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why looseness?

risk-driven modelling
» give only crucial properties

implementation freedom
> allow concurrency
» representation independence

account for environment
» fewer assumptions better

specify a family of systems
> every program is a family? [Parnas]
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example: elevator policy

challenge
» specify a policy for scheduling lifts
> keep concerns separated

tight enough
> all requests eventually served
» don’t skip request from inside lift

loose enough
> no fixed configuration of floors, lifts, buttons
> not one algorithm but a family
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complications

multiple lifts
> don’t send all to service one request

top and bottom
» lift going in wrong direction may be nearer

load balancing
» accommodate strategies based on occupancy, eg
> don’t force nearest lift to serve
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approach: promises

ways to deny a request
> ‘skipping’: going past floor
> ‘bouncing’: doubling back before floor

policy
> a lift can’t deny a request from inside
> if a lift denies a floor request
some lifts promise to serve it later
> a lift can’t deny the last promise

freedoms
» divide requests amongst lifts
» postpone allocation decision
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basic abstractions

floor layout
» orderings above and below
» top and bottom floors

buttons
» inside lift and at floors
» each has an associated floor
> in a given state, some lit

elevator state
» at or approaching a floor
» rising or falling
» promises to serve some buttons

at floor 2,
falling

approaching
floor 2,
rising

at floor 1,
rising
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floor layout

open std/orders

sig Floor {
disj up, down: option FloorButton,
above, below: option Floor

}
sig Top extends Floor {} {no up}

sig Bottom extends Floor {} {no down}

fact Layout {
Ord[Floor].next = above
Ord[Floor].prev = below
Ord[Floor].last = Top
Ord[Floor].first = Bottom }




floor layout

ppen std/orders

sig Floor {
disj up, down: option FloorBuiton,

above, below: option Floor use ordering axioms from
} standard library

sig Top extends Floor {} {no up}
sig Bottom extends Floor {} {no down}

fact Layout {
Urd Floor.next = above
OrdiFloor .prev = below
OrdiFloorl.last = Top
Ord[Floor].first = Bottom }




.=°°1 —m<°=.n don’t require buttons on all floors

allow small scope
analysis will place buttons demonically

open std/orders

sig Floor {
disj up, down: @ption FloorButiton,

above, below: option Floor use ordering axioms from
} standard library

sig Top extends Floor {} {no up}
sig Bottom extends Floor {} {no down}

fact Layout {
Urd Floor.next = above
OrdiFloor .prev = below
OrdiFloorl.last = Top
OrdiFloor|.first = Bottom }
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button: Floor ?->? LiftButton,
buttons: set LiftButton

}



lifts

sig Lift {
button: Floor 72-»? LittBution, button panel:
buttons: set LiftButton allows different lifts
w to cover different sets

of floors
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sig Button {floor: Floor}
disj sig LiftButton extends Button {lift: Lift}
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buttons

sig Button {floor: Floor}

disj sig LiftButton extends Button {lift: Lift}

disj sig FloorButton extends Button {}

part sig UpButton, DownButton extends FloorButton {}

fact ButtonDefinitions {
~floor = Lift.button + up + down
lift = {b: Button, p: Lift | some f: Floor | f->b in p.button}
all p: Lift | p.buttons = p.button [Floor]
UpButton = Floor.up

}



U :.H.Ho ns define classes of button;

redundant but convenient

sig Button {floor: Floor}

glisi sig LiftButton extends Button {Lft; Lift}

glis] sig FloorBution extends Bution {}

part sig UpButton, DownButton extends FloorBution {}

fact ButtonDefinitions {
~floor = Lift.button + up + down
lift = {b: Button, p: Lift | some f: Floor | f->b in p.button}
all p: Lift | p.buttons = p.button [Floor]
UpButton = Floor.up

}
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sample layout

fun showLayout () {some Lift.buttons}

run showLayout
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sample layout

fun showLayout () {some Lift.buttons}

run showLayout

Buttan_1 Buttan 2 Lift_2
Floor 2 lift: Lift_2 floar- Flaar O Lift_0 Lift_1 button: Floar_0-=Buttan_:
floor: Floor_0 . - buttons: Button_1
below
Flaor_1
below
Flaor_0

up: Button_2

10
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declaring state
> collect together relations that change

sig State {
lit: set Button,
part rising, falling: set Lift,
at, approaching: Lift ->? Floor,
promises: Lift -> FloorButton

