Reconfigurable Distributed Storage for Dynamic
Networks*

Gregory Chockler?, Seth Gilbert, Vincent Gramoft-4, Peter M Musial, and
Alexander A Shvartsmar?

1 CSAIL, Massachusetts Institute of Technology, Cambridge, MA 02U3A.
grishac@sail.mt.edu, sethg@it.edu, alex@heory.csail.nit.edu
2 |BM Haifa Labs, Haifa University Campus, Mount Carmel, Haifa 31988ael.
3 Dep. of Comp. Sci. and Eng., University of Connecticut, Storrs, CI6O6USA.
pi ot r @se. uconn. edu
4 IRISA, Campus de Beaulieu, 35042 Rennes Cedex, France.
vgramoli @risa.fr

Abstract. This paper presents a new algoritfRDS(Reconfigurable Distributed
Storage), for implementing a reconfigurable distributed shared memaan
asynchronous dynamic network. The algorithm guarantees atomitstamty
(linearizability) in all executions in the presence of arbitrary crash fedlofgro-
cessors and message loss and delays. The algorithm incorporatgsimpased
read/write algorithm and an optimized consensus protocol, based os. RS
achieves the design goals of: (i) allowing read and write operations toletenp
rapidly, and (ii) providing long-term fault tolerance through reconfigion, a
process that evolves the quorum configurations used by the readriiddpera-
tions. The new algorithm improves on previously developed alternativasing
a more efficient reconfiguration protocol, thus guaranteeing betti:tdderance
and faster recovery from network instability. This paper presents RB&mal
proof of correctness, conditional performance analysis, andiexgetal results.

Keywords: Distributed algorithms, reconfiguration, atomic objects, performance.

1 Introduction

Providing consistent and available data storage in a dynaetiwork is an important
basic service for modern distributed applications. To He #btolerate failures, such
services must replicate data, which results in the challbgngroblem of maintaining
consistency despite a continually changing computatiahcammunication medium.
The techniques that were previously developed to maintaisistent data in static net-
work are largely inadequate for the dynamic settings ofrebdad emerging networks.
Recently a new direction was proposed that integrates dinesconfiguration
within a distributed data storage service. The goal of tfearch was to enable the
storage service to guarantee consistency (safety) in #sepce of asynchrony, arbi-
trary changes in the collection of participating networkles, and varying connectiv-
ity. The original service, called RvB0O (Reconfigurable Atomic Memory for Basic
Objects) [1, 2], supports multi-reader/multi-writer atermbjects in dynamic settings.

* This work is supported in part by the NSF Grants 0311368 and 0121277.

The reconfiguration service is loosely coupled with the hedte service. This allows
for the service to separate data access from reconfigurahtimimg which the previous
set of participating nodes can be upgraded to an arbitramysee of participants. Of
note, read and write operations can continue to make pregreite the reconfiguration
is ongoing. Reconfiguration is a two step process. Firstaéxé configuration is agreed
upon by the members of the previous configuration; then ebsalonfigurations are
removed using a separate configuration upgrade processtessilg multiple configu-
rations can co-exist in the system if the removal of obsaletdigurations is slow. This
approach leads to an interesting dilemma. (a) On the one, ld@edupling the choice
of new configurations from the removal of old configuratiotisves for better con-
currency and simplified operation. Thus each operationiresjweaker fault-tolerance
assumptions. (b) On the other hand, the delay between ttadlation of a new config-
uration and the removal of obsolete configurations is irsgdaDelaying the removal
of obsolete configurations can slow down reconfiguraticed e multiple extant con-
figurations, and require stronger fault-tolerance assiamgt

Our broader current research direction is to study the tcdfdbetween the sim-
plicity of loosely coupled reconfiguration protocols, as[in2], and the fault toler-
ance properties that they require. This paper presents algernithm that more tightly
integrates the two stages of reconfiguration. Our goal i®tluce the cost of recon-
figuration, both in terms of latency and the fault-tolerapeceperties required of the
configurations. We bound and reduce the time during whicloltheonfigurations need
to remain active, without impacting the efficiency of dataess operations. Reducing
this time can substantially increase the fault-tolerarfdb® service, despite the more
complicated integrated reconfiguration operation.

Contributions. In this paper we present a new distributed algorithm for enptnting
a read/write distributed shared memory in a dynamic asymahus network. This algo-
rithm, namedRDS (Reconfigurable Distributed Storage), is fault-tolerarsing repli-
cation to ensure that data can survive node failures, ammhfigcirable, tolerating con-
tinuous changes in the set of participating nodes. As in tiggnal approach [1], we
implement atomic (linearizable) object semantics, wharerder to maintain consis-
tency in the presence of small and transient changes, thetalp usesonfigurations
consisting ofquorumsof locations. Read and write operations consist of two phase
each phase accessing the needed read- or write-quorumdeirnto tolerate significant
changes in the computing medium we implemextbnfigurationthat evolves quorum
configurations over time.

In RDS we take a radically different approach to reconfigaratTo speed up re-
configuration and reduce the time during which obsolete garditions must remain
accessible, we present an integrated reconfigurationitiigothat overlays the protocol
for choosing the next configuration with the protocol for mamg obsolete configura-
tions. The protocol for choosing and agreeing on the nexfigaration is based on an
optimized version of Paxos [3—6]. The protocol for removiriigolete configurations is
a two-phase protocol, involving quorums of the old and the cenfigurations.

