
Arithmetic Expression Construction1

Leo Alcock
Harvard University, Cambridge, MA, USA

Sualeh Asif
MIT, Cambridge, MA, USA

2

Jeffrey Bosboom
MIT CSAIL, Cambridge, MA, USA

Josh Brunner
MIT CSAIL, Cambridge, MA, USA

3

Charlotte Chen
MIT, Cambridge, MA, USA

Erik D. Demaine
MIT CSAIL, Cambridge, MA, USA

4

Rogers Epstein
MIT CSAIL, Cambridge, MA, USA

Adam Hesterberg
Harvard University, Cambridge, MA, USA

5

Lior Hirschfeld
MIT, Cambridge, MA, USA

William Hu
MIT, Cambridge, MA, USA

6

Jayson Lynch
MIT CSAIL, Cambridge, MA, USA

Sarah Scheffler
Boston University, Boston, MA, USA

7

Lillian Zhang
MIT, Cambridge, MA, USA

8

9

Abstract10

When can n given numbers be combined using arithmetic operators from a given subset of11

{+,−,×,÷} to obtain a given target number? We study three variations of this problem of12

Arithmetic Expression Construction: when the expression (1) is unconstrained; (2) has a specified13

pattern of parentheses and operators (and only the numbers need to be assigned to blanks); or14

(3) must match a specified ordering of the numbers (but the operators and parenthesization are15

free). For each of these variants, and many of the subsets of {+,−,×,÷}, we prove the problem16

NP-complete, sometimes in the weak sense and sometimes in the strong sense. Most of these proofs17

make use of a rational function framework which proves equivalence of these problems for values in18

rational functions with values in positive integers.19

2012 ACM Subject Classification Theory of computation→ Problems, reductions and completeness20

Keywords and phrases Hardness, algebraic complexity, expression trees21

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2020.4122

Related Version A full version of the paper is available on arXiv.23

Acknowledgements This work was initiated during open problem solving in the MIT class on24

Algorithmic Lower Bounds: Fun with Hardness Proofs (6.892) taught by Erik Demaine in Spring25

2019. We thank the other participants of that class — in particular, Josh Gruenstein, Mirai Ikebuchi,26

and Vilhelm Andersen Woltz — for related discussions and providing an inspiring atmosphere.27

1 Introduction28

Algebraic complexity theory [2, 14] is broadly interested in the smallest or fastest arithmetic29

circuit to compute a desired (multivariate) polynomial. An arithmetic circuit is a directed30

acyclic graph where each source node represents an input and every other node is an arithmetic31

operation, typically among {+,−,×,÷}, applied to the values of its incoming edges, and one32

sink vertex represents the output. One of the earliest papers on this topic is Scholz’s 193733

study of minimal addition chains [12], which is equivalent to finding the smallest circuit with34

operation + that outputs a target value t. Scholz was motivated by efficient algorithms for35

computing xn mod N . Minimal addition chains have been well-studied since; in particular,36

the problem is NP-complete [5].37

© Leo Alcock, Sualeh Asif, Jeffrey Bosboom, Josh Brunner, Charlotte Chen, Erik D. Demaine,
Rogers Epstein, Adam Hesterberg, Lior Hirschfeld, William Hu, Jayson Lynch, and Lillian Zhang;
licensed under Creative Commons License CC-BY

31st International Symposium on Algorithms and Computation (ISAAC 2020).
Editors: Yixin Cao, Siu-Wing Cheng, and Minming Li; Article No. 41; pp. 41:1–41:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.ISAAC.2020.41
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

41:2 Arithmetic Expression Construction

Algebraic computation models serve as a more restrictive model of computation, making38

it easier to prove lower bounds. In cryptography, a common model is to limit computations39

to a group or ring [10]. For example, Shoup [13] proves an exponential lower bound for40

discrete logarithm in the generic group model, and Aggarwal and Maurer [1] prove that41

RSA is equivalent to factoring in the generic ring model. Minimal addition chains is the42

same problem as minimal group exponentiation in generic groups, and thus the problem has43

received a lot of attention in algorithm design [7].44

In our paper, we study a new, seemingly simpler type of problem, where the goal is45

to design an expression instead of a circuit, i.e., a tree instead of a directed acyclic graph.46

Specifically, the main Arithmetic Expression Construction (AEC) problem is as follows:47

I Problem 1 ((L, ops)-AEC-Std / Standard).48

Instance: A multiset of values A = {a1, a2, . . . , an} ⊆ L and a target value t ∈ L.49

Question: Does there exist a parenthesized expression using any of the operations in ops50

that contains each element of A exactly once and evaluates to t?51

The problem (N, {+,−,×,÷})-AEC-Std naturally generalizes two games played by52

humans. The 24 Game [15] is a card game dating back to the 1960s, where players race to53

construct an arithmetic expression using four cards with values 1–9 (a standard deck without54

face cards) that evaluates to 24. In the tabletop role-playing game Pathfinder, the Sacred55

Geometry feat requires constructing an arithmetic expression using dice rolls that evaluate56

to one of a specified set of prime constants.57

In this paper, we prove that this problem is NP-hard when the input values are in N or58

the algebraic extension N[x1, . . . , xk].159

1.1 Problem Variants and Results60

Expressions can be represented as trees with all operands at leaf nodes and operators at61

internal nodes using Dijkstra’s shunting yard algorithm [4]. Similarly, an expression tree can62

be converted into a parenthesized expression by concatenating the operands and operators63

as they are encountered with an inorder traversal, adding an opening parenthesis when64

descending the tree and a closing parenthesis when ascending.65

+

79

×

77

11 7

÷

2

4 −

2

3 1

Figure 1 An example expression tree for 7× 11 + (4÷ (3− 1)) = 79. The numbers above the
internal nodes indicate their values.

