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ABSTRACT
We introduce SpiderCast, a distributed protocol for con-
structing scalable churn-resistant overlay topologies for sup-
porting decentralized topic-based pub/sub communication.
SpiderCast is designed to effectively tread the balance be-
tween average overlay degree and communication cost of
event dissemination. It employs a novel coverage-optimizing
heuristic in which the nodes utilize partial subscription views
(provided by a decentralized membership service) to reduce
the average node degree while guaranteeing (with high prob-
ability) that the events posted on each topic can be routed
solely through the nodes interested in this topic (in other
words, the overlay is topic-connected). SpiderCast is unique
in maintaining an overlay topology that scales well with the
average number of topics a node is subscribed to, assum-
ing the subscriptions are correlated insofar as found in most
typical workloads. Furthermore, the degree grows logarith-
mically in the total number of topics, and slowly decreases
as the number of nodes increases.

We show experimentally that, for many practical work-
loads, the SpiderCast overlays are both topic-connected and
have a low per-topic diameter while requiring each node to
maintain a low average number of connections. These prop-
erties are satisfied even in very large settings involving up to
10, 000 nodes, 1, 000 topics, and 70 subscriptions per-node,
and under high churn rates. In addition, our results demon-
strate that, in a large setting, the average node degree in
SpiderCast is at least 45% smaller than in other overlays
typically used to support decentralized pub/sub communi-
cation (such as e.g., similarity-based, rings-based, and ran-
dom overlays).

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]:
Distributed Systems[Distributed applications]
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1. INTRODUCTION
Publish/subscribe (pub/sub) is a popular paradigm for

supporting many-to-many communication in a distributed
system. In a topic-based pub/sub system, messages (or
events) are published on abstract event channels called top-
ics. Users interested to receive messages published on cer-
tain topics issue subscribe requests specifying their topics
of interest. The pub/sub infrastructure then guarantees
to distribute each newly published event to all the users
that have expressed interest in the event’s topic. Due to
its simple interface and decoupling of publishers and sub-
scribers, pub/sub-based middleware is commonly used to
support many-to-many communication in a wide variety of
applications, such as enterprize application-integration [6],
stock-market monitoring engines [21], RSS feeds [15], on-line
gaming, and many others.

Consider a large data center with thousands of nodes offer-
ing a large variety of application services that are accessed
through the Internet. Each node hosts dozens of applica-
tions and each application is replicated at many nodes for
performance and availability, thereby creating overlapping
multicast domains each of which is allocated a topic with
most nodes being both publishers and subscribers. Further-
more, the deployment of applications on nodes may be dy-
namic and dependent upon the relative load incurred upon
the nodes.

Since both centralized and fully-meshed communication
will clearly not scale in this deployment scenario, our goal is
to build a decentralized infrastructure in which the nodes are
first, dynamically organized into an application level over-
lay network, and the resulting network is then used for the
event routing. In this paper, we focus on constructing over-
lay networks whose topological properties allow for efficient
topic-based event routing. Specifically, we present Spider-
Cast, a distributed overlay network construction protocol,
that aims at constructing an overlay graph G satisfying the
following:

(1) Topic connectivity — the subgraph Gt induced by the
nodes interested in any topic t is a connected component.
This reduces routing and communication overheads because
nodes that are not interested in a certain topic need not
take part in routing messages of that topic. In addition, the
complexity of the routing algorithm is greatly reduced be-
cause it is much easier to build a spanning tree on Gt, when
the topic induced-subgraph is connected, than a Steiner-tree
over G spanning the topic (when the induced subgraph is not
connected).

(2) Scalable average node degree. Since the cost of main-



taining overlay edges can be quite high, the average num-
ber of connections maintained by each nodes to other nodes
should be as low as possible. In particular, for realiabil-
ity reasons, maintaining each edge incurs the cost of peri-
odic hearbeats and keep-alive state (or alternatively, the cost
of mainitaing the connection state, if a connection-oriented
transport, such as TCP, is used). In addition, reduced num-
ber of edges allows messages posted on different topics, to be
aggregated into a single compound message, thereby ammor-
tizing the header cost that can otherwise be quite significant
for small messages.

(3) Scalable topic diameter — the diameter of the topic
induced subgraph Gt should be small, in order to achieve
low event propagation latency.

(4) Churn resistance — topic connectivity should be main-
tained despite nodes leaving, joining or failing. This pro-
vides resistance to node- and topic-churn in dynamic envi-
ronments.

The most commonly used scheme for achieving topic con-
nectivity is to maintain a separate overlay for each topic [3,
8]. Although such topologies scale well with the number of
nodes, they, nevertheless suffer from being non-scalable with
the number of subscriptions per-node. Constructing a sim-
ple logical topology (such as a tree or a ring) requires each
node to maintain an average of two links per subscription. It
is possible to reduce the average degree by collapsing dupli-
cate edges, however, when the per-topic overlays are built
independently, this generally has limited effect, as we will
demonstrate in Section 3.9.2. Thus, with these topologies,
the number of links required grows linearly with the number
of topics each node is interested in. For large-scale settings,
such as the one described above, or a stock-market broker
interested in many dozens or even hundreds of quotes, this
approach becomes impractical.

The main insight that allows SpiderCast to do better than
the overlay-per-topic approach in terms of average node de-
gree, is the fact that under typical workloads there is sub-
stantial correlation between the interests of different nodes
[15, 21]. While overlay-per-topic approaches may exploit
this correlation in a post-processing edge-collapsing stage,
SpiderCast builds a single overlay that takes into account
this correlation in the process of choosing neighbors.

The SpiderCast protocol is fully distributed. Each Spi-
derCast node has some knowledge on the interests of other
nodes in the system. Using this knowledge, each node tries
to locally determine to which nodes to connect in order
to achieve topic connectivity, while keeping node degree as
small as possible.

The inspiration for the protocol comes from a random
graph argument [23]: In order to achieve topic connectivity,
it is sufficient that for every node v, and for every topic t in
which v is interested, v has random links to a small num-
ber k of other nodes interested in t. Overlay networks built
according to this design principle exhibit robust connectiv-
ity, diameter logarithmic in the number of nodes, and churn
resistance, for k values as small as three [16]. The innova-
tion in SpiderCast is the efficient use of this principle in a
topic-based pub/sub setting.

Thus, the rationale behind the local neighbor selection cri-
teria for each node is to ensure that each topic in the node’s
interest is K-covered , i.e., represented in the subscription of
at least K of its neighbors. The main challenge and contri-
bution of SpiderCast is in covering all the node’s interests

with a small total number of links while guaranteeing that
a sufficient number of those links are chosen at random.