}
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system state

declaring state
> collect together relations that change

sig State {
lit: set Button,
part rising, falling: set Lift,
at, approaching: Litt -7 Floor,
promises: Lift -> FloorButton

}

outstanding requests

lift directions

lift positions

promises: many to many

11
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physical constraints on lift state

fun LiftPosition (s: State) {
all p: Lift | with s {

one (at + approaching)|p]

no (at & approaching)[p]

p in rising =>
no approaching[p] & Bottom,
no approaching[p] & Top

p in rising =>
no at[p] & Top,
no at[p] & Bottom

}
}
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physical constraints on lift state

fun LiftPosition (s: State) {
all p: Lift | with s {

one (at + approaching)[p]

no (at & approaching)|[p]

p in rising =>
no approaching[p] & Bottom,
no approaching[p] & Top

pin. =
no at[p] &
no at[p] & Bottom

}

}
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physical constraints on lift state

fun LiftPosition (s: State) { lift is at or approaching one floor
all p: Lift | with s {

o7 mm G roaching){p]
no (at & approaching)|[p]
p in rising =>
no approaching[p] & Bottom,
no approaching[p] & Top
pin =
no at[p] &
no at[p] & Bottom

}

}

12



physical constraints on lift state

fun LiftPosition (s: State) { lift is at or approaching one floor
all p: Lift | with s {

. ﬁw_m m at + annr |

‘ . lift is not at and approaching

+ approaching)[p]
pinrising =>
no approaching[p] & Bottom,

p in =
no at[p] &
no at[p] & Bottom

}
}

12



physical constraints on lift state

fun LiftPosition (s: State) { lift is at or approaching one floor
m= @ Cwn _ sﬁr S ﬁ

“““““ | .N - lift is not at and approaching
no Am.w @ m@mgmmwwm@m w

@ wﬁ ﬁmwﬁm == no rising on approach to bottom

roachi mg & Top

no at[p] & Bottom
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physical constraints on lift state

fun LiftPosition (s: State) { lift is at or approaching one floor
all p: Lift | with s {

‘one (at + approaching)[p M
no {at & m@mgmmgm@m w
@ in ﬁm%m =2

lift is not at and approaching

no rising on approach to bottom

no rising at top floor

12
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sample state

run LiftPosition
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sample state

run LiftPosition

(Top)

Floor_2

Floor_1

at at

Floor_o
(Bottom)
up: Button_2

Button _2
(FlaorButtan)
floar: Floar_0

13
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physical constraints on lift motion

fun nextFloor (s: State, p: Lift): Floor -> Floor {
result = if p in s.rising then above else below

}
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physical constraints on lift motion

fun nextFloor (s: State, p: Lift): Floor -> Floor {
result = if p in s.rising then above else below

}

fun LiftMotion (s, s': State) {
all p: Lift {
p & s.rising !=p & s'.rising => some s'.at[p]

s'.at[p] in s.(at + approaching)[p]

14



physical constraints on lift motion

fun nextFloor (s: State, p: Lift): Floor -> Floor {
result = if p in s.rising then above else below

}

fun LiftMotion (s, s': State) {
all p: Lift {
p & s.rising '= p & s'.rising => some s'.at[p]

s'.at[p] in s.(at + approaching)[p]

s.approaching[p] in
s.approaching[p] + s.(at + approaching)[p].nextFloor(s,p)

}
}

14



physical constraints on lift motion

fun nextFloor (s: State, p: Lift): Floor -> Floor {
result = if p in s.rising then above else below

}

fun LiftMotion (s, s': State) {
all p: Lift {

s'.at[p] in s.(at + approaching)[p]

s.approaching[p] in
s.approaching[p] + s.(at + approaching)[p].nextFloox(s,p)

}
}
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physical constraints on lift motion

fun nextFloor (s: State, p: Lift): Floor -> Floor {
result = if p in s.rising then above else below

}

fun LiftMotion (s, s': State) {
all p: Lift {

floor at after is floor at
s.atip] in s.(at + approaching)}ip] or approaching before

s.approaching[p] in
s.approaching[p] + s.(at + approaching)[p].nextFloox(s,p)

