2 [Memory Structures]: Design Styles—shared mem-
ory ; D.4.5 [Operating Systems]: Reliability—fault-tolerance;
I.1.2 [Symbolic and Algebraic Manipulations]: Algo-
rithms—analysis of algorithms; D.4.2 [Operating Systems]:
Storage Management—secondary storage, distributed mem-
ories; H.3.4 [Information Storage and Retrieval]: Sys-
tems and Software—distributed systems

∗Research supported by NSF grant #CCR-0121277, NSF-
Texas Engineering Experiment Station grant #64961-CS,
Air Force Aerospace Research-OSR contract #F49620-00-
1-0097, MURI AFOSR contract #F49620-00-1-0327, and
DARPA award #F33615-01-C-1896.

c©ACM, (2004). This is the author’s version of the work. It is posted here
by permission of ACM for your personal use. Not for redistribution. The
definitive version was published in the Proceedings of the Twenty-Third
Annual ACM SIGACT-SIGOPS Symposium on Principles of Distributed
Computing (PODC 2004).
PODC’04,July 25–28, 2004, St. John’s, Newfoundland, Canada

General Terms
Algorithms, reliability

Keywords
Shared-memory emulations, Byzantine failures, termination
conditions, consensus

1. INTRODUCTION
We consider an asynchronous system with multiple pro-

cesses accessing fault-prone shared memory objects [1, 2,
17]. We assume that a threshold t of the memory objects
may fail by being non-responsive [2, 17] or by returning ar-
bitrary values [1, 17] (i.e., by being Byzantine); this fail-
ure model is called non-responsive arbitrary (NR-Arbitrary)
faults [17]. In addition to memory failures, we assume that
any number of the processes accessing the shared objects
may crash.

This model captures a fair amount of recent work on “data
centric” replication, which comes in three main flavors:

1. One flavor is message-passing client-server systems in
which servers store information on behalf of clients and
the only communication is between clients and servers.
Scalability is achieved by making servers as light as
possible. Thus, the servers can be modeled as storage
components. Examples of systems built using this ap-
proach include Fleet [24], SBQ-L [25], Agile Store [18],
Coca [29], and [4].

2. The second flavor is given by today’s peer-to-peer sys-
tems. These systems consist of a collection of nodes
spread all over the Internet that store data objects.
Naturally, due to their Internet-wide deployment, the
storage nodes are prone to malicious attacks. This
motivates adopting a Byzantine failure model for the
storage nodes. Examples of peer-to-peer systems that
adopt storage-centric replication to support availabil-
ity in face of Byzantine failures include Rosebud [26]
and [27].

3. The third flavor directly expresses an emerging net-
work technology, the Storage Area Network (SAN).
SAN allows clients to access disks directly over the

network so that the file server bottleneck is eliminated.
Examples of SAN-based systems that use disks for in-
formation sharing and coordination include Compaq’s
Petal [21] and Frangipani [28], Disk Paxos [13], and
Active Disk Paxos [8].

Our goal is to enhance this fruitful line of work into a
survivable distributed storage system that tolerates arbi-
trary corruption and unresponsiveness (i.e., NR-Arbitrary
faults) in up to a third of its disks (or servers) as well as
process crashes. (Tolerating NR-Arbitrary faults in a third
or more of the disks is impossible [25]). Although a num-
ber of projects have set out to tackle this problem (e.g.,
E-vault [14], Fleet [24], Agile Store [18], SBQ-L [25], Coca
[29], [3], and [4]), to date, this goal has not been achieved
in our setting.

Consensus is a fundamental building block that may be
used to realize such distributed storage systems. For solv-
ing consensus with shared disks, we turn to shared memory
failure-detector based consensus algorithms [13, 22], and in
particular, the shared-memory version of Disk Paxos [13],
which employs shared wait-free single-writer multi-reader
(SWMR) regular registers1. Thus, the problem of solving
consensus (assuming a leader oracle) can be reduced to im-
plementing an SWMR regular register. When disks are sub-
ject to unavailability faults only, such a register is imple-
mented from a collection of fail-prone registers, each stored
on one disk, by reading and writing from/to a majority of
disks [13].

But coping with NR-Arbitrary faults is more challenging.
Since the introduction of the NR-Arbitrary failure model,
researchers have constructed wait-free shared registers us-
ing 4t + 1 [24], 5t + 1 [17], or even 6t + 1 [9] fault-prone
base objects. Several works have achieved better resilience
by weakening the model in different ways – by adding syn-
chrony [4]; by storing signed self-verifying data [24, 25]; or by
assuming that processes never fail and providing solutions
that may block indefinitely if they do fail [3, 25]. However,
t < n/4 is the best resilience achieved thus far for wait-free
constructions in the model considered herein.

In contrast, the literature is abundant with message-passing
consensus algorithms that tolerate Byzantine failures of less
than a third of the processes. Therefore, an appealing way to
go about searching for a more resilient solution would be to
try and adapt the techniques used in those algorithms to our
model. (Since our model does not incorporate digital signa-
tures, we restrict our attention to consensus algorithms that
do not use authentication). We observe that this resilience is
achieved by means of echoing (e.g., [6, 12]). Unfortunately,
echoing cannot help us to address the challenge we have
set out to solve in this paper. Indeed, if a correct process
can correctly echo information to all other processes, this
is essentially like having a wait-free register through which
the process conveys the information to the other processes.
And implementing such a register from fault-prone ones is
exactly what we seek to do in this paper.

We now explain the challenge in working with n = 3t+1.
Traditionally, in asynchronous algorithms, one waits for at

1A wait-free object is one that is live in the presence of any
number of process failures. A regular register guarantees
that every read operation returns the value that was written
by a write operation invoked not earlier than the last write
operation that returns before the read is invoked, or the
initial value if no value is written before the read.

most n− t responses to each request, since waiting for more
objects may violate liveness. Thus, an emulated write(v)
operation returns once the lower-level write operations on
n − t base objects return. But of the n − t base objects
that return, t may be faulty, whereas the t that have not
responded may be simply slow. In this case, only n − 2t =
t+1 correct base objects have stored the value v. If a read
operation is invoked after write(v) returns, and no further
write operations are invoked, then the read must return
v. The read operation probes the base objects, and waits
for responses from n − t of them (again, in order to ensure
liveness). The set of n− t responders may overlap the set of
t + 1 correct objects that have v by as little as one object.
The reader has no way of distinguishing this value, which is
returned by one correct object, from an arbitrary value v’
concocted by a corrupt object.

We present, for the first time, a wait-free SWMR safe
register2 construction using as little as 3t + 1 base regis-
ters, out of which t may suffer arbitrary corruption. Using
known reductions from regular to safe registers (see e.g., [19]
and a survey in [15]), we can thus achieve a wait-free reg-
ular register, which in turn, can be used to solve consensus
with a leader oracle. Our construction differs from previ-
ous constructions of reliable registers in the NR-Arbitrary
failure model in that we implement the write operation in
two rounds, whereas previous constructions required only
one. In the full paper, we prove that this cost is required for
achieving the optimal 3t + 1 resilience. The read operation
in our register implementation is early-stopping; it incurs
min(f + 2, t + 1) rounds, where f is the actual number of
faults in the execution. We further prove in the full paper
that this complexity is also tight. For completeness, these
lower bounds are stated in Section 6.

