
m
icrom

odels of softw
are

declarative m
odelling

and analysis w
ith A

lloy

lecture 4: a case study

Daniel Jackson
M

IT Lab for Com
puter Science

M
arktoberdorf, August 2002

2

on research strategy

I have grown m
ore and m

ore aware that success in science …
com

es not so m
uch to the m

ost gifted, nor the m
ost skillful,

nor the m
ost knowledgeable, but rather to the superior

strategist and tactician. -- Jack O
liver

To m
ake an im

portant discovery, you m
ust study an im

portant
problem

. -- Peter M
edawar

Know your secret weapon. -- Herb Sim
on

3

know
 w

here you are

know
ledge

tim
e

age of discovery

4

collection of aphorism
s at

theory.lcs.m
it.edu/~dnj/6898/lecture-notes.htm

l

Session 20: H
ints on Research Strategy

5

bakery algorithm

why this exam
ple?

›curiosity -- I hadn’t done it before
›fam

iliarity -- you can com
pare to Rushby

›illustrate aspects of Alloy m
odelling

aspects
›no com

m
itm

ent to fixed topology in m
odel itself

›can easily encode traces in the logic
›both invariant reasoning & trace analysis
›can m

itigate effects of finite bounds

6

general observations

Rushby on PVS
›nothing’s easy, but everything’s possible

Jackson on Alloy
›everything’s easy, but nothing’s possible

not quite…
›it’s not always so easy
›m

ore is possible than you m
ight have guessed

7

signatures

m
odule bakery

open std/ord

sig Process {}

sig Ticket {}

sig State {

ticket: Process ->? Ticket,

part idle, trying, critical: set Process

}

process in critical phase
holds no ticket: hand in ticket

w
hen you’re being served

8

safety condition

at m
ost one process is in the critical phase:

sig State {

ticket: Process ->? Ticket,

part idle, trying, critical: set Process

}fun Safe (s: State) {

sole s.critical

}

9

transition relation

fun Trans (s, s': State, p: Process) {

let otherTickets = s.ticket[Process-p],

next = Ord[Ticket].next |

{p in s.trying

otherTickets in s.ticket[p].^next

p in s'.critical && no s'.ticket[p]

}or …

}

precondition:
p is in trying phase
and all other tickets
follow

 its ticket

postcondition:
p is in critical phase
after, and holds
no ticket

10

other cases

fun Trans (s, s': State, p: Process) {
let otherTickets = s.ticket[Process-p], next = Ord[Ticket].next |

…
or

{p in s.critical
p in s'.idle
s'.ticket[p] = s.ticket[p]}

or
{p in s.idle
p in s'.trying
som

e s'.ticket[p] & otherTickets.^next}
}

11

fram
e condition

define a condition saying that a process p doesn’t change:

fun NoChange (s, s': State, p: Process) {

s.ticket[p] = s'.ticket[p]

p in s.idle => p in s'.idle

p in s.trying => p in s'.trying

p in s.critical => p in s'.critical

}

12

initial condition

fun Init (s: State) {

Safe (s)

}

13

putting things together

fun Interleaving () {

Init (Ord[State].first)

all s: State - Ord[State].last, s’: Ord[State].next[s] |

som
e p: Process {

Trans (s,s',p)

all x: Process - p | NoChange(s,s',x)

}

}
use of ordering:
instantiation im

poses
a total order on
the set State

14

allow
ing sim

ultaneous actions

fun Sim
ultaneity () {

Init (Ord[State].first)

all s: State - Ord[State].last, s': Ord[State].next[s] |

all p: Process | Trans (s,s',p) or NoChange(s,s',p)

}

15

checking a conjecture

assert InterleavingSafe {

Interleaving () => all s: State | Safe (s)

}

check InterleavingSafe for 4 but 2 Process

16

counterexam
ples…

17

how
 m

uch assurance?

analysis within bounded scope:
check InterleavingSafe for 4 but 2 Process

2 processes …
 seem

s reasonable
›we’ve learned som

ething about a real scenario

4 tickets? 4 states? …
 not at all reasonable

›running out of tickets is a poor approxim
ation

›not considering all states m
ay m

iss bugs

18

w
hen is a trace long enough?