We also consider following two variants of AEC which impose additional constraints66

(specified by some data we denote by D) on the expression trees:67

1 To clarify the notation: all values are in the field extension Q(x1, . . . , xk), but the input values are
restricted to N[x1, . . . , xk], i.e., have nonnegative integer coefficients.

L. Alcock et al. 41:3

I Problem 2 ((L, ops)-AEC-EL / Enforced Leaves).68

Instance: A target value t ∈ L and a multiset of values A = {a1, . . . , an} ⊆ L with the leaf69

order encoded by D : A→ [n].70

Question: Can an expression tree be formed such that each internal node has an operation71

from ops, and the leaves of the tree are the list A in order D, where the tree evaluates to t?72

I Problem 3 ((L, ops)-AEC-EO / Enforced Operations).73

Instance: A multiset of values A = {a1, a2, . . . , an} ⊆ L, a target t ∈ L, and an expression74

tree D with internal nodes each containing an operation from ops and empty leaf nodes.75

Question: Can the expression tree be completed by assigning each value in A to exactly76

one leaf node such that the tree evaluates to t?77

The first variant fixes the ordering of leaf nodes of the tree, and asks whether an expression78

can be formed which reaches the target. The second variant constrains the shape of the tree79

and internal node operations, and asks whether an ordering of the leaves can be found which80

evaluates to the target. We represent all instances of these variants by triples (A, t,D) where81

A = {a1, a2, . . . an} is a multiset of values, t is the target value, and D is additional data for82

the instance: a leaf ordering for EL, and an expression tree for EO.83

In this paper, we prove hardness results in all of these variants by reduction from Parti-84

tion and related problems listed in Appendix A, and develop polynomial or pseudopolynomial85

algorithms where appropriate. Table 1 summarizes our results. In particular, we prove86

NP-hardness with L = N for the Standard and EO variants for all subsets of operations87

{+,−,×,÷}. Note that all of these problems are in NP: simply evaluate the expression given88

as a certificate.89

Operations Standard Enforced Operations Enforced Leaves
{+} ∈ P ∈ P ∈ P
{−} weakly NP-complete weakly NP-complete weakly NP-complete
{×} ∈ P ∈ P ∈ P
{÷} strongly NP-complete strongly NP-complete strongly NP-complete
{+,−} weakly NP-complete weakly NP-complete weakly NP-complete
{+,×} weakly NP-complete (§3) weakly NP-completea (§5) weakly NP-complete
{+,÷} weakly NP-complete strongly NP-complete Open
{−,×} weakly NP-complete strongly NP-complete weakly NP-complete
{−,÷} weakly NP-complete strongly NP-complete Open
{×,÷} strongly NP-complete strongly NP-complete strongly NP-complete
{+,−,×} weakly NP-complete (§3) strongly NP-complete weakly NP-complete (§4)
{+,−,÷} weakly NP-complete strongly NP-complete Open
{+,×,÷} weakly NP-complete (§3) strongly NP-complete weakly NP-complete
{−,×,÷} weakly NP-complete strongly NP-complete Open
{+,−,×,÷} weakly NP-complete (§3) strongly NP-complete Open
Table 1 Our results for Arithmetic Expression Construction. Bold font indicates NP-completeness

results that are tight; for weakly NP-complete results, this means that we have a corresponding
pseudopolynomial-time algorithm. The proof is given in the section in parentheses, or if no number
is given, in the full paper.

a Strong in all variables except the target t

Our first step is to show that, for any k and k′, there is a polynomial-time reduction
from the k-variable variant to the k′-variable variant. Such a reduction is trivial for k ≤ k′
by leaving the instance unchanged. For the converse, we present the Rational Function

ISAAC 2020

41:4 Arithmetic Expression Construction

Framework in Section 2, which provides a polynomial-time construction of a positive integer B
on an instance I (i.e., set of values {ai}, t ∈ N[x1, . . . , xk]) such that replacing xk = B yields
a solvable instance if and only if I is solvable. That is, for all variants var ∈ {Std,EO,EL},
we obtain a simple reduction

(N[x1, . . . , xk], ops)-AEC-var→ (N[x1, . . . , xk−1], ops)-AEC-var

Because this reduction preserves algebraic properties, it yields interesting positive results in ad-90

dition to hardness results. For example, this result demonstrates that (N[x1, . . . , xk], {+,−})-91

AEC-Std has a pseudopolynomial-time algorithm via a chain of reductions to (N, {+,−})-92

AEC-Std which is equivalent to the classic Partition problem.93

1.2 Notation94

Beyond the I = (A, t,D) instance notation introduced above, we often use the variable E95

to denote an expression; the Standard variant is to decide whether ∃E : E(A) = t. We also96

use “ev(·)” to denote the value of an expression at a node of an expression tree (i.e., the97

evaluation of the subtree whose root is that node).98

1.3 Outline of Paper99

In Section 2, we describe the Rational Function Framework which demonstrates equivalence100

between AEC variants over different numbers of free variables. In Section 3, we present the101

structure theorem which will be used to prove hardness of the nontrivial cases of Standard102

and we present a proof of the full case with it. In Section 4, and Section 5, we sketch two103

selected interesting reductions for Enforced Leaves and Enforced Operations respectively.104

The rest of our hardness proofs along with pseudopolynomial algorithms for some weakly105

NP-hard problems can be found in the full paper. Appendix A lists the problems we reduce106

from for our hardness proofs.107

2 Rational Function Framework108

In this section, we present the rational function framework. This framework proves the109

polynomial-time equivalence of all Arithmetic Expression Construction variants with values110

as ratios of polynomials with integer coefficients, that is, Q(x1, . . . , xk), for differing k. This111

equivalence also allows us to restrict to N[x1, . . . , xk] and critically will make proving hardness112

for variants over N easier by allowing us to reduce to N[x1, . . . , xk] versions.113