To this end, the neighbor selection algorithm in Spider-
Cast combines two heuristics, greedy and random coverage,
that can be seen as inducing two separate overlays in parallel
and merging them at the end. The algorithm is parameter-
ized by two integers Kg and Kr and attempts to achieve Kg

greedy coverage and Kr random coverage for every topic of
interest. Both heuristics are applied incrementally starting
from an empty set of neighbor links, adding one link at a
time, and maintaining a set S of topics that are not yet K-
covered. The greedy coverage heuristic selects as neighbor
the node that covers the maximal number of topics from S.
In contrast, the random coverage heuristic randomly selects
a node whose addition as a neighbor would cover at least
one topic from S. The exact values chosen for Kg and Kr

express the tradeoff between the average node degree, and
topic connectivity. It is therefore desirable to have the nodes
to choose most of their neighbors in the greedy fashion, and
only a few neighbors (ideally, none at all) randomly.

In this paper, we investigate SpiderCast’s performance
in terms of topic-connectivity, average node degree, topic-
diameter and resistance to churn. We do so by using a sim-
ulated settings involving up to 10, 000 peers, hundreds of
topics, and tens of subscriptions per-peer. Our evaluation
shows that with a proper combination of the greedy and ran-
dom coverage heuristics, SpiderCast constructs a low-degree
overlay in which all the nodes interested in a given topic
form a connected component. Surprisingly, in many prac-
tical workloads, it is possible to achieve connectivity for all
topics by choosing Kg = 3 and Kr = 0 (i.e., with the greedy
coverage links alone). We also find that the topic-diameter
grows logarithmically with the number of subscribers per-
topic. According to our evaluation, the average node degree
grows sub-linearly with the number of topics and decreases
as the number of nodes increases. Most importantly, we
show that the node degree scales well with the number of
subscriptions per-node. Our experiments indicate that the
node degree is evenly balanced across the nodes. Simula-
tions with a realistic churn model indicate that SpiderCast
maintains its topic-connectivity and low degree despite high
churn rates, displaying good resistance to churn.

Finally, we compare SpiderCast with other techniques of
building an overlay for topic-based pub/sub. Specifically, we
compare SpiderCast with a ring-per-topic overlay, an overlay
constructed based on a similarity heuristic [9], and a fully
random overlay. Our results show that, in a large setting,
the average node degree of the SpiderCast overlays is at
least 45% smaller than the average degree of those overlay
building methods.

Contributions. In summary, this paper makes the follow-
ing contributions:

• It introduces a distributed protocol, called SpiderCast,
based on two novel heuristics, namely the greedy and
random coverage, that exploits similarity in the indi-
vidual subscriptions in order to construct a low-degree
topic-connected overlay for pub/sub communication.
The construction is adaptive to the subscription sim-
ilarity, and in typical (correlated) workloads a node
maintains substantially less links that its subscription
size (see Figure 8).

• It describes a distributed protocol that constructs a
low-degree topic-connected overlay while requiring each



node to know the identities and interests of only 5%
of the total number of nodes.

• Finally, it features a thorough evaluation of SpiderCast
in very large settings involving up to 10, 000 nodes,
1, 000 topics, and 70 subscriptions per-node, and under
high churn rates.

2. THE SPIDERCAST OVERLAY

2.1 Overview of the Protocol
The SpiderCast overlay protocol has two main compo-

nents: the membership protocol (see Section 2.2), and the
overlay construction and maintenance protocol (see Section 2.3).
Both protocols are fully distributed. The construction pro-
tocol aims to achieve connectivity and low diameter for the
entire set of topics, while maintaining as few overlay links
as possible.

We define the interest of a node to be the list of topics
to which the node has either subscribed to, or is going to
publish on. The neighbor selection algorithm in SpiderCast
combines two local heuristics, greedy and random coverage.
In both heuristics, each node n tries to cover K times each
of the topics in which it is interested. That is, for each topic
t in which n is interested, n tries to maintain connections
to K other nodes that are also interested in topic t. The
random and greedy coverage heuristics differ in the way they
choose the next neighbor, and are assigned different coverage
parameters — Kg and Kr, respectively. The greedy coverage
heuristic selects a neighbor that minimizes the number of
topics which are not yet Kg covered. In contrast, the random
coverage heuristic randomly selects a node whose addition
as a neighbor would reduce the number of topics that are
not yet Kr covered.

According to theory of k-regular random graphs1, for Kr ≥
3, if each node achieves Kr (random) coverage, then for
each topic t, all the nodes interested in topic t form a con-
nected component (with high probability) whose diameter
grows logarithmically with the number of subscribers to this
topic [16, 23]. While such a coverage heuristic achieves the
desired connectivity and low diameter per each topic, it does
not exploit correlated workloads, which are common in prac-
tice, e.g., in pub/sub applications as RSS [15] and stock-
market monitoring engines [21]. This is where the greedy
coverage heuristic comes into play. As we show in Section 3,
in many practical workloads, each link created by the greedy
heuristic covers on average much more than a single topic,
whereas each link created by the random coverage heuris-
tic covers only about a single topic. In principle, however,
greedy coverage alone does not ensure (with high probabil-
ity) the desired topic connectivity. Thus, the exact values
chosen for Kg and Kr express the tradeoff between the av-
erage node degree, and interest-based connectivity.

2.2 The Membership Service
Both the greedy and the random coverage heuristics re-

quire each node to maintain an interest view of other nodes
in the system. The interest view includes the identities of
other nodes along with their interests, and may be partial
and randomized. In Section 3.7, we experimentally show
that such an interest view can be readily implemented by
distributed probabilistic membership protocols, such as [1,

1Random graphs in which each node has exactly k neighbors

11], augmented with the interest information. Specifically,
we experimentally show that it is sufficient for each node to
know the identities and interests of only 5% of the nodes in
order to achieve both low average node degree and topic-
based connectivity. For the rest of this paper, we therefore
assume that such a service exists, and will not provide fur-
ther details of its implementation.

2.3 Building and Maintaining the Overlay
Both the greedy and random neighbor maintenance tasks

execute exactly the same code with the exception of the
neighbor selection routine. In addition, each of these two
tasks independently manipulates its own set of the data
structure consisting of precisely the same collection of vari-
ables. We therefore describe the implementation of only one
of them without an explicit reference to the exact type of
neighbors being maintained. We use K to refer to the cov-
erage parameter.

The data structures maintained by each node p are shown
in Figure 1. The most important part of it is the neighbors
set that for each current neighbor q of p, holds q’s identifier
(id), q’s degree, q’s target degree (see below), and q’s current
interest. In addition, each node holds its own interest in
self interest.

We assume the existence of a standard failure detection
mechanism based on heartbeats. The heartbeats are also
used to periodically update a node’s neighbors with some
elements of its internal state, such as its degree, and target
degree.

