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Abstract

We show a remarkable fact about folding paper: From a single rectangular sheet
of paper, one can fold it into a flat origami that takes the (scaled) shape of any

connected polygonal region, even if it has holes. This resolves a long-standing open
problem in origami design. Our proof is constructive, utilizing tools of computational
geometry, resulting in efficient algorithms for achieving the target silhouette.

We show further that if the paper has a different color on each side, we can form
any connected polygonal pattern of two colors. Our results apply also to polyhedral
surfaces, showing that any polyhedron can be “wrapped” by folding a strip of paper
around it. We give three methods for solving these problems: the first uses a thin
strip whose area is arbitrarily close to optimal; the second allows wider strips to
be used; and the third varies the strip width to optimize the number or length of
visible “seams” subject to some restrictions.

Key words: paper folding, origami design, polyhedra, polyhedral surfaces,
Hamiltonian triangulation, straight skeleton, convex decomposition

1 Introduction

Origami provides a rich field of research questions in geometry. At the ACM
Symposium on Computational Geometry in 1996, Robert Lang’s popular talk [17]
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helped to introduce the computational geometry community to this exciting
area of research.

A classic open question in origami mathematics is whether every simple poly-
gon is the silhouette of a flat origami. This question was first formally stated
within the algorithms community by Bern and Hayes at the ACM-SIAM Sym-
posium on Discrete Algorithms in 1996 [7]. More generally, we might ask
whether every polygonal region (polygon with holes) is the silhouette of some
flat origami. In this paper, we show that the answer is yes, and we provide
constructive methods for achieving such origamis.

A more general problem in origami design is to take a sheet of bicolor paper,
having a different color on each side, and fold it into a desired pattern of two
colors. For example, John Montroll’s book Origami Inside-Out [21] is entirely
about such models. Taichiro Hasegawa [11] has designed an entire alphabet,
including lower- and upper-case letters as well as punctuation. One origami
designer, Toshikazu Kawasaki, has looked at the special case of iso-area fold-
ings, that is, foldings that use equal amounts of both colors [12, pp. 96–97] [13,
pp. 26–34]. See Fig. 1.

(a) (b)

Fig. 1. (a) Iso-area pinwheel from [12, p. 97]. (b) Zebra by John Montroll from [20,
pp. 94–103].

Formally, we define a polygonal pattern P to be a 2-colored polygonal sub-
division of a polygonal region, each subregion of which may have holes. Our
most general flat origami question then asks if there exists a flat folding of
a sufficiently large piece of bicolor paper such that the top side of the flat
origami gives exactly the input 2-color pattern, P .

A more general question asks whether every polyhedron can be wrapped with
a piece of rectangular paper. This is motivated not only by the problem of con-
structing three-dimensional origamis, but also the “gift wrapping problem,”
which was introduced to us by Jin Akiyama [3,4]. We define a polyhedron P
very generally to be any connected union of pairwise-interior-disjoint polyg-
onal regions (called faces), each of which lies on a plane in 3-space; we let n
denote the number of vertices of P . We also consider polyhedra whose faces
are 2-colored. We then ask: Is every polyhedron P the folding of some suffi-
ciently large rectangular piece of paper? If so, is there a folding of a bicolor
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sheet of paper that respects the face coloring? We answer both questions in
the affirmative with one of our main results:

Theorem 1 Given any (nonconvex) polyhedron, with each face assigned one
of two colors, there is a folding of a sufficiently large square of bicolor paper
that folds into the polyhedron with the desired colors showing on each face. An
implicit representation of such a folding can be computed in time polynomial
in n. The folding requires a number of folds polynomial in n and the ratio of
the maximum diameter of a face of P to the minimum feature size of P (the
smallest altitude of a triangle determined by any three vertices of any one face
of P).

Note that a consequence of this theorem is that we can also achieve any two-
sided 2-colored polygonal pattern, since we can treat it as a degenerate form
of polyhedron.

In this paper, we give three methods for constructing flat origamis and poly-
hedral wrappings, resulting in constructive proofs of the above theorem. All
three methods are based on the use of a strip, which is a rectangular sheet
of paper, of width w. If our initial sheet of paper is given as a square (as is
common in origami), then we can readily produce a strip from the square by a
standard “accordion fold.” Typically, we think of w as being relatively small,
so that the strips are narrow (and an accordion fold from a square results in
a thick strip of paper); however, we also consider the objective of having as
wide a strip as possible.

In Section 2, we describe our main folding gadgets for strips, which we use
throughout our constructions. Then, in Sections 3-5, we present our three
methods, which differ in their objectives and their results:

• The “zig-zag” method (Section 3) utilizes a piece of paper whose area is
arbitrarily close to optimal (the surface area of P). It is based on the use of
Hamiltonian triangulations.

• The “ring” method (Section 4) is based on straight skeletons and allows the
widest possible constant-width strip.

• The convex-decomposition method (Section 5) is designed to create a folding
with a desired pattern of visible “seams” that has convex faces between
seams.

