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why analyzable models?

why models?
› figure out what problem you’re solving
› explore invented concepts
› communicate with collaborators

why analyzable?
› not just finding errors early
› analysis breathes life into models!

software based on simple, strong models tends to have cleaner
interfaces, fewer bugs, and is easier to use and to maintain.
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an inspiration (POPL, 1980)
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desiderata

language must be
› small and simple
› expressive, esp. for structure
› declarative (for partiality)

analysis must be
› fully automatic
› semantically deep
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alloy: a structural, analyzable logic

a notation inspired by Z
› just (sets and) relations
› everything’s a formula
› but not easily analyzed

an analysis inspired by SMV
› billions of cases in second
› counterexamples, not proof
› but not declarative

Oxford, home of Z

Pittsburgh, home of SMV



6

formal specification

model checking

object-oriented methods
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alloy’s origins



7

demo
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ideas behind alloy

language
› every value’s a relation
› everything else is a constraint
› no hard-wired idioms

analysis
› it’s all constraint solving
› bounding the scope
› exploiting SAT
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every value’s a relation

set

function relation

scalar

sequence

Alloy

tuple

is-a

setfunction relation

scalar

sequence

Z tuple binding
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signatures: making structure first order

problem: how to get composite structures, but stay first order

traditional viewpoint
› member of set Book is a record
› addr component is a (binary) relation

alloy’s viewpoint
› member of set Book is an atom
› addr component is a ternary relation

sig Book { addr: Name -> Addr}
addr: Book -> Name -> Addr
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relational operators

all values are represented as relations
{(a),(b)} for a set
{(a)} for a scalar
{(a,b)} for a tuple

operators
p + q, p - q, p & q, ~p, *p, ^p, p in q
p . q = {(p1, … pn-1, q2, … qm) | (p1,… pn)  p . (pn,q2,… qm)  q}
p -> q = {(p1, … pn, q1, … qm) | (p1,… pn)  p . (q1,… qm)  q}

example
b’.addr = b.addr + n->a
b = {(B0)}, b’ = {(B1)}, n = {(N0)}, a = {(A0)}, addr = {(B1,N0,A0)}
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why relations are nice

easy to understand
› binary relation is a graph
› ternary relation is a graph/atom

easy to implement
› first order, so tractable
› relational kernel like compiler’s IL

uniformity
set of addresses associated with name n in set of books B
Alloy: n.(B.addr)
Z: ∪ { b: B • b.addr (| {n} |)}
OCL: B.addr[n]->asSet()
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everything else is a constraint

predicates
› invariants

pred Init (s: State) {…}
› operations

pred Op (s, s’: State) {…}
› traces

pred Traces () {
Init (first ()) and all s: State - last () | Op (s, next(s)) }

assertions
› invariants are preserved

assert Safe {all s,s’: State | Safe(s) and Op(s,s’) => Safe(s’)}
› undo works

assert UndoOK {all s,s’,s”: State | Op(s,s’) and Undo(s’,s”) => s”= s}
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no hard-wired idioms

what’s hard-wired?
› relational structure
› facts/predicates/functions/assertions
› subtypes and parametric polymorphism
› … but not: state machines, traces, attributes/associations, etc

idioms of Alloy usage
› refinement of Z-style operations (security, Bolton)
› asynchronous processes (key management, Taghdiri)
› transitions based on history (Rendezvous, Jazayeri)
› global synchronized events (Firewire, Jackson)
› recursive lookup function (Intentional Naming, Khurshid)
› object-oriented heap (Java views, Waingold)
› flat data model (access control, Zao)
› …
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sample idioms: change of state

› ‘established strategy’
sig Book {addr: Name -> Addr}
pred Clear (b, b’: Book) {no b’.addr}

› object-oriented heap
sig State {deref: Ref -> Book}
pred Clear (s, s’: State, br: Ref) {no s’.deref[br]}

› asynchronous processes
sig BookProcess {addr: Name -> Addr -> Time}
pred Clear (t, t’: Time, bp: BookProcess) {no bp.addr.t’}

› explicit events
sig Event {t: Time}
sig ClearEvent extends Event {bp: BookProcess}
pred trans (e: Event) {e in ClearEvent => no e.bp.addr.t ,…}
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sample idioms: analysis

› refactoring
pred lookup (b: Book, n: Name): set Target {…}
pred lookup’ (b: Book, n: Name): set Target {…}
assert same {all b: Book, n: Name | lookup(b,n) = lookup’(b,n)

› abstraction
pred abs {c: Concrete, a: Abstract) {…}
pred opC (c, c’: Concrete) {…}
 pred opA (a, a’: Abstract) {…}
assert refines {all a, a’: Abstract, c, c’: Concrete |

opC(c,c’) and abs(c,a) and abs(c’,a’) => opA(a,a’) }
› machine diameter

pred noRepeats () {no disj b, b’: Book | b.addr = b’.addr}
-- when noRepeats is unsatisfiable, trace is long enough
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all constraint solving