The neighbor maintenance task starts from an empty neigh-
bors set, and incrementally adds neighbors. Neighbors are
added (according to the greedy or random heuristic) un-
til the node reaches K-coverage, that is, each topic in the
node’s interest is represented by the interests of at least K of
its neighbors. However, a node will not add neighbors with-
out a limit. The number of neighbors is limited to be below
Lmax +Margin (where Margin is a small constant, e.g., 5).
When the degree exceeds Lmax, a node will stop adding new
neighbors, and actively try to disconnect from some of its
neighbors. Note that Lmax is chosen to be K · |self interest|,
so that in the worst case, a node reaches K-coverage with
each neighbor covering a single topic out of self interest. In
most cases, and especially with the greedy heuristic, most
nodes reach K-coverage with less then Lmax neighbors, be-
cause each neighbor typically covers more than one topic,
on average.

Nodes are added into the neighbors set by either send-
ing connect requests, or by accepting connect requests. It is
therefore possible for a node to become over-covered — that
is, some neighbors may be removed from the neighbors set
without hampering the K-coverage property of the node.
Thus, whenever a node becomes over-covered, it will try
to disconnect from from some existing neighbors whose re-
moval would not affect the desired coverage level of the
self interest. This, however, must be done carefully. It
may be possible for node p to remove node q from its neighbors

set and stay K-covered, whereas q would loose its K-coverage
as a results of this disconnection (or q may had been under-
covered to begin with). In order to address this issue, the
neighbors set is augmented with the degree and target de-
gree of each neighbor. This allows each node to deduce the
coverage state of its neighbors, as will be explained in the
sequel.



Parameters:

K: the desired interest coverage

Margin: The number of additional links the node is

allowed to maintain after the desired interest

coverage has been reached

Lmax: an upper bound on L

algorithm version: greedy or random neighbor selection

Data structure:

id: this node’s identifier

interest: a set of topic-id’s

self interest: the interest of this node

interest view: a set of pairs 〈id, interest〉
neighbors: sets of records 〈id, degree, target, interest〉,

initially ∅

connect cand from redirect: a set of node identifiers,

initially ∅

L: the (adaptive) target number of neighbors

Figure 1: Data Structure and Parameters used by
the Neighbor Maintenance Implementation

The neighbor maintenance task is composed of two main
parts. The connect routine tries to obtain K-coverage
by connecting to some new neighbors. It does so until K-
coverage is achieved, or until Lmax is exceeded. The discon-

nect routine aims to keep the node’s degree from growing
too much, by trying to disconnect from some existing neigh-
bors whose removal would not hamper the desired coverage
level of self interest. It does so whenever the node’s degree
exceeds Lmax, or when the node is over-covered.

The following section provides a detailed description of
the neighbor maintenance implementation.

2.3.1 The Neighbor Maintenance Implementation
The neighbor maintenance task implementation is com-

prised of several routines (see Figures 2,3), and message
and event handlers (see Figure 4). The main routine, called
maintainNeighbors, appears in Figure 2. Its goal is to
maintain K-coverage of the node’s self interest with as few
neighbors as possible, but with less than Lmax + Margin

neighbors. It executes in an infinite loop, as long as K > 0
(i.e., it is possible to disable the greedy or random mainte-
nance routine by setting K = 0).

Whenever maintainNeighbors starts a new iteration of
the loop, it first invokes the calcKUncovered routine (see
Figure 3) to calculate the number of topics that are not
sufficiently covered by the current node neighbors’ inter-
est (Figure 2, line 5). Based on the calcKUncovered’s
return value, either one of the connect or disconnect

routines gets invoked. If some insufficiently covered (i.e.,
under-covered) topics are found, and the overall number of
the node’s neighbors is smaller than Lmax, the connect

routine will try to add a new neighbor (Figure 2, lines 7–
10). If, on the other hand, there are no under-covered topics
or, the node’s degree is higher than Lmax, the disconnect

routine will try to remove a neighbor (Figure 2, line 12).
These two routines are described in more detail below.

Connect: The connect procedure tries to establish a
connection with a new peer. The new peer to connect to is
either chosen by the nextCoverageNode routine, or from
among the peers accumulated in the connect cand from redirect
set. The set connect cand from redirect contains the ids of
nodes that this node was redirected to, after trying to con-
nect to some node that could accept it as neighbor (more on
redirect and its rationale in the following). The nextCov-

erageNode routine is substituted by either nextGreedy-

1. procedure maintainNeighbors():

2. gap← 0

3. loop as long as K > 0

4. Lmax ← K · |self interest|

5. under covered← calcKUncovered(

←↩ self interest,neighbors)

6. if (under covered > 0) then

7. L← Lmax

8. gap← L− |neighbors|

9. if (gap > 0) then

10. connect()

11. if (under covered = 0) ∨
←↩ (under covered > 0 ∧ gap < 0) then

12. disconnect()

13. sleep(connect timeout)

14. procedure connect()

15. if connect cand from redirect = ∅ then

16. n← nextCoverageNode(algorithm version)a

17. else

18. n← some node from connect cand from redirect

19. remove n from connect cand from redirect

20. send 〈connect, |neighbors|, L, self interest〉 to n

21. procedure disconnect()

22. L← min(Lmax, |neighbors|)
23. over ← |neighbors| − L

24. m← disconnectCandidate()

25. if (m 6= ⊥ ∧ over > 0) then

26. send 〈disconnect〉 to m

27. else if (m 6= ⊥)

28. under covered← calcKUncovered(

←↩ self interest,neighbors − {m})
29. if (under covered = 0) then

30. send 〈disconnect〉 to m

aEither Greedy or Random, see Fig 5.

Figure 2: The Neighbor Maintenance Routines

1. function int calcKUncovered(interest,neighbors)

2. u← 0

3. for each topic ∈ interest do

4. cover ← {node ∈ neighbors : topic ∈ node.interest}

5. if (|cover| < K) then

6. u← u + 1

7. return u

8. function node disconnectCandidate()

9. high degree neighbors

←↩ ← {n ∈ neighbors : n.degree > n.target}

10. cands← ∅

11. umin ←∞
12. for each n ∈ high degree neighbors do

13. u← calcKUncovered(

←↩ self interest,{neighbors− n})

14. if (u < umin) then

15. cands← {n}

16. umin ← u

17. else if (u = umin) then

18. cands← cands ∪ {n}

19. if (cands 6= ∅) then

20. return random member of cands

21. else

22. return ⊥

Figure 3: Auxiliary routines

CoverageNode for the greedy neighbor maintenance, or
nextRandomCoverageNode for the random neighbor main-
tenance (see Figure 5).