In summary, RDS improves on the previous solutions [1, 2y7lising a more ef-
ficient reconfiguration protocol that relaxes some of thdtflerance assumptions
made in prior work and that provides faster recovery folloggvhetwork instability. In

this paper we present the new algorithm, a formal proof ofeziness, conditional per-
formance results, and highly encouraging experimentalltesf additional operation
latency due to reconfiguration. The highlights of our apphoare as follows:

— Read/write independenc&ead and write operations are independent of ongoing
reconfigurations, and can make progress regardless of mmgeconfiguration or
the time it takes for reconfiguration to terminate (e.g., tune instability of lead-
ers selected by the reconfiguration algorithm). Even if taevork is completely
asynchronous, as long as reconfigurations are not too finreueéh respect to net-
work latencies), then read and write operations ar able taptete.

— Fully flexible reconfigurationT he algorithm imposes no dependencies between the

guorum configurations selected for installation.

— Fast reconfigurationThe reconfiguration uses a leader-based protocol; when the

leader is stable, reconfigurations are very fast: 3 netwelkys. Since halting con-
sensus requires at least 3 network delays, this is seemamgisnal. Combining
guorum reconfiguration with optimized 3-delay “Fast Paxmsjuires new tech-
nigues since (i) prior attempts to use Paxos for reconfiguratepend on each re-
configuration using the existing quorum system to instairibxt, while (ii) “Fast
Paxos” uses preparatory work from earlier configuratioas inay be obsolete.

— Fast read operationsRead operations require only two message delays when no

write operations interfere with it.

— Fast recovery:Our solution eliminates the need for recovery followingwaatk
instability and the associated clean-up of obsolete quaromfigurations. Specifi-
cally, and unlike the prior RMBO algorithms [1, 2] that may generate a backlog of
old configurations, there is never more than one old conftgurat a time.

Our reconfiguration algorithm can be viewed as an exampleaatbpol composition
advocated by van der Meyden and Moses [8]. Instead of wdlitinthe establishment
of a new configuration and then running the obsolete configuraemoval protocol,
we compose (or overlay) the two protocols so that the upgi@tiee next configuration
takes place as soon as possible.

Background.Several approaches have been used to implement consiataim ¢static)
distributed systems. Starting with the work of Gifford [9daThomas [10], many algo-
rithms have used collections of intersecting sets of objegplicas (such as quorums)
to solve the consistency problem. Upfal and Wigderson [E&] majority sets of read-
ers and writers to emulate shared memoryal§ti and Awerbuch [12] use matrices of
registers where the rows and the columns are written an@ctgely read by specific
processors. Attiya, Bar-Noy and Dolev [13] use majoritieprmcessors to implement
shared objects in static message passing systems. Extdoslonited reconfiguration
of quorum systems have also been explored [14, 15].

Virtually synchronous services [16], and group commundcaservices (GCS) in
general [17], can also be used to implement consistent @atécss, e.g., by imple-
menting a global totally ordered broadcast. While the usisaf processors in a GCS
can evolve, in most implementations, forming a new view saksubstantial time, and
client operations are interrupted during view formatiorowéver the dynamic algo-

rithms, such as the algorithm presented in this work and, [, 2llow reads and writes
to make progress during reconfiguration.

Reconfigurable storage algorithms are finding their way praxctical implemen-
tations [18, 19]. The new algorithm presented here has ttenpial of making further
impact on system development.

Document StructureSection 2 defines the model of computation. We present the al-
gorithm in Section 3. In Section 4 we present the correctpessfs. In Section 5 we
present conditional performance analysis of the algoritBaction 6 contains experi-
mental results about operation latency. The conclusicaimeBection 7.

2 System Model and Definitions

We use a message-passing model with asynchronous prasésaoihave unique iden-
tifiers (the set of processor identifiers need not be finite)c€ssors may crash. Pro-
cessors communicate via point-to-point asynchronousliabte channels. In normal
operation any processor can send a message to any othesgopnda safety (atom-
icity) proofs we do not makany assumptions about the length of time it takes for a
message to be delivered.

To analyze the performance of the new algorithm, we maketiaddi assump-
tions as to the performance of the underlying network. Inipalar, we assume that
eventually (at some unknown point) the network stabilibegoming synchronous and
delivering messages in bounded (but unknown) time. We alstnict the rate of recon-
figuration after stabilization, and limit node failures bubat some quorum remains
available in an active configuration. (For example, in mgjajuorums, this means that
only a minority of nodes in a configuration fail between reggurations.) We present
a more detailed explanation in Section 5.

Our algorithm usequorum configurationsA configuration cconsists of three com-
ponents: (iimemberé&c), a finite set of processor ids, (i@ad-quoruméc), a set of quo-
rums, and (iii)write-quorumsc), a set of quorums, where each quorum is a subset of
memberg). We require that the read quorums and write quorums of a conuofig-
uration intersect: formally, for everfg € read-quorumg) andW € write-quorumsc),
the intersectiolRNW # 0.

