micromodels of software
declarative modelling
and analysis with Alloy

lecture 2: a relational logic

Daniel Jackson
MIT Lab for Computer Science
Marktoberdorf, August 2002

the atlantic divide

American school of formal methods

» emphasis on verification algorithms
» eg, SMV, SPIN, Murphi

European school
» emphasis on modelling

» eg, Z, VDM, B

Alloy brings together
» automatic analysis (like SM'V)
» logical notation (like Z)

Oxtord, home of Z

first order effects

Alloy is first order
» to allow exhaustive search

design implications
» no constructors: composites by projection
» no need to distinguish scalars from singleton sets

novel features
» no scalars or sets: all expressions are relation-valued
» generalized relational join operator
» finite interpretation

atoms

structures are built from
» atoms & relations

atoms are
» indivisible
) o

can’t be broken into smaller parts
» immutable

don’t change over time
» uninterpreted

no built-in properties

what’s atomic in the real world?
» very little -- a modelling abstraction

contents

4 I

next
9 o
State 0 State 1
tomorrow
9 > J
Date 0 Date 1

types

universe
» contains all atoms
> a finite (but perhaps big) set
» partitioned into basic types, each a set

DATE = {JAN1, JAN?, ..., DEC31}

PERSON = {ALICE, BOB, CAROL}

STATE = {STATEO, STATE1, STATE?}
FILESYSTEM = {FILESYSTEMO, FILESYSTEM?}

no subtyping, so
> atoms that share properties share a type
Employer = {ALICE}
Employee = {BOB, CAROL}
Employer, Employee in PERSON

relations

definition
> a tuple is a list of atoms
» a relation is a set of tuples

birthday = {(ALICE,MAY1), (BOB,JAN4), (CAROL,DEC9)}
likes = {(ALICE,BOB), (BOB,CAROL), (CAROL,BOB)}

typing
» a relation type is a non-empty list of basic types
» if i-th type is T, then i-th atom in each tupleis in T

birthday: (PERSON, DATE)
likes: (PERSON, PERSON)

relations as tables

can view relation as table

atoms as entries, tuples as rows

order of columns matters, but not order of rows
can have zero rows, but not zero columns

no blank entries

v

v

v

v

example
birthday = {(ALICE,MAY1), (BOB,JAN4), (CAROL,DEC9)}

PERSON DATE
ALICE MAY1
BOB JAN4
CAROL DEC9

dimensions

arity

number of columns

relation of arity k is a k-relation
unary, binary, ternary for k=1, 2, 3
finite, >0

v

v

v

v

size
» number of rows
» finite, > 0

#ip 1s an integer expression giving the size of p

homogeneity
» relation of type (T, T, ...T) is homogeneous
> else heterogeneous

relations as graphs

can view 2-relation as graph
» atoms as nodes
» tuples as arcs

example
likes = {(ALICE,BOB), (BOB,CAROL), (CAROL,BOB)}

ALICE BOB

9 J

CAROL

sets and scalars

sets and scalars
» represented as relations
» set: a unary relation
» scalar: a unary, singleton relation

PERSON = {(ALICE), (BOB), (CAROL)}
Employee = {(BOB), (CAROL)}
Employer = {(ALICE)}

Alice = {(ALICE)}

unlike standard set theory
» no distinction between

a, (a), {a}, {(a)}

-- note ()’s!

10

ternary relations

for relationships involving 3 atoms
salary: [PERSON, COMPANY, SALARY]
salary = {(ALICE,APPLE, $60k), (BOB,BIOGEN,$70k)}

for associating binary relations with atoms
birthdayRecords: [BIRTHDAYBOOK, PERSON, DATE]

birthdayRecords =
{(BBO,ALICE,MAY1), (BB0,BOB,JAN4), (BB1,CAROL,DEC9)}

11

left and right

left and right sets
> left (right) set of p is set of atoms in left-(right-)most column

left and right types
» left (right) type of p is the first (last) basic type of p’s type

examples
likes = {(ALICE,BOB), (BOB,CAROL), (CAROL,BOB)}

left-set(likes) = {(ALICE,BOB,CAROL)}
right-set(likes) = {(BOB,CAROL)}
left-type(likes) = right-type(likes) = PERSON