for safety properties, check all traces
›but how long? ie, what is scope of State?

idea: bound the diam
eter

›if all states reached in path ≤ k
›enough to consider only traces ≤ k

strategy
›ask for loopless trace of length k+1

if none, then k is a bound
›tighter bounds possible: eg, no shortcuts

like bounded m
odel checking

›but can express conditions directly

diam
eter = 1

m
ax loopless = 1

diam
eter = 1

m
ax loopless = 5

19

finding the diam
eter

fun NoRepetitionsI () {

Interleaving ()

no disj s, s': State | Equiv (s,s')

}fun Equiv (s, s': State) {

s.ticket = s'.ticket

s.idle = s'.idle && s.critical = s'.critical

}run NoRepetitionsI for 3 but 2 Process, 8 State

20

can w
e fix the tickets in the sam

e w
ay?

what we want to do
›bound the ticket scope for fast analysis
›but know that we never run out of tickets

one idea
›find diam

eter of m
achine

›ensure enough tickets for longest trace

a better idea
›ticket allocations with sam

e process order are equivalent
›so find diam

eter with respect to ticket ordering
›and show not all tickets are used

21

defining the order

introduce process ordering as a new field
sig StateW

ithOrder extends State {

precedes: Process -> Process

}{all p, p': Process |

p->p' in precedes iff

ticket[p'] in ^(Ord[Ticket].next)[ticket[p]]

}fact {State = StateW
ithOrder}

22

defining state equivalence

define equivalence m
odulo ordering

fun EquivProcessOrder (s, s': State) {

s.precedes = s'.precedes

s.idle = s'.idle && s.critical = s'.critical

}

define no repetition constraint
fun NoRepetitionsUnderOrderI () {

Interleaving ()

no disj s, s': State | EquivProcessOrder (s,s')

}

23

finding the bounds

find a diam
eter

run NoRepetitionsUnderOrderI for 7 but 3 Process, 13 State

check that tickets not all used
assert EnoughTicketsI {

Interleaving () => Ord[Ticket].last !in State.ticket [Process]

}check EnoughTicketsI for 7 but 3 Process, 12 State

so now we know
›for 3 processes, 12 states and 7 tickets is fully general

24

getting full coverage

finally, we check this
check InterleavingSafe for 7 but 3 Process, 12 State

if no counterexam
ple

›we have a ‘proof’ for 3 processes

25

w
hat w

e did

unbounded m
odel of bakery

›no fixed num
ber of processes or tickets

analysis in sm
all finite scope

›m
ay m

iss counterexam
ples

established diam
eter

›for 3 processes, 12 states and 7 tickets is enough

full analysis for bounded topology
›all scenarios for 3 processes

26

sum
m

ary of A
lloy

a sim
ple language

›relational first-order logic
›signatures for structuring: global relations
›description is set of constraints

an effective analysis
›sim

ulation & checking are instance-finding
›user provides scope, distinct from

 m
odel

›tool reduces Alloy to SAT

applications
›a variety of case studies
›used for teaching in ~15 universities

27

challenges: better analysis

im
proving analysis

›exploiting equalities?
›elim

inating irrelevant constraints?
›choosing sym

m
etry predicates?

m
itigating effects of scope

›data independence: scope of 3 enough?
›decision procedure for subset?

analyzing inconsistency
›what when no instances are found?
›m

ight have shown
false => property

›tool m
ight show which constraints used

28

challenges: applications

finding bugs in code
›extract form

ula from
 procedure

p(s,s0,s1,…
,s’)

›check the conjecture
pre(s) && p(s,s0,s1,…

,s’) => post(s,s’)
›counterexam

ple is trace

build veneers on Alloy
›on API, or as m

acro language
›eg, role-based access control
›eg, sem

antic web design

29

challenges: case studies

source code control
›m

odel CVS at m
ultiple levels

›is it correct?

m
eta m

odelling
›check consistency of UM

L m
etam

odel
›check theorem

s of Unified Theory?

dynam
ic topology algorithm

s
›reverse path forwarding, eg

30

thank you!
dnj@

m
it.edu