When a node n receives a connect request (see Fig-
ure 4 lines 1–9), it accepts it if its degree is lower than
Lmax + Margin. In this case, the requesting node is added



1. upon receive 〈connect, degree, target, interest〉
←↩ from n do

2. if (|neighbors| < Lmax + Margin) then

3. addConnection(n,degree,target,interest)

4. if (L < Lmax) ∧ (|neighbors| < L + Margin) then

5. L← L + 1

6. else

7. cands← {p ∈ neighbors : p.degree < p.target

←↩ +Margin}

8. m← argmaxp∈cands{|p.interest ∩ n.interest|},

←↩ with ties broken randomlya

9. send 〈redirect, m〉 to n

10. upon receive 〈redirect, m, interest〉 from n do

11. connect cand from redirect

←↩ ← connect cand from redirect ∪ {m}

12. upon receive 〈connect-ok, degree, target, interest〉

←↩ from n do

13. if (|neighbors| < Lmax + Margin) then

14. neighbors← neighbors ∪ {n, degree, target, interest}

15. if (L < Lmax) ∧ (|neighbors| < L + Margin) then

16. L← L + 1

17. else

18. send 〈leave, n〉

19. upon receive 〈leave〉 from n do

20. removeConnection(n)

21. upon receive 〈disconnect〉 from n do

22. under covered← calcKUncovered(

←↩ self interest, neighbors− {n})

23. if (|neighbors| > L ∨ under covered = 0) then

28. removeConnection(n)

24. send 〈disconnect-ok〉 to n

25. if under covered = 0 then

26. L← |neighbors|

27. upon receive 〈disconnect-ok〉 from n do

28. removeConnection(n)

29. upon failureDetectionSuspect(node n) do

30. removeConnection(n)

31. procedure addConnection(

←↩ node n, int degree, int target, set interest)

32. neighbors← neighbors ∪ {n, degree, target, interest}

33. send 〈connect-ok, |neighbors|, L, self interest〉

34. procedure removeConnection(node n)

35. remove n from neighbors

36. under covered←calcKUncovered(

←↩ self interest, neighbors)

37. if (|neighbors| < L) ∨ (under covered > 0) then

38. wake up connectivity task

aargmaxx∈X{f(x)} returns x∗ ∈ X, so that ∀x ∈ X,
f(x∗) ≥ f(x)

Figure 4: Message and failure detection event han-
dlers

to the neighbors set and a connect-ok message is sent.
Otherwise, the node redirects the requesting node (by is-
suing a redirect message) to a node m ∈ neighbors such
that the following holds: (1) m has not reached its target
degree, and (2) m shares the maximum amount of interest
with the requesting node. Whenever a node n receives a
redirect message (see Figure 4 lines 10–11), it will add
its sender to the connect cand from redirect set. In turn, n

will try to connect to that node at the next iteration of the
maintainNeighbors routine.

The process of adding links continues until all the topics

1. function node nextGreedyCoverageNode()

2. cands← interest view− neighbors

3. uncovered ← ∅

4. for each topic ∈ interest do

5. cover ← {node ∈ cands : topic ∈ node.interest}
6. if (|cover| < Kg) then

7. uncovered← uncovered ∪ {topic}

8. node← argmaxn∈cands{|n.interest ∩ uncovered|},
←↩ with ties broken randomly

9. return node

10. function node nextRandomCoverageNode()

11. cands← interest view− neighbors

12. uncovered ← ∅

13. for each topic ∈ interest do

14. cover ← {node ∈ cands : topic ∈ node.interest}

15. if (|cover| < Kr) then

16. uncovered← uncovered ∪ {topic}

17. cands← {n ∈ {interest view− neighborsr} :

←↩ |n.interest ∩ uncovered| > 0}

18. node← a random member of cands

19. return node

Figure 5: The greedy and random neighbor selection
routines

are K-covered for the first time, or until the node’s degree
reaches the upper bound Lmax, in which case, the node will
not try to initiate new connections with new peers anymore.

Disconnect: The disconnect routine starts with the
node setting its adaptive degree target L to the minimum of
Lmax and |neighbors| (Figure 2, lines 22–26) thus indicat-
ing that the node has reached (or exceeded) the minimum
degree required to K-cover its entire set of topics. The val-
ues of |neighbors| and L are included in the connect and
connect-ok messages, and are periodically distributed to
the node’s neighbors, piggy-backed on the heartbeat mes-
sages. Those values are stored in the degree and target

fields of the respective neighbors set entry. This way, the
neighbors of a fully-K-covered node q will know whether it
has reached K-coverage or not (based on whether q.target ≤
q.degree or not).

The node then invokes disconnectCandidate (Figure 3,
lines 8–22) to select a neighbor to disconnect from. This
neighbor is chosen from among those whose degree has ex-
ceeded the minimum degree required for the complete cov-
erage of their interest (line 9), and whose removal would
have the minimum impact on the K-coverage of the node’s
interest (lines 12–18). If such a candidate neighbor is found,
it will be sent a disconnect request if one of two condi-
tions apply: (1) the node’s degree is above Lmax, or (2)
the candidate can be removed without causing this node to
be under-covered. This ensures that (1) the degree will not
grow much above Lmax, and that (2) over-covered nodes try
to reduce their degree to minimum in which they are still
K-covered.

Whenever a node p receives a disconnect request from
another node q (Figure 4 lines 21–26), it will disconnect
from q if it can remove q without causing its interest to
become under-covered, or if it has more than Lmax neigh-
bors. If indeed p decides to disconnect from q, it will send
the disconnect-ok message which will cause q to remove
p from its neighbors set.

Redirect: The redirect messages are necessary to pre-
vent a case in which a node p tries to connect to same node
q again and again and is being rejected. This is the reason
why the nodes in connect cand from redirect are given pri-
ority when choosing the next node to connect to (Figure 2,



line 15–19). Note that neighbors that have exceeded their
target degree will never be chosen as redirect candidates.
A complementary mechanism (not presented in the pseudo-
code) is to quarantine the nodes to which recent connect

requests where sent for a specified period of time.

2.4 Handling dynamic changes
The failure detection event handler, shown in Figure 4,

lines 29–30, simply removes the suspected node from the
neighbors. Subsequently, the suspect node’s neighbors will
try to connect to new neighbors at the next round of the
neighbor maintenance task. An orderly leave involves send-
ing the leave message to all the neighbors and has essen-
tially the same effect. Whenever a node p changes its in-
terest, the change is propagated through the membership
service and via the heart beat messages. The neighbors of
p, and in fact, any other node in the overlay will take this
change into account in the next round of the neighbor main-
tenance task.

3. EVALUATION
In this section, we evaluate the performance of Spider-

Cast. We have implemented the code of SpiderCast in Java
and simulated it using the DESMO-J discrete-event simula-
tor2. As in other studies [17, 22], most of our simulations
are static, i.e., all the nodes are created simultaneously and
remain up throughout the experiment. In Section 3.8, we
also consider dynamic simulations, in which nodes join and
leave the SpiderCast overlay. In most of our experiments, we
assume that the identity and the subscription list of other
nodes is available to each node, i.e., full membership ser-
vice. In Section 3.7, however, we also consider simulations
with a partial membership service. Throughout this sec-
tion, we use (x, y)-coverage to denote SpiderCast protocol
with Kg=x and Kr=y.

3.1 Workload models
In each static SpiderCast simulation, both the number of

topics and the number of nodes are fixed throughout the
simulation. We run simulations with the number of topics
ranging from 100 to 1000, and number of nodes ranging
from 1000 to 10, 000. Each node is subscribed to T topics,
where T is chosen uniformly at random from the interval
[min : max].