3 RDS Algorithm

In this section, we present a description of RDS. An ovenaéihe algorithm appears
in Figure 1 and Figure 2 (the algorithm is formally specifiadthe full paper). We
present the algorithm for a single object; atomicity is preged under composition and
the complete shared memory is obtained by composing mailtipjects. See [20] for
an example of a more streamlined support of multiple objects

In order to ensure fault tolerance, data is replicated ars¢wnodes in the network.
The key challenge, then, is to maintain the consistency gnte replicas, even as
the underlying set of replicas may be changing. The algworitisesquorum configura-
tionsto maintain consistency, amdconfigurationto modify the set of replicas. During

read() or write(V) operation at node

— RW-Phase-1aNodei chooses a unique itl, and sends 8RW1a,t) message to a read quo-
rum of every active configuration. Nodstores the set of active configuration®jm-configs

— RW-Phase-1b: If node | receives a (RWlat) message fromi, it sends a
(RW1b;,t,tag, value message back to nodle

— RW-Phase-2a:If node i receives a(RW1b,t,tag,value message fronj, it updates its
tag and value. If it receiveBRW1b messages from a read quorumadif configurations in
op-configsthen the first phase is complete. If the ongoing operationéadioperation and
the tag has already been confirmed, nodeturns the current value; otherwise it sends a
(RW2a,t,tad, value) message to a write quorum of every active configuration wtegle
andvalu€ depend on whether it isr@ad or awrite operation: in the case ofraad, they are
just equal to the locahg andvalue in the case of avrite, they are a newly unique chosen
tag, andv, the value to write. Noderesetsop-configgo the set of active configurations.

— RW-Phase-2b:If j receives dRW2a,t,tag,value message from, it updates its tag and
value and sends 1o (RW2b,t, configs, whereconfigsis the set of active configurations.

— RW-Done:If nodei receives messag®&W2b,t, c), it adds any new configurations froeo
its set of active configurations andap-configs|f it receives aRW2b message from a write
quorum ofall configurations irop-configsthen theread or write operation is complete and
the tag is marked confirmed. If it israad operation, nodéreturns its current value to client.

Fig. 1. The phases of theead andwrite protocols. Each protocol requires up to two phases.

normal operation, there is a single active configuratiomindureconfiguration, when
the set of replicas is changing, there may be two active coratgpns. Throughout the
algorithm, each node maintains a setagstive configurationsA new configuration is
added to the set during a reconfiguration, and the old onenisved at the end of a
reconfiguration.

Read and Write OperationsRead and write operations proceed by accessing the cur-
rently active configurations. Each replica maintainagand avaluefor the data being
replicated. Tag is a counter-id pair used as a write operatrsion number where its
node id serves as a tiebreaker. Each read or write operatimiplly requires two
phasesRW-Phase-1to querythe replicas, learning the most up-to-date tag and value,
andRW-Phase-2to propagatethe tag and value to the replicas. Imaeryphase, the
initiator contacts one read quorum from each active condiiom, and remembers the
largest tag and its associated value. pr@pagatephase, read and write operations be-
have differently: a write operation chooses a new tag thstristly larger than the one
discovered in the query phase, and sends the new tag and hewwva write quorum; a
read operation sends the tag and value discovered in thg plase to a write quorum.

Sometimes, a read operation can avoid performing the petigegphase RW-
Phase-2 if some prior read or write operation has already propab#tat particular
tag and value. Once a tag and value has been propagated, yoa itelad or a write
operation, it is marked confirmed. If a read operation discevhat a tag has been
confirmed, it can skip the second phase.

One complication arises when during a phase, a new configota¢comes active.
In this case, the read or write operation must access the oiefigaration as well as the

recon(c,C’) at nodei: If ¢ is the only configuration in the set of active configurations, then
reconfiguration can begin. The request is forwarded to the putatiderdea If it has already
completed Phase 1 for some ballptthen it can skip Phase 1, and use this ballot in Phase 2.
Otherwise, it performs Phase 1.

— Recon-Phase-lateader? chooses a unique ballot numbedarger than any previously
used ballots and sendRecoria,b) messages to a read quorum of configuratigthe old
configuration).

— Recon-Phase-1b:When node j receives (Recora,b) from ¢, if it has not re-
ceived any message with a ballot number greater thathen it replies tof with
(Recorib, b, configs (b”,c”)) whereconfigsis the set of active configurations abl and
c” represent the largest ballot and configuration jhaited to replace configuratian

— Recon-Phase-2df leader/ has received &Recorib, b,configsb”,c¢”) message, it updates
its set of active configurations; if it receives “Reconlb” messag®s fa read quorum of
configuratiorc, then it sends &Recor2a, b, c,v) message to a write quorum of configuration
¢, where: if all the(Recorib, b,...) messages contained empty last two parametersytisen
c; otherwisey is the configuration with the largest ballot received in the prepare phase.

— Recon-Phase-2btf a nodej receives(Recora,b,c,c’) from ¢, and if ¢ is the only active
configuration, and if it has not already received any message witliat hamber greater
thanb, it sends(Recorb, b, c,c’,tag,value to a read quorum and a write quorumaof

— Recon-Phase-3df a nodej receives/Recor2b, b, c, ¢, tag, value from a read quorum and
a write quorum ofc, and if ¢ is the only active configuration, then it updates its tag and
value, and adds’ to the set of active configuratioremd to op-configs It then sends a
(Recoma, ¢, ¢ ,tag,value message to a read quorum and a write quorum of configuration

— Recon-Phase-3blif a nodej receives/Recoia, c, ¢’ ,tag,value from a read quorum and a
write quorum of configuration, then it updates its tag and value, and removes configuration
c from its active set of configurations (but not frap-configsif it is there).

Fig. 2. The phases of theecon protocol. The protocol requires up to three phases.

old one. In order to accomplish this, read or write operatisave the set of currently
active configurationgyp-configswhen a phase begins; a reconfiguration can only add
configurations to this set—none are removed during the pEa®a. if a reconfiguration
finishes with a configuration, the read or write phase mustiicoa to use it.