Although we cannot hope to improve on the complexity of
this solution, we further seek simpler solutions from an engi-
neering perspective. The key to such solutions is a very sim-
ple yet surprisingly powerful shift of paradigm: we weaken
the termination condition the register is required to satisfy.
Specifically, we define a new termination condition called
finite writes termination (FW-termination), which guaran-
tees progress only in executions with a finite number of
writes. Of course, in order for FW-terminating registers
to provide a useful service, a contention management mech-
anism is required. However, we observe that in the context
of consensus, this is provided by a leader oracle, which is
necessary for consensus anyway [22, 11, 7]. It is therefore
both natural and efficient for us to construct registers that
guarantee progress only when a unique leader emerges.

Indeed, this leads us to implement an FW-terminating
reliable regular register out of ones that can suffer NR-
Arbitrary faults, and to use such registers for implementing
consensus. The result is an efficient and simple adaptation
of Disk Paxos, which tolerates NR-Arbitrary faults of up to
a third of the disks. We enjoy the simplicity of this con-
struction so much that we present it first in the paper.

From a formal perspective, solving consensus with shared
objects that are not wait-free is in itself a contribution.
In [22, 13, 11], it was shown that wait-free consensus is pos-

2A safe register guarantees that every read operation that
does not overlap any write returns the latest written value,
or the initial value if no value was written; the result of a
read operation that does overlap a write operation may be
arbitrary.

sible with wait-free read/write registers and a leader oracle.
In this paper, we show for the first time that registers satis-
fying a weaker (in the sense of allowable behaviors) progress
condition suffice. This approach integrates well with the
Paxos general philosophy, which decomposes consensus into
a safety building block (called Synod in [20]) and a progress
component (leader election). In shared memory this decon-
struction was substantiated in [5, 8] where coarse-grained
shared objects encapsulating the Synod algorithm were iden-
tified. In this paper, the approach of separating safety re-
quirements from liveness is applied right down to the lowest
level objects of which Paxos is constructed: the read/write
registers.

Contributions. In summary, our contributions are as
follows. We introduce Byzantine Disk Paxos, the first shared-
memory consensus algorithm to tolerate NR-Arbitrary faults
of up to a third of the system. We present two construc-
tions of Byzantine Disk Paxos. In Section 3, we present
a construction of an FW-terminating regular register from
Byzantine shared memory, which enjoys engineering simplic-
ity. Section 5 identifies such registers as building blocks for
consensus. In Section 4, we present an emulation of a wait-
free register out of 3t + 1 corruptible ones, which was never
before achieved. The construction is tight in both resilience
and round complexity, by the lower bounds we prove in the
full version of this paper and state in Section 6.

2. THE SYSTEM MODEL
We model both processes and objects (registers) as I/O

automata [23]. An I/O automaton’s state transitions are
triggered by actions. Actions are classified as input, output
and internal. The automaton’s interface is determined by its
input and output actions which are collectively called exter-
nal actions. The transitions triggered by the input actions
are always enabled, whereas those triggered by the output
and internal actions (collectively called locally controlled ac-
tions) depend solely on the current automaton’s state.

Let A be an I/O automaton. An execution α of A is a
sequence (finite or infinite) of alternating states and actions
s0, π1, s1, . . . , where s0 is the initial state of A and each triple
(si−1, πi, si) is a transition of A. The trace of an execution
α of A is the subsequence of α consisting of all the external
actions. An execution α of A is fair if every locally controlled
action of A either occurs infinitely often in α or is enabled
only a finite number of times in α. A trace is a fair trace of
A if it is the trace of fair execution of A.

An object type is a tuple consisting of the following com-
ponents: (1) a set V als of values; (2) a set of invocations; (3)
a set of responses; and (4) a sequential specification, which is
a function from invocations × V als to responses × V als. An
asynchronous shared memory system is a composition of a
(possibly infinite) collection of process automata P1, P2, . . .
and object automata O1, O2, . . . On. Let Oj be an object of
type T , and a (b) be an invocation (resp. response) of T .
Process Pi interacts with Oj , using actions of the form ai

(resp. bi), where ai is an output of Pi and an input of Oj

(resp. bi is an input of Pi and an output of Oj).
We say that the interaction between a process and an ob-

ject is well-formed if it consists of alternating invocations
and responses, starting from an invocation. In the follow-
ing, we only consider systems where interactions between Pi

and Oj is well-formed for all i and j. Well-formedness al-
lows an invocation occurring in an execution α to be paired

with a unique response (when such exist). If an invocation
has a response in α, the invocation is complete; otherwise,
it is incomplete. Note that well-formedness does not rule
out concurrent operation invocations on the same object by
different processes. Nor does it rule out parallel invocations
by the same process on different objects, which can be per-
formed in separate threads of control.

A threshold t of the objects may suffer NR-Arbitrary fail-
ures [17], i.e., may fail to respond to an invocation, or may
respond with an arbitrary value. Any number of the pro-
cesses may fail by stopping. The failure of a process Pi is
modeled using a special external event stopi. Once stopi

occurs, all locally controlled actions of Pi become disabled
indefinitely.

2.1 Registers
A read/write register (or simply, register) type supports

an arbitrary set V als of values with an arbitrary initial value
v0 ∈ V als. Its invocations are read and write(v), v ∈ V als.
Its responses are v ∈ V als and ack. Its sequential specifi-
cation, f , requires that every write overwrites the last value
written and returns ack (i.e., f(write(v), w) = (ack, v)); and
every read returns the last value written (i.e., f(read, v) =
(v, v)). In a shared memory system consisting of processes
P1, P2, . . . , a process Pi interacts with a shared register by
means of input actions of the form readi and write(v)i, and
output actions of the form vi and acki. A read/write reg-
ister is called k-reader/m-writer if only k (m) processes are
allowed to read (resp. write) the register. We use the term
multi-reader when the particular number of readers is not
important.

We now define several register properties. Fix x to be a
single-writer/multi-reader (SWMR) register, and let σ be a
sequence of invocations and responses of x.

Safe register. σ is safe [19] if every complete read opera-
tion that does not overlap any write operation returns
the register’s value when read was invoked (i.e., the
latest written value or the initial value v0 if no value
was written). A register is called safe if it has only
safe traces.

Regular register. σ is regular [19] if it is safe, and in ad-
dition, a read operation that does overlap some write
operations returns either one of the values written by
overlapping writes or the register’s value before the
first overlapping write is invoked. A register is regular
if it has only regular traces.

Wait Freedom. σ satisfies wait freedom if every invocation
by a correct process in σ is complete. Register x is
wait-free if all its fair traces satisfy wait freedom.

