
m
icrom

odels of softw
are

declarative m
odelling

and analysis w
ith A

lloy

lecture 1: introduction

Daniel Jackson
M

IT Lab for Com
puter Science

M
arktoberdorf, August 2002

2

lightw
eight m

odels

a foundation for robust, useable program
s

elem
ents

›sm
all & sim

ple notations
›partial m

odels & analyses
›full autom

ation

focus on risky aspects
›hard to get right, or to check
›structure-determ

ining
›high cost of failure

3

cost

assurance

hacking
sketching
w

rite-only m
odels

type-checked m
odels

analyzed m
odels

proven m
odels

w
hat assurance costs

4

m
y w

ork in m
arktoberdorf context

com
putation, not interaction

›com
plem

entary to Harel & Pnueli
›relational, not algebraic (cf. Tarlecki and M

eseguer)
›underlying idiom

s due to Hoare, W
oodcock et al

designed for experts, but not super-experts
›like Harel, not Rushby & M

oore
›sim

ulation, not just checking

role of m
athem

atics
›only way to m

ake things sim
ple

›sem
antics in term

s of sets, and SAT

started this in 1994, and have had som
e successes

but m
uch less m

ature than ACL2, PVS, Statem
ate, etc

5

features of A
lloy

structural
›express com

plex structure, static and dynam
ic

›with just a few powerful operators

declarative
›a full logic, with conjunction and negation
›describe system

 as collection of constraints

analyzable
›sim

ulation & checking
›fully autom

atic

6

structural

structure is everywhere
›highway system

s, postal routes, com
pany organizations,

library catalogues, address books, phone networks, …

structure is becom
ing m

ore pervasive
›self-assem

bling software (eg, O
bserver pattern)

›m
em

ory gets cheaper: address books in every phone

tool researchers have neglected structure
›one traffic light is a state m

achine, but a city’s lights are a net

There is no problem
 in com

puter science that cannot be solved
by introducing another level of indirection, but that usually
reveals new problem

s --David W
heeler

7

declarative

 declarative description
›m

odel is collection of properties
›the m

ore you say, the less happens

advantages
›increm

entality: to say m
ore, add a property

›partiality: doesn’t require special constructs
›sim

plicity: no separate language of properties
Sys m

eets Prop: Sys => Prop

why less is m
ore

›less constrained system
 m

eans im
plem

entation freedom
›less constrained environm

ent m
eans greater safety

8

analyzable

‘write-only’ m
odels

›useful if precise enough
›but m

issed opportunity (and wishful thinking)

tool-assisted m
odelling

›sim
ulate and check increm

entally
›catch errors early, develop confidence
›optim

ize for failing case: m
ost of m

y exam
ples will be wrong

Alloy’s analysis
›fully autom

atic, with no user intervention
›concrete: generates sam

ples & counterexam
ples

›like testing, sound but not com
plete

›unlike testing, billions cases/second

9

declarative &
 executable?

traditionally
›declarative XO

R executable
›good argum

ents for both

but can have cake and eat it
›with right analysis technology

Alloy’s analysis can ‘execute’ a m
odel

›forwards or backwards
›without test cases
›no ad hoc restrictions on logic

Sm
all Tow

er of 6 Gears, Arthur Ganson

10

a num
bering problem

given
›docum

ent whose paragraphs are tagged with styles
›style sheet that gives num

bering rules for styles

produce
›docum

ent with num
bered paragraphs

(like m
y M

arktoberdorf notes)

