Daniel Jackson MIT Lab for Computer Science Marktoberdorf, August 2002

lecture 2: a relational logic

micromodels of software and analysis with Alloy declarative modelling

the atlantic divide

American school of formal methods

- > emphasis on verification algorithms
- > eg, SMV, SPIN, Murphi

European school

- emphasis on modelling
- ≻ eg, Z, VDM, B

Alloy brings together

- automatic analysis (like SMV)
- logical notation (like Z)

Pittsburgh, home of SMV

Oxford, home of Z

first order effects

Alloy is first order > to allow exhaustive search

design implications

- no constructors: composites by projection
- > no need to distinguish scalars from singleton sets

novel features

- no scalars or sets: all expressions are relation-valued
- generalized relational join operator
- finite interpretation

atoms

structures are built from

> atoms & relations

atoms are

indivisible

can't be broken into smaller parts

immutable

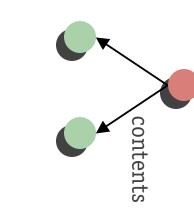
don't change over time

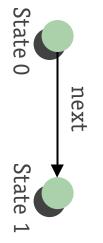
uninterpreted

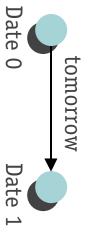
no built-in properties

what's atomic in the real world?

very little -- a modelling abstraction







types

universe

- contains all atoms
- > a finite (but perhaps big) set
- partitioned into basic types, each a set

STATE = {STATE0, STATE1, STATE2} FILESYSTEM = {FILESYSTEM0, FILESYSTEM2} PERSON = {ALICE, BOB, CAROL} DATE = {JAN1, JAN2, ..., DEC31}

no subtyping, so

> atoms that share properties share a type

```
Employer = {ALICE}
Employee = {BOB, CAROL}
Employer, Employee in PERSON
```

relations

definition

- a tuple is a list of atoms
- > a relation is a set of tuples

birthday = {(ALICE, MAY1), (BOB, JAN4), (CAROL, DEC9)} likes = {(ALICE, BOB), (BOB, CAROL), (CAROL, BOB)}

typing

- a relation type is a non-empty list of basic types
- if i-th type is T, then i-th atom in each tuple is in T

birthday: (PERSON, DATE) likes: (PERSON, PERSON)

relations as tables

can view relation as table

- atoms as entries, tuples as rows
- order of columns matters, but not order of rows
- can have zero rows, but not zero columns
- > no blank entries

example

birthday = {(ALICE, MAY1), (BOB, JAN4), (CAROL, DEC9)}

CAROL	BOB	ALICE	PERSON	
DEC9	JAN4	MAY	DATE	

dimensions

arity

- > number of columns
- > relation of arity k is a k-relation
- \rightarrow unary, binary, ternary for k=1, 2, 3
- > finite, >0

size

- > number of rows
- > finite, ≥ 0
- #p is an integer expression giving the size of p

homogeneity

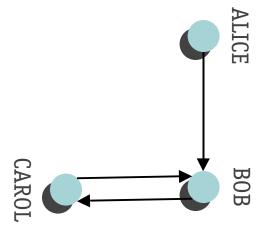
- relation of type (T, T, ...T) is homogeneous
- else heterogeneous

relations as graphs

can view 2-relation as graph

- > atoms as nodes
- tuples as arcs

example likes = {(ALICE, BOB), (BOB, CAROL), (CAROL, BOB)}



sets and scalars

sets and scalars

- represented as relations
- > set: a unary relation
- scalar: a unary, singleton relation $PERSON = \{(ALICE), (BOB), (CAROL)\}$ Alice = {(ALICE)} Employer = {(ALICE)} Employee = {(BOB), (CAROL)} -- note ()'s!

unlike standard set theory

no distinction between

a, (a), {a}, **{(a)}**

ternary relations

for relationships involving 3 atoms salary = {(ALICE, APPLE, \$60k), (BOB, BIOGEN, \$70k)} salary: [PERSON, COMPANY, SALARY]

for associating binary relations with atoms birthdayRecords: [BIRTHDAYBOOK, PERSON, DATE] birthdayRecords = {(BB0,ALICE,MAY1), (BB0,B0B,JAN4), (BB1,CAR0L,DEC9)}

left and right

left and right sets

left (right) set of p is set of atoms in left-(right-)most column

left and right types

> left (right) type of p is the first (last) basic type of p's type

examples

likes = {(ALICE, BOB), (BOB, CAROL), (CAROL, BOB)} right-set(likes) = {(BOB,CAROL)} left-type(likes) = right-type(likes) = PERSON left-set(likes) = {(ALICE,BOB,CAROL)}