Throughout the paper, our figures follow standard origami conventions for
depicting folds and seams: “mountain” folds are denoted with dash-dotted
segments, “valley” folds are denoted with dashed segments, hidden edges and
folds (“x-ray lines”) are shown dotted, and visible seams and edges are shown
solid.
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2 Gadgets

We describe three fundamental gadgets that we use in our constructions: “hid-
ing excess paper” with respect to a convex silhouette, “turning” a strip at a
desired angle θ, and reversing the color of the top side of a strip.

2.1 Hiding Excess Paper

Convex polygons seem to be one of the few classes of polygons that are easy
to make as silhouettes. The basic idea is to place a piece of paper P on top
of the desired convex polygon Q so that P covers Q, and then fold the excess
paper P−Q along each edge of Q until it lies within Q. More generally, we will
frequently make a folding that covers some desired region, but also has excess
paper outside the region. Thus, an important operation is that of folding the
excess paper underneath the region, thereby hiding the excess.

Let us make the idea of hiding more formal; refer to Fig. 2. Suppose we have
a polygonal portion P of the paper that is joined to the rest of the paper
along an edge e of P . Also joined to this edge e is a convex region C of paper
underneath of which we are allowed to “hide” P . We need not assume that P
covers C, in general. We let ρC denote the minimum feature size of C, defined
to be the minimum distance between two vertices of C or between a vertex of
C and an edge not incident to the vertex. We let δP denote the diameter of
polygon P .

The hide gadget must fold P so that the excess paper, P −C, lies underneath
C; it can fold P arbitrarily, provided that e does not move during the folding
(otherwise, the folding would affect the rest of the paper).

Theorem 2 There is a finite algorithm to compute a hide gadget, which uses
O(|C| log(δP/ρC)+1/θmin) folds, where θmin = mini θi is the minimum among
the interior angles θi at vertices of C, and |C| is the number of vertices of C.

PROOF. Let e0 = e, e1, . . . , ek be the edges of C, in clockwise order. Let θi
be the interior angle at vertex vi = ei ∩ ei+1. Let `i denote the line containing
edge ei. The two lines `i and `i+1 cross at vi, forming four cones, which we

denote by K
(1)
i , K

(2)
i , K

(3)
i , K

(4)
i , where K

(1)
i is the cone that lies locally within

C, and the indices proceed counterclockwise about vi. Refer to Fig. 2.

There are at most three “sharp” vertices (having corresponding interior angle
less than π/2) of any convex polygon C; we let s1, s2, and s3 denote the indices
of such vertices (vs1 , vs2 , and vs3), if they exist. It is convenient to consider
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Fig. 2. An illustration of the hide gadget. 1. Hide polygon P underneath C, showing
the notation in the proof of Theorem 2. 2-4. Results of the first three folds.

C as having zero-length “edges” at the sharp vertices, with an orientation
orthogonal to the bisector of the corresponding interior angle. Then, with the
consideration of these “sharp edges,” interior angles are now effectively all
greater than π/2.

We let ε = ρC/10 and let C+ε denote the “fattened” convex polygon defined by
the intersection of the halfspaces that result from offsetting each of the lines
`i through edges (and sharp edges) of C outward by an amount ε. Similarly,
let C−ε denote the “shrunk” convex polygon defined by the intersection of the
halfspaces that result from offsetting each of the lines `i inward by an amount
ε. (Our choice of ε < ρC guarantees that C−ε exists, is nonempty, and has the
same number of edges as does C.) Note that C−ε ⊂ C ⊂ C+ε and that C+ε

has no sharp vertices (while C and C−ε may have sharp vertices).

Our first goal is to fold the excess paper of P in such a way that the paper lies
within C+ε. This is readily done using O(|C| log(δP/ρC)) folds, by folding along
the lines parallel to the edges of C+ε, in order around C+ε, first at a distance
d/2 from the corresponding edge (or vertex that defines a sharp edge) of C,
then at distance d/4, d/8, etc., where d ≤ δP is the distance by which the
excess paper of P originally extends outside the corresponding edge of C. It
is important to note that, because any two consecutive edges of C+ε define an
interior angle greater than π/2, the folding that we do in order to get all of the
excess within distance ε of some edge (or sharp vertex) of C is not “undone”
by the folds that we do parallel to the succeeding edge: folds parallel to ei+1

will only bring points closer also to edge ei.

Having all excess paper within C+ε, we proceed to fold the excess under C
using mountain folds along the lines `i that define (non-sharp) edges of C, in
a manner we are about to describe. During this process, any point p on the

5



excess paper that we fold under along `i must stay within distance ε of `i:
the segment joining p to the closest point on `i gets mapped to a polygonal
chain, of the same length as the segment, after any number of folds, implying
that p must stay within distance ε of `i. In particular, point p on the excess
that is folded under along `i cannot be mapped by the fold to a point that
is outside an edge ej 6= ei+1, ei−1. (Our choice of ε being substantially smaller
than the minimum feature size of C guarantees that points in the excess in
the ε-neighborhood of vi stay within this ε-neighborhood, never entering the
ε-neighborhood of some other vertex, under any foldings along `i and `i+1.)