FW-termination. σ satisfies FW-termination if every write
invocation by a correct process in σ is complete, and
moreover, every read invocation by a correct process
either completes, or infinitely many writes are invoked.
Register x is FW-terminating if all its fair traces satisfy
FW-termination.

Note that operations by correct process are required to
complete regardless of the number of process failures, since
failed processes are not required to take any steps in fair
executions.

We now examine the relationship of FW-termination with
previously suggested termination conditions by comparing
their corresponding sets of allowable behaviors: We observe
that FW-termination is strictly stronger than lock freedom
as well as obstruction-free termination as defined in [16],
since with FW-termination, write operations are wait-free,
and all the read operations by correct processes that do not
overlap any write operation are required to complete. FW-
termination is strictly weaker than wait freedom, since a
read operation that is concurrent with infinitely many writes
is not required to complete.

Although we have defined FW-termination above specif-
ically for read/write registers, we note that our definition
may be extended to model different single-writer multi-reader
data structures.

3. FW-TERMINATING REGULAR
REGISTER CONSTRUCTION

We construct an FW-terminating SWMR regular regis-
ter by a shared memory system consisting of any number of
processes and n > 3t SWMR fault-prone regular registers,
x1 . . . xn. Each register stores a pair of values, and each
of these values is associated with a timestamp, taken from
a totally ordered set TS, with the minimum element ts0.
The shared registers are defined in Figure 1. To distinguish
between the emulated register’s interface and that of the un-
derlying base registers, we denote the emulated read (resp.
write) operation as read (resp. write). The emulation of
the FW-terminating register’s write operation appears in
Figure 2, and the read emulation appears in Figure 3.

Since the underlying registers can be non-responsive, pro-
cesses must invoke operations to different registers in paral-
lel in separate threads, so as to avoid blocking forever when
waiting for a faulty register to respond. The notation in-
voke write(xi, v), (respectively, invoke tmp ← read(xi,))
means that a new thread is spawned that performs a write
on register xi with value v (respectively, a read of register
xi whose response will be stored in local variable tmp). The
notation xi responded means that the last thread created
by an invoke operation has completed its execution on reg-
ister xi. Note that this is well defined because we maintain
well formedness (i.e., that at any instant, each register has
at most one incomplete invocation). We track the status of
each base register xi using three bits. The pending[i] bit
indicates whether an invocation on xi is in progress. To ini-
tiate an invocation on xi, the main thread sets enabled[i] to
true. When an invocation is enabled and is not pending, a
thread is spawned to initiate an invocation on xi. In order
to avoid using values that were read in previous invocations
of read, the old[i] bit is set (first line of read) for registers
that have pending invocations from previous reads. Data
read from old threads is discarded.

As dictated by the lower bound shown in the full version
of this paper, the write emulation consists of two rounds:
First, the pre-write phase writes the value to the base reg-
isters’ pw components, and then, the write phase writes to
both the registers’ components. Each value is written to-
gether with a monotonically increasing timestamp.

read repeatedly invokes rounds of read operations on base
registers, until it finds a value that it can safely return. For
each register xi, w[i] and pw[i] hold the latest value read
from xi.w and xi.pw, resp. To ensure that read does not re-

Types:
TSV als = TS × V als, with selectors ts, val;

Shared regular registers xi ∈ TSV als× TSV als, 1 ≤ i ≤ n,
with selectors pw, w,
initially, xi = 〈〈ts0, v0〉, 〈ts0, v0〉〉 for all 1 ≤ i ≤ n;

Figure 1: Base registers used in constructions.

Local variables:
Boolean arrays enabled[n], pending[n], old[n],

initially pending[i] = enabled[i] = old[i] = false
for all 1 ≤ i ≤ n;

pw, w ∈ TSV als, initially pw = w = 〈ts0, v0〉;
ts ∈ TS;

write(v):
choose ts ∈ TS larger than previously used;
pw ← 〈ts, v〉;
for 1 ≤ i ≤ n, enabled[i]← true;
repeat

check();
until |{i : ¬enabled[i] ∧ ¬pending[i]}| ≥ n− t;
w ← 〈ts, v〉;
for 1 ≤ i ≤ n, enabled[i]← true;
repeat

check();
until |{i : ¬enabled[i] ∧ ¬pending[i]}| ≥ n− t;
return ack;

check()
if (∃i : enabled[i] ∧ ¬pending[i]) then
〈enabled[i], pending[i]〉 ← 〈false, true〉;
invoke write(xi, 〈pw, w〉);

if (∃i : xi responded) then
pending[i]← false;

Figure 2: The write code executed by the register
emulations.

turn a value concocted by faulty registers, the return value
must be read from at least t + 1 registers. This condition
is captured by the predicate safe. Moreover, to ensure reg-
ularity, read must not return old values written before the
last write that precedes the read. Enforcing this condi-
tion is more subtle: simply waiting for the highest times-
tamped value to become safe may violate liveness, because
this value may come from a faulty register. To overcome this
difficulty, we introduce the predicate invalid. This predicate
ascertains that a given value-timestamp pair was not writ-
ten before read was invoked, and can therefore be safely
excluded from the set of potential return values. A value-
timestamp pair is deemed invalid if 2t + 1 of the registers
either return values with lower timestamps or return a dif-
ferent value with the same timestamp. The set C holds
value-timestamp pairs that are safe and for which all the
pairs with a higher timestamp or with the same timestamp
and different value are invalid (line 6). Once C 6= ∅, read
terminates and returns some value in C. This guarantees
regularity, as proven below:

Lemma 1 (Regularity). The algorithm consisting of
the write emulation in Figure 2 and the read emulation

Local variables:
Boolean arrays enabled[n], pending[n], old[n],

initially pending[i] = enabled[i] = old[i] = false
for all 1 ≤ i ≤ n;

Arrays pw[n], w[n], tmpPW [n], tmpW [n]
with elements in TSV als ∪ {⊥};

C ⊆ TSV als;

Predicate and macro definitions:

safe(c) , | {i : pw[i] = c ∨ w[i] = c}| ≥ t + 1

invalid(〈ts, v〉) ,
| {i : ((pw[i] = 〈v′, ts′〉) ∨ (w[i] = 〈v′, ts′〉)) ∧
((ts′ < ts) ∨ (ts′ = ts ∧ v′ 6= v))} | ≥ 2t + 1

higherValid(c) , ∃c′ ∈ TSV als :
(pw[i] = c′ ∨ w[i] = c′) ∧
c′.ts ≥ c.ts ∧ c′ 6= c ∧ ¬invalid(c′)

read():
1: for 1 ≤ i ≤ n, if(pending[i]) then old[i]← true;
2: for 1 ≤ i ≤ n, pw[i], w[i]← ⊥;
3: repeat
4: for 1 ≤ i ≤ n, enabled[i]← true;

repeat
check();

5: until |{i : ¬enabled[i] ∧ ¬pending[i]}| ≥ n− t;
6: C ← {c ∈ TSV als | safe(c) ∧ ¬higherValid(c)};
7: until (C 6= ∅);
8: return c.val: c ∈ C;

check()
if (∃i : enabled[i] ∧ ¬pending[i]) then
〈enabled[i], pending[i]〉 ← 〈false, true〉;
invoke 〈tmpPW [i], tmpW [i]〉 ← read(xi);

if (∃i : xi responded) then
if (¬old[i]) then

pw[i]← tmpPW [i]; w[i]← tmpW [i];
pending[i]← false; old[i]← false;

Figure 3: FW-terminating regular register read em-
ulation.

in Figure 3 has only regular traces.

