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A
lloy’s analysis

only one kind of analysis
›given form

ula, find instance

instance
›assignm

ent that m
akes form

ula true
›to free variables
›witnesses to existential by skolem

izing

kinds of analysis
›sim

ulation: instance of form
ula, or exam

ple
›check: instance of negation, or counterexam

ple
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sim
ulation

form
ula

Person: set PERSON

Date: set DATE

bb, bb’ : Person ->? Date

p: Person

d: Date

bb’ = bb ++ p->d

exam
ple

PERSON = {(P0),(P1),(P2)}

Person = {(P0),(P1)}

DATE = {(D0),(D1)}

Date = {(D0),(D1)}

p = {(P1)}

d = {(D1)}

bb = {(P0,D0),(P1,D0)}

bb’ = {(P0,D0),(P1,D1)}
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checking

form
ula

t: set T

r: t -> t

a, b: set t

not (a-b).r = a.r - b.r

counterexam
ple

T = {(T0),(T1)}

t = {(T0),(T1)}

r = {(T0,T0),(T1,T0)}

a = {(T0)}

b = {(T1)}
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scope

scope
›gives dim

ensions of space
›num

ber of atom
s in each basic type

instance I in scope S iff for all types T, #I(T) = S(T)

explosion!
›suppose scope (T) = s for all T, m

 relations of arity k
each k-relation has s^k possible edges, so 2^(s^k) values
m

 relations, so #space = (2^(s^k))^m
 = m

(s^k) bits
›typical exam

ple
s = 5, m

 = 20, k = 2, #space = 500 bits
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scope for exam
ple

form
ula

Person: set PERSON

Date: set DATE

bb, bb’ : Person ->? Date

p: Person

d: Date

bb’ = bb ++ p->d

exam
ple

PERSON = {(P0),(P1),(P2)}

Person = {(P0),(P1)}

DATE = {(D0),(D1)}

Date = {(D0),(D1)}

p = {(P1)}

d = {(D1)}

bb = {(P0,D0),(P1,D0)}

bb’ = {(P0,D0),(P1,D1)} scope is
3 PERSON, 2 DATE
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scope for counterexam
ple

form
ula

t: set T

r: t -> t

a, b: set t

not (a-b).r = a.r - b.r

counterexam
ple

T = {(T0),(T1)}

t = {(T0),(T1)}

r = {(T0,T0),(T1,T0)}

a = {(T0)}

b = {(T1)}
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scope for counterexam
ple

form
ula

t: set T

r: t -> t

a, b: set t

not (a-b).r = a.r - b.r

counterexam
ple

T = {(T0),(T1)}

t = {(T0),(T1)}

r = {(T0,T0),(T1,T0)}

a = {(T0)}

b = {(T1)}

scope is 2 for T
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sm
all scope hypothesis

search within finite scope
›sound: exam

ples are correct
›incom

plete: m
ay m

iss an exam
ple

›but in practice, sm
all scopes are enough

cum
ulative invalid assertions

90%

sm
allest

revealing
scope 5

m
iss

catch
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analyzer architecture

translate
form

ula
translate

m
odel

m
apping

boolean
form

ula
boolean
instance

SAT
solver

alloy
form

ula
alloy

instance

scope
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w
hich instance?

no guarantees
›if instance in scope, Alloy will find it
›but m

ay not be sm
allest, nicest, etc

›not even determ
inistic

in practice
›instances usually sm

all
›can ask for another
›can m

ake determ
inistic
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translation to SA
T

idea
›relation’s value can be represented as adjacency m

atrix
›so space of values represented as m

atrix of boolean vars
›translate expr to m

atrix of boolean form
ulas

›translate form
ula to boolean form

ula
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exam
ple

t: set T ; r: t -> t; a, b: set t
not (a-b).r = a.r - b.r
t, a, b: (T), r: (T,T)

scope of 2, T = {(t0),(t1)}

t(i) true m
eans tuple (Ti ) in t

r(i,j) true m
eans tuple (Ti ,Tj ) in r

a(i) true m
eans tuple (Ti ) in a

b(i) true m
eans tuple (Ti ) in b

(a-b) (i) Æ
 a(i) AND NOT b(i)

(a-b).r (i) Æ
 OR

j  r(i) AND (a(i) AND NOT b(i))
call this Fi

(a.r-b.r) (i) Æ
 (OR

j  r(i) AND a(i)) AND NOT (OR
j  r(i) AND b(i))
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exam
ple

t: set T ; r: t -> t; a, b: set t
not (a-b).r = a.r - b.r
t, a, b: (T), r: (T,T)

scope of 2, T = {(t0),(t1)}

t(i) true m
eans tuple (Ti ) in t

r(i,j) true m
eans tuple (Ti ,Tj ) in r

a(i) true m
eans tuple (Ti ) in a

b(i) true m
eans tuple (Ti ) in b

(a-b) (i) Æ
 a(i) AND NOT b(i)

(a-b).r (i) Æ
 OR

j  r(i) AND (a(i) AND NOT b(i))
call this Fi

(a.r-b.r) (i) Æ
 (OR

j  r(i) AND a(i)) AND NOT (OR
j  r(i) AND b(i))

 G
i

not (a-b).r = a.r - b.r Æ
 NOT AND

i  (Fi IFF G
i )

solution: t0 t1 r0,0 r1,0 a0 b1
t = {(T0),(T1)}, r = {(T0,T0),(T1,T0)}, a = {(T0)}, b = {(T1)}
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translation issues

quantifiers
›ground them

 out
›skolem

ize when possible

conversion to CNF
›use standard techniques

exploiting repeated subform
ulas

›detect sharing and m
ake form

ula a DAG, not a tree
›avoid repeated translations

sym
m

etry
›form

ula is invariant on perm
utations of atom

s in a type
›add sym

m
etry-breaking predicates
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solver experience

which solvers?
›wrapped by backend; user selects
›Chaff (M

alik) and Berkm
in (Goldberg) work best

perform
ance

›no system
atic studies yet

›for <1kbit of declared state, term
inates in seconds

›grounding out often a bottleneck
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softw
are engineering experience

where effort goes
›CNF construction m

ost tricky & error prone
›now in Java rather than C++, should be easier
›m

ost code in front-end (type inference, static sem
antics)

display of results
›crucial aspect of tool
›visualization in 3rd version
›tree/text sync hard to do well


