micromodels of software
declarative modelling
and analysis with Alloy

lecture 4: a case study

Daniel Jackson
MIT Lab for Computer Science
Marktoberdorf, August 2002

why looseness?

why looseness?

risk-driven modelling
» give only crucial properties

why looseness?

risk-driven modelling
» give only crucial properties

implementation freedom
> allow concurrency
» representation independence

why looseness?

risk-driven modelling
» give only crucial properties

implementation freedom
> allow concurrency
» representation independence

account for environment
» fewer assumptions better

why looseness?

risk-driven modelling
» give only crucial properties

implementation freedom
> allow concurrency
» representation independence

account for environment
» fewer assumptions better

specify a family of systems
> every program is a family? [Parnas]

example: elevator policy

example: elevator policy

challenge
» specify a policy for scheduling lifts
> keep concerns separated

example: elevator policy

challenge
» specify a policy for scheduling lifts
> keep concerns separated

tight enough
> all requests eventually served
» don’t skip request from inside lift

example: elevator policy

challenge
» specify a policy for scheduling lifts
> keep concerns separated

tight enough
> all requests eventually served
» don’t skip request from inside lift

loose enough
> no fixed configuration of floors, lifts, buttons
> not one algorithm but a family

complications

complications

multiple lifts
> don’t send all to service one request

complications

multiple lifts
> don’t send all to service one request

top and bottom
» lift going in wrong direction may be nearer

complications

multiple lifts
> don’t send all to service one request

top and bottom
» lift going in wrong direction may be nearer

load balancing
» accommodate strategies based on occupancy, eg
> don’t force nearest lift to serve

approach: promises

approach: promises

ways to deny a request
> ‘skipping’: going past floor
> ‘bouncing’: doubling back before floor

approach: promises

ways to deny a request
> ‘skipping’: going past floor
> ‘bouncing’: doubling back before floor

[TTe

approach: promises

ways to deny a request
> ‘skipping’: going past floor
> ‘bouncing’: doubling back before floor

[TTe

approach: promises

ways to deny a request
> ‘skipping’: going past floor
> ‘bouncing’: doubling back before floor

policy
> a lift can’t deny a request from inside
> if a lift denies a floor request
some lifts promise to serve it later
> a lift can’t deny the last promise

[TTe

approach: promises

ways to deny a request
> ‘skipping’: going past floor
> ‘bouncing’: doubling back before floor

policy
> a lift can’t deny a request from inside
> if a lift denies a floor request
some lifts promise to serve it later
> a lift can’t deny the last promise

approach: promises

ways to deny a request
> ‘skipping’: going past floor
> ‘bouncing’: doubling back before floor

policy
> a lift can’t deny a request from inside
> if a lift denies a floor request
some lifts promise to serve it later
> a lift can’t deny the last promise

approach: promises

ways to deny a request
> ‘skipping’: going past floor
> ‘bouncing’: doubling back before floor

policy
> a lift can’t deny a request from inside
> if a lift denies a floor request
some lifts promise to serve it later
> a lift can’t deny the last promise

freedoms
» divide requests amongst lifts
» postpone allocation decision

basic abstractions

basic abstractions

floor layout
» orderings above and below
» top and bottom floors

basic abstractions

floor layout
» orderings above and below
» top and bottom floors

buttons
» inside lift and at floors
» each has an associated floor
> in a given state, some lit

basic abstractions

floor layout
» orderings above and below
» top and bottom floors

buttons
» inside lift and at floors
» each has an associated floor
> in a given state, some lit

elevator state
» at or approaching a floor
» rising or falling
» promises to serve some buttons

basic abstractions

floor layout
» orderings above and below
» top and bottom floors

buttons
» inside lift and at floors
» each has an associated floor
> in a given state, some lit

elevator state
» at or approaching a floor
» rising or falling
» promises to serve some buttons

basic abstractions

floor layout
» orderings above and below
» top and bottom floors

buttons
» inside lift and at floors
» each has an associated floor
> in a given state, some lit

elevator state
» at or approaching a floor
» rising or falling
» promises to serve some buttons

at floor 2,
falling

basic abstractions

floor layout
» orderings above and below
» top and bottom floors

buttons
» inside lift and at floors
» each has an associated floor
> in a given state, some lit

elevator state
» at or approaching a floor
» rising or falling
» promises to serve some buttons

at floor 2,
falling

at floor 1,
rising

basic abstractions

floor layout
» orderings above and below
» top and bottom floors

buttons
» inside lift and at floors
» each has an associated floor
> in a given state, some lit