Proof. If read returns a value c.val, then safe(c) holds.
Thus, at least t+1 registers respond with c, and at least one
of these is correct. Therefore, c has either been written by
write(c.val) or is 〈ts0, v0〉. If no write completes before
read is invoked, then c is a valid return value, and we are
done.

Otherwise, let ri be a read invocation and w = write(v)
be the last write that completes before ri occurs. Let ts be
the timestamp written with v. We need to show that ri does
not return an older value, i.e., that the return value c.val is
not associated with a timestamp c.ts < ts (as timestamps
are monotonically increasing). Since the write phase of w is
complete, 〈ts, v〉 has been written to the w field of at least
n − 2t ≥ t + 1 correct registers. Since the base registers
are regular, each of these t + 1 correct registers responds
to each read operation of ri with a pair 〈pw, w〉 such that
pw.ts ≥ ts ∧ w.ts ≥ ts.

Consider the reader’s state after line 6 (in any iteration)
of ri. As n− t responses were read, at least one of them is

from a correct register, xi, updated by w. Hence, pw[i].ts ≥
ts ∧ w[i].ts ≥ ts. Let c be the smallest timestamped pair
returned by a correct register xk (either in its pw or w
field) for which pw[k].ts ≥ ts ∨ w[k].ts ≥ ts. We prove
that c is not invalid. Assume the contrary. By definition of
invalid, at least 2t + 1 registers must have responded with
pairs 〈pw′, w′〉 such that pw′ = 〈ts′, v′〉 ∨ w′ = 〈ts′, v′〉 and
((ts′ < c.ts) ∨ (ts′ = c.ts ∧ v′ 6= c.val)). Thus, at least one
of these responses must be from a correct register xj that
was updated by w. Therefore, pw[j].ts ≥ ts ∧ w[j].ts ≥ ts.
By choice of c, either pw[j].ts = c.ts ∧ pw[j].val 6= c.val,
or w[j].ts = c.ts ∧ w[j].val 6= c.val. Since xj and xk are
both correct, two different values were written with the same
timestamp, which by the write code, is impossible. A con-
tradiction.

We have proven that in line 6, there is a response c = w[k]
or c = pw[k] such that c.ts ≥ ts and ¬invalid(c). Therefore,
∀c′ ∈ C, c′.ts ≥ ts, and no value with a timestamp smaller
than ts can be returned.

The emulation is also FW-terminating, since once no more
write invocations occur, the latest written value eventually
becomes safe, and higher timestamped values from faulty
registers are eventually invalidated.

Lemma 2 (FW-Termination). The register emulated
by the write code in Figure 2 and the read code in Figure 3
is FW-terminating.

Proof. Let α be a fair execution of the register emulation
algorithm. Since no more than n − t responses are awaited
at either phase of write, and at most t registers are faulty, a
write invoked by a correct process in α completes. We next
prove that if there is a finite number of write invocations,
then a read invocation by a correct process completes.

Note that read never blocks at the wait statement in line
5, since n − t responses are awaited. Therefore, read con-
tinues to issue new read rounds as long as it does not return
a value. Assume by contradiction that read never returns.
Let t be a point in α after which no write operations on
base registers are invoked, and by which all write operations
invoked on correct registers have completed. Let t′ > t be
a point by which every correct register has responded to at
least one read invocation that was initiated after t.

Let 〈ts, v〉 be the value-timestamp pair written in the last
complete write invocation w, or 〈ts0, v0〉 if there is none.
We consider two cases: First, if no write later than w com-
pletes the pre-write phase (either none is invoked, or one
is invoked but the writer fails before completing the pre-
write phase), then from point t′ onward, (1) 〈ts, v〉 appears
at least t + 1 times in w[], and is therefore safe; and (2)
there are at least 2t + 1 responses in w[] (from the correct
registers) with either 〈ts, v〉 or with a timestamp smaller
than ts. Therefore, every value-timestamp pair c such that
c.ts > ts ∨ (c.ts = ts ∧ c.val 6= v) is invalid. Thus, by the
end of line 6, 〈ts, v〉 ∈ C. Hence, the termination condition
in line 7 is satisfied and read returns.

Second, suppose that an incomplete write invocation
w′ = write(〈ts′, v′〉) occurs after w, and the pre-write
phase of w′ completes. Then after t′, 〈ts′, v′〉 appears at
least t + 1 times in pw[], and is safe. Moreover, since no
value-timestamp pair c such that c.ts > ts′ ∨ (c.ts = ts′ ∧
c.val 6= v′) is ever written, there are at least 2t+1 responses
with either 〈ts′, v′〉 or a smaller timestamp than ts′. Thus,

¬higherValid(〈ts′, v′〉) holds, and after line 6, 〈ts′, v′〉 ∈ C.
Hence, the termination condition in line 7 is satisfied and
read returns.

We have proven the following:

Theorem 1. The algorithm consisting of the write em-
ulation in Figure 2 and the read emulation in Figure 3 im-
plements an SWMR FW-terminating regular register using
n > 3t SWMR regular registers up to t of which can suffer
NR-arbitrary failures.

Note that since a new read round is initiated whenever
n − t responses for the previous round arrive, faulty regis-
ters responding much faster than correct ones may cause the
read emulation to take an unbounded number of rounds,
even if no concurrent write occurs. Nevertheless, we ob-
serve that in synchronous runs without a concurrent write,
read always terminates in two rounds. In order to formally
make such a claim, we need to consider a partially syn-
chronous (or timed-asynchronous) model [12, 10]. In such
models, it is possible to wait for messages until a certain
timeout. In periods when the system is synchronous, mes-
sages from correct processes always arrive by this timeout.
Achieving good performance in synchronous runs of an asyn-
chronous system is important, as such runs are common in
practice.

4. WAIT-FREE SAFE REGISTER
CONSTRUCTION

We now proceed to construct an SWMR wait-free safe reg-
ister out of n ≥ 3t+1 regular base registers. The implemen-
tation uses the same base registers as the FW-terminating
register implementation (see Figure 1), and the write oper-
ation is emulated exactly the same way as that of the FW-
terminating register (see Figure 2). The read implemen-
tation is presented in Figure 4. As in the FW-terminating
register, the reader invokes multiple rounds of read opera-
tions to the base registers, until it finds a value that is safe
to return. However, unlike the FW-terminating implemen-
tation, the number of read rounds is bounded. We begin
by explaining why the implementation is safe; we shall later
discuss its liveness and complexity.