Reconfiguration.When a client wants to change the set of replicas, it initiatescon-
figuration, specifying a new configuration. The nodes thérate a consensus protocol,
ensuring that everyone agrees on the active configurati@hftaat there is a total or-
dering on configurations. The resulting protocol is someéwhare complicated than
typical consensus, however, since at the same time, thafigamation operation prop-
agates information from the old configuration to the new gution.

The reconfiguration protocol uses an optimized variant abR&3]. The reconfig-
uration request is forwarded to a leader, which coordindweseconfiguration, consist-
ing of three phases: preparephase Recon-Phase-lin which a ballot is made ready,
a proposephase Recon-Phase-2in which the new configuration is proposed, and a
propagatephase Recon-Phase-3in which the results are distributed.

The prepare phase accesses a read quorum of the old configuthtis learning
about any earlier ballots. When the leader concludes theapggphase, it chooses a

configuration to propose: if no configurations have beengseg to replace the current
old configuration, the leader can propose its own preferoefiguration; otherwise, the
leader must choose the previously proposed configuratitmtive largest ballot. The
propose phase then begins, accessing both a read and awanitergof the old configu-
ration. This serves two purposes: it requires that the ndéee old configuration vote
on the new configuration, and it collects information on thg and value from the old
configuration. Finally, the propagate phase accesses angkawrite quorum from the
old configuration; this ensures that enough nodes are awéne aew configuration to
ensure that any concurrent reconfiguration requests otftaidesired result.

There are two optimizations included in the protocol. Fiiflsé hode has already
prepared a ballot as part of a prior reconfiguration, it camtinoe to use the same bal-
lot for the new reconfiguration, without redoing the prepalnase. This means that if
the same node initiates multiple reconfigurations, onlyfitst reconfiguration has to
perform the prepare phase. Second, the propose phase canatier wherany node,
even if it is not the leader, discovers that an appropriat@sgquorums has voted for
the new configuration. If all the nodes in a quorum send tlesiponses to the propose
phase to all the nodes in the old configuration, then all tipiaaés can terminate the
propose phase at the same time, immediately sending ouageitgy messages. Again,
when any node receives a propagate response from enougs, fitockn terminate the
propagate phase. This saves the reconfiguration one metslageTogether, these op-
timizations mean that when the same node is performing tegeaconfigurations, it
only requires three message delays: the leader sendingdhege message to the old
configuration, the nodes in the old configuration sendingrésponses to the nodes
in the old configuration, and the nodes in the old configuraiending a propagate
message to the initiator, which can then terminate the feguation.

4 Proof of Correctness (Atomic Consistency)

We now outline the safety proof of RDS, i.e., we show that geelrand write operations
are atomic (linearizable). We depend on two lemmas commuasdy to show lineariz-
ability: Lemmas 13.10 and 13.16 in [21]. We use the tags ofoiberations to induce
a partial ordering on operations that allows us to prove #hepcoperty necessary to
guarantee atomicity: ify is an operation that completes befatebegins, then the tag
of Ty is no larger than the tag ab; if T, is a write operation, the inequality is strict.

Ordering Configurations. Before we can reason about the consistency of read and
write operations, we must show that nodes agree on the amivigurations. For a
reconfiguration replacing configuratian we say that reconfiguratiofc,c’) is well-
definedif no node replaces configuratianwith any configuration excemt. This is,
essentially, showing that the consensus protocol suadBsathieves agreement. The
proof is an extension of the proof in [3] which shows that Pagoarantees agreement,
modified to incorporate optimizations in our algorithm aedanfiguration (for lack of
space we omit the proof).

Theorem 1. For all executions, there exists a sequence of configurationcy, ...,
such that reconfiguratiofc;, ¢i+1) is well-defined for all i.

Ordering Operations. We now proceed to show that tags induce a valid ordering on
the operations. If both operations “use” the same configamathen this property is
easy to see: operatiam propagates its tag to a write quorum, amgdiscovers the
tag when reading from a read quorum. The difficult case ocetien Ty and Ty, use
differing configurations. In this case, the reconfiguratipnopagate the tag from one
configuration to the next.

We refer to the smallest tag at a node that replaces confignmt with configu-
rationc,,; as the “tag for configuration,, 1.” We can then easily conclude from this
definition, along with a simple induction argument, that:

Invariant 2 If some node i has configuration-¢ 1 in its set of active configurations,
then its tag is at least as large as the tag for configuratipn c

This invariant allows us to conclude two facts about how infation is propagated by
reconfiguration operations: the tag of each configuratiowikarger than the tag of the
following configuration, and the tag of a read/write opematis no larger than the tag
of a configuration in its set of active configurations. Thetlemima requires showing
how read and write operations propagate informatooa reconfiguration operation:

Lemma 1. If ¢, is the largest configuration in i's op-config set of operatiboonfigu-
rations wherRW-Phase-Zompletes, then the tag of the operation is no larger than the
tag of configuration g, ;.

Proof. During theRW-Phase-2 the tag of the read or write operation is sent to a write
quorum of the configuration,. This quorum must intersect the read quorum during
the Recon-Phase-2ropagation phase of the reconfiguration that instlls. Let i’

be a node in the intersection of the two quorumsi’ Ifeceived the reconfiguration
message prior to the read/write message, then nadrild learn about configuration
cr.1. However we assumed thatwas the largest configuration @p-configati at the
end of the phase. Therefore we can conclude that the regelfwessage topreceded
the reconfiguration message, ensuring that the tag waddradsas required. O

Theorem 3. For any executiong, it is possible to determine a linearization of the
operations.