We begin by folding under the excess of P by using a mountain fold along `1.
Now, in the neighborhood of v1, the excess lies entirely in the cone K

(2)
1 , of

angle π−θ1. Next we fold under the excess with a mountain fold along `2. If the
angle θ1 is at least π/2, there will be no excess paper of P in the neighborhood

of v1 (all excess lies in the cone K
(1)
1 and is hidden by C in the neighborhood

of v1), and we continue by folding under along `3, then `4, etc., until the first
sharp vertex, say vs1 . (In Fig. 2, vs1 = v1.) After the fold along `s1 , there may
be excess paper of P in the neighborhood of vs1 in the cone K

(4)
s1
, but it now

occupies a cone, within K(4)
s1
, having angle at most π−2θs1 . After another fold

under along `s1 , any excess lies within a cone of angle at most π−3θs1 , within
K(2)

s1
. Each successive folding under of excess paper (alternating between `s1

and `s1+1) decreases the angle by another θs1 , so this process must terminate
in at most 1 + (π − θs1)/θs1 steps. Finally, there is no excess in cones K

(2)
s1
,

K(3)
s1
, or K(4)

s1
; any excess paper of P lies in cone K (1)

s1
, and is locally covered

by C.

Having completed the hiding of paper at vs1 , we then proceed to folding under
the excess along `s1+1, `s1+2, etc., until we encounter the next sharp vertex
vs2 , at which point we again may require multiple foldings in order to hide the
excess paper in the neighborhood of vs2 . We may then have to proceed to a
third sharp vertex before completing our foldings around C. Since there are
at most three vertices at which we need multiple (O(1/θmin), where θmin =
mini θi) folds, we obtain the claimed overall bound on the number of folds of
the hide gadget. 2

An immediate consequence of this theorem is the following:

Corollary 3 Given any polygon P and convex polygon Q, such that P can be
moved to cover Q, P can be folded into a flat origami whose silhouette is Q,
using O(|C|+ 1/θmin) folds.
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2.2 Turning a Strip

A natural tool to fold a paper strip into a desired shape is the ability to turn
the strip. More formally, we will consider turns of the following sort. Take two
infinite strips S and T in the plane, and consider their intersection I = S ∩T ;
see Fig. 3. Label the two connected regions of S − T (respectively, T − S) by
S1 and S2 (respectively, T1 and T2). The turn gadget must fold a strip so that
it covers precisely U = S1 ∪ I ∪ T1.

I

T1

T

S1 S2

T2

S

Fig. 3. A turn must cover precisely two connected portions of S − T and T − S as
well as I = S ∩ T .

Our turn gadget is shown in Fig. 4. The first fold is perpendicular to the edges
of S and is incident to the convex vertex of U . The second fold is an angular
bisector of the convex angle θ, effecting the turn. If θ ≥ π/2, these two folds
are all that are needed. On the other hand, if θ < π/2, they leave a right-angle
triangle of excess paper, whose angle incident to the convex vertex is π/2− θ.
We can hide this triangle underneath U by “wrapping” it around the angle θ,
which requires

⌈

π/2− θ

θ

⌉

=
⌈

π

2θ

⌉

− 1

extra folds.

We have thus proved the following lemma.

Lemma 4 Given two strips S and T in the plane, and given any connected
region S1 (respectively, T1) of S−T (respectively, T −S), a strip can be folded
into a flat origami whose silhouette is precisely S1 ∪ (S ∩ T ) ∪ T1.

It turns out that if we apply a sequence of turn gadgets, the first fold of a par-
ticular turn gadget (which involves folding through all layers) may destroy the
effect of previous turn gadgets, that is, uncover regions that were covered by
previous turn gadgets. This can be avoided by using a generalized turn gadget,
which involves letting the strip go past the turn, making the perpendicular
fold once it has gone far enough to avoid destruction, and then bringing the
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1.

Desired turn

4.

Fold bottom layer

3.2.

Fig. 4. Folding a turn gadget. Step 3 hides the excess paper and is only necessary
for θ < π/2.

strip back before making the second (turning) fold. See Fig. 5. We now obtain
a trapezoid of excess of paper, which can be folded underneath by applying
Theorem 2.

2.

Desired turn

3.1.

Fig. 5. Folding a generalized turn gadget.

Generalized turn gadgets will also be important to produce useful overhang,
as we will see in Section 3.

2.3 Color Reversal

We utilize a color-reversal gadget, as shown in Fig. 6. It consists of three folds:
a perpendicular fold, and two 45◦ folds. The result is a color reversal (that is,
an exchange of the showing side of the strip) along the perpendicular edge.
Note that the triangle of excess paper underneath the finished gadget can, if
necessary, be reduced in size by the gadget of Theorem 2.

2. 4.3.1.

Fig. 6. Folding a color-reversal gadget.

