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Abstract

Solving and designing puzzles, creating sculpture and architecture, and
inventing magic tricks all lead to fun and interesting algorithmic problems.
This paper describes some of our explorations into these areas.

1 Puzzles

Solving a puzzle is like solving a research problem. Both require the right clev-
erness to see the problem from the right angle, and then the careful execution
of that idea until you find a solution. (The main difference is that the puzzle
poser usually guarantees that the puzzle is solvable.) Puzzles also lead to re-
search problems which form a sort of metapuzzle: to analyze a family of puzzles
and their solutions algorithmically. Solutions to these metapuzzles in turn influ-
ence puzzle design, often leading to interesting puzzles that can be appreciated
without mathematics.

1.1 Sliding Coins

A sliding-coin puzzle consists of two arrangements of coins on a common grid,
as in Figure 1. The goal is to reconfigure one arrangement into the other via
a sequence of moves. In each move, the player can move any coin to any grid
position that is adjacent (along the grid) to at least two other coins. The coins
may be labeled to distinguish which coins should go where, while other groups
of coins may be considered identical.

Unlike many puzzles which are NP-hard or worse [Dem01], the majority of
sliding-coin puzzles on the square and triangular grids can be solved (or de-
termined unsolvable) in polynomial time [DDV02]. In particular, these puzzles
have polynomial-length solutions. What seems to make these puzzles nonethe-
less challenging for humans to solve is that the polynomials can be large—Θ(n3)
for n coins on the square grid [DDV02].

This algorithmic understanding gives us a lot of insight into sliding-coin
puzzle design, which was our original motivation for this work. In particular,
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Figure 1: A difficult sliding-coin puzzle with coins that spell algorithm: can
you reconfigure the coins from the left arrangement to the right arrangement, at
each step moving a coin to a grid position adjacent to at least two other coins?

there are simple conditions on what puzzles are solvable, enabling the puzzle
designer to be sure that a puzzle is solvable without explicitly having to try it.
What is more, the study of the asymptotic number of moves required for a few
types of puzzles gives the designer a rough understanding of what puzzles are
hard. In particular, we know the asymptotically “hardest” puzzle, in the sense
of requiring the most moves. For example, the type of puzzle in Figure 1 should
be of an intermediate difficulty—the number of moves grows as Θ(n2) instead
of Θ(n3)—though at the figure’s scale of n the solution is probably quite long.

1.2 Map Folding

Map folding is a problem frequently encountered during road trips. One math-
ematical formulation of this problem is that you are given a rectangular paper
map divided into a grid of squares, where each interior edge is a crease marked
either mountain or valley, and the goal is to fold the map adhering to all of the
crease directions. (In particular, all of the creases must be folded.) In most
real maps, the folding is achieved by a sequence of simple folds, each of which
folds along a single line. In this case, the map-folding puzzle can be solved in
polynomial time, even linear time [ABD+04]. However, if the map has diagonal
creases, the problem becomes NP-hard [ABD+04].

A different kind of map-folding puzzle arises when we allow general origami
foldings, which fold along multiple creases at once, instead of just simple folds.
Mathematically, we can model origami foldings as simply specifying a valid
ordering of all the squares in the grid, valid in the sense that it leads to a non-
self-intersecting folded state of the map. Although in principle every such folded
state can be reached by a continuous folding motion [DDMO04], physically
executing such a folding can be a challenging puzzle. For example, try folding
the map in Figure 2 so that the squares are stacked in order to spell algorithm.

Even more challenging puzzles arise when the puzzler is told only partial
information about the desired origami folding. For example, it may be NP-hard
to decide whether there is a folding consistent with a specified mountain-valley

2



O T H

GIR

A M L

Figure 2: A challenging map-folding puzzle: can you fold the 3× 3 map so that
reading the squares in their folded stacking order spells the word algorithm?

assignment. This problem was posed by Jack Edmonds.1

Unfortunately, the previous two types of map-folding puzzles suffer from
the practical difficulty that it is difficult to verify whether you have actually
solved the puzzle. Reading the stacking order of the squares in the grid in an
already folded map requires careful untucking of flaps of paper, and it is easy
to miss a square. (This problem can be fixed by using transparent paper and
arranging the labels to not overlap, but transparent paper is usually hard to
fold.) Checking for correct mountains and valleys is difficult even when the
creases are colored accordingly, because it is even easier to miss a deeply hidden
crease.

This difficulty in verification led us to a different family of map-folding puz-
zles, where verification simplify involves looking at the top and bottom sides of
the folding. For such a puzzle to be interesting, we must allow holes cut out of
portions of the grid squares that show through to the square behind. We imple-
mented a computer program that considers all 1,368 valid folded state orderings
of a 3 × 3 map, and displays their appearance on either side when the squares
have specified labels and holes. This tool allowed us to design a puzzle based
on constraining the two visible sides, while still guaranteeing that the solution
folding is unique. See Figure 3. A graphical variation of this puzzle is available
on the web.2

2 Art

Elegant algorithms are beautiful. A special treat is when that beauty translates
visually. Sometimes this is by design, when you develop an algorithm to com-
pose artwork within a particular family. Other times the visual beauty of an
algorithm just appears, without anticipation.