elevator state
» at or approaching a floor
» rising or falling
» promises to serve some buttons

at floor 2,
falling

approaching
floor 2,
rising

at floor 1,
rising

floor layout

floor layout

open std/orders

floor layout

open std/orders

sig Floor {
disj up, down: option FloorButton,
above, below: option Floor

}

floor layout

open std/orders

sig Floor {
disj up, down: option FloorButton,
above, below: option Floor

}
sig Top extends Floor {} {no up}

floor layout

open std/orders

sig Floor {
disj up, down: option FloorButton,
above, below: option Floor

}
sig Top extends Floor {} {no up}

sig Bottom extends Floor {} {no down}

floor layout

open std/orders

sig Floor {
disj up, down: option FloorButton,
above, below: option Floor

}
sig Top extends Floor {} {no up}

sig Bottom extends Floor {} {no down}

fact Layout {
Ord[Floor].next = above
Ord[Floor].prev = below
Ord[Floor].last = Top
Ord[Floor].first = Bottom }

floor layout

ppen std/orders

sig Floor {
disj up, down: option FloorBuiton,

above, below: option Floor use ordering axioms from
} standard library

sig Top extends Floor {} {no up}
sig Bottom extends Floor {} {no down}

fact Layout {
Urd Floor.next = above
OrdiFloor .prev = below
OrdiFloorl.last = Top
Ord[Floor].first = Bottom }

.=°°1 —m<°=.n don’t require buttons on all floors

allow small scope
analysis will place buttons demonically

open std/orders

sig Floor {
disj up, down: @ption FloorButiton,

above, below: option Floor use ordering axioms from
} standard library

sig Top extends Floor {} {no up}
sig Bottom extends Floor {} {no down}

fact Layout {
Urd Floor.next = above
OrdiFloor .prev = below
OrdiFloorl.last = Top
OrdiFloor|.first = Bottom }

lifts

lifts

sig Lift {
button: Floor ?->? LiftButton,
buttons: set LiftButton

}

lifts

sig Lift {
button: Floor 72-»? LittBution, button panel:
buttons: set LiftButton allows different lifts
w to cover different sets

of floors

buttons

buttons

sig Button {floor: Floor}

buttons

sig Button {floor: Floor}
disj sig LiftButton extends Button {lift: Lift}

buttons

sig Button {floor: Floor}
disj sig LiftButton extends Button {lift: Lift}
disj sig FloorButton extends Button {}

buttons

sig Button {floor: Floor}

disj sig LiftButton extends Button {lift: Lift}

disj sig FloorButton extends Button {}

part sig UpButton, DownButton extends FloorButton {}

buttons

sig Button {floor: Floor}

disj sig LiftButton extends Button {lift: Lift}

disj sig FloorButton extends Button {}

part sig UpButton, DownButton extends FloorButton {}

fact ButtonDefinitions {
~floor = Lift.button + up + down
lift = {b: Button, p: Lift | some f: Floor | f->b in p.button}
all p: Lift | p.buttons = p.button [Floor]
UpButton = Floor.up

}

U :.H.Ho ns define classes of button;

redundant but convenient

sig Button {floor: Floor}

glisi sig LiftButton extends Button {Lft; Lift}

glis] sig FloorBution extends Bution {}

part sig UpButton, DownButton extends FloorBution {}

fact ButtonDefinitions {
~floor = Lift.button + up + down
lift = {b: Button, p: Lift | some f: Floor | f->b in p.button}
all p: Lift | p.buttons = p.button [Floor]
UpButton = Floor.up

}

sample layout

10

sample layout

fun showLayout () {some Lift.buttons}

run showLayout

10

sample layout

fun showLayout () {some Lift.buttons}

run showLayout

Buttan_1 Buttan 2 Lift_2
Floor 2 lift: Lift_2 floar- Flaar O Lift_0 Lift_1 button: Floar_0-=Buttan_:
floor: Floor_0 . - buttons: Button_1
below
Flaor_1
below
Flaor_0

up: Button_2

10

system state

11

system state

declaring state
> collect together relations that change

sig State {
lit: set Button,
part rising, falling: set Lift,
at, approaching: Lift ->? Floor,
promises: Lift -> FloorButton

}

11

system state

declaring state
> collect together relations that change

sig State {
lit: set Button,
part rising, falling: set Lift,
at, approaching: Lift ->? Floor,
promises: Lift -> FloorButton

}

outstanding requests

11

system state

declaring state
> collect together relations that change

sig State {
lit: set Button,
part rising, falling: set Lift,
at, approaching: Lift ->? Floor,
promises: Lift -> FloorButton