I Theorem 1. For all ops ⊆ {+,−,×,÷}, for all variants var, for all integers k > 0, there
exists an efficient algorithm A mapping instances I to positive integers A(I) such that a
polynomial-time reduction

(Q(x1, . . . , xk), ops)-AEC-var→ (Q(x1, . . . , xk−1), ops)-AEC-var

is given by substituting xk = B in an instance I for any B ∈ N satisfying B ≥ A(I).114

To formalize the idea of a “big enough” B, we introduce the concept of sufficiency of115

integers for instances of AEC. Let B be a positive integer and let I = (A, t = ft/gt, D) be a116

(Q(x1, . . . , xk), ops)-AEC-var instance. Loosely, we consider B to be (I, ops, var)-sufficient117

if substituting xk = B in instance I creates a valid reduction on I, as in Theorem 1.118

We will shorten the terminology and call this I-sufficient or sufficient for I when ops119

and var are clear from context. Theorem 1 says there is an efficient algorithm that produces120

L. Alcock et al. 41:5

sufficient integers. Note that this definition is not yet rigorous. To remedy this we introduce121

the paired model of computation on rational functions.122

In the paired model of computation, objects are given by pairs (f, g) of integer-coefficient123

polynomials f, g ∈ Z[x1, . . . , xk]. Intuitively, the paired model simulates rational functions124

by (f, g) ↔ f/g. We define operations (+,−,×,÷) and equivalence relation (∼) on pairs125

(a, b) and (f, g) as follows:126

(f, g) + (a, b) = (fb+ ga, gb)127

(f, g)− (a, b) = (fb− ga, gb)128

(f, g)× (a, b) = (fa, gb)129

(f, g)÷ (a, b) = (fb, ga)130

(f, g) ∼ (a, b)⇔ fb = ga131
132

As mentioned, the intuition is that f is the numerator and g is the denominator of a133

ratio of polynomials with integer coefficients. The utility of the model is that it keeps track134

of rational functions as specific quotients of integer coefficient polynomials. This will remove135

the ambiguity of representation of elements in Q(x1, . . . , xn). Such a model allows us to136

make arguments about which polynomials can occur in the numerator and denominator of a137

rational function, such as by defining the range of these polynomials.138

We can define Arithmetic Expression Construction in the paired model for all variants139

by changing target and values into pairs and using all the operations as defined above. An140

instance in the paired model is solvable if there exists an expression E in values from A and141

satisfying conditions imposed byD such that given (f, g) = E(A), we have (f, g) ∼ t = (ft, gt).142

For example, in enforced leaves, the entries of leaves of E must be in the order specified143

by D, and in enforced order, the expression E is already specified and one must reorder A.144

The only difference is that we now compute in the paired model rather than with rational145

functions.146

Similarly, note that one can convert instances in the paired model to the nonpaired147

model via mapping entries (fi, gi) 7→ fi/gi and for a nonpaired model, one can always write148

r ∈ Q(x1, . . . , xk) as fi/gi where fi, gi have integer coefficients.2 A paired instance of AEC is149

solvable if and only if it’s nonpaired variant is solvable. We now rigorously define sufficiency150

in Definition 2 and characterize its use in Lemma 3.151

I Definition 2. Let B be a positive integer, and I = (A, t = ft/gt, D) be an instance of152

(Q(x1, . . . , xk), ops)-AEC-var. Represent I in the paired model. Suppose that, for every153

evaluation (f, g) = E(A) of a valid AEC expression E (as restricted by D) in the paired154

model, the norms of the coefficients of fgt and ftg are all less than B/2. Then B is155

(I, ops, var)-sufficient.156

I Lemma 3. Given an instance I = (A, t = ft/gt, D) of (Q(x1, . . . , xk), ops)-AEC-var and157

B ∈ N which is I-sufficient as defined above. Let E(·) be some expression from a valid ops158

expression tree according to D. Then, for every evaluation of E over the polynomials in A,159

one has:160

161

E ({(ai(x1, . . . , xk)}ai∈A) = t(x1, . . . , xk)162

⇔ E ({ai(x1, . . . , xk−1, B)}ai∈A) = t(x1, . . . , xk−1, B).163
164

2 Note that this representation is not unique!

ISAAC 2020

41:6 Arithmetic Expression Construction

The proof of this lemma can be found in the full paper. Essentially, this lemma shows165

that constructing I-sufficient integers efficiently is sufficient to prove our main theorem. The166

rest of this section is dedicated to the polynomial-time construction of I sufficient integers B167

by an algorithm A.168

Let
m(f) :=

(
deg(f) + k

deg(f)

)
where m(f) is the maximum number of terms a k-variable polynomial f of degree deg(f)
can have. Let maxcoeff(f) denote the max of all of the norms of coefficients of f . That is,

maxcoeff(f) = max
c
{|c| : c coefficient of f}.

Now we are ready to present an integer sufficient for an instance.169

I Lemma 4. Let I = (A, t,D) be an instance of (Q(x1, . . . , xk), ops)-AEC-var. Then

B = 2m(t) maxcoeff(t)(2Mq)n

is sufficient for I, where n = |A|, q := maxfi/gi∈A(maxcoeff(fi),maxcoeff(gi)) is the largest170

coefficient appearing in a paired polynomial within A, and M =
∑
ai∈Am(ai).171

Remark: The algorithm presented in the proof (found in the full paper) gives a large B
that will give blowup sizes which are unnecessary for most AEC instances. One key use of
sufficiency is to facilitate proofs with lower blowup. Often times we will have the following
situation: We will give a reduction from a partition-type problem P to (Q(xi), ops)-AEC-var
and construct (I, ops, var)-sufficient B such that the composition

