
alloy in 90 minutes
Daniel Jackson · RE’05 · Paris · Sept 1, 2005

topics
10 mins intro what it is, how it got here
15 mins demo address book: simulation & checking
5 mins key ideas elements of alloy approach
20 mins basis logic & language
10 mins patterns shows flexibility
20 mins example hotel locking: environmental assumptions
10 mins evaluation pluses & minuses

what you won’t learn
› how analysis works
› application to code checking and test case generation
› how language design is justified

introduction

premises
software development needs
› simple, expressive and precise notations
› deep and automatic analyses

… especially in early stages

!e first principle is that you must not
fool yourself, and you are the easiest
person to fool

-- Richard P. Feynman

desiderata
wanted
› syntax: flexible and easy to use

eg, declarations & navigations from OMT, Syntropy, etc
› semantics: simple and uniform

eg, relational logic from Z
› analysis: fully automatic and interactive

eg, symbolic model checking from SMV

transatlantic alloy

Oxford, home of Z

Pittsburgh, home of SMV

the alloy project, 1994-2005
Nitpick [1995]
› a relational subset of Z (Tarski’s RC: binary relations, no ∀∃)
› analysis: enumeration of relations + symmetry

Alloy 1.0 [1999]
› language: object modelling (set-valued ‘navigation’ exprs, ∀∃)
› analysis: WalkSAT, then Davis-Putnam

Alloy 2.0 [2001]
› language: relational logic (arbitrary arity, ∀∃)
› analysis: Chaff, Berkmin

Alloy 3.0 [2004]
› added castless subtypes & overloading

address book: a demo

what we didn’t do
incrementality
› didn’t write a long model and then analyze it

low burden
› no test cases, lemmas or tactics

concrete feedback
› no false alarms, easy to diagnose

key ideas

#1: everything’s a relation
Alloy uses relations for
› all datatypes -- even sets, scalars and tuples
› structures in space and time

key operator is dot join
› for taking components of a structure
› for indexing into a collection
› for resolving indirection

s0

c0 c1

c c

s0

c0 c2

c c

nexts

s.c

s.next

s.next.cs.c s.next.c

#2: pure logic
no special syntax or semantics for state machines

use constraints for describing
› subtypes & classification
› declarations & multiplicity
› invariants, operations & traces
› assertions, including temporal
› equivalence under refactoring

s0 s1 s2

init (s0)

op (s0,s1) op (s1,s2)

bad (s2)

#3: counterexamples & scope
observations about analyzing designs
› most assertions are wrong
› most flaws have small counterexamples

testing:
a few cases of arbitrary size

scope-complete:
all cases within small scope

#4: analysis by SAT
SAT, the quintessential hard problem (Cook, 1971)
› SAT is hard, so reduce SAT to your problem

SAT, the universal constraint solver (Kautz, Selman et al 1990’s)
› SAT is easy, so reduce your problem to SAT
› solvers: Chaff (Malik), Berkmin (Goldberg & Novikov), others

Yakov NovikovStephen Cook

logic

relations from Z to A
scalar tuple binding

function relation setsequence

is a
Z

tuple

function

scalar set

relation

sequence

Alloy

composites as relations
how to represent composite structures?

standard approach
› composites: with nested objects of various kinds
› change of state: with local mutations

Alloy approach
› composites: with atoms and global relations
› change of state: relations include time or state atoms

set operators

union p + q {t | t ∈ p ∨ t ∈ q}

difference p - q {t | t ∈ p ∧ t ∉ q}

intersection p & q {t | t ∈ p ∧ t ∈ q}

subset p in q {(p1, … pn) ∈ p} ⊆ {(q1, … qn) ∈ q}

equality p = q {(p1, … pn) ∈ p} = {(q1, … qn) ∈ q}

pred add (b, b': Book, n: Name, a: Addr) {
b'.addr = b.addr + n->a
}

arrow product

p -> q {(p1, … pn,q1, … qm) | (p1, … pn) ∈ p ∧ (q1, … qm) ∈ q}

idioms
› when s and t are sets

s -> t is their cartesian product
r: s -> t says r maps atoms in s to atoms in t

› when x and y are scalars
x -> y is a tuple

sig Book { addr: Name -> Addr }
pred add (b, b': Book, n: Name, a: Addr) {

b'.addr = b.addr + n->a
}

dot join

p . q {(p1, … pn-1,q2, … qm) | (p1, … pn) ∈ p ∧ (pn, q2, … qm) ∈ q}

sig Book {
 names: set Name,
 addr: Name -> Addr
 }
pred add (b, b': Book, n: Name, a: Addr) {
 n not in b.names
 b'.addr = b.addr + n->a
 }
what does addr.Addr.n denote?