12

set operators

standard set operators

union p+qQ contains tuples of p and tuples of q
intersection p&q contains all tuples in both p and g
difference p-q contains tuples in p but not in g

interpretation of +

» for scalars, makes a set Alice + Bob
» for sets, makes a new set Employer + Employee
» for relations, combines maps likes + Alice -> Bob
subset and equality
subset pinq q contains every tuple p contains

equality p=g p and q contain same set of tuples

13

product

definition
if p contains (p1,...,pn)
and q contains (q1,...,qm)

then p -> q contains (p1,...,pn,ql,...,qm)

puns
for sets s and t, s->t is cartesian product

for scalars a and b, a-=b is tuple

examples
birthday = Alice->May1 + Bob->Jan4 + Carol->Dec9

Employee->Employee in likes

14

join

definition
if p contains (p1,...,pn-1,pn)
and q contains (q1,...,qm)
and pn =q1l
then p . q contains (p1,...,pn-1,q92,...,qm)

constraints

arity(p) + arity(q) > 2
right-type(p) = left-type(q)

15

join, examples

given
Alice = {(ALICE)}, bb0 = {(BBO)}
likes = {(ALICE,BOB), (BOB,CAROL), (CAROL,BOB)}
birthday = {(ALICE,MAY1), (BOB,JAN4), (CAROL,DEC9)}
birthdayRecords =
{(BBO,ALICE,MAY1), (BB0,BOB,JAN4), (BB1,CAROL,DEC9)}

we have
Alice.likes = {(BOB)}; likes.Alice = {}
likes.birthday = {(ALICE,JAN4), (BOB,DEC9),(CAROL,JAN4)}
bb0.birthdayRecords = {(ALICE,MAY1), (BOB,JAN4)}
Alice.(bb0.birthdayRecords) = {(MAY1)}

16

join, puns

puns
for set s and binary relation r, s.r is image of s under r
for binary relations p and q, p.q is standard join of p and q
for binary relation r of type (S,T),
S.r is right-set of r
r.T is left-set of r

17

join variants

for non-binary relations, join is not associative

3 syntactic variants of join
P.q = p::q = q[p]
binding power: :: most, then ., then []
p.q::r = p.(q.1)
p-q[r] = r.(p.q)

equivalent expressions
Alice.(bb0.birthdayRecords)
Alice.bb0::birthdayRecords
bb0.birthdayRecords [Alice]

18

transpose

for relation r: (S,T)
~r contains (b,a) whenever r contains (a,b)
~r has type (T,S)

a theorem
for set s and binary relation r,

I.S = S.~T

19

override

for relations p,q: (S,T)
p++q contains (a,b) whenever
q contains (a,b), or

p contains (a,b) and q does not map a

given
Alice = {(ALICE)}, March3 = {(MAR3)}
birthday = {(ALICE,MAY1), (BOB,JAN4), (CAROL,DEC9)}

we have
birthday ++ Alice->March3 =
{(ALICE,MAR3), (BOB,JAN4), (CAROL,DEC9)}

20

closure

for relation r: (T,T)
AY =T+ 104100+ LT+ ...
1s smallest transitive relation p containing r
*r =iden[T] + r + r.r + r.Y.T + I.T.I.T + ...

1s smallest reflexive & transitive relation p containing r

examples
ancestor = *parent
reaches = *connects

precedes = *~next

21

44

sa2dA) J0ojesado

navigation expressions

from 2-relations and the operators

o+>*

~

interpret as path-sets
p.q follow p then g
p+q followporq
p follow p once or more
*p follow p zero or more times

~P follow p backwards

example

cousin = parent.sibling.~parent

claudia emily

sibling
spouse

sibling

,\|v£

daniel

daniel.spouse.sibling =
daniel.sibling.spouse

23

a havigation example

. queue
Link ——» Queue

to say
» all messages queued on links Mﬁoﬁnw elts
. arge
emanating from a node have a)

‘from’ field of that node
Node <— Msg

from,
we can write to

all n: Node | n.~source.queue.elts.from = n

or equivalently

~source.queue.elts.from in iden[Node]