P → (Q(x1, . . . , xk), ops)-AEC-var→ (N, ops)-AEC-var

is a valid reduction.172

2.1 Possible Generalizations to the Rational Framework173

In this section, we informally explore the possibility of extending the rational framework to174

the problems more general than expression construction, such as circuits. The generalization175

to circuits naturally becomes an arithmetic version of the Minimum Circuit Size Problem.176

The original Minimum Circuit Size Problem (MCSP) [9] asks if given a truth table and177

an integer k, can you construct a boolean circuit of size at most k that computes the truth178

table; this problem has many connections throughout complexity theory. A new variant,179

“Arithmetic MCSP” would ask if given n values in {a1, . . . , an} ⊆ L, within 0 < k < n180

operations from {+,−,×,÷} can you construct a target t ∈ L?3 For L = Q(x1, . . . , xk), this181

problem asks whether a given rational function is constructible by an arithmetic circuit of182

size at most k starting from a set of rational functions. It would be very useful if the rational183

framework could be adapted for Arithmetic MCSP; this would demonstrate an equivalence184

between the problem of circuit construction of rational functions and of reaching a rational185

number given input rational numbers.186

3 Note that since we can reuse values here, picking k to be less than n is the same as picking k to be
bounded by a fixed polynomial p(n) by a padding argument. That is, you can reduce from this problem
where you specify k < p(n) to k < n by padding any given instance A with ≈ p(n) copies of a1. This is
similar to the proof that linear space simulation is PSPACE complete.

L. Alcock et al. 41:7

Unfortunately, the reduction methods provided above do not work naively for circuits:187

Given a polynomial-sized “sufficient” B as presented, and a polynomial of the form cx, the188

term (c2k

x2k) is formable by repeated squaring. That is, we can form superpolynomial189

coefficents that will be bigger than B. This removes the concept of “sufficiency” which is a190

key requirement for the rational framework as it is.191

On the bright side, the rational framework should work for Arithmetic Minimum Formula192

Constructions. Arithmetic formulae are expression trees with internal nodes operations193

{+,−,×,÷} except that one may use the input values in A a flexible number of times. This194

is analogous to Boolean formulae; indeed, Minimum Boolean Formula problems [3, 8] have195

also received significant attention. We can define Arithmetic Minimum Formula Construction196

as follows: Given multiset A ⊆ L, target t, 0 < k < n, can you give a formula of size at most197

k with values in A which reaches a target t ∈ L?198

The intuitive reason that the rational framework should hold in this case is because199

formulae still have a tree structure and the number of leaves is polynomial. Thus, the same200

proofs in the rational framework will carry over. However, we expect the complexity and201

hardness proofs for this family of problems should be very different than those in this paper.202

All the reductions in this paper are from Partition-type problems, which allow for at most a203

single use of each input number. Hardness of this family of problems and generalizations of204

the rational function framework are interesting areas for further study.205

3 Arithmetic Expression Construction Standard Results206

In this section, we provide NP-hardness proofs for operations {+,×} ⊆ S ⊆ {+,−,×,÷}207

of the Standard variant of Arithmetic Expression Construction. In the full paper, we give208

similar reductions that cover all other subsets of operations.209

All of these results use the rational function framework described in Section 2.210

First, we outline some proof techniques that are used in this section to both combine211

proofs of results from differing sets of operations as well as simplify them. The first comes212

from the observation that if an instance of (L, S)-AEC-Std is solvable, then for any operation213

set S′ ⊃ S, the same instance will be solvable in (L, S′)-AEC-Std. This allows us to bundle214

reductions to several AEC-Std cases simultaneously by giving a reduction (R) from some215

partition problem P to (L, S)-AEC-Std and proving that if any constructed instance is216

solvable in (L, S′)-AEC-Std, the partition instance is also solvable. That is, we have the217

following implications:218

P -instance x Solvable R(x) is S-Solvable

R(x) is S′-Solvable

219

I Theorem 5. Standard {+,×} ⊆ S ⊆ {+,−,×,÷} is weakly NP-hard by reduction from220

SquareProductPartition-n/2.221

We spend the remainder of this section proving this theorem.222

We will reduce from SquareProductPartition-n/2 (defined in Appendix A) to223

(Z[x, y, z], S)-AEC-Std. On an instance {a1, . . . , an} with all ai ≥ 2,4 of SquareProduct-224

Partition-n/2 construct the following:225

4 We can assume this property with loss of generality by replacing all ai with 2ai.

ISAAC 2020

41:8 Arithmetic Expression Construction

Let

By = y − xn/2
√∏

i

ai; Bz = z − xn/2
√∏

i

ai.

We then construct the instance of Arithmetic Expression Construction with input set226

A = {By, Bz} ∪ {aix}i and target t = yz. Here the square root of the product of all ai is227

the value we want each partition to achieve, the polynomial xn/2 will help us argue that we228

must multiply all of our ai values, and By, Bz are gadgets which will force a partitioned tree229

structure as given by Theorem 8. Methods from Section 2 allow us to construct a reduction230

by replacing x, y, and z with sufficient integers B1, B2 and B3.231

It is clear that if the SquareProductPartition-n/2 is solvable then this AEC instance232

is solvable with operations {+,×} ⊆ S. On the partition with equalized products, partition233

the aix terms into corresponding sets and take their products to get two polynomials of value234

xn/2√∏
i ai. Then form (By + xn/2√∏

i ai)(Bz + xn/2√∏
i ai) = yz.235

Next, we prove the converse via contradiction by proving the following theorem that will236

be useful for the other AEC-Std cases. This theorem shows that any expression tree which237

evaluates to target t ≈ yz on an instance of similar structure to the constructed instance238

above must have a very particular partitioned structure described in Theorem 8. This will be239

the key to showing the soundness of our reduction. We use ev(T) to refer to the evaluation240

of the subtree rooted at node T .241

Before stating Theorem 8, we first introduce the concept of Q(x)-equivalence and give a242

couple of characterizations of it:243

I Definition 6. Given a field K with a subfield F , for L1, L2 ∈ K − F , we say L1 and L2244

are F -equivalent (written L1 ∼F L2) if by a sequence of operations between L1 and elements245

of F we can form L2.246

The following lemma gives an alternate characterization of ∼F :247

I Lemma 7. ∼F is an equivalence relation and L2 ∼F L1 if and only if for some ci, di ∈ F
with c1d2 − c2d1 6= 0,