The partial function ReadW (ReadPW) maps every read
timestamp-value pair to all the registers from which this
pair was read from the w (resp. pw) field; prevReadW holds
a copy of ReadW from the end of the previous read round
(line 7). Responded is the set of registers that responded to
read requests thus far.

The set C includes candidate return values. After the
first read round, C consists of values that were read from w
fields (line 5). Since at least n − t ≥ 2t + 1 base registers
are read (line 4), any value that is not included in C was
either not completely written before the read began (its
write could have begun but could not have completed), or
was already over-written (a subsequent write has begun).
In subsequent rounds, if for some candidate c ∈ C, there are
2t + 1 registers that responded but never with c in their w
field, then c is removed from C (line 10). If C = ∅, it must
be the case that a write invocation overlaps the read, and
every return value is correct. If C is not empty, the leading
candidate to return is the one associated with the highest
timestamp, because if several values were completely written

before the read began, the latest one should be returned.
This is captured by the predicate highCand(c).

Local variables:
Boolean arrays enabled[n], pending[n], old[n],

initially pending[i] = enabled[i] = old[i] = false
for all 1 ≤ i ≤ n;

Arrays pw[n], w[n] with elements in TSV als;
ReadW, ReadPW, prevReadW :

partial functions from TSvals to P({1 . . . n});
C ⊆ TSV als, initially C = ∅

Predicate and macro definitions:

Responded , {i : ∃〈w, i〉 ∈ ReadW}
highCand(〈ts, v〉) , 〈ts, v〉 ∈ C ∧ (ts = max{ts′|〈ts′, v′〉 ∈ C})
safe(c) , |ReadW(c) ∪ ReadPW(c)∪S

c′.ts>c.ts(ReadW(c′) ∪ ReadPW(c′))| ≥ t + 1

read():
1: for 1 ≤ i ≤ n, if(pending[i]) then old[i]← true;
2: ReadPW,ReadW← ∅;
3: for 1 ≤ i ≤ n, enabled[i]← true;
4: repeat

check();
until |{i : ¬enabled[i] ∧ ¬pending[i]}| ≥ n− t;

5: C ← {w[i] : i ∈ Responded};
6: while (C 6= ∅ ∧ (¬∃c ∈ C : highCand(c) ∧ safe(c))) do
7: prevReadW← ReadW;
8: for 1 ≤ i ≤ n, enabled[i]← true;
9: repeat

check();
until |{i : ¬enabled[i] ∧ ¬pending[i]}| ≥ n− t ∧

∀c ∈ C: (safe(c) ∨
|Responded \ prevReadW(c)| ≥ n− t);

10: C ← C \ {c ∈ C : |Responded \ ReadW(c)| ≥ 2t + 1};
11: if (C 6= ∅) then
12: return c.val : highCand(c);
13: return v0;

check()
if (∃i : enabled[i] ∧ ¬pending[i]) then
〈enabled[i], pending[i]〉 ← 〈false, true〉;
invoke 〈pw[i], w[i]〉 ← read(xi);

if (∃i : xi responded) then
if (¬old[i]) then

ReadPW(pw[i])← ReadPW(pw[i]) ∪ {i};
ReadW(w[i])← ReadW(w[i]) ∪ {i};

pending[i]← false; old[i]← false;

Figure 4: Wait-free safe register read emulation.

Let c be a candidate for which highCand(c) is true. It is
safe to return c if t+1 registers have responded either with c
or with later values in their pw field. This is because at least
one of these registers must be correct, implying that either c
was indeed written, or that a write operation is occurring
concurrently with the read, in which case a safe register
is allowed to return any value. This condition is captured
by the predicate safe. The correctness of this condition is
proven by the following lemma.

Lemma 3 (Safety). The algorithm consisting of the
write emulation in Figure 2 and the read emulation in
Figure 4 has only safe traces.

Proof. Let 〈ts, v〉 be the value-timestamp pair written
in the latest write invocation that returns before R = read
is invoked, or 〈ts0, v0〉 if no write has completed. Assume
further that no write overlaps the read. We show that
R does not return a value other than v. By the write
implementation, 〈ts, v〉 is both pre-written and written to at
least n − t base registers before write returns. Therefore,
there are at least t + 1 correct registers that have 〈ts, v〉 in
their w and pw fields throughout the duration of R. By the
read code, responses from at least n−t registers are awaited
in lines 4 and 9. Therefore, 〈ts, v〉 is included in C in line 5.
Moreover 〈ts, v〉 is never excluded from C in line 10. Hence,
C 6= ∅ from the first time line 6 is executed onward, and
the algorithm does not return in line 13. Finally, observe
that no 〈ts′, v′〉 6= 〈ts, v〉 can be highCand and safe, because
no correct register returns a value with ts′ > ts or ts′ =
ts∧ v′ 6= v. Hence, no value other than v is returned in line
12.

We now turn to discuss liveness. In each round, at least
n − t responses are awaited (line 9). This does not lead to
blocking, since there are at least n − t correct base regis-
ters. In order to limit the number of initiated rounds, line
9 includes an extra waiting condition that must be satisfied
before an additional round can be initiated. We now ex-
plain why this condition does not violate liveness. Consider
a candidate c ∈ C. Note that prevReadW(c) 6= ∅ in line 9.
There are two cases:

1. At least one register in prevReadW(c) is correct. There-
fore, the pre-write phase of write(c) must have com-
pleted on at least t+1 correct registers before the cur-
rent round is initiated (because c has been read from
the w field of a correct register in an earlier round).
Each correct register eventually responds in the cur-
rent round with either c or a higher timestamped value,
and safe(c) holds.

2. All the registers in prevReadW(c) are faulty. In this
case, there are at least n− t correct registers that did
not previously send c. Since these registers eventu-
ally respond, and since none of them is included in
prevReadW(c) during the wait, eventually |Responded\
prevReadW(c)| ≥ n− t becomes true.

Line 9 waits for one of the above to hold, and therefore does
not block. We have proven the following:

Lemma 4 (Non-blocking). The read emulation never
blocks indefinitely at a wait statement.

To see why read invokes at most t + 1 rounds, observe
that once every candidate in C is safe, the termination con-
dition of the loop in line 6 is satisfied. If C is empty, we are
done. Otherwise, consider c ∈ C. Line 9 waits until either
c becomes safe or there are n − t responses from registers
that did not previously respond with c. Thus, if c does not
become safe in line 9, then either ReadW(c) grows, or c is
removed from C in line 10 because n − t ≥ 2t + 1 registers
respond without c. After j read rounds, for every c ∈ C
that is not safe at the end of line 10, ReadW(c) has grown
j times, and therefore includes at least j elements. Once
ReadW(c) includes t + 1 elements, c is safe. We conclude
that the algorithm is wait-free:

Lemma 5 (Wait Freedom). The safe register emula-
tion satisfies wait freedom.