A given topic ti is chosen with a probability pi, where
P

i
pi = 1. The value of pi is distributed according to some

random distribution of topic popularity. In most of our ex-
periments, we use a Zipf distribution with the α exponent
set to 0.5, i.e., pi ∝

1
i0.5 . Our choice of topic popularity dis-

tribution is based on a recent study [15] of the RSS pub/sub
system that shows that this distribution faithfully describes
the feed popularity distribution. We henceforth refer to this
distribution simply as RSS distribution. In Section 3.3 and
Section 3.4, we also consider other distributions of topic pop-
ularity such as exponential, uniform, and a Zipf distribution
with the α exponent set to 2. In the exponential distribu-
tion we use, the probability to choose one of the 10% most
popular topics is 0.55. This distribution was used in [21]
to study stock popularity in the New York Stock Exchange
(NYSE). We henceforth refer to this distribution simply as
NYSE distribution. We also refer to a distribution in which

2http://asi-www.informatik.uni-hamburg.de/desmoj/

most of the nodes are subscribed to almost the identical set
of topics as a heavily skewed distribution. An example of a
heavily skewed distribution is a Zipf distribution with α = 2.

As in other studies, e.g., [17], in most of our experiments
all the nodes are subscribed to a fixed number of topics, i.e.,
min=max. In Section 3.6, we show that for a given average
number of subscriptions per node, the values of min and
max have a negligible effect on the average node degree.

3.2 Evaluation Criteria
We evaluate SpiderCast according to following criteria:

(1) topic connectivity, (2) average node degree, (3) topic
diameter, and (4) churn resistance.

Topic connectivity and average node degree are comple-
mentary measures of communication overhead (see Section 1).
Topic diameter is defined as the maximum hop-count be-
tween any two nodes, on the same topic-induced subgraph.
It represents the maximum event propagation delay under
the assumption that the overlay is built in a local network
with uniform between-node propagation delays. This as-
sumption is typically true for the data-center example given
in Section 1. We defer the treatment of what happens
when this assumption is not met to Section 5. We measure
churn resistance by verifying that the overlay remains topic-
connected, and maintains low average node degree, despite
nodes leaving, joining, and changing their interest.

3.3 Topic Connectivity and Parameter Setting
We ran a large number of experiments, using the work-

loads described in Section 3.1, with varying values of Kg

and Kr, and check topic connectivity. It turns out that
in all the topic popularity distributions except one, setting
Kg = 3 and Kr = 0 was sufficient to guarantee topic connec-
tivity, with the lowest average number of links. The distri-
butions for which the (3, 0)-coverage was sufficient were the
RSS, NYSE, and Uniform distributions. Let us emphasize
that those are the distributions characterizing many practi-
cal workloads.

The topic popularity distribution for which the (3, 0)-
coverage setting was not enough to ensure topic-connectivity
was the heavily-skewed Zipf(α = 2) distribution. Setting
Kg = 3 and Kr = 1 ensured topic connectivity, at the cost
of increasing average node degree.

In order to demonstrate the impact of different settings
of Kg and Kr, let us consider the Zipf(α = 2) distribution,
with each node interested in 10 topics out of a total of 100
topics.

With such a heavily skewed distribution, most of the nodes
are interested in the 10 most popular topics. That is, the
interests of the different nodes are very similar. As a result,
the (3, 0)-coverage setting will produce an overlay with a low
average node degree. Specifically, many nodes will have a
degree of only 3, and the average node degree will be lower
than the average number of subscriptions per-node.

Indeed, as Table 6(a) shows, in an experiment with 6000,
8000, and 10, 000 nodes, there are 15, 14, and 14 partitioned
topics, respectively. We note, however, that even with a
heavily skewed distribution of topic popularity and low num-
ber of subscriptions per-node, the percentage of partitioned
topics is small (≤15%).

In order to eliminate topic partitions in such settings, each
node could increment either Kg or Kr, or both. Note how-
ever, that based on the K-regular random graph argument



#nodes 1K 2K 4K 6K 8K 10K
#partitioned topics 0 0 0 15 14 14

a) The number of topic partitions, Zipf distribution
with α= 2, Kg=3, Kr=0
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Figure 6: Zipf distribution with α=2, 10 subscrip-
tions per-node.

(see Section 2), increasing Kg alone will have a little im-
pact on connectivity. Indeed, Setting Kg = 4, Kr = 0 does
not achieve topic connectivity in this case, whereas Kg = 3,
Kr = 1 achieves topic connectivity.

Note though, that improving connectivity by increasing
Kr, comes on the account of increasing the average node
degree. However, as can be seen in Figure 6(b), increasing
Kr from 0 to 1, results in only a small increase in the average
node degree (from ∼7 to ∼13).

These results can be interpreted in the following way. In
the RSS, NYSE, and Unifrom distributions, the interests
of different nodes are sufficiently random so that the (3, 0)-
coverage setting is producing a quasi-random overlay topol-
ogy that achieve topic connectivity, in accordance with the
random graph argument. In contrast, in the Zipf(α = 2) dis-
tribution there is not enough randomness among the node
interests for the (3, 0)-coverage setting to produce topic con-
nectivity. In that case, randomness has to be introduced
intentionally, by means of the random coverage heuristic.

3.3.1 Adaptive Parameter Setting
Based on the above observations, we propose an adaptive

scheme of setting the parameters Kg and Kr which is as
follows: at each node n, Kg is always set to 3, and Kr is
initially set to 0. After achieving Kg-greedy-coverage, n

checks its degree. If it is equal to Kg, then n increments
its Kr parameter, and tries to randomly cover all the topics
in which it is interested. After each increment of Kr (and
an additional random coverage), n checks if its degree is
lower than the number of topics to which it is subscribed.
If its degree is lower than its number of subscriptions and
Kr≤3, then n further increments its Kr parameter trying
to achieve an additional random coverage. Otherwise, Kr is
not further increased.

We verified that the adaptive parameter setting strategy
indeed works for all the workloads that we previously pre-
sented. Note that apart from the Zipf(α = 2) distribution,
all other distributions settle with (3, 0)-coverage. Hence, the
rest of the results in this section are reported for the runs
with Kg = 3 and Kr = 0.

3.4 Effect of Topic Popularity Distribution
In this section, we study the effect of the topic popular-

ity distribution on the topic connectivity, the average node
degree, and the maximum topic diameter. We use four dis-
tributions: i) RSS distribution; ii) a Zipf distribution with
the α = 1; iii) NYSE distribution; and iv) a Uniform dis-
tribution. In all of the experiments in this section there are
100 topics and each node is subscribed to 10 topics. We
varied the number of nodes from 1000 to 10, 000.