3 Zig-Zag Method

Our first method of folding a strip into a desired polyhedron P is based on a
Hamiltonian triangulation of P ’s surface. A triangulation is Hamiltonian if its
dual graph is Hamiltonian: there is a path that visits each node (triangle) ex-
actly once. We find such a triangulation by first computing a triangulation T
of the faces of P , and then finding a Hamiltonian refinement of T . A Hamil-
tonian refinement of T is a Hamiltonian triangulation obtained from T by
partitioning each of its triangles into one or more subtriangles, each of which
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inherits the color of the containing triangle. Arkin et al. [6] have shown that
any connected triangulation T has a Hamiltonian refinement; see Fig. 7.

Our algorithm begins by computing a Hamiltonian refinement, T ′, of T , of
O(n) subtriangles, along with an associated Hamiltonian path, γ. This requires
O(n) time, since it involves nothing more than a spanning tree (e.g., depth-
first search tree) computation in the dual graph of T . (If we are not given a
triangulation of the faces of P , then we first compute T , which is readily done
in O(n log n) time.)

Fig. 7. Hamiltonian refinement of a triangulation T having 12 triangles (shown with
solid edges). A Steiner point (shown as a solid circle) lies interior to each of the 12
triangles and is joined by dashed segments to each corner, and to the midpoint of
each edge shared by two triangles. The dashed segments decompose the 12 triangles
into subtriangles, for which a Hamiltonian path γ (dotted curve) is readily obtained
by walking around a spanning tree (shown with heavy dashed segments).

We now traverse each triangle of the triangulation T ′, in the order prescribed
by the Hamiltonian path γ. Let T1, . . . , Tk be the sequence of k = O(n) trian-
gles along γ, with Ti sharing the edge ei with Ti+1. Let vi denote the vertex
of Ti that is opposite edge ei.

We cover the triangle Ti by zig-zagging the strip in rows parallel to edge ei,
starting with a row having one edge passing through vertex vi; see Fig. 8.
The zig-zagging is effected by “turn-arounds” that take place just beyond the
boundary of Ti. A turn-around can be achieved using two consecutive right-
angle turn gadgets, or simply by making two consecutive 45◦ folds, as shown
in Fig. 9. Further, by adjusting the turn-around gadget slightly, as shown in
the figure, we can make row j overlap partially with row j +1, allowing us to
control the parity of the zig-zagging as well as the parallel shift of the rows. In
this way, we can ensure that the final row in the coverage of Ti has one edge
coinciding with ei, while completing this row at the endpoint vi+1.
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vi+1

Ti+2

Ti+1

ei

vi

ei+1

Ti

Fig. 8. We cover triangle Ti by zig-zagging in rows parallel to ei, such that we end
up at vertex vi+1.

Fig. 9. Turning around when going from one row to the next, possibly with partial
overlap between rows (bottom).

The zig-zagging coverage of Ti results in some excess paper spilling over the
edges of Ti. This excess is readily folded under by Theorem 2. Further, the
total area of paper used to cover Ti is bounded above by area(Ti) plus the
amount At of excess caused by turn-arounds, plus the amount Ao of excess
caused by overlaps between rows, arising from the need for the last row to line
up with edge ei, while completing at vi+1.

We obtain estimates of At and Ao as follows. Let hi denote the altitude of
Ti, given by the distance from vi to the line containing ei. Then, the zig-zag
coverage of Ti can be accomplished using at most mi = d(hi/w)e + 1 rows,
where the “+1” term arises from the possible extra row required to meet
the parity constraint (to end at vi+1). Each turn-around utilizes area at most
O(w2 cot θmin), where θmin denotes the smaller of the two interior angles of
Ti at the endpoints of ei; see Fig. 10. Thus, we have At = O(hiw cot θmin),
which implies that At = O(wLi), where Li is the length of the longest side
of Ti. Also, we see that Ao = O(w|ei|) = O(wLi), since the overlaps between
rows need not consume more strip length than twice the longest row (which is
roughly of length |ei|). (We have twice the longest row because one extra row
may be needed to compensate for the round-up from (hi/w) to d(hi/w)e, while
a second extra row may be needed for the parity constraint.) We summarize
with

Lemma 5 The coverage of triangle Ti utilizes a strip of area at most area(Ti)+
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O(wLi), where w is the width of the strip and Li is the length of the longest
side of Ti.

θw

Fig. 10. Area estimate for excess paper (shown shaded) that spills over during a
turn-around. The area of the shaded region is w2 + (2w)(2w) cot θ.

The transition from triangle Ti to Ti+1 involves turning the strip in such a
way that the strip becomes parallel to the edge ei+1, while creating excess
that can be folded under Ti ∪ Ti+1. Refer to Fig. 12. This could be done using
the generalized turn gadget of Section 2.2, but for turn angles of more than
π/2, the amount of excess paper is too large: it grows arbitrary large as the
turn angle approaches π. In this case, we use an alternate turn gadget shown
in Fig. 11. Note that this turn gadget solves a different problem from the one
described in Section 2.2 (the corner does not have to be “filled in”), which
allows us to reduce the amount of excess paper to O(w2).

2.

5.3.

over
Turn

4.

Figure 5

1.