2.1 Hyparhedra

If you crease a square of paper along several concentric squares, alternating
mountain and valley, and along the diagonals, the paper relaxes into a pleated

1Personal communication, 1997.
2http://theory.csail.mit.edu/∼edemaine/puzzles/LCS2003/
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Figure 3: A challenging map-folding puzzle: can you fold the 3× 3 map so that
both sides read fun? Label both sides of the map as shown, and cut out the
shaded rectangles.

form as shown in Figure 4. We call this pleated folding a hypar, short for
“hyperbolic paraboloid”, the mathematical surface that it approximates.

→

Figure 4: Folding a square of paper into a hypar. This folding was likely origi-
nally discovered by John Emmet in England [Jac89, p. 138].

We began experimenting with gluing multiple hypars along their edges.
There are many possible ways to glue together complex arrangements of hy-
pars. One particularly interesting family of gluings comes from an algorithm
that converts any polyhedron into a hypar gluing [DDL99]. The resulting hy-
parhedra are attractive paper sculptures. Figure 5 shows one example, resulting
from the cube.

2.2 Voronoi Architecture

One of our collaborations with MIT’s Department of Architecture [ACD+03]
explored the use of Voronoi diagrams in architectural design. The particular
setting we considered was a museum for the work of Nam Jun Paik, a pioneer
of video art. Figure 6 shows one view of our design.

We can think of the Voronoi diagram as an algorithm whose input is a
set of points in 2D/3D and whose output is a decomposition of 2D/3D into
polygonal/polyhedral cells, one for each input point. The cell corresponding to
each input point is the region of 2D/3D points for which that input point is
the nearest among all input points. The Voronoi diagram can also be thought
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Figure 5: Hyparhedron sculpture resulting from the algorithm in [DDL99] ap-
plied to a cube.

Figure 6: Overhead view of Voronoi architecture from [ACD+03].

of as the result of cellular growth from each of the input points, and the cell
decompositions consequently have an organic sense. In fact, Voronoi diagrams
arise in surprisingly many contexts in nature, such as the spots on a leopard’s
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skin, honeycombs of bees, and the arrangement of galaxies in the universe.
These connections to nature made the Voronoi diagram an attractive source of
inspiration for architecture.

Our main challenge in the collaboration was how to give the architects
enough control over the Voronoi diagram for the cell decomposition to be mean-
ingful as a structural element of the building. The difficulty is that manipulation
of a Voronoi diagram is indirect: you can only change the input points. In 2D,
the mapping from input points to cells is sufficiently natural and well-behaved
that control comes relatively easily. In 3D, however, the process becomes sub-
stantially more complicated. For example, a building requires roughly horizontal
surfaces for the floor and roof. How should we choose a set of points to guarantee
such surfaces? One effective approach we found for generating one such surface
is to hand-pick a set of points in 3D that roughly following a desired shape (e.g.,
a plane), and then automatically duplicate each point with a random but small
vertical offset and optionally with a small random horizontal offset. Together,
these points tend to produce Voronoi diagrams with only infinite cells, and the
facets in between forming a kind of shell surface.

2.3 Hinged Blocks

A hinged dissection is a collection of 2D/3D shapes hinged together at vertices
or edges in such a way that the linkage can be folded to form two or more
solid 2D/3D shapes. While many hinged dissections between various pairs of
shapes have been designed [Fre02], it remains open whether every pair of equal-
area 2D polygons have a hinged dissection. The broadest family of 2D hinged
dissections is based on polyforms [DDE+05]; in particular, this family includes
a hinged dissection, for each n ≥ 1, that folds into all connected edge-to-edge
joinings of n unit squares (polyominoes of size n). This result was recently
generalized to 3D shapes [DDLS05], in particular establishing an edge-hinged
dissection, for each n ≥ 1, that folds into all connected face-to-face joinings
of n unit cubes (polycubes of size n). The pieces in this dissection can even
be constrained to be cubes themselves, in which case the number of pieces is
8n = 23n.

This last result was recently applied in a collaboration with artist Laurie
Palmer from the Art Institute of Chicago. Figure 7 shows the resulting sculp-
ture, called “The Helium Stockpile” [Pal04]. Her sculpture consists of about
1000 identical blocks hinged together in groups of eight. Each group can fold
into a 2× 2× 2 “macroblock” or various other shapes. If the groups were con-
nected together in one chain, the assembly could fold into any polymacroblock
of size around 125. Visitors are encouraged to manipulate, experiment, and
interact with the sculpture.
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Figure 7: Laurie Palmer’s “The Helium Stockpile”.