\part Introduction
\section M

otivation
\subsection W

hy?
\section Overview
\part Conclusions
\section Unrelated W

ork

\part Introduction
\section M

otivation
\subsection W

hy?
\section Overview
\part Conclusions
\section Unrelated W

ork

Part A: Introduction
A.1 M

otivation
A.1.1 W

hy?
A.2 Overview
Part B: Conclusions
B.1 Unrelated W

ork

Part A: Introduction
A.1 M

otivation
A.1.1 W

hy?
A.2 Overview
Part B: Conclusions
B.1 Unrelated W

ork

11

a candidate solution

style sheet assigns to each style
›an initial value for num

bering
›optionally, a parent

\part Introduction
\section M

otivation
\subsection W

hy?
\section Overview
\part Conclusions
\section Unrelated W

ork

\part Introduction
\section M

otivation
\subsection W

hy?
\section Overview
\part Conclusions
\section Unrelated W

ork

section
1

section
1 part
A

part
A

subsection
1

subsection
1

parent
<style:part><init:A>
<style:section><parent:part><init:1>
<style:subsection><parent: section><init:1>

<style:part><init:A>
<style:section><parent:part><init:1>
<style:subsection><parent: section><init:1>Part A: Introduction

A.1 M
otivation

A.1.1 W
hy?

A.2 Overview
Part B: Conclusions
B.1 Unrelated W

ork

Part A: Introduction
A.1 M

otivation
A.1.1 W

hy?
A.2 Overview
Part B: Conclusions
B.1 Unrelated W

ork

12

styles

declare styles & parent relation
sig Style {parent: option Style}

ask for a sam
ple

fun Show
 () {som

e parent}
run Show

how to define acyclic
fun Acyclic [t] (r: t -> t) {no iden[t] & ^r}

constrain parent relation to be acyclic
fact {Acyclic (parent)}

13

num
bers

introduce num
bers

sig Num
ber {

next: option Num
ber

}{this != next}

add num
bers to styles

sig Num
beredStyle extends Style {init: Num

ber}
fact {Style = Num

beredStyle}

ask for a sam
ple

fun Show
 () {

som
e parent}

run Show

14

num
bering

declare num
bering

sig Num
bering {

num
: Style ->? Num

ber}

ask for a sam
ple

fun Show
Num

bering () {som
e num

}
run Show

Num
bering

for 2 but 1 Num
bering

15

num
bering algorithm

what num
bering n’ follows n for paragraph of style s?

›ie, just gave num
bering n

›encounter paragraph with style s
›m

ust now generate num
bering n’

an attem
pt:

fun Next (n,n': Num
bering, s: Style) {

n'.num
 =

{d: s.^parent, x: Num
ber | x = n.num

[d]} +
s -> if no n.num

[s] then s.init else n.num
[s].next

}

16

show
ing next

run Next for 3 but 2 Num
bering

n

n’

grandchild style s
is num

bered
w

ith initial value

17

guiding the sim
ulation

fun Show
Next (n,n': Num

bering, s: Style) {
Next (n,n',s)

&& som
e n.num

[s.~parent]}
run Show

Next for 3 but 2 Num
bering

n
n’

root style s
loses its num

ber
because no next!

18

fixing the operation
fun Next (n,n': Num

bering, s: Style) {
let i = n.num

[s] | som
e i => som

e i.next
n'.num

 = {d: s.^parent, x: Num
ber | x = n.num

[d]} +
s -> if no n.num

[s] then s.init else n.num
[s].next } style s gets

num
bered w

ith
initial value

19

guiding the sim
ulation

fun Show
Next (n,n': Num

bering, s: Style) {
Next (n,n',s)

&& som
e n.num

[s.~parent] && som
e n.num

[s]}
run Show

Next for 3 but 2 Num
bering

20

checking a property

if style is not a parent, step is reversible
assert Reversible {

all n0, n1, n: Num
bering, s: Style - Style.parent |

Next(n0,n,s) && Next(n1,n,s) => n0.num
 = n1.num

}

check Reversible

21

trying again…
m

ake num
bering injective

fact {Injective (next)}

does this fix the problem
?

22

counterexam
ple

after num
bering n

adjacent style
has no num

ber
afterw

ards

23

counterexam
ple, ctd

before
num

berings
n0 and n1

adjacent style’s num
ber

elim
inated, so value

before w
as irrelevant!