L2 = c1L1 + d1

c2L1 + d2

We will refer to Q(x) equivalence with respect to Q(x) as a subfield of Q(x, y, z).248

We now state our structure theorem:249

I Theorem 8. For any S ⊆ {+,−,×,÷}, let I be a solvable (Q(x, y, z), S)-AEC-Std250

instance with entries of the form {By, Bz} ∪ {ri(x)}i where By ∼Q(x) y,Bz ∼Q(x) z, and251

ri ∈ Q[x] and target t with t ∼Q(x) yz. Then any solution expression tree for I has the252

form depicted in Figure 2: The operation at the least common ancestor of leaves By and253

Bz, denoted N , is × or ÷, and ev(N) = (lyz)±1, l ∈ Q(x). For Ty, Tz the children of N254

containing By, Bz respectively, ev(Ty) = (ay)±1, ev(Tz) = (a′z)±1, where a, a′ ∈ Q(x).255

L. Alcock et al. 41:9

N

(lyz)±1

(ay)±1

xa1 xa2

By

(a′z)±1

Bz

xa3 xa4

xa5

xa6 xa7Ty Tz

Figure 2 Example expression tree for standard {+,−,×,÷}.

Proof. In our expression tree T , N is the least common ancestor between By and Bz. One
has that

ev(N) = eyz + f

gyz + h
, eh− gf 6= 0, e, f, g, h ∈ Q(x)

since ev(N) is combined with a sequence of operations with elements in Q(x) to form t. That256

is, it is Q(x) equivalent to yz.257

Let Ty be the child of N containing By as a leaf and Tz the child of N containing Bz. A
priori we know

ev(Ty) = ay + b

cy + d
, ev(Tz) = a′z + b′

c′z + d′
, ev(N) = eyz + f

gyz + h
,

ad− bc 6= 0, a′d′ − b′c′ 6= 0, eh− fg 6= 0, a, b, c, d, a′, b′, c′, d′, e, f, g, h ∈ Q(x)

by similar Q(x)-equivalence arguments. The rest of the proof is casework done via trying258

out different operations at N . We will see that if the operation is ×,÷ then the evaluations259

must be of the form described in the statement of the theorem and that if the operation is ±260

then we reach a contradiction.261

First we check the case that the operation at N is ×. For this argument we’ll reduce to a262

set of equations in Q(x)[y, z] and make some divisibility arguments using the fact that this263

is a unique factorization domain.264

ay + b

cy + d
· a
′z + b′

c′z + d′
= eyz + f

gyz + h
265

⇒ (ay + b)(a′z + b′)(gyz + h) = (cy + d)(c′z + d′)(eyz + f)266
267

If both e, f 6= 0, then eyz+f is irreducible and since eyz+f |(ay+b)(a′z+b′)(gyz+h) we find268

that eyz + f |gyz + h and eyz+f
gyz+h = l ∈ Q(x). However, this would contradict ev(N) ∼Q(x) yz.269

We conclude that exactly one of e, f is nonzero. A similar argument with gyz + h allows270

us to conclude that at most one of g, h is nonzero. We cannot have g = 0 and e = 0, or we271

would have ev(N) ∈ Q(x). This reduces us to the case that ev(N) = (lyz)±1. We now have272

one of the two cases:273

(ay + b)(a′z + b′) = lyz(cy + d)(c′z + d′) (1)274

lyz(ay + b)(a′z + b′) = (cy + d)(c′z + d′) (2)275
276

ISAAC 2020

41:10 Arithmetic Expression Construction

For the first case to hold one must have c = c′ = 0 for the degrees in y and z to match up.
Given c = c′ = 0, one must also have b = b′ = 0 so that the right hand side of the equation
is divisible by yz. A similar argument for the second case yields a = a′ = d = d′ = 0. For
multiplication, this case is covered. If the operation is division, one gets the relation:

ay + b

cy + d
÷ a′y + b′

c′y + d′
= ay + b

cy + d
· c
′y + d′

a′y + b′
= eyz + f

gyz + h

and the same argument follows through.277

Next we show that the operation at N can not be +:278

ay + b

cy + d
+ a′z + b′

c′z + d′
= eyz + f

gyz + h

((ac′ + a′c)yz + (ad′ + b′c)y + (bc′ + a′d)z + (bd′ + b′d))(gyz + h)
= (cy + d)(c′z + d′)(eyz + f) (3)279

Starting with a similar divisibility argument, if g, h 6= 0, we find that gyz + h is irreducible280

and that gyz + h|eyz + f, eyz+h
gyz+f ∈ Q(x). Thus either g = 0 or h = 0.281

Suppose g = 0. Then we must have e 6= 0 to maintain ev(N) ∼Q(x) yz. With nonzero e,282

one must have that c = c′ = 0 so that the RHS of equation (9) has degree no bigger than the283

left hand side. The coefficient of yz on the LHS of the equation is (ac′ + a′c)h = 0 and the284

coefficient of yz on the RHS is edd′ which must be nonzero and thus we get a contradiction.285