Fig. 11. Folding an alternate turn gadget, which reduces the amount of excess paper
for turn angles of more than π/2. Step 3 can be adjusted to produce the desired
amount of overhang.

By induction, we can cover all the triangles of T ′ (and hence of T ) in this
way. Note that we can also change which side of the strip is up, as we make
the transition between two triangles, using the gadget in Fig. 6. Thus, we can
control the coverage in such a way that we preserve a given 2-coloring of T ′

(which is inherited from a 2-coloring of T or of the original faces of P).

Since the transition from triangle to triangle uses at most O(wL) excess paper
area, where L = maxi Li, Lemma 5 applied to the O(n) triangles in turn yields
the following result:
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v
v

Fig. 12. Turning from one triangle to another. Note that the turn must have some
overhang to finish covering the triangle.

Lemma 6 The coverage of T requires a strip of area at most area(T ) +
O(nwL).

Using this zig-zag method with sufficiently narrow strips (w → 0), we obtain,
as a consequence of Lemma 6, the following result on optimal paper usage.

Theorem 7 Let A be the surface area of a given 2-colored polyhedron. Then
for any ε > 0, there is a rectangle R of bicolor paper with area at most A+ ε
such that R folds into the polyhedron with the desired colors showing.

Remark. Instead of using a very small width w, our approach also allows one
to use a strip with a larger width, up to the smallest altitude of the triangles
in T ′. Of course, this increases the excess paper that needs to be folded under,
and increases the total area of paper required, while decreasing the number of
“seams.” In Section 5 we discuss seams and their minimization via our third
method, base on convex decompositions.

Finally, we conclude that the zig-zag method gives us our first proof of Theo-
rem 1. The time required for the method to produce an implicit representation
of the folding is simply O(n) (after triangulation of the faces of P , which takes
time no more than O(n log n), even for multiply connected faces). The actual
folding produced by the method utilizes O(n) gadgets, each of which requires
O(1/θmin) folds, where θmin is the smallest angle of any triangle in the Hamil-
tonian triangulation T ′. (Here, the hide gadget is applied with |C| = O(1)
and log(δP/ρC) = O(log(1/θmin)).) Since θmin can readily be bounded within
a constant factor of the feature size (as defined in Theorem 1), we obtain the
bound on the number of folds as stated in the theorem.
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4 Ring Method

Our second method is based on covering a polyhedron by a collection of
“rings.” This method’s main advantage is that it allows the strip to have
the largest possible width in the case that the strip width is not allowed to
change.

This section is outlined as follows. Section 4.1 defines rings and shows how to
cover a polyhedron with rings. Section 4.2 gives an outline of the algorithm.
Section 4.3 fills in the details by showing how to fold rings and how to bridge
between rings. Finally, Section 4.4 analyzes the requirements on the strip
width.

4.1 Rings and the Straight Skeleton

We define a ring to be a pair of (potentially non-simple) polygons, called
walls, such that “shrinking” one wall results in the other. Shrinking consists
of continuously insetting each boundary vertex, so that at any particular time,
every shrunken boundary edge is parallel to the original, and the perpendicular
distance between the shrunken and original boundary edges is the same for
all boundary edges. Conceptually, the walls are parallel to each other except
at turns, and have constant “width” all around. Some examples of rings are
given in Fig. 13; note that the walls are allowed to be non-simple polygons.

Fig. 13. Examples of rings.

The idea of rings is based on a different shrinking process that is used in the
definition of the straight skeleton [1]. To distinguish between the two shrinking
processes, we call the one described above “topological shrinking,” because it
ignores non-simplicities as the polygon shrinks. In contrast, geometric shrink-
ing stops whenever the polygon becomes non-simple, and instead recursively
shrinks each subregion. The straight skeleton of a polygonal region is defined
to be the union of the line segments along which the boundary vertices travel,
as we geometrically shrink the polygonal region. See Fig. 14 for an example.

While we are not actually interested in the straight skeleton, we are interested
in the ring decomposition induced by it. During the geometric shrinking pro-
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Fig. 14. Illustration of the straight skeleton (dotted lines) and skeleton walls (solid
lines).

cess, the polygonal region changes in topology at finitely many times. At these
times, we say that the boundary is a skeleton wall, and call the regions between
these walls skeleton rings ; see Fig. 14. Note that skeleton rings are indeed rings
(by definition) and furthermore they partition the desired polygonal region.
We can also cover a 2-colored polyhedron by rings, using the skeleton rings
from each face.

The term “straight skeleton” was first coined by Aichholzer et al. [2], al-
though the idea goes back to at least 1984 [19, pp. 98–101]. It was first de-
fined for polygonal regions by Aichholzer and Aurenhammer [1], who give an
O(n2 log n)-time algorithm for computing it. Recently, Eppstein and Erick-
son [9] developed an O(n17/11+ε)-time algorithm. The straight skeleton has
complexity O(n).

Lemma 8 The ring decomposition induced by a straight skeleton of a polyg-
onal region P can be computed in time proportional to the total complexity of
the subdivision (which is at most O(n2)).