Proof. Every write operation invoked by a correct pro-
cess returns, as argued in Lemma 2. Consider a read op-
eration R. By Lemma 4, R does not block in any wait
statement. Moreover, as argued above, at most t+1 rounds
of read operations are invoked before the termination con-
dition of the loop in lines 6–10 is satisfied, at which point
read completes.

We have proven the following:

Theorem 2. The algorithm consisting of the write em-
ulation in Figure 2 and the read emulation in Figure 4
implements a wait-free SWMR safe register from n > 3t
SWMR regular registers, up to t of which can suffer NR-
arbitrary failures.

The algorithm’s early-stopping property is more subtle, and
is proven in the following Lemma.

Lemma 6 (Early-stopping). In every run in which f
registers exhibit Byzantine behavior, the read emulation in-
vokes at most min(t+1, f +2) rounds of read operations on
base registers.

Proof (Sketch). For j > 1, consider the initiation of
the jth read round occurring in line 8 (during the j− 1st it-
eration in the loop of lines 6–10). Since the loop is executed,
C 6= ∅. Let c be the highest timestamped candidate in C,
i.e., highCand(c) holds, then c is not safe at the beginning
of this iteration. Since c was not removed from C in line 10
during previous iterations, it was returned in every round
before j, and each time by a new register (i.e., |ReadW(c)|
has increased j− 1 times). Since c is not safe, we know that
|ReadW(c)| < t + 1, and therefore j − 1 < t + 1, that is
j ≤ t + 1.

If c was never returned by a correct register, then ReadW(c)
includes at most f elements, and j ≤ f + 1. Otherwise, let
k < j be the first round during which c is read from the w
field of a correct register. Then c was sent by at least k − 1
Byzantine faulty registers before round k, and there are at
most f − k + 1 Byzantine faulty registers that are not in
ReadW(c). Consider the set S of registers that respond to
rounds k + 1 . . . j− 1. Since ReadW(c) continues to increase
in each round, S includes at least 2t+ j− k− 1 registers ex-
cluding the k−1 Byzantine registers that sent c before round
k. Since at most f−k+1 members of S are Byzantine faulty,
S includes at least 2t+ j−k−1− (f−k+1) = 2t+ j−f−2
correct registers.

Finally, since the pre-write phase of write(c) has com-
pleted before round k + 1 was initiated, at most t correct
registers respond to rounds k + 1 . . . j − 1 with values older
than c in their pw field. Therefore, if S includes 2t + 1 cor-
rect registers, then at least t + 1 of them have either c or a
higher value in their pw field, and c is safe. But we assumed
that c is not safe. We get that 2t + j − f − 2 ≤ 2t, that is,
j ≤ f + 2.

Note that only Byzantine failures cause read to take more
rounds; benign (i.e., crash) failures do not slow the algo-
rithm down. In invocations of read that do not overlap any
write invocation, read invokes at most f + 1 rounds. For
space limitations, we do not prove this here, but it can be
proven similarly to Lemma 6. Moreover, we observe that in
synchronous runs, read always terminates in two rounds.

5. CONSENSUS WITH FW-TERMINATING
REGISTERS AND Ω

In a consensus problem, each process has an input and
may decide on an output, so that the following conditions
are satisfied: (1) termination: each correct process decides;
(2) agreement: every two correct processes that decide de-
cide on the same value; and (3) validity: every decision is the
input of some process. We present a shared memory con-
sensus algorithm based on those of [22, 13], and prove that
it works correctly with FW-terminating regular registers.
Since the algorithm closely resembles ones in the literature,
the contribution of this section is in observing that it works
correctly with FW-terminating registers.

The algorithm is presented in Figure 5. It solves consen-
sus among n processes P1, . . . , Pn using n FW-terminating
SWMR regular registers x1, . . . , xn, where xi is writable by
Pi and readable by all processes. It employs a distributed
leader oracle L, which is a failure detector of class Ω [7], the
weakest for consensus [22, 11, 7]. Each process Pi accesses
L via its local module Li, whose output at any given time
is the index of the process that is currently considered to be
trusted by Pi. A failure detector of class Ω guarantees that,
eventually, a single correct process is permanently trusted
by all correct processes.

Types: X = N× V als× {⊥, pc, c}, with selectors bal, val, stat;

Shared FW-terminating regular registers xi ∈ X, 1 ≤ i ≤ n,
initially 〈0,⊥,⊥〉;
Each xi is writable by Pi and readable by all processes.

Algorithm for process i:

Local variables:
val ∈ V als, bal ∈ N, ` ∈ N, ai ∈ X for 1 ≤ i ≤ n;

1: bal← i;
2: val← inpi; // inpi is the initial value of i
3: while (true) do
4: `← Li;
5: if (` = i) then
6: write(xi, 〈bal,⊥,⊥〉);
7: aj ← read(xj), for each j, 1 ≤ j ≤ n;
8: if (max{aj .bal : 1 ≤ j ≤ n} ≤ bal) then
9: if (∃j : aj .val 6= ⊥) then
10: val← ak.val: 1 ≤ k ≤ n ∧ ak.bal =

max{aj .bal : 1 ≤ j ≤ n ∧ aj .val 6= ⊥};
11: write(xi, 〈bal, val, pc〉);
12: aj ← read(xj), for each j, 1 ≤ j ≤ n;
13: if (max{aj .bal : 1 ≤ j ≤ n} ≤ bal) then
14: write(xi, 〈bal, val, c〉);
15: decide val and halt;
16: bal← bal + n;
17: else
18: a` ← read(x`);
19: if (a`.stat = c) then
20: decide a`.val and halt;

Figure 5: The consensus algorithm.

The algorithm is leader-based. A process ` that trusts
itself decides upon a value and writes it in xl with the tag

c (line 14), whereas other processes continuously read xl

until they find a decision value there (line 18–20). Before Pl

decides, it proposes a decision value (line 11), by writing it
in xi with the tag pc. Each proposed value is associated with
a unique ballot bal. We say that a process ` proposes (resp.
decides) value v at ballot b if ` completes line 11 (resp. 14)
with val = v and bal = b. To propose a value, ` chooses the
value previously proposed with the highest ballot number, or
its own initial value if there is none (lines 7–10). A proposal
succeeds if no higher ballot is read (lines 12–13).

The key to guaranteeing termination despite the use of
FW-terminating registers is the fact that once a unique
leader ` emerges (as guaranteed by Ω), ` is the only pro-
cess that invokes write. Moreover, the ballot numbers stop
increasing, and therefore ` invokes a finite number of writes,
and all the read operations terminate. We now formally
prove that the algorithm satisfies termination.

Lemma 7. Suppose that a process ` decides, and let i be a
process that permanently trusts `. If i reaches line 18, then
i eventually decides.