‘show me some relations satisfying these constraints’

simulation
sig Book { addr: Name -> Addr}
pred add (b, b’: Book, n: Name, a: Addr) {…}
run add
relations: b, b’, n, a, Book, Name, Addr, addr
constraint: decl constraints, facts, add

checking
assert lookupYields {all b: Book, n: b.names | some lookup(b,n)}
check lookupYields
relations: b, n, Book, Name, Addr, addr, ord/next
constraint: decl constraints, facts, axioms of next, not lookupYields
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scope

language is undecidable
› so no sound & complete algorithm

“try all small tests”
› model proper is unbounded
› user defines scope in command
› scope bounds each basic type

small scope hypothesis
› many bugs have small counterexamples
› … and models often have many bugs
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small scope hypothesis

consequences
› sound: no false alarms
› incomplete: can’t prove anything

cumulative invalid assertions 90%

smallest
revealing

scope

5

misscatch
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engine: reduction to SAT

space is huge
› in scope of 5, each relation has 225 possible values
› 10 relations gives 2250 possible assignments

will SAT help?
› SAT is hard (Cook, 1971)
› SAT is easy (Kautz, Selman et al, 1990’s)
› Chaff, Berkmin: thousands vars, millions clauses

translating to SAT
› view relation as a graph
› space of possible values: each edge is present or not
› label edge with boolean variable
› compositional translation
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analyzer architecture

translate
formula

translate
modelmapping

boolean
formula

boolean
 instance

SAT
solver

alloy
formula

alloy
instance

scope

symmetry
breaking,
template
detection,

optimizations

customized
visualization
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what I haven’t told you about…

scalability: dancing around the intractability tarpit
› implemented: symmetry, sharing, atomization
› prototyped: circuit minimization

overconstraint: the dark side of declarative models
› unsat core prototype
› highlights contradicting formulas

new type system: real subtypes
› makes semantics fully untyped
› still no casts, down or up
› catches more errors, more flexible, better performance
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experience: design analyses

case studies
› about 30 completed
› serious flaws in published designs found

distinguishing features
› complex data structures (eg, file synchronization)
› network protocol over all topologies (eg, firewire, chord)
› partial model; only some operations (eg, intentional naming)
› not state machine (eg, ideal address translation)

typically
› a few hundred lines of Alloy
› longest analysis time: 10 mins to 1 hour
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sample application: intentional naming

› a resource discovery scheme
› database and queries are attribute/value trees

Balakrishnan et al, SOSP99

building

camera

service

ne43

query

n1n0

building

camera

service

ne43 printer

database

n0

n1

n0

n0
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sample application: intentional naming

what we did
› built Alloy model from SOSP description
› checked paper’s claims: none held
› checked code fixes: they didn’t work either
› formulated and checked more basic claims

assert Monotone {
all db: DB, q: Query, r: Rec | lookup(db,q) in lookup(add(db,r),q)

› developed notion of conformance
› fixed algorithm & code

900 lines of testing code vs. 100 lines of Alloy
Khurshid & Jackson, ASE 2000
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sample application: beam scheduler

Northeast Proton Therapy Center
› 4 treatment rooms, multiplexed beam
› beam requests from treatment control rooms
› allocated by master control room
› beam scheduler automates de/allocation

what we did
› translated developer’s OCL model into Alloy
› analyzed for small flaws (simulation, invariants, etc)
› checked commutativity for all operation pairs

Request ; Alloc = Alloc ; Request
› found many non-commuting pairs, strange behaviours

Dennis, Jackson, Rayside, Seater



27

experience: education

helps teach modelling
› abstract descriptions, concrete cases
› closest useable modelling language to logic?

where’s it’s been used
› taught in about 20 courses worldwide
› mostly masters courses on modelling

how long to learn?
› undergraduate, no formal methods background
› can build and analyze small models in 2 weeks
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applications: code analysis

procedure
specification

procedure
source code

alloy formula
instance is

execution trace

alloy formula
instance is

counter trace
NOT AND

unroll loops,
bound heap

applied to small, complex algorithms
› Schorr-Waite garbage collection
› red-black trees

Mandana Vaziri’s doctoral thesis
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applications: test case generation

why?
› easier to write invariant than test cases
› all test cases within scope give better coverage
› symmetry breaking gives good quality quite

applied to Galileo, a NASA fault tree tool
› generated about 50,000 input trees, each less than 5 nodes
› found unknown subtle flaws

Sarfraz Khurshid’s doctoral thesis

invariant,
precondition

Alloy
instances

Alloy
Analyzer

Concretizer test cases
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new views on old questions

mathematical or informal models?
› not about Greek symbols (but removing them helps)
› mathematical means simple & analyzable
› real challenge for novices is abstraction

executable or abstract?
› alloy: you can have your cake and eat it (slowly)
› compromise higher order, not declarative features

simulation or verification?
› really the same: show me a good (bad) state
› it’s not about subtle bugs
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tool impact

developing a tool
› sanity check on language design
› complexity is intolerable
› good for implementation = good for users?
› visualization is crucial

using a tool
› amazing how many errors are exposed
› raises the bar, gives sense of confidence
› simulation is under-rated: it works!
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some research based on alloy

› automatic analysis of action diagrams
-- R. Venkatesh, TCS India

› discovery of refinements
-- Christie Bolton, Oxford

› Ag: Alloy with dynamic logic
-- Marcelo Frias (U. Buenes Aires)

› justifying object model transforms
-- Paulo Borba (Pernambuco, Brazil)

› web ontology analysis
-- Jin Sing Dong (Singapore)
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alloy.mit.edu

› downloads for OS X, windows, linux
› courses, talks, case studies, papers, tutorial
› book in preparation: Analyzable Models of Software
› coming soon: Alloy 3.0