Suppose h = 0. We must have g, f 6= 0 to maintain ev(N) ∼Q(x) yz. The LHS of the286

equation is divisible by yz. Thus yz|(cy + d)(c′z + d′)(eyz + f) and this can only occur if287

d = d′ = 0 and c, c′ 6= 0. Expanding the equations now and looking at the coefficient of yz288

in the LHS and RHS we find: 0 6= cc′f = g(bd′ + b′d) = 0. This concludes the proof of our289

helper theorem. J290

Now we will return to our proof of the soundness of the reduction to AEC-Std. Suppose291

that the constructed instance I is solvable and the product partition instance is not solvable.292

Then for some S ∈ {leaves(Ty) ∩ {aix}, leaves(Tz) ∩ {aix}}, either293

1. S contains < n/2 leaves aix.294

2. S contains n/2 leaves aix with product αxn/2 with α <
√∏

i ai.295

WLOG let this set be leaves(Ty) ∩ {aix}. In the next two claims, we prove that in neither of296

these two cases can a subtree evaluate to an expression of the form (ay)±1 as Theorem 8297

requires.298

B Claim 9. If Ty contains < n/2 leaves {aix} and y′ = y − xn/2
√∏

ai, then ev(Ty) is not299

of the form (ay)±1 for any a ∈ Q[x].300

Proof. The value of any subtree can be written in the form p(x,y′)
q(x,y′) for polynomials p and301

q. Let degx(p(x,y′)
q(x,y′)) = max(degx(p(x, y′)),degx(q(x, y′))). This degree is subadditive for302

the four arithmetic operations (+,−,×,÷). Also, if degx(p ± q) ≤ 0, degx(p ∗ q) ≤ 0, or303

degx(p/q) ≤ 0, then degx(p) = degx(q).304

By induction, the degree in x (resp. to y′) at a node A is at most the number of leaves of305

A’s subtree of the form aix. This is true for the leaves (degx(aix) = 1), and subadditivity306

proves it for the inductive step.307

Hence ev(Ty) has degree at most 1 in y′ and less than n/2 in x. If ev(Ty) = (ay)±1 =308

(a(y′+xn/2)±1) for nonzero a ∈ Q(x), then it has degree at least n/2 in x, a contradiction. J309

B Claim 10. If Ty contains n/2 leaves aix with
∏
i ai = α <

√∏
i ai and y′ = y−xn/2

√∏
ai,310

then ev(Ty) is not of the form (ay)±1 for any a ∈ Q(x).311

L. Alcock et al. 41:11

Proof. First, we rewrite our target ev(Ty) in terms of y′, yielding ev(Ty) = (a(y′ +312

xn/2
√∏

ai))±1. We will first show that regardless of the value of a, the maximum coeffi-313

cient of the rational function ev(Ty) is at least
√∏

ai. Note that since y′ is not in Q(x),314

(y′ + xn/2
√∏

ai) is an irreducible polynomial in x, so the denominator of a will never315

cancel out with anything. Thus, we only consider the numerator of a. Consider the leading316

coefficient of the numerator of the product. This leading coefficient must be exactly the317

product of the leading coefficient of the numerator of a and xn/2
√∏

ai. Since the leading318

coefficient of the numerator of a is an integer, it must be at least 1, so the leading coefficient319

of the numerator of a(y′ + xn/2
√∏

ai) must be at least xn/2
√∏

ai.320

From our reduction we have that all the ai are at least 2, and the largest possible integer321

that can be generated from the ai and arithmetic operations is their product α. Every322

coefficient of ev(Ty) is some combinations of arithmetic operations of the ai since it is323

comprised of the aix and y′ and arithmetic operations. Thus, it is not possible for ev(Ty) to324

ever have a coefficient of at least xn/2
√∏

ai. Thus, from the above argument it cannot be325

of the form (a(y′ + xn/2
√∏

ai))±1. J326

Note that the proof of this claim yields a reduction from SquareProductPartition-n/2
to (Z[x, y, z], S)-AEC-Std for all {+,×} ⊆ S ⊆ {+,−,×,÷}. Using our rational function
framework, we get a reduction from (Z[x, y, z], S)-AEC-Std to (Z, S)-AEC-Std by replace-
ments5 based on instance I with

x = B1 = A(I), y = B2 = A(I(B1)), z = A(I(B1, B2)).

However, since the reduction is of the form

{y − αxn/2, z − αxn/2} ∪ {aix},

if we replace B2 with B′2 = max(B2, 1 + αB
n/2
1), and B3 with B′3 = max(A(I(B1, B

′
2)), 1 +327

α(A((B1, B
′
2)))n/2) this will yield still sufficient B2, B3 such that the composition of these328

maps is a reduction from ProductPartition-n/2 to (N, S)-AEC-Std.329

4 Arithmetic Expression Construction Enforced Leaves {+,−,×}330

Recall that an instance of the Enforced Leaves (EL) AEC variant has a fixed ordering331

of leaves (operands), and the goal is to arrange the internal nodes of the expression tree332

such that the target t is the result of the tree’s evaluation. In this section we present a333

proof sketch for the weak NP-hardness of (N[x, y], {+,−,×})-AEC-EL. Using the technique334

described in Section 2, this also proves NP-hardness of (N, {+,−,×})-AEC-EL. In the full335

paper, we provide the full proof and present additional hardness proofs for operation sets336

{−,×}, {+,×}, {+,×,÷}.337

Our proof is a reduction from SetProductPartitionBound-K. This strongly NP-hard338

problem asks if given a set (without repetition) of positive integers A = {a1, a2, . . . , an}339

where all ai > K and all prime factors of all ai are also greater than K, we can partition A340

into two subsets with equal products. The problem is also defined formally in Appendix A.341

B Claim 11. (N[x, y], {+,−,×})-AEC-EL is weakly NP-hard.342

5 Note that this denotes replacing with Bi which are I-sufficient but since this is done via three reductions
the instance I changes. Therefore, when replacing with B2, you need B2 to be I(B1) sufficient (i.e., the
instance I with x = B1 replaced). Similar requirements hold for B3.