3 Magic

Mathematics is the basis for many magic tricks, particularly “self-working”
tricks. One of the key people at the intersection of mathematics and magic
is Martin Gardner, whose work has inspired much of what we write about in
this paper. Algorithmically, our goal is to design magic tricks within a particular
family automatically.

3.1 One-Cut Hell

A classic paper-folding magic trick goes something like this. Two people, Good
and Evil, die and arrive at the gates of heaven. Only Good has a ticket to enter
heaven. Evil begs Good for help, so Good folds his ticket as shown in Figure
8, rips along a line, and hands Evil the smaller pieces. Unsure of what to do
with the pieces, Evil hands them to St. Peter, who re-arranges them to spell
H-E-L-L, to which Evil is appropriately directed. Good hands the remaining
piece to St. Peter, who is pleased to unfold a cross.

This trick is a special case of a general algorithmic result: any desired col-
lection of line segments can be simultaneously cut by folding flat and making
one complete straight cut [DDL98]. Applying this algorithm, you can fold a
square of paper flat and make one cut to produce the silhouette of a swan, an
angelfish, or a butterfly; or produce your initials; or in principle produce any
desired collection of polygonal shapes. In particular, we have applied this re-
sult to make a more precise form of the Good-and-Evil magic trick described
above [DD04], where each letter is a single piece. See Figure 9. The folding
is more complicated, and the pieces are not in perfect proportion, but there is
a certain elegance to having exactly the five desired pieces. In particular, this
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Figure 8: Classic method for producing cross and multipiece H-E-L-L.

version on the trick is easier to perform “standing up”, without a surface to
arrange the pieces.

Figure 9: Five-piece design for cross and H-E-L-L from [DD04]. Fold in half
first, then use the specified creases.

3.2 Picture Hanging

The magician can hang a picture on two nails in such a way that, no matter
which nail you choose to remove, the picture falls. This topological curiosity has
circulated the puzzle community in the past few years. Looking at the problem
in the right way, the two-nail picture-hanging problem is precisely the Bor-
romean rings, three interlocked loops no two of which are interlocked. Recently,
this mathematical trick has been generalized to arbitrary feats [DDM+04]. For
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example, a picture can be hung on n nails such that removing any k nails causes
the picture to fall, but removing fewer nails leaves it hanging, for any 1 ≤ k ≤ n.
Figure 10 shows such a picture hanging with k = 1 and n = 3. Even more, a
picture can be hung on n red nails and n blue nails such that removing k nails of
each color causes the picture to fall, but removing fewer of either color leaves it
hanging. In general, you can specify any family of subsets of labeled nails that
should cause the picture to fall, and hang a picture so that it falls precisely when
removing these subsets or (necessarily) their supersets. These results connect
the otherwise disparate fields of puzzles and magic, algebra and topology, and
monotone function theory.

Figure 10: Hanging a picture on three nails such that removing any one nail
causes the picture (hung on the two strands in the lower left) to fall.
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Montréal, Canada, August 2004.

[DDV02] Erik D. Demaine, Martin L. Demaine, and Helena Verrill. Coin-moving
puzzles. In R. J. Nowakowski, editor, More Games of No Chance, pages
405–431. Cambridge University Press, 2002. Collection of papers from the
MSRI Combinatorial Game Theory Research Workshop, Berkeley, Cali-
fornia, July 2000. http://www.arXiv.org/abs/cs.DM/0204002.

[Dem01] Erik D. Demaine. Playing games with algorithms: Algorithmic combina-
torial game theory. In Proceedings of the 26th Symposium on Mathematical
Foundations in Computer Science, volume 2136 of Lecture Notes in Com-
puter Science, pages 18–32, Marianske Lazne, Czech Republic, August
2001. Full paper available at http://www.arXiv.org/abs/cs.CC/0106019.

[Fre02] Greg N. Frederickson. Hinged Dissections: Swinging & Twisting. Cam-
bridge University Press, August 2002.

[Jac89] Paul Jackson. Origami: A Complete Step-by-Step Guide. Hamlyn Pub-
lishing Group Ltd., London, 1989.

[Pal04] Laurie Palmer. The helium stockpile: Under shifting conditions of heat
and pressure. Installation, Radcliffe College, Cambridge, Massachusetts,
April 2004.

10

http://www.arXiv.org/abs/cs.DM/0204002
http://www.arXiv.org/abs/cs.CC/0106019

	1 Puzzles
	1.1 Sliding Coins
	1.2 Map Folding

	2 Art
	2.1 Hyparhedra
	2.2 Voronoi Architecture
	2.3 Hinged Blocks

	3 Magic
	3.1 One-Cut Hell
	3.2 Picture Hanging