Proof. Suppose that process ` decides, and let i be a pro-
cess that permanently trusts `. Suppose that i has reached
line 18. Since i continues to trust `, it will proceed to read
xl (line 18) in a loop. By the code, once a process decides,
it halts. Thus, no more writes to x` will be ever invoked.
By FW-termination, every read(x`) invoked by any process
i will eventually return. Since each process i continues to
invoke read(x`) in a loop, eventually, some read(x`)i will be
invoked after write(x`, 〈∗, ∗, c〉)` returns. Once this happens,
by regularity of x`, the response of read(x`)i stored in a` will
have a`.stat = c, and i will decide.

Lemma 8 (Termination). In any fair execution, all
non-faulty processes eventually decide.

Proof. Since L ∈ Ω, every fair execution of the algo-
rithm eventually reaches a point after which no more fail-
ures occur and each correct process i permanently trusts the
same correct process `. By the code, after this point, each
process i 6= ` writes xi at most twice (in lines 11 and 14),
and then proceeds to read xl (line 18) in a loop. If the pro-
cess ` has already decided, then by Lemma 7, each process
i will decide as well.

Otherwise, by FW-termination, process ` will eventually
be able to complete any read operation from any register.
Consequently, ` will be able to execute lines 6–16 sufficiently
many times for its ballot to become the highest ballot ever
written. Once this happens, process ` will decide and halt.
By Lemma 7, all other processes waiting for `’s decision will
decide and halt as well.

We next prove the algorithm’s safety properties (agreement
and validity).

Lemma 9 (Agreement). All decision values are iden-
tical.

Proof. Let b1 be the lowest ballot at which some process
i decides value v1. Suppose that a process k proposes value
v2 at ballot b2 ≥ b1. We show that v2 = v1, which implies
agreement. The proof is by induction on ballot numbers
b ≥ b1. Since the base case is trivially true, we proceed
directly to the induction step. Suppose that the result holds
for all b, b1 ≤ b < b2, and consider b = b2. Since i decides

v1 at b1, it must have proposed v1 at b1. Moreover, for all
register values aj read in line 12, aj .bal ≤ b1. Therefore,
the write in line 6 by j that writes b2 > b1 to xj , must
return after the read(xj) by i in line 12 has been invoked.
For otherwise, by regularity of xj and because ballots are
monotonically increasing at each process, read(xj) by i must
respond with 〈b′,⊥,⊥〉 such that b′ ≥ b2 > b1 contradicting
the fact that aj .bal ≤ b1. Thus, the read R = read(xi) by j
in line 7 is invoked after write(xi, 〈b1, v1, pc〉)i is completed.
Since i halts after deciding, it does not overwrite xi after
ballot b1. Hence, by regularity of xi, R returns 〈b1, v1, ∗〉.

Consequently, upon completion of line 7, ai = 〈b1, v1, ∗〉
and therefore, both of the following hold: (1) the test in line
9 is true; and (2) the value v′ chosen in line 10 was written
with a ballot b′ ≥ b1. Furthermore, by line 8, b′ ≤ b2. Since
j has not yet proposed any value, by line 6, aj .val = ⊥.
Thus, we receive that v′ must have been written at ballot
b′, b1 ≤ b′ < b2. Finally, since for any value v 6= ⊥ such that
xk.val = v, v must have been either proposed or decided
by k, and because the value decided at any ballot must be
equal to the value proposed at this ballot, v′ must have
been proposed with ballot b′, b1 ≤ b′ < b2. By the induction
hypothesis, v′ = v1. Therefore, j will propose v1 at b2 as
needed.

Lemma 10 (Validity). Every decision value is the ini-
tial value of some process.

Proof. Immediately follows from the fact that every pro-
posed value is either the proposer’s initial value or a previ-
ously proposed value.

We have proven the following:

Theorem 3. The pseudo-code in Figure 5 is a solution
for the consensus problem.

Corollary 1. n SWMR FW-terminating regular regis-
ters are sufficient to solve consensus among n processes in
an asynchronous shared memory system augmented with a
failure detector of class Ω.

Given a system with 3t + 1 disks, t of which can be ar-
bitrarily corrupted or non-responsive, we use the construc-
tion in Section 3 in order to emulate each of the n FW-
terminating registers required for consensus from 3t+1 base
registers, each stored on a different disk. Thus, we have the
following corollary:

Corollary 2. Consensus can be solved using 3t+1 disks,
t of which can be arbitrarily corrupted or non-responsive, and
a failure detector of class Ω.

6. LOWER BOUNDS ON OPTIMAL
RESILIENCE FW-TERMINATING
EMULATIONS

In the full paper, we also prove lower bounds on mem-
ory emulations of reliable objects from ones that can suffer
NR-Arbitrary faults. Here, we merely state these bounds
without proof.

Obviously, at least 3t + 1 base objects are required in
order to emulate a reliable one in this model (see [25]). We
focus on optimal-resilience emulations, that is, emulations

using 3t + 1 base objects. The results are proven for FW-
terminating registers, and hence apply to wait-free ones as
well. To strengthen our bounds, we prove the lower bounds
for emulations of the weakest meaningful register type: a
single-writer single-reader (SWSR) safe register [19] with a
binary value domain; and we allow for atomic base objects
of any type.

We define a round of invocations to be a collection of
operations that are invoked concurrently on a number of
base objects (at most once on each base object). We consider
a concurrent system C implementing an FW-terminating
SWSR safe register out of n > 0 base objects.
The following theorem shows that emulating write opera-
tions requires two rounds:

Theorem 4. Suppose n ≤ 4t. Then, for every 0 ≤ f ≤ t,
there exists a run of C with f base object failures that in-
cludes a complete invocation of write(1) and no other invo-
cations on the emulated SWSR register, such that at least
two invocation requests are completed on some correct base
object.

The following two theorems prove lower bounds on the num-
ber of invocations required for emulating a read operation:

Theorem 5. Suppose n = 3t + k, and assume that the
reader does not modify the base Suppose n = 3t + k, and as-
sume that the reader does not modify the base objects’ states.
For every 1 ≤ i ≤ bt/kc, there is a run of C in which ik ob-
jects fail and a read emulation invokes i + 1 rounds of base
object operations.

Theorem 6. Suppose n = 3t + k, and assume that the
reader does not modify the base objects’ states. For every
1 ≤ i ≤ bt/kc, there is a run of C in which (i− 1)k objects
fail, and a read emulation that does not overlap any write
operations invokes i + 1 rounds of base object operations.

When k = 1, we get that for 0 ≤ f ≤ t, the lower bound
on the number of rounds required to emulate read in runs
with f failures is min(t + 1, f + 2). If a read invocation
does not overlap any write operation, then the lower bound
is f + 1. Our algorithm shows that these bounds are tight.

7. DISCUSSION
We have presented asynchronous implementations of reli-

able shared memory objects from base objects that can suf-
fer NR-Arbitrary faults. We gave the first optimal resilience
construction of a wait-free safe register in this model. Based
on known reductions from safe registers to regular ones, our
construction yields a Byzantine version of the Disk Paxos
consensus algorithm, which employs as little as 3t+1 disks,
t of which can be arbitrarily corrupted or non-responsive,
and a leader oracle.