ISAAC 2020

41:12 Arithmetic Expression Construction

Proof sketch. This statement is proved via reduction from SetProductPartitionBound-
3. Let the instance be A = {a1, . . . , an}, where all prime factors of all ai ∈ A (and all ai
themselves) are greater than 3. We find n unique primes pi with some additional properties
specified in the appendix. Let L = 2n

∏
i∈[n] ai. Then for each ai we can construct terms bi

and ci such that bi + ci = (Lai)piy and bi − ci = (L/ai)piy. We set our target polynomial as
t(x, y) = Lnxn−1yn

∏
i∈[n] pi, and we enforce the following order of leaves:

b1 c1 x b2 c2 x · · · x bn cn

If an instance of this product partition variant is solvable, then the constructed instance343

evaluates to t(x, y) = Lnxn−1yn
∏
i∈[n] pi when we have (bi + ci) for ai in one partition344

and (bi − ci) for ai in the other, and the × operator at every other node. The partition345

corresponds to whether the ai was written as a difference or a sum.346

We must also show that any expression achieving the target must take the form above. We347

restrict the set of possible forms by (1) inducting to show that each subtree of a solution must348

have degree in x equal to its number of leaves of value x, (2) counting primes factors of the349

highest degree term to show that subtrees with no x values must be of form {±bi,±ci,±bi±ci},350

(3) a divisibility argument to show that sums of elements of form {±bi,±ci,±bi ± ci} as351

appearing in any evaluation of a subtree is nonzero, and (4) an argument on the degree of y352

for terms with degree 0 in x to show that these sums can never be cancelled. J353

In the full paper, we expand on details and rigorously prove that the final evaluation354

must be of the described form.355

5 Arithmetic Expression Construction Enforced Operations {+,×}356

This section concerns the Enforced Operations (EO) variant of AEC. Here, we give a short357

proof for the NP-hardness of (N, {+,×})-AEC-EO; see the full paper for straightforward358

proofs for all the other operation sets. Note that for Enforced Operations, if we prove359

hardness for enforced operations with set S, we have also proved it for all S′ ⊃ S, since in360

Enforced Operations, the expression tree can be restricted to using operations in reductions.361

B Claim 12. (N, {+,×})-AEC-EO is weakly NP-hard.362

Proof. This proof proceeds by reduction from 3-Partition-3, which is 3-Partition with
the extra restriction that all the subsets have size 3. Given an instance of 3-Partition-3,
A = {a1, a2, · · · , an}, construct instance IA of (N, {+,×})-AEC-EO with the same set of

values A, target t =
(

S
n/3

)n/3
, where S =

∑
i ai, and expression-tree:

(2 + 2 + 2)× (2 + 2 + 2)× · · · × (2 + 2 + 2),

where there are n/3 pairs of parentheses and 3 positive integers between each pair of363

parentheses.364

Given a solution of the 3-Partition-3 instance, one can use the same partition to fill365

in the 3-sums and solve our (N, {+,×})-AEC-EO instance. If the constructed instance is366

solvable, we claim that each expression (2 + 2 + 2) must have equal value. Denote the367

value of the ith (2 + 2 + 2) by si. Since
∑
i si = S, the arithmetic mean-geometric mean368

inequality yields
∏n/3
i=1 si ≤

(
S
n/3

)n/3
, with equality occurring if and only if si = S

n/3 for all369

i. This completes the proof. J370

L. Alcock et al. 41:13

A Related Problems371

To show the NP-hardness of the variants of Arithmetic Expression Construction, we reduce372

from the following problems:373

I Problem 4 (Partition).374

Instance: A multiset of positive integers A = a1, a2, . . . , an.375

Question: Can A be partitioned into two subsets with equal sum?376

Reference: [6], problem SP12.377

Comment: Weakly NP-hard.378

I Problem 5 (Partition-n/2).379

Instance: A multiset of positive integers A = a1, a2, . . . , an.380

Question: Can A be partitioned into two subsets with equal size n
2 and equal sum?381

Reference: [6], problem SP12.382

Comment: Weakly NP-hard.383

I Problem 6 (ProductPartition).384

Instance: A multiset of positive integers A = a1, a2, . . . , an.385

Question: Can A be partitioned into two subsets with equal product?386

Reference: [11].387

Comment: Strongly NP-hard.388

I Problem 7 (ProductPartition-n/2).389

Instance: A multiset of positive integers A = a1, a2, . . . , an.390

Question: Can A be partitioned into two subsets with equal size n
2 and equal product?391

Comment: Strongly NP-hard. See Theorem 13.392

I Problem 8 (SquareProductPartition).393

Instance: A multiset of square numbers A = a1, a2, . . . , an.394

Question: Can A be partitioned into two subsets with equal product?395

Comment: Strongly NP-hard. See Theorem 14.396

I Problem 9 (SquareProductPartition-n/2).397

Instance: A multiset of square numbers A = a1, a2, . . . , an.398

Question: Can A be partitioned into two subsets with equal size n
2 and equal product?399

Comment: Strongly NP-hard. See Theorem 14.400

I Problem 10 (SetProductPartitionBound-K).401

Instance: A set (without repetition) of positive integers A = a1, a2, . . . , an where ai > K402

and all prime factors of ai are also greater than K. K is fixed and the prime factors are not403

specified in the instance.404

Question: Can A be partitioned into two subsets with equal product?405

Reference: [11].406

Comment: Strongly NP-hard by a modification of the proof for ProductPartition in407

[11]. The reduction constructs a set of positive integers A where all elements are unique,408

which we modify by choosing primes factors > K when constructing A.409

I Problem 11 (3-Partition-3).410

Instance: A multiset of positive integers A = a1, a2, . . . , an, with n a multiple of 3.411