Interestingly, in all of the experiments, all the topics are
connected (i.e., all the nodes that are interested a given
topic form a connected component), although we use (3,0)-
coverage. This is because none of these distributions is heav-
ily skewed. Figure 7(a) depicts the average node degree and
the 95% confidence intervals around the average degree for
each experiment. As the figure shows, regardless of the topic
popularity distribution, (3,0)-coverage achieves efficient ag-
gregation: in all of our experiments, the average node de-
gree is less than 12. This means that, on average, each node
succeeds to cover each of the ten topics to which it is sub-
scribed with less than 12 links. In addition, in all of our
experiments, the 95% confidence intervals are small. This
means that SpiderCast distributes the load fairly among all
nodes. We also measure the maximum topic diameter for
each distribution. In experiments with the Uniform, RSS, a
Zipf(α = 1), and NYSE distributions, the maximum topic
diameter was 6, 6, 7, and 8, respectively.
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Figure 7: (3,0)-coverage for different topic popular-
ity distributions.

Finally, we note that the lowest and highest average node
degree is achieved in experiments with the NYSE distribu-
tion and the uniform distribution, respectively. In addi-
tion, with the four distributions, the average node degree
decreases with the number of nodes.

To explain these results, we will first introduce the fol-
lowing metric that captures the degree of similarity in the
individual node subscriptions exhibited by a given workload:
define the intersection (in %) between the subscription lists



of two nodes, n and m, as 100· |n.interest∩m.interest|
min(|n.interest|,|m.interest|)

.

Let top-d-intersectionn(d) (tdin(d)) be the average intersec-
tion between the subscription list of n and the subscrip-
tion lists of the d nodes that have the highest intersection
value with respect to n; and top-d-intersection(d) (tdi(d))

be
P

n∈nodes tdin(d)

|nodes|
. We note that the value of tdi(d) is de-

pendent on the overall number of nodes and the number
of subscriptions per-node: increasing the number of nodes
also increases value of tdi(d), and (until a certain thresh-
old is reached) increasing number of subscriptions per-node
reduces tdi(d) (see Section 3.5.3).

Given this metric, it is not unreasonable to hypothesize
that with (3,0)-coverage, a high tdi(d) value implies a low
average node degree, since a node can greedily cover all the
topics to which it is subscribed with a small number of links.
To test this conjecture, we calculate the value of tdi(20) for
each distribution (see Figure 7(b)). We set d to 20 since with
experiments with a uniform distribution several nodes can
have the degree of roughly 20. Indeed, as Figure 7(b) shows,
there is a strong correlation between the value of tdi(20) and
the average node degree: for each pair of distributions, d1

and d2, if the tdi(20) value with d1 is higher than the tdi(20)
value with d2, then the average node degree in experiments
with d1 is lower than the average node degree in experiments
with d2.

3.5 Scalability
We now examine the scalability of SpiderCast with the

number of nodes, topics, and subscriptions per-node. Through-
out this section, a node’s subscription list is distributed ac-
cording to the RSS distribution.

3.5.1 Scalability with the Number of Nodes
In this section, we run experiments in which each node is

subscribed to only 10 topics, and we increase the number of
nodes from 1000 to 10, 000, and the number of topics from
100 to 200. Figure 8(a) depicts the average node degree and
the 95% confidence intervals around the average degree for
each experiment. As Figure 8(a) shows, for a given number
of topics, the average node degree decreases as the number
of nodes grows. And for a given number of nodes, increas-
ing the number of topics moderately increases the average
node degree, suggesting a good scalability with the num-
ber of topics. We explain these results in Figure 8(d), in
which, for each experiment, we calculate the tdi(20) value.
As Figure 8(a) and Figure 8(b) show, increasing the number
of nodes increases the tdi(20) value, and hence also reduces
the average node degree. And increasing the number of top-
ics reduces the tdi(20) value, and hence also increases the
average node degree.

We also measure the maximum node degree in each ex-
periment. In an experiment with 100 and 200 topics, the
maximum node degree is 32 and 31, respectively. While the
maximum node degree can be roughly 2 or 3 times the av-
erage node degree, the 95% confidence intervals around the
average degree depicted in Figure 8(a) show that most of
the nodes have roughly the same degree. This means that
SpiderCast fairly distributes the load among all the nodes.

Finally, we report about the maximum topic diameter. In
an experiment with 100 and 200 topics, the maximal topic
diameter is 6, in both cases. This means that a topic diame-
ter grows logarithmically with the number of subscribers to
the topic.

3.5.2 Scalability with the Number of Topics
In order to study the scalability of SpiderCast’s overlay to

the number of topics, we ran experiments in which the num-
ber of nodes is fixed to 10, 000 and each node is subscribed
to 20 topics. In these experiments, we increase the number
of topics from 100 to 1000. Figure 8(b) and Figure 8(e) de-
picts the average node degree and the tdi(40) value for each
experiment, respectively.

As figure 8(b) shows, increasing the number of topics re-
sults in a moderate increase in the average node degree, sug-
gesting good scalability with the number of topics. Again,
these results are well explained in figure 8(e): increasing the
number of topics reduces the tdi(40) value, and hence in-
creases the average node degree. Increasing the number of
topics also reduces the maximum topic diameter from 5 in
an experiment with 100 topics to 4 in an experiment with
1000 topics. This is because increasing the number of topics
also reduces the average number of subscriptions per-topic,
and hence also reduces the maximum diameter.

3.5.3 Scalability with the Number of Subscriptions
Per-Node

In order to study the scalability of SpiderCast’s overlay
to an increasing number of subscriptions per-node we ran
experiments with 100 topics and 10, 15, 20, and 40 subscrip-
tions per-node. We also varied the number of nodes from
1000 to 10, 000. Figure 8(c) depicts the average node degree
for each experiment. Figure 8(f) depicts the tdi(2d) inter-
section for an experiment with d subscriptions per-node.

As Figure 8(c) shows, increasing the number of subscrip-
tions per-node from 10 to 15 and then from 15 to 20 increases
the average node degree, since each node needs to cover more
topics. However, increasing the number of subscriptions per-
node from 20 to 30 and then from 30 to 40 decreases the
average node degree. This phenomena is easily explained
in Figure 8(f). As this figure shows, increasing the num-
ber of subscriptions per-node from 10 to 15 and then from
15 to 20 decreases the tdi(2d) value, since, until a certain
threshold, increasing the number of subscriptions per-node
reduces the tdi(2d) value. However, above this threshold,
which is around 20 in this setting, increasing the number
of subscriptions per-node increases the tdi(2d) value, since
each node is subscribed to many topics, and hence the over-
lapping between two nodes’ subscription lists is large.

3.6 Non-Equal Subscription List Sizes
We now consider a setting in which the number of sub-

scriptions is varied across different nodes. In the first and
second experiments, the size of a given node’s subscription
list is chosen uniformly at random from the interval [10 : 30]
and [10 : 70], respectively. Hence, in these experiments, the
average number of subscriptions per-node is 20 and 40, re-
spectively. We compare the average node degree in these
experiments with the average node degree in experiments
in which each node is subscribed to 20 and 40 topics. Fig-
ure 9(a) and Figure 9(b) show the node degree histogram
for experiments with an average node degree of 20 and 40,
respectively.