join idioms
when p and q are binary relations
› p.q is standard relational composition

when r is a binary relation and s is a set
› s.r is relational image of s under r (‘navigation’)
› r.s is relational image of s under ~r (‘backwards navigation’)

when f is a function and x is a scalar
› x.f is application of f to x

other handy operators

transitive closure ^p smallest q | q.q ⊆ q ∧ p ⊆ q
override p ++ q q + (p - dom q <: p)

… and 5 more

pred add (b, b': Book, n: Name, a: Addr) {
 b'.addr = b.addr + n->a
 }
pred add (b, b': Book, n: Name, a: Addr) {
 b'.addr = b.addr ++ n->a
 }

a sample instance
sig Name, Addr {}
sig Book { addr: Name -> Addr }
pred add (b, b': Book, n: Name, a: Addr) {

b'.addr = b.addr + n->a
}

Name = N0 + N1
Addr = A0 + A1
Book = B0 + B1
b = B0, b’ = B1, n = N1, a = A1
addr =
 B0 -> N0 -> A0,
 B1 -> N0 -> A0,
 B1 -> N1 -> A1

quantifiers & cardinalities
quantifiers
all, some, no, one, lone

quantified formulas
 all x: e | F ∧v ∈ x F [{(v)}/x]

cardinality expressions
 no e #e = 0
 some e #e > 0
 lone e #e =< 1
 one e #e = 1

sig Book { addr: Name -> Addr }
pred show () { some addr }

multiplicity keywords: some, one, lone, set

set declarations
 s: m e s in e and m e
 s: e s: one e

relation declarations
 r: e m -> n e’ r in e -> e’
 all x: e | n x.r
 all x: e’ | m r.x

sig Book { names: set Name, addr: Name -> Addr }
sig Book { addr: Name -> lone Addr }
sig Book { addr: (Name -> lone Addr) -> Time }

declarations & multiplicity

puns
to support familiar declaration syntax
› Alloy declaration r: A -> B

has traditional reading r ∈ 2(A × B)

has Alloy reading r ⊆ A × B

to support ‘navigation expressions’
› Alloy expression x.f.g

has traditional reading g(f(x)) unless f(x) undefined or a set
has Alloy reading image (image({(x)}, f), g)

language

elements of an alloy model
signatures and fields
› introduces sets and relations
› ‘extends’ hierarchy for classification and subtypes

constraints paragraphs
› facts: assumed to hold
› predicates: reusable constraints
› functions: reusable expressions
› assertions: conjectures to check

commands
› run: generate instances of a predicate
› check: generate counterexamples to an assertion

signatures
sig A {}
sig B extends A {}
sig C extends A {}

means

 B in A
 C in A
 no B & C

A

B C

fields
sig A {f: set X}
sig B extends A {g: set Y}

means

 B in A
 f: A -> X
 g: B -> Y

some well-defined expressions
(for a: A, b: B)

 a.f
 b.g
 b.f
 a.g

A

B

X

Y

f

g

fact, pred, run
fact F {…}
pred P () {…}
run P

means

 fact: assume constraint F holds
 pred: define constraint P
 run: find an instance that satisfies P and F

assert, check
fact F {…}
assert A {…}
check A

means

 fact: assume constraint F holds
 assert: believe that A follows from F
 check: find an instance that satisfies F and not A

example, revisited
module examples/addressBook/addLocal

abstract sig Target {}
sig Addr extends Target {}
sig Name extends Target {}
sig Book {addr: Name -> Target}

fact Acyclic {all b: Book | no n: Name | n in n.^(b.addr)}
fun lookup (b: Book, n: Name): set Addr {n.^(b.addr) & Addr}
pred add (b, b': Book, n: Name, t: Target) {b'.addr = b.addr + n->t}
run add for 3 but 2 Book

assert addLocal {
 all b,b': Book, n,n': Name, a: Addr |
 add (b,b',n,a) and n != n' => lookup (b,n') = lookup (b',n') }
check addLocal for 3 but 2 Book

patterns

sample patterns
Trace states are ordered into traces by a relation
Local State state modelled within object signatures
Event events are modelled as explicit objects
Reiter Frame frame conditions in Ray Reiter’s style

pattern: trace
open util/ordering[State]