}

outstanding requests

lift directions

11

system state

declaring state
> collect together relations that change

sig State {
if: set Button,
part rising, falling: set Lift,
at, approaching: Litt -7 Floor,
promises: Lift -> FloorButton

}

outstanding requests

lift directions

lift positions

11

system state

declaring state
> collect together relations that change

sig State {
lit: set Button,
part rising, falling: set Lift,
at, approaching: Litt -7 Floor,
promises: Lift -> FloorButton

}

outstanding requests

lift directions

lift positions

promises: many to many

11

physical constraints on lift state

12

physical constraints on lift state

fun LiftPosition (s: State) {
all p: Lift | with s {

one (at + approaching)|p]

no (at & approaching)[p]

p in rising =>
no approaching[p] & Bottom,
no approaching[p] & Top

p in rising =>
no at[p] & Top,
no at[p] & Bottom

}
}

12

physical constraints on lift state

fun LiftPosition (s: State) {
all p: Lift | with s {

one (at + approaching)[p]

no (at & approaching)|[p]

p in rising =>
no approaching[p] & Bottom,
no approaching[p] & Top

pin. =
no at[p] &
no at[p] & Bottom

}

}

12

physical constraints on lift state

fun LiftPosition (s: State) { lift is at or approaching one floor
all p: Lift | with s {

o7 mm G roaching){p]
no (at & approaching)|[p]
p in rising =>
no approaching[p] & Bottom,
no approaching[p] & Top
pin =
no at[p] &
no at[p] & Bottom

}

}

12

physical constraints on lift state

fun LiftPosition (s: State) { lift is at or approaching one floor
all p: Lift | with s {

. ﬁw_m m at + annr |

‘ . lift is not at and approaching

+ approaching)[p]
pinrising =>
no approaching[p] & Bottom,

p in =
no at[p] &
no at[p] & Bottom

}
}

12

physical constraints on lift state

fun LiftPosition (s: State) { lift is at or approaching one floor
m= @ Cwn _ sﬁr S ﬁ

“““““ | .N - lift is not at and approaching
no Am.w @ m@mgmmwwm@m w

@ wﬁ ﬁmwﬁm == no rising on approach to bottom

roachi mg & Top

no at[p] & Bottom

12

physical constraints on lift state

fun LiftPosition (s: State) { lift is at or approaching one floor
all p: Lift | with s {

‘one (at + approaching)[p M
no {at & m@mgmmgm@m w
@ in ﬁm%m =2

lift is not at and approaching

no rising on approach to bottom

no rising at top floor

12

sample state

13

sample state

run LiftPosition

13

sample state

run LiftPosition

(Top)

Floor_2

Floor_1

at at

Floor_o
(Bottom)
up: Button_2

Button _2
(FlaorButtan)
floar: Floar_0

13

physical constraints on lift motion

14

physical constraints on lift motion

fun nextFloor (s: State, p: Lift): Floor -> Floor {
result = if p in s.rising then above else below

}

14

physical constraints on lift motion

fun nextFloor (s: State, p: Lift): Floor -> Floor {
result = if p in s.rising then above else below

}

fun LiftMotion (s, s': State) {
all p: Lift {
p & s.rising !=p & s'.rising => some s'.at[p]

14

physical constraints on lift motion

fun nextFloor (s: State, p: Lift): Floor -> Floor {
result = if p in s.rising then above else below

}

fun LiftMotion (s, s': State) {
all p: Lift {
p & s.rising !=p & s'.rising => some s'.at[p]

s'.at[p] in s.(at + approaching)[p]

14

physical constraints on lift motion

fun nextFloor (s: State, p: Lift): Floor -> Floor {
result = if p in s.rising then above else below

}

fun LiftMotion (s, s': State) {
all p: Lift {
p & s.rising '= p & s'.rising => some s'.at[p]

s'.at[p] in s.(at + approaching)[p]

s.approaching[p] in
s.approaching[p] + s.(at + approaching)[p].nextFloor(s,p)

}
}

14

physical constraints on lift motion

fun nextFloor (s: State, p: Lift): Floor -> Floor {
result = if p in s.rising then above else below

}

fun LiftMotion (s, s': State) {
all p: Lift {

s'.at[p] in s.(at + approaching)[p]

s.approaching[p] in
s.approaching[p] + s.(at + approaching)[p].nextFloox(s,p)

}
}

14

physical constraints on lift motion

fun nextFloor (s: State, p: Lift): Floor -> Floor {
result = if p in s.rising then above else below