These results indicate that for a given average number of
subscriptions per-node, the actual distribution of the num-
ber of subscriptions per-node has a negligible effect on the
average node degree. In addition, we note that in all the ex-
periments, the histogram of the node degree is concentrated
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Figure 8: Scalability of SpiderCast to the number of nodes, topics, and subscriptions per-node.

around the average node degree. This implies that a node’s
degree is proportional to the number topics to which the
node is subscribed.

3.7 The Effect of Partial Membership Views
In all of the experiments reported above, each node knows

the identity and interest of every other node (full mem-
bership service). In this section, we report on simulations
with a membership service providing incomplete member-
ship views. In these simulations, upon bootstrap, each node’s
membership view contains the identities and interests of
p% of the nodes chosen uniformly at random of a set that
contains all the nodes. Such a membership service mod-
els a lightweight randomized membership service, e.g., Lp-
bcast [11]. We run two sets of simulations with 4,000 and
8,000 nodes, and we varied the value of p from 5% to 100%.
In all of the experiments, each node is subscribed to 10 top-
ics, and a node’s subscription list is distributed according to
the RSS distribution. Remarkably, in all of our experiments,
all the constructed overlays achieve topic connectivity even
when each node knew the identities and interests of only 5%
of the total number of nodes. Figure 10 depicts the average
node degree as a function of p. As the figure shows, the size
of each node’s membership view has a small effect on the
average node degree. This implies that SpiderCast can use
a lightweight randomized membership service, which makes
SpiderCast a practical P2P protocol.

3.8 Dynamic Setting
In this section, we report on simulations in which nodes

dynamically join and leave the overlay. As opposed to static
simulations, in a dynamic simulation each node alternates
between being connected and disconnected from the Spi-
derCast overlay. Each time a node wakes up, it remains
connected for a time interval that is distributed exponen-
tially with an expectation of λ. And when it disconnects, it

remains disconnected for a time interval that is distributed
exponentially with an expectation of λ

4
. Every time a node

(re-)joins the overlay, it does so with a different interest.
We run two sets of simulations with 1,250 and 2,500 nodes.
Thus, at any given time, in the first and second set of sim-
ulations an average of 1, 000 and 2, 000 of the nodes are
connected to the overlay, respectively. The simulation were
run assuming full membership.

We varied the value of λ from 100 to 500 seconds, and
ran the simulation for 1, 000 seconds. Every 200 seconds,
we took a snapshot of the overlay, and analyzed the connec-
tivity of each topic as well as the average node degree. In a
snapshot taken at time t, we excluded the nodes that joined
the overlay in the interval [t − 2, t] seconds. Remarkably,
in all the simulations and all the snapshots, all the topics
were connected regardless of the value of λ, i.e., the churn
rate. In addition, as Figure 11 shows, the average node de-
gree was also not affected by the churn rate. This implies
that SpiderCast is most suitable for being deployed over a
dynamic setting in which nodes leave, join, an change their
interest.

3.8.1 Join/Leave Message Overhead
Finally, we measure the average number of control mes-

sages associated with a join/leave operation. In experiments
with 1, 000 and 2, 000 nodes, the average number of control
messages associated with a join/leave operation was 38 and
34, respectively.

If we divide these numbers by the average node degree (13
and 12, resp.), we get that the average overhead of creating
a link is approximately 3 control messages.

If we divide these numbers by the size of each node’s sub-
scription list (10), we get that the average overhead of cov-
ering a single topic is less than 4 control messages.

3.9 Other Overlay Construction Methods
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Figure 9: The effect of the distribution of the num-
ber of subscriptions per-node on the average node
degree.
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Figure 10: The effect of the size of the membership
view on the average node degree.

In Section 3.9.1, we compare SpiderCast to two unstruc-
tured overlays, and in Section 3.9.2, we compare SpiderCast
to a protocol that constructs a structured ring per-topic.

3.9.1 Comparison with similarity-based and fully ran-
dom overlays

We now compare SpiderCast to two unstructured over-
lays: an overlay based on the similarity heuristic [9] and a
random overlay. We also compare SpiderCast to overlays in
which part of the links are random ones and the rest of the
links are created according to the similarity heuristic. In or-
der to allow a fair comparison between the overlays, we use
SpiderCast’s code for simulating all the overlays with the
exception of replacing the functions for choosing neighbors
nextGreedyCoverageNode and nextRandomCoverageN-

ode with the functions nextSimilarityNode and nex-

tRandomNode. Each invocation of nextSimilarityNode

returns a node n from the current node’s interest view so
that the intersection between the current node’s subscrip-
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Figure 11: The effect of the mean life time (churn
rate) on the average node degree.

tion list and n’s subscription list is the highest among all
the nodes in the current node’s interest view. Each invoca-
tion of nextRandomNode return a random node from the
current node’s membership view. A similarity(x, y) simu-
lation creates for each node x links based on the similarity
heuristic and y random links. We note that if x=0 (and
y>0), then the constructed overlay is a random overlay. We
denote such an overlay as random(y). In order to allow a
fair comparison, we use a full membership view for all the
implementations. In all the simulations, the topic popular-
ity distribution is distributed according to RSS distribution,
and each node is subscribed to 10 topics out of 100 topics.
In each set of simulations, we varied the number of nodes
from 1000 to 10, 000.

We first run a set of SpiderCast simulations in which
the average node degree is between 8.95 and 10.81. Next,
we run four sets of simulations with the similarity-based
implementation: i) similarity(10, 0); ii) similarity(9, 1); iii)
similarity(8, 2); and iv) similarity(7, 3). Next, we run random(10)
simulations. In all of these six sets of simulations, the aver-
age node degree is roughly the same. Finally, we run a set
of simulations with similarity(20, 0), in which the average
node degree is twice the average node degree of either of the
above simulations. In Table 12, we report about the average
node degree in each experiment.

protocol/ 1000 2000 4000 6000 8000 10000
number of nodes

SpiderCast 10.81 10.11 9.53 9.24 9.08 8.95
((3, 0)-coverage)
similarity(10,0) 10.08 10.07 10.08 10.09 10.08 10.08
similarity(9,1) 10.22 10.22 10.20 10.22 10.21 10.22
similarity(8,2) 10.20 10.19 10.19 10.20 10.20 10.20
similarity(7,3) 10.21 10.21 10.20 10.22 10.21 10.21
random(10) 10.82 10.54 10.34 10.12 10.08 10.11
similarity(20,0) 20.04 20.04 20.04 20.04 20.03 20.04

Figure 12: Average degree for a given number of
nodes.