PROOF. Each vertex vi of P is incident to exactly one edge, ei = (vi, ui),
with endpoint ui interior to P at distance di from ∂P , the boundary of P .
In time O(n) we easily find mini di; assume, without loss of generality, that
d1 = mini di. Then, the outermost ring in the ring decomposition of P is
bounded by two walls: ∂P and a shrunken version, q, of ∂P . Now, q passes
through the endpoint u1 and has one vertex on each of the edges ei; the point
u1 is a “pinch off” point (cut vertex) of q. (In general, there may be multiple
such pinch off points, if there are ties in determining mini di.) We readily
construct q in time proportional to its complexity (O(n)), and then recurse
within each of the rings enclosed by q. It is easy to see that this can be done
in overall time that is proportional to the output size. 2
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4.2 Outline

The ring algorithm works as follows. We compute the skeleton rings in each
face of the 2-colored polyhedron. Define the skeleton dual to be the graph
with vertices corresponding to skeleton rings, and edges between two vertices
corresponding to rings that share a wall edge. By the assumption that the
polyhedron’s surface is connected, the skeleton dual is connected, and hence
we can find a spanning tree.

We use this spanning tree as a road map for our construction. We perform
a depth-first traversal of the tree, starting from an arbitrary root. At each
new node we traverse, we construct the corresponding ring. When we traverse
a node that we have visited before, we can “walk” around the ring (by con-
structing part of it) and bring the strip to the desired joining place for an
adjacent ring. Hence, we only need to show how to construct a skeleton ring,
and how to connect between two skeleton rings with an optional color change.

4.3 Strip Rings

Instead of folding skeleton rings directly, we will cover them by a collection
of strip rings, that is, rings with the same width as the strip. Strip rings are
particularly attractive because they can be constructed simply by folding a
sequence of generalized turn gadgets from Section 2.2. (We use generalized
turn gadgets so that they do not interfere with each other.)

Lemma 9 Given any ring R of width |R| and a strip of width w, R can
be covered by d|R|/we strip rings, each of which is contained in the current
polygonal region.

PROOF. Assume first that |R| ≥ w. Then one way to build such a cover is
as follows. Let R = (q0, q

′) be the ring (between walls q0 and q
′) that we want

to cover. In general, suppose we want to cover a ring Ri = (qi, q
′) such that

|Ri| ≥ w, for i = 0, 1, . . .. Shrink or expand the wall qi to pull it towards the
interior of Ri by a perpendicular distance of w. The result is another wall qi+1

that is in Ri. Indeed, (qi, qi+1) is a strip ring.

It remains to cover the subring Ri+1 = (qi+1, q
′) of Ri. If |Ri+1| ≥ w, we can

recursively apply this procedure. Each iteration decreases the width of the
ring to cover by the constant w. Hence, after k = b|R|/wc iterations, we are
left with a strip Rk = (qk, q

′) whose width is less than w. If its width is zero
(that is, w evenly divides |R|), we stop. Otherwise, we shrink or expand q ′ to
pull it towards the interior of Rk, resulting in a wall q that is outside Rk but
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inside R. This last strip ring (q, q′), which contains Rk, completes the cover
using d|R|/we strip rings.

Now assume that |R| < w, and let R = (q1, q2). Consider topologically shrink-
ing or expanding q1 and q2 to push them away from R, stopping when we find
a ring R′ that has the same width as the strip. If a wall hits the boundary of
the polygonal region, we stop shrinking/expanding it. Because of the upper
bound on the strip’s width described in Section 4.4, we cannot have both walls
hitting the boundary of the polygonal region. Hence, we obtain a strip ring R′

that contains R and is contained in the polygonal region, the desired result.
2

It only remains to show how to bridge between two strip rings. Specifically,
we need to show how to combine strip rings in two different ways: between
overlapping strip rings, and between touching strip rings possibly of different
colors. In both cases, we take an arbitrary edge shared by the two strip rings;
for overlapping rings, this “edge” has some thickness. We bridge at any joining
place along this edge by using the turn-around gadget in Fig. 9. The excess
paper can be reduced to fit within the two rings by applying Theorem 2. We
can also reverse the color of the strip in between the two folds of the turn-
around gadget (note that if the two rings have different colors, they do not
overlap), using the color-reversal gadget in Section 2.3.

4.4 Strip Width

What are the least possible constraints on the strip’s width? If our only build-
ing blocks are strip rings (in other words, the width of the strip stays essen-
tially constant), we need the property that at least one strip ring fits inside
the polygonal region we are trying to cover. One observation is that the strip’s
width must be at most the minimum feature size, that is, the minimum dis-
tance between two non-incident boundary edges. Indeed, we need a stronger
upper bound on the strip’s width than the minimum feature size, to ensure
that it is possible to turn at every reflex vertex without falling outside the
polygonal region.