Question: Can A be partitioned into n/3 subsets with equal sum, where all subsets have412

size 3?413

ISAAC 2020

41:14 Arithmetic Expression Construction

Reference: [6], problem SP15.414

Comment: Strongly NP-hard, even when all subsets are required to have size 3 (3-415

Partition3).416

I Theorem 13. ProductPartition-n/2 is strongly NP-complete.417

Proof. We can reduce from ProductPartition to ProductPartition-n/2. Given in-418

stance of ProductPartition {a1, · · · , an}i with n elements, where n is even, we construct419

an corresponding instance of ProductPartition-n/2 as {a1, · · · , an} ∪ {1} ∗ n, where420

{1} ∗ n denotes n instances of the integer 1.421

Clearly if we have a valid solution to ProductPartition-n/2, we have a valid solution422

to the instance of ProductPartition. Conversely, given a valid solution to Product-423

Partition, two subsets S1, S2 ⊆ {ai}i with equal product, the difference between the sizes of424

S1 and S2 is at most n−2. One can then distribute the 1s as needed to even the out the num-425

ber of elements of S1 and S2. We can then construct two sets: S1 ∪{1} ∗ |S2|, S2 ∪{1} ∗ |S1|426

which form a solution to ProductPartition-n/2. Strong NP-hardness follows from strong427

NP-hardness of ProductPartition-n/2. J428

I Theorem 14. SquareProductPartition and SquareProductPartition-n/2 is429

strongly NP-complete.430

Proof. One can reduce from ProductPartition to SquareProductPartition by simply431

taking an instance I = {ai}i∈α and producing the instance I ′ = {a2
i }i∈α. Given a partition432

of α = α1 t α2 such that
∏
i∈α1

ai =
∏
i∈α2

ai, the same partition of α will produce a valid433

partition of I ′ as the squares will remain equal. The converse also holds by taking noting434

that
∏
i∈α′ ai =

√∏
i∈α′ a2

i . The same construction above, with the added requirement that435

|α1| = |α2|, will reduce from ProductPartition-n/2 to SquareProductPartition-n/2.436

Strong NP-hardness of both holds by noting that squaring integers scales their bitsize by a437

factor of 2. J438

References439

1 Divesh Aggarwal and Ueli Maurer. Breaking RSA generically is equivalent to factoring. In440

Antoine Joux, editor, Advances in Cryptology — EUROCRYPT 2009, pages 36–53, Berlin,441

Heidelberg, 2009. Springer Berlin Heidelberg.442

2 Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern Approach. Cambridge443

University Press, USA, 2009.444

3 David Buchfuhrer and Christopher Umans. The complexity of boolean formula minimization. In445

Luca Aceto, Ivan Damgard, Leslie Ann Goldberg, Magnús M. Halldórsson, Anna Ingólfsdóttir,446

and Igor Walukiewicz, editors, Automata, Languages and Programming, pages 24–35, Berlin,447

Heidelberg, 2008. Springer Berlin Heidelberg.448

4 E. W. Dijkstra. ALGOL-60 translation. Technical Report MR 34/61, Rekenafdeling, Stichting449

Mathematisch Centrum, 1961. URL: https://ir.cwi.nl/pub/9251.450

5 Peter Downey, Benton Leong, and Ravi Sethi. Computing sequences with addition chains.451

SIAM Journal on Computing, 10(3):638–646, 1981.452

6 Michael R. Garey and David S. Johnson. Computers and Intractability. W. H. Freeman and453

Company, New York, 2002.454

7 Daniel M. Gordon. A survey of fast exponentiation methods. Journal of Algorithms, 27:129–146,455

1998.456

8 Edith Hemaspaandra and Henning Schnoor. Minimization for generalized boolean formulas.457

arXiv:1104.2312, 2011.458

https://ir.cwi.nl/pub/9251

L. Alcock et al. 41:15

9 Valentine Kabanets and Jin yi Cai. Circuit minimization problem. In Proceedings of the 32nd459

Annual ACM Symposium on Theory of Computing, pages 73–79, Portland, OR, 2000.460

10 Ueli Maurer. Abstract models of computation in cryptography. In Nigel P. Smart, editor,461

Cryptography and Coding, pages 1–12, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.462

11 C. T. Ng, M. S. Barketau, T. C. E. Cheng, and Mikhail Y. Kovalyov. “Product Partition”463

and related problems of scheduling and systems reliability: Computational complexity and464

approximation. European Journal of Operational Research, 207(2):601–604, 2010. doi:465

10.1016/j.ejor.2010.05.034.466

12 Arnold Scholz. Aufgaben und Lösungen 253. Jahresbericht der Deutschen Mathematiker-467

Vereinigung, 47:41–42, 1937.468

13 Victor Shoup. Lower bounds for discrete logarithms and related problems. In Walter Fumy,469

editor, Advances in Cryptology — EUROCRYPT ’97, pages 256–266, Berlin, Heidelberg, 1997.470

Springer Berlin Heidelberg.471

14 Joachim von zur Gathen. Algebraic complexity theory. In Annual Review of Computer Science,472

volume 3, pages 317–347. Annual Reviews Inc., 1988.473

15 Wikipedia. 24 game. https://en.wikipedia.org/wiki/24_Game.474

ISAAC 2020

https://doi.org/10.1016/j.ejor.2010.05.034
https://doi.org/10.1016/j.ejor.2010.05.034
https://doi.org/10.1016/j.ejor.2010.05.034
https://en.wikipedia.org/wiki/24_Game

	1 Introduction
	1.1 Problem Variants and Results
	1.2 Notation
	1.3 Outline of Paper

	2 Rational Function Framework
	2.1 Possible Generalizations to the Rational Framework

	3 Arithmetic Expression Construction Standard Results
	4 Arithmetic Expression Construction Enforced Leaves {+, –, ×}
	5 Arithmetic Expression Construction Enforced Operations {+, ×}
	A Related Problems