set operators

standard set operators

difference	intersection	union	F
b - d	b % d	b + d	
contains tuples in p but not in q	contains all tuples in both p and q	contains tuples of p and tuples of q	

interpretation of +

- for scalars, makes a set
- for sets, makes a new set
- for relations, combines maps

subset and equality

likes + Alice -> Bob Employer + Employee Alice + Bob

equality	subset
$\mathbf{b} = \mathbf{d}$	p in q
p and q contain same set of tuples	q contains every tuple p contains

product

```
definition
                                     and q contains (q1,...,qm)
                                                                           if p contains (p1,...,pn)
then p -> q contains (p1,...,pn,q1,...,qm)
```

puns

```
for sets s and t, s->t is cartesian product
for scalars a and b, a->b is tuple
```

examples birthday = Alice->May1 + Bob->Jan4 + Carol->Dec9 Employee->Employee in likes

join

```
definition
                                                                                                     if p contains (p1,...,pn-1,pn)
                                                                    and q contains (q1,...,qm)
then p • q contains (p1,...,pn-1,q2,...,qm)
                                  and pn = q1
```

constraints
arity(p) + arity(q) > 2
right-type(p) = left-type(q)

join, examples

given

birthday = {(ALICE, MAY1), (BOB, JAN4), (CAROL, DEC9)} likes = {(ALICE, BOB), (BOB, CAROL), (CAROL, BOB)} birthdayRecords = Alice = $\{(ALICE)\}, bb0 = \{(BB0)\}$ {(BB0,ALICE,MAY1), (BB0,B0B,JAN4), (BB1,CAR0L,DEC9)}

we have

bb0.birthdayRecords = {(ALICE, MAY1), (BOB, JAN4)} Alice.(bb0.birthdayRecords) = {(MAY1)} likes.birthday = {(ALICE,JAN4), (BOB,DEC9),(CAROL,JAN4)} Alice.likes = {(BOB)}; likes.Alice = {}

join, puns

sund

for set s and binary relation r, **s.r** is image of s under r for binary relations p and q, **p.q** is standard join of p and q for binary relation r of type (S,T),

S.r is right-set of r

r.T is left-set of r

join variants

for non-binary relations, join is not associative

3 syntactic variants of join

p.q = p::q = q[p] binding power: :: most, then ., then [] p.q::r = p.(q.r) p.q[r] = r.(p.q)

equivalent expressions Alice.(bb0.birthdayRecords) Alice.bb0::birthdayRecords bb0.birthdayRecords [Alice]

transpose

for relation r: (S,T) **~r** has type (T,S) $\sim \mathbf{r}$ contains (b,a) whenever r contains (a,b)

a theorem

for set s and binary relation r,

 $\mathbf{I} \cdot \mathbf{S} = \mathbf{S} \cdot \mathbf{V} \mathbf{I}$

override

for relations p,q: (S,T) **p++q** contains (a,b) whenever q contains (a,b), or p contains (a,b) and q does not map a

given

birthday = {(ALICE, MAY1), (BOB, JAN4), (CAROL, DEC9)} Alice = $\{(ALICE)\}, March3 = \{(MAR3)\}$

we have

birthday ++ Alice->March3 = {(ALICE, MAR3), (BOB, JAN4), (CAROL, DEC9)}

closure

for relation r: (T,T)

 $^{\Lambda}$ **r** = **r** + **r**.**r** + **r**.**r**.**r** + **r**.**r** + **r** + **r**.**r** + **r** + **r**.**r** + **r** + **r**.**r** + **r**.**r** + **r**.**r** + **r**.**r** + **r**.**r** + **r** + **r**.**r** + **r** +

is smallest **transitive** relation p containing r

***r** = iden[T] + r + r.r + r.r.r + r.r.r + ...

is smallest **reflexive & transitive** relation p containing r

examples

ancestor = ^parent reaches = *connects precedes = ^~next

lf: p: (T,T) p: (S,T) p: (T) p: (T1,...,Tn) p: (S1,...,Sn), q: (T1, ...,Tm), Sn = T1 p,q: (T1,...,Tn) p.q: (S1,...,Sn-1,T2,...,Tm) none[p], univ[p]: (T1,...,Tn) iden[p]: (T,T) then ... ~p: (T,S) p+q, p-q, p&q: (T1,...,Tn), p in q *p, ^p: (T,T)