Consider a reflex vertex v with exterior angle θ and consider the non-incident
boundary edge e that is closest to v along the angular bisector at v; refer to
Fig. 15. To turn at v, a ring turns at a point on the angular bisector of v. Let
d denote the distance from v to e along the angular bisector of v. This gives us
the maximum allowed “diagonal” width of the strip. This means that the true
width of the strip must be at most d sin(θ/2). By minimizing this expression
over all reflex vertices, we obtain an upper bound on the strip’s width for that
face.
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Fig. 15. Computing the upper bound on the width of the strip.

We choose the strip’s width so that this upper bound is satisfied for every
face of the polyhedron. Note that we can always thin the strip to achieve the
desired upper bound by accordion folding it.

4.5 Summary

We conclude that the ring method gives us our second proof of Theorem 1.
The time required for our method to produce an implicit representation of
the folding is bounded by O(n2). The actual folding produced by the method
utilizes O(n2) gadgets, each of which requires O(1/σ) folds, where σ is the
feature size of the ring decomposition. It is readily shown that the ring de-
composition results in 1/σ being polynomially bounded in the feature size of
the original input P . Thus, we obtain the claimed bounds of Theorem 1.

5 Convex-Decomposition Method

The goal of our third method is to wrap a polyhedron while minimizing some
metric involving “seams.” A seam is a visible crease or edge of paper on the
interior of a face of the polyhedron. There are several interesting metrics to
optimize on seams. For example, minimizing

(1) the number of regions between the seams,
(2) the total number of seams, or
(3) the total length of the seams

may be relevant to finding a polyhedron wrapping with a pleasing exterior
view.

Note that our method for covering a convex polygon (Corollary 3) uses no
seams. Indeed, convex polygons are the maximal objects that can be folded
without seams: because a reflex vertex has negative curvature (i.e., the sum of
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the incident angles, on both the top and bottom sides, is more than 2π), it can-
not be folded without seams from a strip which has zero curvature everywhere
(i.e., the sum of incident angles is exactly 2π).

However, this argument only applies when one seamless polygon is desired, as
it is easy to make a seamless nonconvex region of a flat origami. The key is
that the nonconvex vertices of a seamless region, which by themselves have
negative curvature, can be made non-vertices, and hence have zero curvature,
by adding seamless regions incident to the vertices.

For the purposes of this paper, we concentrate on the case in which the regions
between seams are convex polygons. Hence, our third method is based on
a convex decomposition of the polyhedron’s surface, that is, a partitioning
of each face of the polyhedron into interior-disjoint convex polygons. Each
interior edge in the decomposition corresponds to a seam, and each polygon
in the decomposition corresponds to a region between the seams. Thus, the
three seam optimization questions stated above, subject to the convex-face
restriction, can be rephrased as convex-decomposition questions:

(1) Decompose a polygonal region into the minimum number of convex polygons.
(2) Decompose a polygonal region into convex faces using the fewest number

of edges.
(3) Decompose a polygonal region into convex faces using edges with mini-

mum total length.

Depending on the kinds of seams we want to allow, we may or may not allow
the addition of Steiner points. There are hence six questions of interest: the
above three with and without Steiner points allowed. We know of no work
explicitly addressing Problem 2. Note however that if Steiner points are disal-
lowed, the number of edges is completely determined by the number of regions,
and hence Problems 1 and 2 become the same.

There is an abundance of prior work on problems of convex decomposition;
see the recent survey article of Keil [14]. For simple polygons (no holes),
Greene [10] gives an O(r2n2)-time algorithm for Problems 1 and 3 without
Steiner points (and hence also Problem 2 without Steiner points), where r is
the number of reflex vertices. Keil [16] independently discovered anO(r2n log n)-
time algorithm for Problem 1 without Steiner points. The only polynomial-
time algorithm for optimal convex decomposition with Steiner points is by
Chazelle and Dobkin [8], who developed an O(n+r3)-time algorithm for Prob-
lem 1 with Steiner points. Problems 2 and 3 with Steiner points appear to be
interesting open problems.

Unfortunately, for polygonal regions with holes, these problems are all either
known to be NP-hard, or seem likely to be. Lingas [18] showed that Problem
1 with Steiner points is NP-hard. Keil [15] showed that Problems 1 and 3
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without Steiner points (and hence also Problem 2 without Steiner points) are
NP-hard. Problems 2 and 3 with Steiner points again remain open, but are
likely also NP-hard.

The method described in this section will conform to any convex decomposi-
tion of the polyhedron’s surface, thereby proving the following theorem.

Theorem 10 Given any convex decomposition of a 2-colored polyhedron’s sur-
face, there is a folding of a sufficiently large piece of bicolor paper that covers
all the faces of the polyhedron with the assigned color, and has seams at pre-
cisely the edges of the convex decomposition.

Depending on the choice of the convex decomposition, this method optimizes
the desired metric of seams, subject to the convex-face restriction.

The method is based on dynamically adjusting the strip width, which is de-
scribed in Section 5.1. This gadget is used in Section 5.2 to complete the
convex-decomposition method.

5.1 Dynamic Strip Width

This section describes how the strip width can be changed along a perpendic-
ular edge to have any width that is at most the original (physical) width.