In order to evaluate the communication overhead incurred
by each overlay, we calculate the number connected compo-
nents for each simulation. The communication overhead is
minimized when each topic is connected, i.e., in a simulation
with 100 connected components (recall that the overall num-
ber of topics is 100). Figure 13(a) and Figure 13(b) depict
the number of connected components for each experiment.
In all the SpiderCast experiments there are 100 connected
components, i.e., all the topics are connected, and hence the
communication overhead is minimal. In contrast, in each of
the experiments with the similarity heuristic, or the random



heuristic, or any combination of these two heuristics, the
number of connected components is larger than 100. Even
with experiments with the similarity heuristic with twice
the average node degree the number of connected compo-
nents is larger than 100. Moreover, in all the simulations
with the similarity heuristic (and the random heuristic), the
number of connected components increases with the number
of nodes. Hence, as opposed to SpiderCast, the similarity
heuristic cannot scalably support a large number of nodes.
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Figure 13: SpiderCast vs a similarity-based and ran-
dom overlays of the same average degree.

Finally, we note that, with the similarity heuristic, cre-
ating random links on the expense of similarity-based links
increases the number of connected components. In contrast,
recall that in SpiderCast simulations with a heavily skewed
distribution, adding random coverage links reduces the num-
ber of connected components. This is since SpiderCast tries
to randomly cover the topics to which the current node’s is
subscribed, whereas in simulations with the similarity-based
overlay random links are added regardless of the topics to
which the current node is subscribed. Hence, a random cov-
erage is much more efficient than simply adding random
links.

3.9.2 Comparison with ring-per topic protocol
To see that exploiting interest correlation could indeed re-

sult in a substantial scalability improvement, we now com-
pare the average node degrees of the overlays created by Spi-
derCast and by a Ring-Per-Topic (RingPT) protocol (sim-
ilar to [22]). In the RingPT protocol, the per-topic con-
nectivity is achieved by maintaining a separate logical ring,
ordered by the node identifiers, for each topic. Additionally,
in the RingPT protocol, we merge duplicated links. In all
the simulations in this section, the topic popularity distribu-
tion is distributed according to RSS distribution, and each
node is subscribed to 10 topics out of 100 topics.

As Figure 14 shows, the average node degree in the exper-
iments with RingPT is between 51% and 82% higher than
the average node degree in the experiments with Spider-
Cast. Moreover, whereas the average node degree in exper-
iments with RingPT does node change with the number of
nodes, in the experiments with SpiderCast, the average node
degree decreases with the number of nodes. These results
shows that SpiderCast achieves substantially higher scalabil-
ity than a naive protocol that does not exploits correlated
workloads.
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Figure 14: SpiderCast vs a ring per-topic protocol.

4. RELATED WORK
Many traditional implementations of pub/sub (see e.g.,

[5, 2]) rely on centralized components, such as message bro-
kers, and/or fixed topologies and therefore, offer limited
scalability in large and dynamic settings. This motivated
interest in decentralized pub/sub solutions, and in particu-
lar, those based on P2P architectures.

In order to achieve selective event dissemination, most ex-
isting P2P pub/sub systems leverage the properties provided
by structured overlay networks [4, 20], and/or organizing
peers into global dissemination topologies, such as multi-
cast trees [8]. A smaller number of pub/sub architectures
are based on unstructured overlays: Sub-2-Sub [22] that
employs a combination of an unstructured overlay and ad-
ditional ring structures to support content-based pub/sub.
It is assumed in [3] that topics are organized into a hier-
archy in the naming space and constructs a hierarchy of
unstructured overlays that is based on it. Although relying
on structured elements is instrumental for routing efficiency,
maintaining global topologies incurs the cost of reconfigura-
tion in the presences of dynamic changes, thus making these
systems less favorable in highly dynamic settings [10]. Other
P2P-based implementations of content-based pub/sub, such
as DPS [2] and GosSkip [12], focus on efficient algorithms
for content filtering which are less relevant for topic-based
pub/sub systems, such as SpiderCast.

The impact of the links based on similarity in the nodes’
subscription on the performance of the event filtering in
content-based P2P pub/sub systems was investigated in [9].
This work provides a valuable insight that the similarity-
based links can indeed be useful for more efficient event dis-
semination in overlay-based pub/sub systems. However, as
we show in Section 3.9, the links based on the similarity
alone are insufficient for efficient event dissemination as the
communication cost incurred by propagating events on less
popular topics can be quite high.

There exist a few optimization techniques that mitigate
the problem of large fanout in the overlay-per-interest ap-
proach but do not solve it completely. Topic (or, more gen-



erally, interest) aggregation into groups increases dissemina-
tion and filtering overhead because a single connected com-
ponent for a topic group may translate into multiple com-
ponents for each individual topic. Constructing a hierarchy
of overlays based on interest containment [3, 9, 2] precludes
fully unstructured solutions and does not solve the problem
when subscriptions exhibit strong similarity without being
contained in each other.

Using pub/sub communication for supporting distribution
of active web content was investigated in [17, 18]. Both these
systems mainly focus on efficient cooperative polling of the
publishers by the subscribers, and are less concerned with
maintaining specific overlay topologies, which is our focus
in this paper.

5. DISCUSSION
We have presented SpiderCast, an overlay-based infras-

tructure for scalable topic-based pub/sub. SpiderCast scales
well with the number of nodes, number of topics, and the size
of subscriptions as long as the latter are correlated, as shown
via thorough performance evaluation. In the future, we are
going to apply our k-coverage-based construction technique
to content-based pub-sub by generalizing the coverage to
be measured in units of the event space rather than in the
number of topics.

The fact that SpiderCast attains per-topic connectivity
with high probability in both static and dynamic settings
can be leveraged for efficient event dissemination. Specifi-
cally, it is possible to build a dissemination topology for each
topic in a distributed fashion (e.g., a distributed tree using
commonly known algorithms such as the one used in [13])
utilizing only Spidercast-created overlay links. The chal-
lenge of this approach is to take advantage of the low node
fan-out in order to maintain routing state that scales well
with the number of node’s interests.

In order provide resilience to churn, it is also necessary to
dynamically detect failures and disconnections and recon-
cile the topology. The following two approaches can be used
to make dissemination over per-topic topologies reliable in
presence of churn: systems like Overcast [13] buffer and re-
transmit messages whereas Pbcast [7] and Bullet [14] employ
tree-based best effort dissemination and periodic communi-
cation with siblings in order to detect and retrieve missing
messages. The difference between these approaches repre-
sents a well-known tradeoff: while retransmission over the
tree is more efficient in terms of communication overhead,
methods such as gossiping are more robust and allow for
faster completion of missing messages.

The idea of enhancing randomly constructed unstructured
overlays with links based on geographical proximity in or-
der to meet requirements for reduced latency was introduced
in [16, 19]. Although we made the simplifying assumption
of uniform between-node delays, let us note that the Spider-
Cast protocol can be easily augmented to incorporate the
said techniques.
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