Proof. As discussed previously, we need to show that if operatigerecedes operation
T, then the tag oft is no larger than the tag @b, and if T is a write operation, then
the inequality is strict.

There are three cases to consider. First, assunad, use the same configura-
tion. Then the write quorum accessed during the propagatsepbfry intersects the
read quorum accessed during the query phase,@nsuring that the tag is propagated.

Second, assume that tlsenallestconfiguration accessed hy in the propagate
phase is larger than tHargestconfiguration accessed by in the query phase. This
case cannot occur. Let be the largest configuration accessedpyPrior toTy, some
configuration installing configuratioty.1 must occur. During the final phagecon-
Phase-2of the reconfiguration, a read quorum of configuratipis notified of the new
configuration. Therefore, during the query phasewgfthe new configuration foc, 1
would be discovered, contradicting our assumption.

Third, assume that tHargestconfiguratiorc, accessed b in the propagate phase
RW-Phase-2is smaller than themallestconfigurationc, accessed byt in the query
phaseRW-Phase-1 Then, Lemma 1 shows that the tagrafis no larger than the tag
of ¢;; Invariant 2 shows that the tag of is no larger than the tag @ and that the tag
of ¢y is no larger than the tag af,. Together, these show the required relationship of
the tags.

If Ty skips the second phade\W-Phase-2 then an earlier read or write must have
performed e&RW-Phase-2for the same tag, and the proof follows as before. d

5 Conditional Performance Analysis

Here we examine the performance of RDS, focusing on the e&fiigi of reconfigura-
tion and how the algorithm responds to instability in thewark. To ensure that the
algorithm makes progress in an otherwise asynchronousrayste make a series of
assumptions about the network delays, the connectivitytlaafailure patterns. In par-
ticular, we assume that, eventually, the network stalsleaed delivers messages with a
delay ofd. The main results in this section are as follog$we show that the algorithm
“stabilizes” withine+ 2d time after the network stabilizes, whezés the time required
for new nodes to fully join the system and notify old nodesuwdhibeir existence. (By
contrast, the original RmMBO algorithm [1] might take arbitrarily long to stabilize un-
der these conditions(ji) we show that after the algorithm stabilizes, reconfiguratio
completes in 8 time; if a single node performs repeated reconfiguratidres) after the
first, each subsequent reconfiguration completesliitir3e. (iii) we show that after the
algorithm stabilizes, reads and writes completednighe, reads complete irddime if
there is no interference from ongoing writes, anddrifho reconfiguration is pending.

Assumptions. Our goal is to model a system that becomes stable at somedunkn
point during the execution. Formally, latbe a (timed) execution ard a finite prefix

of a during which the network may be unreliable and unstablesr&ft the network is
reliable and delivers messages in a timely fashion.

We refer toltime(a’) as the time of the last event of. In particular, we assume
that following ¢time(a’): (i) all local clocks progress at the same rate, (ii) message
are not lost and are received in at mddime, whered is a constant unknown to the
algorithm, (iii) nodes respond to protocol messages as asdhey receive them and
they broadcast messages evetyme to all service participants, (iv) all enabled actions
are processed with zero time passing on the local clock.

Generally, in quorum-based algorithms, the operationgaaganteed to terminate
provided that at least one quorum does not fail. In constfast reconfigurable quo-
rum system we assume that at least one quorum does not fail tpria successful
reconfiguration replacing it. For example, in the case ofomigj quorums, this means
that only a minority of nodes fail in between reconfigurasioRormally, we refer to this
as configuration-viability at least one read quorum and one write quorum from each
installed configuration survived4after (i) the network stabilizes and (ii) a following
successful reconfiguration operation.

We place some easily satisfied restrictions on reconfigurakirst, we assume that
each node in a new configuration has completed the joiningppobat least time prior

to the configuration being proposed, for a fixed constaWe call thisrecon-readiness
Second, we assume that after stabilization, reconfiguraittme not too frequent:ds
recon-spacindgmplies that recons are at least 8part.

Also, after stabilization, we assume that nodes, once theg foined, learn about
each other quickly, within time. We refer to this agin-connectivity

Finally, we assume that a leader election service choosegyke deader at time
‘time(a’) + e and that it remains alive until the next leader is chosen andafsuf-
ficiently long time for a reconfiguration to complete. For exde, a leader may be
chosen among the members of a configuration based on theofadnddentifier.

Bounding Reconfiguration DelaysWe now show that reconfiguration attempts com-
plete within at most five message delays after the systeniiztash Let/ be the node
identified as the leader when the reconfiguration begins.

The following lemma describes a preliminary delay in reagunfation when a non-
leader node forwards the reconfiguration request to thestead

Lemma 2. Let the firstrecon(c,c’) event at some active node i, wherg ¥, occur at
time t and lett be max(/time(a’),t) +e. Then, the leadet starts the reconfiguration
process at the latest at time+ 2d.

Proof (sketch)When therecon(c,c’) occurs at time, one of two things happen: either
the reconfiguration fails immediately, @ is not the current, unique, active configu-
ration, or therecon request is forwarded to the leader. Observe jbiaitconnectivity
ensures thatknows the identity of the leader at tinte so no later than tim€ +d, i
sends a message tdhat includes reconfiguration request information. By tifne 2d
the leader receives message froamd starts the reconfiguration process. O

The next lemma implies that after some time following reagunfation request,
there is a communication round where all messages inclsaime ballot.