pred init (s: State) {…}
pred op1 (s, s’: State) {…}
…
pred opN (s, s’: State) {…}

fact traces {
 init (first ())
 all s: State - last() | let s' = next (s) | op1 (s, s’) or … or opN (s, s’)
 }

pred Safe (s: State) {…}
assert alwaysP {all s: State | P(s)}

pattern: local state
sig Time {…}
sig X {}
sig Object {
 static: X,
 dynamic: X -> Time
 }

pred op (t, t’: Time, o: Object, x: X) {
 o.dynamic.t’ = x
 all o’: Object - o | o’.dynamic.t’ = o’.dynamic.t
or
 dynamic.t’ = dynamic.t ++ o->x
 }

pattern: event
sig Time {}
sig O {dynamic: X -> Time}
sig Event {pre, post: Time, o: O, x: X}
 {dynamic.post = dynamic.pre ++ o -> x}

fact {
 all t: Time - last() | let t’ = next(t) |
 some e: Event | e.pre = t and e.post = t’
 }

pattern: event classification
sig Time {}
sig O {f: X -> Time, g: Y -> Time}
sig Event {pre, post: Time, o: O, x: X}
 {f.post = f.pre ++ o -> x}

sig SubEvent extends Event {y: Y}
 {y.post = y.pre ++ o -> y}

reiter’s frame conditions
in declarative models
› unmentioned ≠ unchanged

Ray Reiter’s scheme
› add ‘explanation closure axioms’

if field f changed, then event e happened

See: Alex Borgida, John Mylopoulos and Raymond Reiter.
On the Frame Problem in Procedure Specifications.
IEEE Transactions on Software Engineering, 21:10 (October 1995), pp. 785-798.

s

s s'
unchanged
old value
new value

pattern: reiter frame
sig Time {}
sig O {f: X -> Time, g: Y -> Time}
sig EventA {pre, post: Time, ...}
sig EventB {pre, post: Time, ...}

fact {
 all t: Time - last() | let t’ = next(t) |
 some e: Event {
 e.pre = t and e.post = t’
 f.t = f.t’ or e in EventA
 g.t = g.t’ or e in EventB
 }
 }

recodable hotel locks

hotel locking
recodable locks (since 1980)
› new guest gets a different key
› lock is ‘recoded’ to new key
› last guest can no longer enter

how does it work?
› locks are standalone, not wired

a recodable locking scheme
from US patent 4511946; many other similar schemes

k0

k1

card & lock have two keys
if both match, door opens k0

k1

k0

k1

k1

k2

if first card key matches
second door key, door opens

and lock is recoded k1

k2

k0

k1

modelling in alloy: state
sig Key, Time {}
sig Card {fst, snd: Key}
sig Room {fst, snd: Key one -> Time}

one sig Desk {
 prev: (Room -> lone Key) -> Time,
 issued: Key -> Time,
 occ: (Room -> Guest) -> Time
 }

sig Guest {cards: Card -> Time}

initialization
pred init (t: Time) {
 -- room’s previous key is its second key
 Desk.prev.t = snd.t
 -- each key is the first or second key of at most one room
 (fst + snd).t : Room lone -> Key
 -- set of keys issued is first and second keys of all rooms
 Desk.issued.t = Room.(fst+snd).t
 -- no cards handed out, and no rooms occupied
 no cards.t and no occ.t
 }

event classification
abstract sig HotelEvent {
 pre, post: Time,
 guest: Guest
 }

abstract sig RoomCardEvent extends HotelEvent {
 room: Room,
 card: Card
 }

checking in
sig CheckinEvent extends RoomCardEvent { }
 {
 card.fst = room.(Desk.prev.pre)
 card.snd not in Desk.issued.pre
 cards.post = cards.pre + guest -> card
 Desk.issued.post = Desk.issued.pre + card.snd
 Desk.prev.post = Desk.prev.pre ++ room -> card.snd
 Desk.occ.post = Desk.occ.pre + room -> guest
 }

entering a room
abstract sig EnterEvent extends RoomCardEvent { }
 {card in guest.cards.pre}

sig NormalEnterEvent extends EnterEvent { }
 {card.fst = room.fst.pre and card.snd = room.snd.pre}

sig RecodeEnterEvent extends EnterEvent { }
 {
 card.fst = room.snd.pre
 fst.post = fst.pre ++ room -> card.fst
 snd.post = snd.pre ++ room -> card.snd
 }