}
}
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physical constraints on lift motion

fun nextFloor (s: State, p: Lift): Floor -> Floor {
result = if p in s.rising then above else below

}

fun LiftMotion (s, s': State) {
all p: Lift {

floor at after is floor at
s.atip] in s.(at + approaching)}ip] or approaching before

i

s.approaching|p| in
s.approachingipl + s.(at + approaching)ip|.nextbicor(s,p)

}
}

floor approaching after is floor
approached before, or next floor

14
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sample transition

fun NiceMotion (s, s': State) {
LiftMotion (s,s') && LiftPosition (s) && LiftPosition (s')
s.at !=s'.at}

run NiceMotion for 3 but 2 State
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sample transition

fun NiceMotion (s, s': State) {

LiftMotion (s,s') && LiftPosition (s) && LiftPosition (s')

s.at !=s'.at}
run NiceMotion for 3 but 2 State

Button _2
(FloarButton)
floor: Floor_0

A . / .
Y approaching \____ approaching
N
Floor_2
(Top)

below

3
Lift_0
Fellina) Floor_1

..,./mlﬁnamnj_:m\wm_ni

Floor_o
[(Bottom)
up: Button_2

g

State_0 v
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sample transition

fun NiceMotion (s, s': State) {
LiftMotion (s,s') && LiftPosition (s) && LiftPosition (s')
s.at !=s'.at}

run NiceMotion for 3 but 2 State

Button _2
(FloarButton)
floor: Floor_0

Button _2
(FloarButton)
floor: Floor_0

___ _-J -._.
\ / \ /
% approaching [ approaching vat [/ oat
™, /
" L I
Floor_2 Floor_2
(Top) (Top)
below below
i 1
Lift_0
- Fl 1
(falling) Floor_1 @ oor_
\ approaching / below _.._...mﬁ below
N .|
Floor_0 Floor_0
[(Bottom) (Bottom)
up: Button_2 up: Buttan _Z
o e
> <<

State_0 i State_1 v
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button update

fun ButtonUpdate (s, s': State, press: set Button) {

s.lit = s.lit -
{b: Button | some p: Lift | Serves (s,s',p,b)}
+ press

no b: press & LiftButton | b.floor in (s+s').at[b.lift]
no press & s.lit
s.promises[Lift] - s'.promises[Lift] in s.lit - s'.lit

}

16
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denying service

fun Towards (s: State, p: Lift, f: Floor) {
let next = nextFloox(s,p) |
f in s.at[p].”next + s.approaching[p].*next

}

17



denying service

fun Towards (s: State, p: Lift, f: Floor) {
let next = nextFloox(s,p) |
f in s.at[p].”next + s.approaching[p].*next

}

fun Denies (s, s": State, p: Lift, b: Button) {
let £ = b.floor {
Towards (s,p,f)
not Towards (s',p,f)
not Serves (s,s',p,b)

}

17
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a policy

fun Policy (s, s': State) {
no p: Lift, b: p.buttons & s.lit | Denies (s,s',p,b)

all b: s.lit & FloorButton, p: Lift | Denies (s,s',p,b) =>
(some q: Lift | Serves(s,s',q,b))
or (b in s'.promises[Lift]
and some b': s.lit | Towards (s',p,b'.floor))
NoStuckLift (s,s')
AvoidStops (s,s')
}
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a policy

fun Policy (s, s': State) {

all b: s.lit & FloorButton, p: Lift | Denies (s,s',p,b) =>
(some q: Lift | Serves(s,s',q,b))
or (b in s'.promises[Lift]
and some b': s.lit | Towards (s',p,b'.floor))
NoStuckLift (s,s')
AvoidStops (s,s')
}
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a policy

un Policy (s, s': State

NoStuckLift (s,s'
AvoidStops (s,s'

18
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putting it all together

fun Trans (s, s': State) {
LiftPosition (s)
LiftPosition (s')
LiftMotion (s,s')
Policy (s,s')
some press: set Button | ButtonUpdate (s, s', press)

}

19



putting it all together

fun Trans (s, s': State) {
LiftPosition (s)
LiftPosition (s')
LiftMotion (s,s')
Policy (s,s')
some press: set Button | ButtonUpdate (s, s, press)