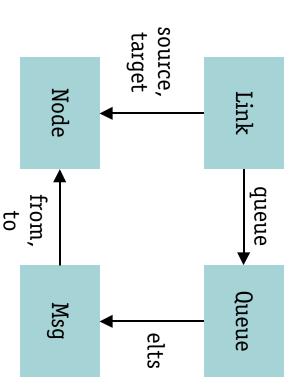
operator types

navigi	navigation expressions	
from 2-re	from 2-relations and the operators	
• + > * ~	*	claudia emily
interpret	interpret as path-sets	sibling
p.q	follow p then q	spouse
p+q	follow p or q	sibling
đ٧	follow p once or more	daniel tim
d*	follow p zero or more times	nouse_sibi
ď∼	follow p backwards	daniel. sibling.spouse
example		
cousir	cousin = parent.sibling.~parent	

a navigation example

to say

 all messages queued on links emanating from a node have a 'from' field of that node



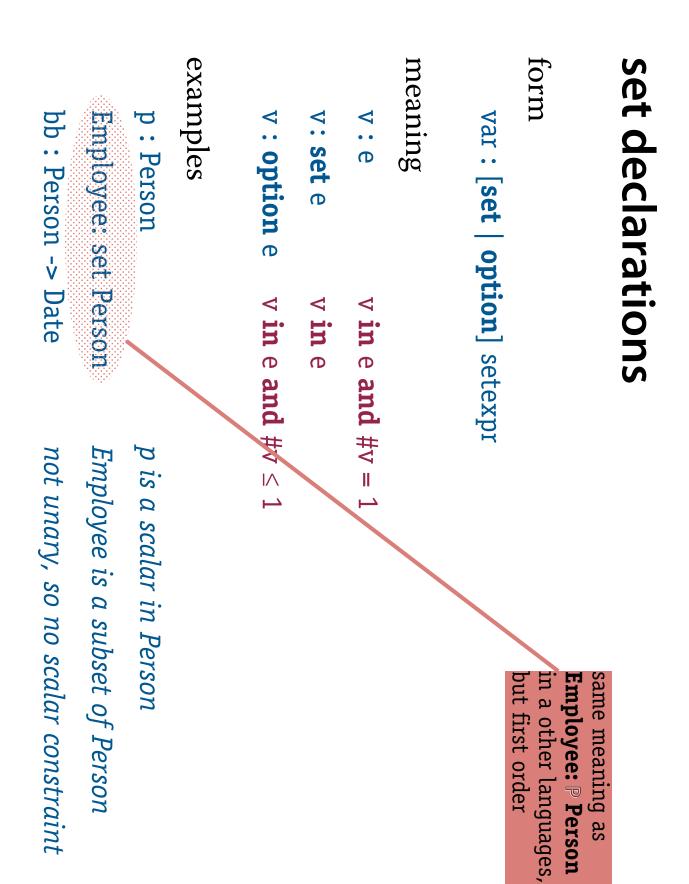
we can write

all n: Node | n.~source.queue.elts.from = n

or equivalently

~source.queue.elts.from **in** iden[Node]

negated operators e !in e' , e != e'	if-then-else expressions if F then e else e '	F <=> G	F => G , H	F G	F && G	. . F	standard connectives	logical operators
ors = e′	ressions lse e'	F iff G	F implies G else H	F or G	F and G	not F	ctives	erators
			else H		{FG}			

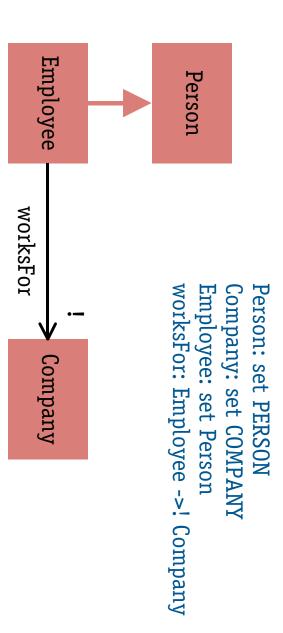


relation declarations	
form	examples
var : expr [mult] -> [mult] expr	r: A ->? B
multinlicity symbols	r is a partial function
	r: A ->! B
: zero or one	r is a total function
+ one or more	r: A ?->? B
	r is an injective
meaning	r: A !->! B
r: e0 <i>m -> n</i> e1	r is a bijection
<i>means</i> r in e0 -> e1	(
and n e1's for each e0, m e0's for each e1	
	70

object models

what is an object model?