24

logical operators

standard connectives

'F not F
F&& G Fand G {FG}
FI|G ForG
F=>G,H F implies G else H
F<=>G Fiff G

if-then-else expressions

if F then e else ¢’

negated operators

eline ,el=¢

25

set declarations

form

var : [set | option] setexpr

meaning
Ve vineand #tv=1
v:sete vine

v:optione vineand

examples

IN
[N

p 1s a scalar in Person
Employee is a subset of Person

not unary, so no scalar constraint

26

relation declarations

form

var : expr [mult] -> [mult] expr

multiplicity symbols

? zZero or one

' exactly one
+ Oone or more

meaning
rreOm->nel

means rin e0 -> el

and n el’s for each e0,
m e0’s for each el

examples

r: A->?B

r is a partial function
r:A->'B

r i1s a total function
rrA?->?B

r 1S an injective
r: A!->!'B

r 1S a bijection

27

object models

what is an object model?
» set of declarations drawn as graph
> boxes denote sets, arcs relations
» parentless box has implicit type

Person: set PERSON

Company: set COMPANY
Employee: set Person

worksFor: Employee ->! Company

worksFor

28

comprehensions

general form

{ var : setexpr,... | formula }

meaning
{v0:e0,vl:el,...| F}
1s the relation containing tuples (a0,al, ...)
such that F holds when v0 = {(a0)}, v1 = {(al)}, etc
and {(a0)} in e0, {(al)} in e1l, etc

example

sibling = {a, b: Person | a.parents = b.parents && a != b}

29

quantification

universal quantification

all var : setexpr ,... | formula

meaning
all v0: e0, v1: el, ... | F
holds iff F holds whenever v0 = {(a0)}, v1 = {(al)}, etc
and {(a0)} in e0, {(al)} in e1l, etc

example

all a: Person | a !in a.parents

30

other quantifiers

quantifiers
all x: e | F F holds for all x in e
some x: e | F F holds for some x in e
nox:e|F F holds forno xin e
solex: e |F F holds for at most one x in e
onex:e|F F holds for exactly one x in e
note

all v0: e0, v1: el,... | F s equivalent to
all vo: e0 | all vl: el | ... | F
one vO0: e0, v1: el,... | F is not equivalent to

one v0: e0 |onevl:el|... |F

quantified expressions

for quantifier Q and expression e, make formula

Qe

meaning
some e
no e
sole e

one e

example

no Man & Woman

e is non-empty
e is empty
e has at most one tuple

e has one tuple

e >0
#e=0
e <1
fte =

no person is both a man and a woman

32

sample quantifications

biological constraints
all p: Person | one p.mother

no p: Person | p in p.parents

cultural constraints
all p: Person | sole p.spouse

no p: Person | some p.spouse & p.siblings

biblical constraints

one eve: Person | Person in eve.*~mother

33

summary: doing more with less

everything’s a relation
a->binr for (a,b)Er and axbCr

first-order operators
r:A->B means rC AxB replaces r € P(A x B)

dot operator
> plays many roles

intractable tractable

expressive Inexpressive

34

a challenge

write a constraint
» on an undirected graph
» that says it is acyclic

35

a solution

sig Edge[t] {links: t->t}
{some a,b: t | links = a->b + b->a}
sig Graph[t] {edges: set Edge[t]}
fun Acyclic [t] (g: Graph[t]) {
no e: Edge[t] |
let adj = g.edges.links, adj’ = (g.edges-e).links |
*adj = *adj’

36

sample graph

37

higher-order quantifiers

general form

quantifier decl ,... | formula

modified set expressions
all s: setS | F F holds for all s = S’ where S"in S

all o: option S | F F holds for all o = S" where sole S, S"in S

relational expressions
allx: R | F F holds for all x = R’ where R"in R

examples

allp,q,r: T->T| p.(q.x) = (p.q).r
allp:S->T,s:setS|s.p=~p.s

38

model checking

only low-level datatypes
» must encode in records, arrays
» no transitive closure, etc

built-in communications
» not suited for abstract schemes
» fixed topology of processes

modularity
> missing at operation level

culture of model checking
» emphasizes finding showstopper flaws
» but in software, essence is incremental modelling
» keep counters, discard model or vice versa?