}

fun LiftMotion (s, s': State) {
all p: Lift {

floor at after is floor at
s.atip] in s.(at + approaching)}ip] or approaching before

s.approaching[p] in
s.approaching[p] + s.(at + approaching)[p].nextFloox(s,p)

}
}

14

physical constraints on lift motion

fun nextFloor (s: State, p: Lift): Floor -> Floor {
result = if p in s.rising then above else below

}

fun LiftMotion (s, s': State) {
all p: Lift {

floor at after is floor at
s.atip] in s.(at + approaching)}ip] or approaching before

i

s.approaching|p| in
s.approachingipl + s.(at + approaching)ip|.nextbicor(s,p)

}
}

floor approaching after is floor
approached before, or next floor

14

sample transition

15

sample transition

fun NiceMotion (s, s': State) {
LiftMotion (s,s') && LiftPosition (s) && LiftPosition (s')
s.at !=s'.at}

run NiceMotion for 3 but 2 State

15

sample transition

fun NiceMotion (s, s': State) {

LiftMotion (s,s') && LiftPosition (s) && LiftPosition (s')

s.at !=s'.at}
run NiceMotion for 3 but 2 State

Button _2
(FloarButton)
floor: Floor_0

A . / .
Y approaching ____ approaching
N
Floor_2
(Top)

below

3
Lift_0
Fellina) Floor_1

..,./mlﬁnamnj_:m\wm_ni

Floor_o
[(Bottom)
up: Button_2

g

State_0 v

15

sample transition

fun NiceMotion (s, s': State) {
LiftMotion (s,s') && LiftPosition (s) && LiftPosition (s')
s.at !=s'.at}

run NiceMotion for 3 but 2 State

Button _2
(FloarButton)
floor: Floor_0

Button _2
(FloarButton)
floor: Floor_0

___ _-J -._.
\ / \ /
% approaching [approaching vat [/ oat
™, /
" L I
Floor_2 Floor_2
(Top) (Top)
below below
i 1
Lift_0
- Fl 1
(falling) Floor_1 @ oor_
\ approaching / below _.._...mﬁ below
N .|
Floor_0 Floor_0
[(Bottom) (Bottom)
up: Button_2 up: Buttan _Z
o e
> <<

State_0 i State_1 v

button update

16

button update

fun ButtonUpdate (s, s': State, press: set Button) {

s.lit = s.lit -
{b: Button | some p: Lift | Serves (s,s',p,b)}
+ press

no b: press & LiftButton | b.floor in (s+s').at[b.lift]
no press & s.lit
s.promises[Lift] - s'.promises[Lift] in s.lit - s'.lit

}

16

denying service

17

denying service

fun Towards (s: State, p: Lift, f: Floor) {
let next = nextFloox(s,p) |
f in s.at[p].”next + s.approaching[p].*next

}

17

denying service

fun Towards (s: State, p: Lift, f: Floor) {
let next = nextFloox(s,p) |
f in s.at[p].”next + s.approaching[p].*next

}

fun Denies (s, s": State, p: Lift, b: Button) {
let £ = b.floor {
Towards (s,p,f)
not Towards (s',p,f)
not Serves (s,s',p,b)

}

17

a policy

18

a policy

fun Policy (s, s': State) {
no p: Lift, b: p.buttons & s.lit | Denies (s,s',p,b)

all b: s.lit & FloorButton, p: Lift | Denies (s,s',p,b) =>
(some q: Lift | Serves(s,s',q,b))
or (b in s'.promises[Lift]
and some b': s.lit | Towards (s',p,b'.floor))
NoStuckLift (s,s')
AvoidStops (s,s')
}

18

a policy

fun Policy (s, s': State) {

all b: s.lit & FloorButton, p: Lift | Denies (s,s',p,b) =>
(some q: Lift | Serves(s,s',q,b))
or (b in s'.promises[Lift]
and some b': s.lit | Towards (s',p,b'.floor))
NoStuckLift (s,s')
AvoidStops (s,s')
}

18

a policy

un Policy (s, s': State

NoStuckLift (s,s'
AvoidStops (s,s'

18

putting it all together

19

putting it all together

fun Trans (s, s': State) {
LiftPosition (s)
LiftPosition (s')
LiftMotion (s,s')
Policy (s,s')
some press: set Button | ButtonUpdate (s, s', press)

}

19

putting it all together

fun Trans (s, s': State) {
LiftPosition (s)
LiftPosition (s')
LiftMotion (s,s')
Policy (s,s')
some press: set Button | ButtonUpdate (s, s, press)