- set of declarations drawn as graph
- > boxes denote sets, arcs relations
- parentless box has implicit type



comprehensions

general form

meaning { var : setexpr ,... | formula } { v0: e0, v1: e1, ... | F } such that F holds when $v0 = \{(a0)\}$, $v1 = \{(a1)\}$, etc is the relation containing tuples (a0,a1, ...)

example sibling = {a, b: Person | a.parents = b.parents && a != b}

and {(a0)} in e0, {(a1)} in e1, etc

quantification

```
all var : setexpr ,... | formula
```

```
meaning
and {(a0)} in e0, {(a1)} in e1, etc
                                                                                     all v0: e0, v1: e1, ... | F
                                           holds iff F holds whenever v0 = \{(a0)\}, v1 = \{(a1)\}, etc
```

```
example
all a: Person | a !in a.parents
```

one v0: e0 one v1: e1 F	one v0: e0, v1: e1, F is not equivalent	all v0: e0 all v1: e1	all v0: e0, v1: e1, F	note	one x: e F	sole x: e F	no x: e F	some x: e F	all x: e F	quantifiers	•	other quantifiers
L F	is not equivalent to	: F	is equivalent to		F holds for exactly one x in e	F holds for at most one x in e	F holds for no x in e	F holds for some x in e	F holds for all x in e			

quantifiec	quantified expressions	
for quantifier Q	for quantifier Q and expression e, make formula	a
Q e		
meaning		
some e	e is non-empty	#e > 0
no e	e is empty	#e = 0
sole e	e has at most one tuple	#e ≤ 1
one e	e has one tuple	#e = 1
example		
no Man & Woman	no person is both a	man and a woman

sample quantifications

biological constraints all p: Person | one p.mother no p: Person | p in p.parents

cultural constraints

all p: Person | sole p.spouse no p: Person | some p.spouse & p.siblings

biblical constraints

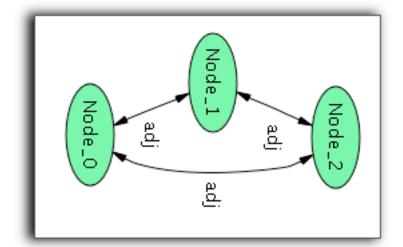
one eve: Person | Person **in** eve.*~mother

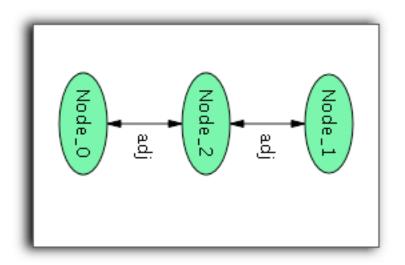
intractable expressive dot operator first-order operators everything's a relation summary: doing more with less plays many roles a->b in r for (a, b) \in r and a × b \subseteq r $r : A \rightarrow B$ means $r \subseteq A \times B$ replaces $r \in \mathbb{P}(A \times B)$ inexpressive tractable

a challenge

write a constraint

- > on an undirected graph> that says it is acyclic

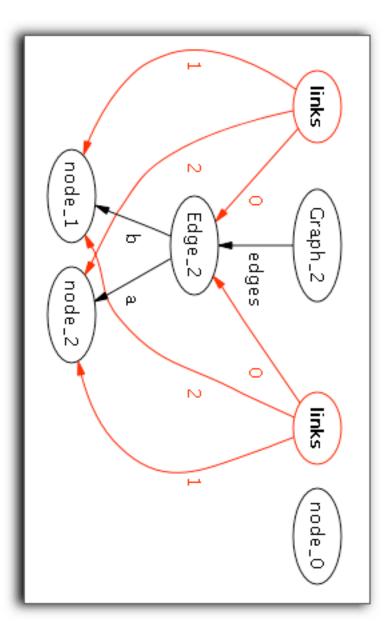




a solution

```
sig Edge[t] {links: t->t}
{some a,b: t | links = a->b + b->a}
                                                       fun Acyclic [t] (g: Graph[t]) {
    no e: Edge[t] |
                                                                                                                             sig Graph[t] {edges: set Edge[t]}
                             let adj = g.edges.links, adj' = (g.edges-e).links |
*adj = *adj'
```

sample graph



higher-order quantifiers	Jantifiers
general form	
quantifier decl , formula	ormula
modified set expressions	S
all s: set S F	F holds for all $s = S'$ where S' in S
all o: option S F	F holds for all o = S' where sole S', S' in S
relational expressions	
all x: R F	F holds for all x = R' where R' in R
examples	
all p, q, r : T -> T p.(q.r) = (p.q).r	(q.r) = (p.q).r
all p : S -> T, s : set S s.p = ~p.s	$s s.p = \sim p.s$

model checking

only low-level datatypes

- > must encode in records, arrays
- > no transitive closure, etc

built-in communications

- > not suited for abstract schemes
- fixed topology of processes

modularity

missing at operation level

culture of model checking

- emphasizes finding showstopper flaws
- but in software, essence is incremental modelling
- keep counters, discard model or vice versa?