Lemma 3. After time/time(a’) + e+ 2d, ¢ knows about the largest ballot in the system.

Proof (sketch)Let b be the largest ballot in the system at tifiene(a’) + e+ 2d, we
show that? knows it. We know that afteftime(a’), only ¢ can create a new ballot.
Therefore ballob must have been created befétine(a’). Sincel is the leader at time
(time(a’) + e, we know that’ has joined before timéime(a’).

If ballot b still exists afterftime(a’) (the case we are interested in), then there are
two possible scenarios. Either ballnis conveyed by an in transit message or it exists an
active node aware of it at timetime(a’) + e. In the former case, gossip policy implies
that the in transit message is received at tinseich thaftime(a’) +e <t < (time(a’) +
e+ d. However, it might happen thdtdoes not receive it, if the sender ignored its
identity at the time theend event occurred. Thus, at this time one of the receiver sends
a message containinyto ¢. Its receipt occurs before timéime(a’) + e+ 2d and ¢
learns aboub. In the latter case, by join-connectivity assumption agtitime(a’) + e,

i knows about. Gossip policy implies sends a message ddefore/time(a’) +e+d
and this message is receiveddiyeforeftime(a’) + e+ 2d, informing it of ballotb. O

Next theorem says that any reconfiguration completes in at Bibtime, follow-
ing the system stabilization. The proof is straightforwaain the code and is omitted
for lack of space. In Theorem 5 we show that when the leadee had successfully
completed the previous reconfiguration request then it ssipte for the subsequent
reconfiguration to complete in at most.3

Theorem 4. Assume that starts the reconfiguration process initiated fayon(c,c’)
at time t> /time(a’) + e+ 2d. Then the corresponding reconfiguration completes no
later than t+5d.

Theorem 5. Let / be the leader node that successfully conducted the recoafign
process from ¢ to’c Assume thaf starts a new reconfiguration process frofmte ¢’
at time t> ¢time(a’) + e+ 2d. Then the corresponding reconfiguration frofmae c’
completes at the latest at time-t3d.

Proof (sketch)By configuration-viability at least one read and one write quorums of
¢ are active. By Lemma 3, knows the largest ballot in the system at the beginning of
the new reconfiguration. This means tiiahay keep its ballot and start froRecon-
Phase-2gsince it has previously execut&&con-Phase-1p Hence only a single mes-
sage exchange iRecon-Phase-2drRecon-Phase-2kand a single broadcast following
Recon-Phase-3#ake place. Therefore, the last phase of Paxos occurs at 4.

Bounding Read-Write Delays.In this section we present bounds on the duration of
read/write operations under assumptions stated in thdqu®section. Recall from
Section 3 that both the read and the write operations areuobad in two phases, first
the query phase and second the propagate phase. We begisttshfiwing that each
phase requires at leastl ime. However, if the operation is a read operation and no
reconfiguration and no write propagation phase is concrttegn it is possible for this
operation to terminate in onlyd2- see proof of Lemma 4. The final result is a general
bound of & on the duration of any read/write operation.

Lemma 4. Consider a single phase of a read or a write operation inéthat node i at
time t, where i is a node that joined the system at tin@e(t — e— 2d, /time(a’)). Then
this phase completes at the latest at timax(t, /time(a’) + e+ 2d) +4d.

Proof. Let ¢k be the largest configuration in any active nodgsconfigsset, at time

t — 2d. By the configuration-viabilityassumption, at least one read and at least one
write quorum ofcy are active for the interval ofdlaftercy., 1 is installed. By thgoin-
connectivityand the fact thathas joined at time mdk—e— 2d, ftime(a’)), i is aware

of all active members af by the time magt — 2d, /time(a’) +€).

Next, by the timing of messages we know that witkirtime a message is sent
from each active members of to i. Hence, at time max, ¢/time(a’) + e+ 2d) nodei
becomes aware @, i.e.cy € op-configs

At d time later, messages from phd&@/-Phase-1aor RW-Phase-2aare received
andRW-Phase-1bor RW-Phase-2bstarts. Consequently, no later than ritagime(a’) +
e+ 2d) + 2d, the second messageRW-Phase-lor RW-Phase-2is received.

Now observe that configuration might occur in parallel, dfere it is possible that
a new configuration is added to thp-configset duringRW-Phase-1lor RW-Phase-2

Discovery of new configurations results in the phase beistarted, hence completing
at time maxt, ftime(a’) + e+ 2d) + 4d. By recon-spacingassumption no more than
one configuration is discovered before the phase completes. O

Theorem 6. Consider a read operation that starts at node i at time t:

1. If no write propagation is pending at any node and no regumition is ongoing,
then it completes at timmax(t, ftime(a’) + e+ 2d) + 2d.

2. If no write propagation is pending, then it completes atmdi
max(t, /time(a’) + e+ 2d) + 8d.

Consider a write operation that starts at node i at time t. iiliecompletes at time
max(t, (time(a’) 4+ e+ 2d) + 8d.