}

in a transition, some set
of buttons is pressed and
buttons are updated

19
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sample denial

fun ShowPolicy (s, s': State) {
Trans (s, ')
some b: s.lit & FloorButton, p: Lift | Denies (s,s',p,b)
no s.promises && some s'.promises}

run ShowPolicy for 3 but 2 State, 2 Lift, 2 Button
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sample denial

fun ShowPolicy (s, s': State) {

Trans (s, ')
some b: s.lit & FloorButton, p: Lift | Denies (s,s',p,b)

no s.promises && some s'.promises}
run ShowPolicy for 3 but 2 State, 2 Lift, 2 Button

Button_1
(FlaorButtan)
flaar: Floor_1

Button _o

Lift_0
ifalling)

Flaor_2

ol [FloorButton)

floor: Floor_o

bhelow | at %

| /
Floor_1 Vi hi
dawn: Buttan_1 \\ approaching
i
ra
/m_n_é x\«
Floar_0
(Bottom)
up: Button_0




sample denial

fun ShowPolicy (s, s': State) {
Trans (s, ')
some b: s.lit & FloorButton, p: Lift | Denies (s,s',p,b)
no s.promises && some s'.promises}

run ShowPolicy for 3 but 2 State, 2 Lift, 2 Button

Button_1
(FlaorButtan)
flaar: Floor_1

Button_0
Flaar_2 Lift_0 Blisaain U __ Floor_2 (FloarButton)
(Top) (Falling) [FloorButton) _ (Top) fi = a
A g floor: Floor_o [ . por-rloar.
] ....H _/..f.
below [ at
bhelow | at % | [
’ __
Floor 1 Button_1 /
L / - (FloorButton) | at
Floor_1 IV ) down: Button_1 f Fl 1 |
down: Button_1 / approaching ner e
_ ) /
s .._.
/m_n_é x\« below m.a.
y4 3
Flaor_0O Flaar_0
(Bottomm) (Bottorm)
up: Button_0 up: Button_0 20
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traces

fun Init (s: State) {
no s.lit.floor & s.at[Lift]
Nno S.promises

}
fun Trace () {
Init (Ord[State].first)
all s: State - Ord[State].last |
let s' = Ord[State].next[s] | Trans (s,s')
}
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traces

fun Init (s: State) {
no s.lit.floor & s.at[Lift]
Nno S.promises

}
fun Trace () {
1
all s: State - Ord[State].last |
let s' = Ord[State].next[s] | Trans (s,s')
}
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traces

fun Init (s: State) {
no s.lit.floor & s.at[Lift]
Nno S.promises

}
fun Trace () {

mm s: mlwmg mwmmmmmﬁ&,.@,mmi
g s' = Ord[State].next[s] | ﬁwmm Am 3

transition relation relates
each state except the last
to the next state
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asserting eventual service

assert EventuallyServed {
Trace () =>
let start = Ord[State].first {
all b: start.lit | some s OrdNexts (start) | b !in s'lit

}

22
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counterexample!

Eutton _2
Floor_2 floar: Floar_0
below
Y
Floor_1
balow
Y
Flaor_0

up: Button_2
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counterexample!

Floor_2 _ﬂ__u_.w_ﬁﬁ_n_u_m._uw-o
below

Floor_1
below

Floor_0

up: Button_2

assert EventuallyServed {
Trace () and some Lift =>
let start = Ord[State].first {
all b: start.lit | some s': OrdNexts (start) | b !in s'.lit

}
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counterexample!

assert EventuallyServed {

Floor_2 _ﬂ__u_.w_ﬁﬁ_n_u_m._uw-o
below

Floor_1
below

Floor_0

up: Button_2

Trace ()

let start =

all b: start.lit | some s OrdNexts (start) | b !in s'lit

}

23



BQQQ_ MH—.F—ﬁ.ﬂ:Hm floor & button state

sigs & definitions  signature

behaviour definitions
(eg, denying)

AN

policy description

physical constraints  physical constraints
on lift state on lift motion

button update
rules

transition relation

/

trace definition
physics _

design eventuality assertion

24



incremental development

write
minimal
model

loosen
model

none

generate

instances

pick
analysis
check

property

some

tighten
model

some

extend
model
or stop

none
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challenges for you

key properties of all lift systems
> what are they?
» are they just cultural?
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challenges for you

key properties of all lift systems
> what are they?
» are they just cultural?

replacing promises
> a better way to allow load balancing?

26