Our safe register construction is early-stopping, and its
round complexity is optimal, as we prove in the full version
of this paper. Nevertheless, emulating a regular register
from safe ones incurs additional rounds of operation invoca-
tions. Moreover, our safe register construction is quite elab-
orate, as are known efficient reductions from safe registers
to regular ones. Therefore, from an engineering perspective,
it is desirable to derive simpler solutions.

We have addressed this challenge by defining a weaker
termination condition called FW-termination. We have pre-
sented a simple and elegant construction of an FW-termina-

ting regular register, which we have shown, suffices for solv-
ing consensus with a leader oracle. In contrast to our wait-
free register, the number of rounds executed by the read op-
eration of the FW-terminating register is unbounded, even
in the absence of contention. Thus, there is a tradeoff be-
tween our two constructions. Nevertheless, in synchronous
runs, the read operations of the FW-terminating construc-
tion always terminate in two rounds. Since such runs are
common in practice, this construction is likely to perform
well in a real system.

8. ACKNOWLEDGMENTS
We are thankful to Rachid Guerraoui, Maurice Herlihy,

Petr Kouznetsov, Victor Luchangco, Nancy Lynch, Mark
Moir and Nir Shavit for many interesting discussions and
insightful comments.

9. REFERENCES
[1] Y. Afek, D. Greenberg, M. Merritt, , and

G. Taubenfeld. Computing with faulty shared objects.
Journal of the ACM, 42(6):1231–1274, November 1995.

[2] Y. Afek, M. Merritt, and G. Taubenfeld. Benign
failures models for shared memory. In Proceedings of
the 7th International Workshop on Distributed
Algorithms, pages 69–83. Springer Verlag, September
1993. In: LNCS 725.

[3] H. Attiya and A. Bar-Or. Sharing memory with
semi-Byzantine clients and faulty storage servers. In
SRDS, 2003.

[4] R. Bazzi. Synchronous Byzantine Quorum Systems.
Distributed Computing, 13(1):45–52, 2000.

[5] R. Boichat, P. Dutta, S. Frolund, and R. Guerraoui.
Deconstructing Paxos. Distributed computing column
of the ACM SIGACT News, 34(1):47–67, 2003.

[6] G. Bracha and S. Toueg. Asynchronous consensus and
broadcast protocols. Journal of the ACM,
32(4):824–840, October 1985.

[7] T. D. Chandra, V. Hadzilacos, and S. Toueg. The
weakest failure detector for solving consensus.
J. ACM, 43(4):685–722, 1996.

[8] G. Chockler and D. Malkhi. Active Disk Paxos with
infinitely many processes. In Proceedings of the 21st
ACM Symposium on Principles of Distributed
Computing (PODC’02), 2002.

[9] G. Chockler, D. Malkhi, and M. K. Reiter. Backoff
protocols for distributed mutual exclusion and
ordering. In Proceedings of the 21st International
Conference on Distributed Computing Systems, pages
11–20, 2001.

[10] F. Cristian and C. Fetzer. The timed asynchronous
distributed system model. IEEE Transactions on
Parallel and Distributed Systems, pages 642–657, June
1999.

[11] C. Delporte, H. Fauconnier, and R. Guerraoui. Failure
detection lower bounds on registers and consensus. In
Proceedings of the 16th International Symposium on
Distributed Computing (DISC), October 2002.

[12] C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in
the presence of partial synchrony. J. ACM,
35(2):288–323, Apr. 1988.

[13] E. Gafni and L. Lamport. Disk Paxos. Distributed
Computing, 16(1):1–20, 2003.

[14] J. A. Garay, R. Gennaro, C. Jutla, and T. Rabin.
Secure distributed storage and retrieval. Theoretical
Computer Science, 243(1–2):363–389, 2000.

[15] S. Haldar and P. Vitanyi. Bounded concurrent
timestamp systems using vector clocks. J. ACM,
49(1):101–126, 2002.

[16] M. Herlihy, V. Luchangco, and M. Moir.
Obstruction-free synchronization: Double-ended
queues as an example. In Proceedings of the 23rd
International Conference on Distributed Computing
Systems (ICDCS), page 522. IEEE Computer Society,
2003.

[17] P. Jayanti, T. Chandra, , and S. Toueg. Fault-tolerant
wait-free shared objects. Journal of the ACM,
45(3):451–500, 1998.

[18] S. Lakshmanan, M. Ahamad, and H. Venkateswaran.
Responsive security for stored data. In Proceedings of
the International Conference on Distributed
Computing Systems (ICDCS), 2003.

[19] L. Lamport. On interprocess communication – part ii:
Algorithms. Distributed Computing, 1(2):86–101, 1986.

[20] L. Lamport. The part-time parliament. ACM
Transactions on Computer Systems, 16(2):133–169,
1998.

[21] E. K. Lee and C. Thekkath. Petal: Distributed virtual
disks. In Proceedings of the 7th International
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS-VII),
pages 84–92, 1996.

[22] W. K. Lo and V. Hadzilacos. Using failure detectors
to solve consensus in asynchronous shared-memory
systems. In Proceedings of the 8th International
Workshop on Distributed Algorithms (WDAG), pages
280–295. Springer-Verlag, 1994. In: LNCS 857.

[23] N. A. Lynch and M. Tuttle. An introduction to
Input/Output Automata. CWI Quarterly,
2(3):219–246, 1989.

[24] D. Malkhi and M. Reiter. An architecture for
survivable coordination in large distributed systems.
IEEE Transactions on Knowledge and Data
Engineering, 12(2):187–202, 2000.

[25] J.-P. Martin, L. Alvisi, and M. Dahlin. Minimal
Byzantine storage. In Proceedings of the 16th
International Symposium on Distributed Computing
(DISC), October 2002.

[26] R. Rodrigues and B. Liskov. Rosebud: A Scalable
Byzantine-Fault-Tolerant Storage Architecture.
Technical Report MIT-LCS-TR-932, MIT Laboratory
for Computer Science, 2004.

[27] S. Lin, Q. Lian, M. Chen, and Z. Zhang A practical
distributed mutual exclusion protocol in dynamic
peer-to-peer systems. In 3rd International Workshop
on Peer-to-Peer Systems (IPTPS’04), 2004.

[28] C. Thekkath, T. Mann, and E. K. Lee. Frangipani: A
scalable distributed file system. In proceedings of the
16th ACM Symposium on Operating Systems
Principles, pages 224–237, 1997.

[29] L. Zhou, F. B. Schneider, and R. van Renesse. Coca:
A secure distributed on-line certification authority.
ACM Transactions on Computer Systems,
20(4):329–368, 2002.

	Introduction
	The System Model
	Registers

	FW-Terminating Regular Register Construction
	Wait-Free Safe Register Construction
	Consensus with FW-Terminating Registers and
	Lower Bounds on Optimal Resilience FW-Terminating Emulations
	Discussion
	Acknowledgments
	REFERENCES -9pt