24

m
asking

check again, assum
ing styles form

 a line
assert ReversibleW

henLine {
Injective(parent)
&& (som

e root: Style | Style in root.*~parent) =>
all n0, n1, n: Num

bering, s: Style - Style.parent |
Next(n0,n,s) && Next(n1,n,s) => n0.num

 = n1.num
}

check ReversibleW
henLine

25

counterexam
ple, again

initialization and
increm

ent are
distinct: theorem

is confused!

26

checking a refactoring

are these equivalent?
fun Next1 (n,n’: Num

bering, s: Style) {
n’.num

 =
{d: s.^parent, x: Num

ber | x = n.num
[d]} +

s -> if no n.num
[s] then s.init else n.num

[s].next
}fun Next2 (n,n’: Num

bering, s: Style) {
all d: s.^parent | n’.num

[d] = n.num
[d]

n’.num
[s] = if no n.num

[s] then s.init else n.num
[s].next

}

ask the tool:
assert Sam

e {
all n,n’: Num

bering, s: Style | Next1(n,n’,s) iff Next2(n,n’,s)}

27

w
hat happened

increm
entality

›write a bit, analyze a bit
›constrain just enough

to get key properties
›avoids wasted tim

e,
encourages sm

all m
odels

analysis prom
pted questions

›num
ber m

ust have next?
›two num

bers have sam
e next?

›style hierarchy a tree? line?

28

declarative vs. operational developm
ent

all behaviours;
satisfies no safety properties

a safety property

declarative

operational

no behaviours;
satisfies all safety properties

29

w
hat’s been done?

analyzing im
plem

ented system
s

›Intentional nam
ing (Khurshid)

›Chord peer-to-peer lookup (W
ee)

›Transaction cache (Tucker)

analyzing existing m
odels

›M
icrosoft CO

M
 (Sullivan, from

 Z)
›Firewire leader election (m

e, from
 Vaandrager’s IO

A)
›Unison file synchronizer (Nolte, from

 Pierce’s m
aths)

›UM
L m

eta m
odel (Vaziri, from

 O
CL)

›Classic distributed algorithm
s (Shlyakhter, from

 SM
V)

typically
›200 lines of Alloy, 30-200 hours work

30

exam
ple: intentional nam

ing

building

cam
era

service

ne43

query

n1
n0

building

cam
era

service

ne43
printer

database

n0n1

n0

n0

query schem
e

›intentional nam
es are trees

›result of query is set of sim
ple nam

es

31

results

what we did
›analyzed claim

s m
ade in paper: m

ostly untrue
›analyzed algebraic properties: also untrue

eg, add is m
onotonic

›adapted m
odel for fixes in code: also broken

›developed new sem
antics & checked it

reflections
›initial analysis took 2 weeks and 100 lines of Alloy
›found all bugs in trees of 4 nodes or less -- approx 10 secs
›2000 lines of tests hadn’t found bugs in a year

32

challenge: get num
bering right

fix the num
bering m

echanism
 to handle

›m
ultiple children
section and figure have parent chapter

›m
ultiple parents
section has parent chapter and appendix

33

w
hat is a m

odel?

a representation of a system
›m

ore or less useful, not m
ore or less correct [Fowler]

›useful to the extent that it answers questions [Ross]

role of a m
odel

›to explain & evaluate existing system
›to explore design of system

 to be built

34

w
hy m

odel?

‘plan to throw one away’ [Brooks]
›100 line m

odel or 100k lines of code?
›nasty surprises happen sooner

designs with clear conceptual m
odels

›easier to use and im
plem

ent
›allow delegation & division of labour

separation of concerns
›conceptual flaws get m

ired in code
›not a good use of testing

35

lightw
eight form

al m
ethods

elem
ents

›sm
all & sim

ple notations
›partial m

odels & analyses
›full autom

ation

focus on risky aspects
›hard to get right, or to check
›structure-determ

ining
›high cost of failure