}

in a transition, some set
of buttons is pressed and
buttons are updated

19

sample denial

20

sample denial

fun ShowPolicy (s, s': State) {
Trans (s, ')
some b: s.lit & FloorButton, p: Lift | Denies (s,s',p,b)
no s.promises && some s'.promises}

run ShowPolicy for 3 but 2 State, 2 Lift, 2 Button

20

sample denial

fun ShowPolicy (s, s': State) {

Trans (s, ')
some b: s.lit & FloorButton, p: Lift | Denies (s,s',p,b)

no s.promises && some s'.promises}
run ShowPolicy for 3 but 2 State, 2 Lift, 2 Button

Button_1
(FlaorButtan)
flaar: Floor_1

Button _o

Lift_0
ifalling)

Flaor_2

ol [FloorButton)

floor: Floor_o

bhelow | at %

| /
Floor_1 Vi hi
dawn: Buttan_1 \\ approaching
i
ra
/m_n_é x\«
Floar_0
(Bottom)
up: Button_0

sample denial

fun ShowPolicy (s, s': State) {
Trans (s, ')
some b: s.lit & FloorButton, p: Lift | Denies (s,s',p,b)
no s.promises && some s'.promises}

run ShowPolicy for 3 but 2 State, 2 Lift, 2 Button

Button_1
(FlaorButtan)
flaar: Floor_1

Button_0
Flaar_2 Lift_0 Blisaain U __ Floor_2 (FloarButton)
(Top) (Falling) [FloorButton) _ (Top) fi = a
A g floor: Floor_o [. por-rloar.
]H _/..f.
below [at
bhelow | at % | [
’ __
Floor 1 Button_1 /
L / - (FloorButton) | at
Floor_1 IV) down: Button_1 f Fl 1 |
down: Button_1 / approaching ner e
_) /
s .._.
/m_n_é x\« below m.a.
y4 3
Flaor_0O Flaar_0
(Bottomm) (Bottorm)
up: Button_0 up: Button_0 20

traces

21

traces

fun Init (s: State) {
no s.lit.floor & s.at[Lift]
Nno S.promises

}
fun Trace () {
Init (Ord[State].first)
all s: State - Ord[State].last |
let s' = Ord[State].next[s] | Trans (s,s')
}

21

traces

fun Init (s: State) {
no s.lit.floor & s.at[Lift]
Nno S.promises

}
fun Trace () {
1
all s: State - Ord[State].last |
let s' = Ord[State].next[s] | Trans (s,s')
}

21

traces

fun Init (s: State) {
no s.lit.floor & s.at[Lift]
Nno S.promises

}
fun Trace () {

mm s: mlwmg mwmmmmmﬁ&,.@,mmi
g s' = Ord[State].next[s] | ﬁwmm Am 3

transition relation relates
each state except the last
to the next state

21

asserting eventual service

22

asserting eventual service

assert EventuallyServed {
Trace () =>
let start = Ord[State].first {
all b: start.lit | some s OrdNexts (start) | b !in s'lit

}

22

counterexample!

23

counterexample!

Eutton _2
Floor_2 floar: Floar_0
below
Y
Floor_1
balow
Y
Flaor_0

up: Button_2

23

counterexample!

Floor_2 _ﬂ__u_.w_ﬁﬁ_n_u_m._uw-o
below

Floor_1
below

Floor_0

up: Button_2

assert EventuallyServed {
Trace () and some Lift =>
let start = Ord[State].first {
all b: start.lit | some s': OrdNexts (start) | b !in s'.lit

}

23

counterexample!

assert EventuallyServed {

Floor_2 _ﬂ__u_.w_ﬁﬁ_n_u_m._uw-o
below

Floor_1
below

Floor_0

up: Button_2

Trace ()

let start =

all b: start.lit | some s OrdNexts (start) | b !in s'lit

}

23

BQQQ_ MH—.F—ﬁ.ﬂ:Hm floor & button state

sigs & definitions signature

behaviour definitions
(eg, denying)

AN

policy description

physical constraints physical constraints
on lift state on lift motion

button update
rules

transition relation

/

trace definition
physics _

design eventuality assertion

24

incremental development

write
minimal
model

loosen
model

none

generate

instances

pick
analysis
check

property

some

tighten
model

some

extend
model
or stop

none

25

challenges for you

26

challenges for you

key properties of all lift systems
> what are they?
» are they just cultural?

26

challenges for you

key properties of all lift systems
> what are they?
» are they just cultural?

replacing promises
> a better way to allow load balancing?

26