Proof. At the end of the(RW-Phase-1 if the operation is a write, then a new non con-
firmed tag is set. If the operation is a read, the tag is thedsigieceived one. This tag
was maintained by a member of the read queried quorum, ascdrifirmed only if
the phase that propagated it to this member has completeoh this point, if the tag
is not confirmed, then in any operation the fix-point of pragdaan phasdRW-Phase-
2 has to be reached. But, if the tag is already confirmed themethe operation can
terminate directly at the end of the first phase. By Lemma i4, dbcurs at the latest
at time maxt, /time(a’) + e+ 2d) + 4d; or at time maxt, ftime(a’) + e+ 2d) + 2d if
no reconfiguration is concurrent. Likewise by Lemma 4, RWg-Phase-2fix-point is
reached in at mostddtime. That is, any operation terminates by confirming itsriag
later than magt, ¢time(a’) + e+ 2d) + 8d. 0

6 Experimental Results

We implemented the new algorithm based on the existiagiB0 codebase [7] on a
network of workstations. The primary goal of our experinsewas to gauge the cost
introduced by reconfiguration. When reconfiguration is ueseary, there are simpler
and more efficient algorithms to implement a replicated DEMr goal is to achieve
performance similar to the simpler algorithms while usieganfiguration to tolerate
dynamic changes.

To this end, we designed three series of experiments wheettiormance of RDS
is compared against the performance of an atomic memoriceemhich has no recon-
figuration capability — essentially the algorithm of AttiyBar Noy, and Dolev [13]
(the “ABD protocol”). In this section we briefly describe #egeimplementations and
present our initial experimental results. The results prity illustrate the impact of
reconfiguration on the performance of read and write op@rati

For the implementation we manually translated the I0A dpetion (from the ap-
pendix) into Java code. To mitigate the introduction of esrduring translation, the
implementers followed a set of precise rules to guide thevatéon of Java code [22].
The target platform is a cluster of eleven machines runniimgnt. The machines are
various Pentium processors up to 900 MHz interconnecte@ 0 Mbps Ethernet
switch.

age operation latency inm
e operati
P

W =0
£ 0 e
< % < a0
z H
// 15000 =
- RoS 2001

)
H o rosi100
e © - ross00
aros -aros ooty
o —
,s

2 4 s
(a) Configuration size (b) Number of readers & writers (© Number of algorithm instances

Fig. 3. Average operation latency: (a) as size of configurations changeas ltumber of nodes
performing read/write operations changes, and (c) as the recaatfizuand the number of par-
ticipants changes.

Each instance of the algorithm uses a single socket to reosdssages over TCP/IP,
and maintains a list of open, outgoing connections to thergtarticipants of the ser-
vice. The nondeterminism of the I/0O Automata model is resolvy scheduling locally
controlled actions in a round-robin fashion. The ABD and Ridgorithm share parts
of the code unrelated to reconfiguration, in particular te&ted to joining the system
and accessing quorums. As a result, performance diffesatfiectly indicate the costs
of reconfiguration. While these experiments are effectivdeahonstrating compara-
tive costs, actual latencies most likely have little reftatton the operation costs in a
fully-optimized implementation.

Experiment (a).In the first experiment, we examine how the RDS algorithmoadp
to different size configurations (and hence different Iew#lfault-tolerance). We mea-
sure the average operation latency while varying the sizeeo€onfigurations. Results
are depicted in Figure 3(a). In all experiments, we use cordigons with majority
quorums. We designate a single machine to continuouslppanfead and write oper-
ations and compute average operation latency for diffesizetconfigurations, ranging
from 1 to 5. In the tests involving the RDS algorithm, we chaseparate machine to
continuously perform reconfiguration of the system — whemm@eonfiguration request
successfully terminates another is immediately submitted

Experiment (b).In the second set of experiments, we test how the RDS algoriéh
sponds to varying load. Figure 3(b) presents results of¢bersd experiment, where we
compute the average operation latency for a fixed-size amafiign of five members,
varying the number of nodes performing read/write openatichanges from 1 to 10.
Again, in the experiments involving RDS algorithm a singlaahine is designated to
reconfigure the system. Since we only have eleven machireg etisposal, nodes that
are members of configurations also perform read/write dipas

Experiment (c).In the last experiment we test the effects of reconfigurdtieguency.
Two nodes continuously perform read and write operationd,the experiments were
run varying the number of instances of the algorithm. Resaflthis test are depicted in
Figure 3(c). For each of the sample points on the x-axis, iteecf configuration used
is half of the algorithm instances. As in the previous experits, a single node is dedi-
cated to reconfigure the system. However, here we inserbg detween the successful

termination of a reconfiguration request and the submissfianother. The delays used
are 0, 500, 1000, and 2000 milliseconds. Since we only haxeelmachines to our
disposal, in the experiment involving 16 algorithm instesicsome of the machines run
two instances of the algorithm.

Interpretation. We begin with the obvious. In all three series of experimettits la-
tency of read/write operations for RDS is competitive witiattof the simpler ABD
algorithm. Also, the frequency of reconfiguration hasdittffect on the operation la-
tency. These observations lead us to conclude that thesisedecost of reconfiguration
is only modest.

This is consistent with the theoretical operation of thevetgm. It is only when a
reconfiguration exactly intersects an operation in a paeity bad way that operations
are delayed. This is unlikely to occur, and hence most redge/aperations suffer only
a modest delay.