The basic gadget is shown in Fig. 16. Note that the folding starts with the
reverse side of the strip showing, and is flipped back over in Step 4. The first
fold is the perpendicular along which we want to change the strip width, and
is a valley from this orientation. The second fold is another perpendicular,
which is the desired reduction amount away from the first fold. The third
fold is a squash fold, which involves folding down the top part of the strip by
the desired reduction amount, along a horizontal line; the upper-left corner
naturally “squashes” along two 45-degree folds (which are originally right on
top of each other). Equivalently, we can squash fold upwards the bottom part
of the strip.

1.

Turn
over

3.2.

Desired reduction

4. 5.

Squash fold

Fig. 16. Folding a strip-width gadget.
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This gadget can reduce a strip of width w into a strip of width α · w for any
1
2
≤ α ≤ 1. By applying the “reverse” of the gadget (that is, flipping the image

horizontally), we can also undo any previous reduction. We are now ready to
prove the desired theorem:

Theorem 11 A strip can be repeatedly resized along various perpendicular
edges to any width that is at most the original physical width. The number of
folds required to change the width from w1 to w2 is

O
(

1 + | log (w1/w2)|
)

.

PROOF. We maintain the invariant that the strip is the result of several
width-halving gadgets (a strip-width gadget with α = 1

2
), possibly followed

by a general width-reduction gadget with some α. To achieve a particular
strip width, we first fold (if necessary) the reverse strip-width gadget with the
same α. Then we apply width-halving or reverse width-halving gadgets until
the strip has width within a factor of two of the desired width. Finally, we
apply the general width-reduction gadget to obtain the desired strip width.
The bound on the number of folds follows immediately. 2

Note that any excess paper from strip-width gadgets can be reduced to fit
within any desired incident region (namely, the polyhedron face that we are
covering), by Theorem 2.

5.2 Approach

We are now in the position to describe a folding that only has seams on the
edges of a given convex decomposition of a polyhedron’s surface. We define
the diameter of the convex decomposition to be the largest diameter of any
convex polygon in the decomposition, that is, the largest distance between
any two points on a common convex polygon. We choose our strip to have
this diameter as its physical (initial) width.

The algorithm works as follows. We traverse a spanning tree of the dual of
the convex decomposition in a depth-first traversal. The strip always enters
a convex polygon P along a sub-portion of one of its edges, perpendicular to
that edge e. Reorient so that e is vertical. At this point of entry along e, we
resize the strip to be the vertical extent of P . Note that the resized strip may
not have the right vertical positioning to cover all of P ; this can be fixed by
using the shift gadget shown in Fig. 17.
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2.1. 3.

Fig. 17. Folding a shift gadget, which is just a sequence of two right-angle turn
gadgets from Fig. 4.

Next we continue the strip straight until it covers all of P ; we call this the com-
pletion point. Let e′ denote the edge shared by P and the next polygon P ′ in
the traversal order. If the length of e′ is less than the current width of the strip
(i.e., the vertical extent of P ), then we resize the strip width at the completion
point to the length of e′. It remains to show how to turn the strip to reach
e′ perpendicularly. In fact, this can be done using a generalized turn gadget
(Section 2.2). If e′ has negative slope, as in Fig. 18(a), the perpendicular fold
is right at the completion point. If e′ has positive slope, the perpendicular fold
may be past the completion point, as in Fig. 18(b). In either case, the second
fold turns onto the infinite strip perpendicular and incident to e′. Finally, any
excess paper that results from the turn gadget extending beyond polygon P
can be folded underneath P , by Theorem 2. (This does not cause any seams
to appear, since the folding is done underneath P .)

thinned
to length
of e′

Strip is

(b)(a)

e

e′P

e

P
e′

Fig. 18. Covering a polygon P entering from edge e, and turning to the next edge
e′. (a) e′ has negative slope. (b) e′ has positive slope.

Once we reach the edge e′, we immediately reorient so that e′ is vertical. We
apply Theorem 11 to resize the strip along e′ to the vertical extent of P ′.
Finally, if P and P ′ have opposite colors, we reverse the strip color along e′

by applying the gadget in Fig. 6.

Folding the excess paper underneath completes the convex-decomposition
method, thereby proving Theorem 10: any polyhedron can be wrapped with
seams precisely along the edges of a convex decomposition. This also provides
our third proof of Theorem 1, since the time bound is clearly polynomial in
n and the bound on the number of folds follows from the use of O(n) hide
gadgets.
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6 Conclusion

We have described three methods for constructing an arbitrary silhouette,
or more generally a 2-colored polyhedron. The first method uses triangles
as building blocks, following a Hamiltonian triangulation refinement of the
polyhedron. The second method uses “rings” as building blocks, following a
natural ring decomposition from the straight skeleton. We note that these two
approaches resemble the two main algorithms for “milling” a pocket: zig-zag
and contour machining [5]. The third method uses seamless convex polygons
as building blocks, allowing us to control the pattern of seams in the overall
folding (e.g., to optimize the number or length of seams) subject to convexity
of the seamless regions.
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