reiter-style frame conditions
fact Traces {
 init (first ())
 all t: Time - last () | let t' = next (t) |
 some e: HotelEvent {
 e.pre = t and e.post = t'
 fst.t = fst.t' and snd.t = snd.t' or e in RecodeEnterEvent
 prev.t = prev.t' and issued.t = issued.t' and cards.t = cards.t'
 or e in CheckinEvent
 occ.t = occ.t' or e in CheckinEvent + CheckoutEvent
 }
 }

does the scheme work?
safety condition
› if an enter event occurs, and the room is occupied,

then the guest who enters is an occupant

assert NoBadEntry {
 all e: Enter | let occs = Desk.occ.(e.pre) [e.room] |
 some occs => e.guest in occs
 }

demo

constraining the environment
after checking in, guest immediately enters room:

fact NoIntervening {
 all c: CheckinEvent |
 some e: EnterEvent {
 e.pre = c.post
 e.room = c.room
 e.guest = c.guest
 }
 }

machines & environments

specification is at machine interface,
but requirement might not be

the world

the machine

REQ
SPEC

ENV

homework: hacking the hotel
in an earlier patent
› lock required match only on first key

suppose guest can make new cards
› using keys from cards she holds

is system secure?

your task
› make one line change to NormalEnter event to reflect this
› rerun NoBadEntry check to expose attack

evaluation

alloy case studies at MIT
many small case studies
› intentional naming [Balakrishnan+]
› Chord peer-to-peer lookup [Kaashoek+]
› Unison file sync [Pierce+]
› distributed key management
› beam scheduling for proton therapy

typically
› 100-1000 lines of Alloy
› analysis in 10 secs - 1 hour
› 3-20 person-days of work

some alloy applications
in industry
› animating requirements (Venkatesh, Tata)
› military simulation (Hashii, Northtrop Grumman)
› role-based access control (Zao, BBN)
› generating network configurations (Narain, Telcordia)

in research
› exploring design of switching systems (Zave, AT&T)
› checking semantic web ontologies (Jin Song Dong)
› enterprise modelling (Wegmann, EPFL)
› checking refinements (Bolton, Oxford)
› security features (Pincus, MSR)

alloy in education
courses using Alloy at Michigan State (Laura Dillon), Imperial
College (Michael Huth), National University of Singapore (Jin
Song Dong), University of Iowa (Cesare Tinelli), Queen's
University (Juergen Dingel), University of Waterloo (Joanne
Atlee), Worcester Polytechnic (Kathi Fisler), University of
Wisconsin (Somesh Jha), University of California at Irvine (David
Rosenblum), Kansas State University (John Hatcliff and Matt
Dwyer), University of Southern California (Nenad Medvidovic),
Georgia Tech (Colin Potts), Politecnico di Milano (Carlo Ghezzi),
Rochester Institute of Technology (Michael Lutz), University of
Auckland (John Hamer, Jing Sun), Stevens Institute (David
Naumann), USC (David Wilczynski)

good things
conceptual simplicity and minimalism
› very little to learn
›WYSIWYG: no special semantics (eg, for state machines)
› expressive declarations

high-level notation
› constraints -- can build up incrementally
› relations flexible and powerful
› much more succinct than most model checking notations

automatic analysis
› no lemmas, tactics, etc
› counterexamples are never spurious
› visualization a big help
› can do many kinds of analysis: refinement, BMC, etc

bad things
relations aren’t a panacea
› sequences are awkward
› treatment of integers limited

limitations of logic
› recursive functions hard to express
› sometimes, want iteration and mutation

limitations of language
› module system doesn’t offer real encapsulation

limitations of tool
› tuned to generating instances (hard) rather than

checking instances (easy)

acknowledgments
current students
& collaborators

who’ve worked on Alloy
Greg Dennis

Derek Rayside
Robert Seater

Mana Taghdiri
Emina Torlak

Jonathan Edwards
Vincent Yeung

former students
who’ve worked on Alloy

Sarfraz Khurshid
Mandana Vaziri
Ilya Shlyakhter

Manu Sridharan
Sam Daitch
Andrew Yip
Ning Song

Edmond Lau
Jesse Pavel

Ian Schechter
Li-kuo Lin

Joseph Cohen
Uriel Schafer

Arturo Arizpe

for more info
http://alloy.mit.edu
› downloads
› papers
› case studies

alloy@mit.edu
› questions about Alloy
› send us a challenge

dnj@mit.edu
› happy to hear from you!

Software Abstractions
›MIT Press, 2006