Also, note that the messages that are generated duringfigao@tion, and read
and write operations, include replica information as wslklae reconfiguration infor-
mation. Since the actions are scheduled using a round-réthod, it is likely that in
some instances a single communication phase might cotertbuthe termination of
both the read/write and the reconfiguration operation. ldewe suspect that the dual
functionality of messages helps to keep the system lateaney |

A final observation is that the latency does grow with the sizthe configuration
and the number of participating nodes. Both of these reguéreased communication,
and result in larger delays in the underlying network whemynaodes try simultane-
ously to broadcast data to all others. Some of this increasébe mitigated by using
an improved multicast implementation; some can be mitiyae choosing quorums
optimized specifically for read or write operations.

7 Conclusion

We have presented RDS, a new distributed algorithm for implging a reconfig-
urable consistent shared memory in dynamic, asynchronetsorks. Prior solutions
(e.0., [1, 2]) used a separate new configuration selectiorcgethat did not incorpo-
rate the removal of obsolete configurations. This resutiddnger delays between the
time of new-configuration installation and old configurati@moval, hence requiring
configurations to remain viable for longer periods of timd dacreasing algorithm’s re-
silience to failures. In this work we capitalized on the féett RaMBO and Paxos solve
two different problems using a similar mechanism, namebnbtrip communication
phases involving sets of quorums. This observation ledda#velopment of RDS that
allows rapid reconfiguration and removal of obsolete coméitions, hence reducing the
window of vulnerability. Finally, our experiments show tihaconfiguration is inexpen-
sive, since performance of our algorithm closely mimics tian algorithm that has no
reconfiguration functionality. However, our experiments mited to a small number
of machines and a controlled lab setting. Therefore, agdutork we would like to
extend the experimental study to a wide area network wherny machines participate
thereby allowing us to capture a more realistic behaviohis &lgorithm for arbitrary
configuration sizes and network delays.

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.
22.

Lynch, N., Shvartsman, A.: RAMBO: A reconfigurable atomic meyrservice for dynamic
networks. In: Proc. of 16th Int-l Symposium on Distributed Computi2g0@) 173—190

. Gilbert, S., Lynch, N., Shvartsman, A.: RAMBO II: Rapidly recgufiable atomic memory

for dynamic networks. In: Proc. of International Conference opddelable Systems and
Networks. (2003) 259-268

. Lamport, L.: The part-time parliament. ACM Transactions on CompBjatemsl6(2)

(1998) 133-169

. Lamport, L.: Paxos made simple. ACM SIGACT News (Distributed Catimg Column)

32(4) (2001) 18-25

. Lampson, B.W.: How to build a highly available system using consensu$VDAG '96:

Proceedings of the 10th International Workshop on Distributed Algorithirosdon, UK,
Springer-Verlag (1996) 1-17

. Boichat, R., Dutta, P., Frolund, S., Guerraoui, R.: Reconstrugién@s. SIGACT News

34(2) (2003) 42-57

. Georgiou, C., Musial, P., Shvartsman, A.: Long-lived RAMBQading knowledge for com-

munication. In: Proc. of 11'th Colloquium on Structural Information &wammunication
Complexity, Springer (2004) 185-196

. van der Meyden, R., Moses, Y.: Top-down considerations orilaistid systems. In: 12th

Int. Symp. on Distributed Computing, DISC’98. (1998) 16-19

. Gifford, D.K.: Weighted voting for replicated data. In: Proceedingshe seventh ACM

symposium on Operating systems principles, ACM Press (1979) 120-16

Thomas, R.H.: A majority consensus approach to concurremuiyat for multiple copy
databases. ACM Trans. Database S#&) (1979) 180-209

Upfal, E., Wigderson, A.: How to share memory in a distributed sysfeurnal of the ACM
34(1)(1987) 116-127

Awerbuch, B., Vitanyi, P.: Atomic shared register access bydmspnous hardware. In:
Proc. of 27th IEEE Symposium on Foundations of Computer Scien886§233—243
Attiya, H., Bar-Noy, A., Dolev, D.: Sharing memory robustly in m&ge-passing systems.
J. ACM 42(1) (1995) 124-142

Englert, B., Shvartsman, A.: Graceful quorum reconfigurati@robust emulation of shared
memory. In: Proc. of Int-l Conference on Distributed Computer 3gst€2000) 454—-463
Lynch, N., Shvartsman, A.: Robust emulation of shared memsiryg dynamic quorum-
acknowledged broadcasts. In: Proc. of 27th Int-l Symp. on Faudrdot Comp. (1997)
272-281

Birman, K., Joseph, T.: Exploiting virtual synchrony in distributgstems. In: Proc. of the
11th ACM Symposium on Operating systems principles, ACM Press (18837138

: Special issue on group communication services. Communicafitms ACM 39(4)(1996)
Albrecht, J., Yasushi, S.: RAMBO for dummies. Technical regdP Labs (2005)

Saito, VY., Frolund, S., Veitch, A.C., Merchant, A., Spence, Bab: building distributed
enterprise disk arrays from commodity components. In: ASPLOSD04) 48-58
Georgiou, C., Musial, P., Shvartsman, A.A.: Developing a ctergislomain-oriented dis-
tributed object service. In: Proceedings of the 4th IEEE Internatiopiap®sium on Net-
work Computing and Applications, NCA 2005, Cambridge, MA, USA (2005

Lynch, N.: Distributed Algorithms. Morgan Kaufmann Publishe&9@)

Musial, P., Shvartsman, A.: Implementing a reconfigurable atoraioaony service for dy-
namic networks. In: Proc. of 18'th International Parallel and DistrihuBgmposium —
FTPDS WS. (2004) 208b

