MIT Lab for Computer Science Marktoberdorf, August 2002 Daniel Jackson

## lecture 3: analysis

and analysis with Alloy declarative modelling

micromodels of software

only one kind of analysis > given formula, find instance

only one kind of analysis

given formula, find instance

instance

- > assignment that makes formula true
- to free variables
- > witnesses to existential by skolemizing

only one kind of analysis

given formula, find instance

#### instance

- assignment that makes formula true
- > to free variables
- > witnesses to existential by skolemizing

#### kinds of analysis

- simulation: instance of formula, or example
- > check: instance of negation, or counterexample

#### simulation

#### simulation

formula Person: set PERSON Date: set DATE bb, bb' : Person ->? Date p: Person d: Date bb' = bb ++ p->d

#### simulation

formula Person: set PERSON Date: set DATE bb, bb' : Person ->? Date p: Person d: Date bb' = bb ++ p->d

example PERSON = {(P0),(P1),(P2)} Person = {(P0),(P1)} DATE = {(D0),(D1)} Date = {(D0),(D1)} d = {(P1)} bb = {(P0,D0),(P1,D0)} bb' = {(P0,D0),(P1,D1)}

#### checking

#### checking

formula

t: set T r: t -> t a, b: set t

not (a-b).r = a.r - b.r

#### checking

formula

t: set T

r: t -> t

a, b: set t

not (a-b).r = a.r - b.r

counterexample  $T = \{(T0), (T1)\}$   $t = \{(T0), (T1)\}$   $r = \{(T0, T0), (T1, T0)\}$   $a = \{(T0)\}$  $b = \{(T1)\}$ 

scope

#### scope

scope

- gives dimensions of space
- number of atoms in each basic type

instance I in scope S iff for all types T, #I(T) = S(T)

#### scope

scope

- gives dimensions of space
- > number of atoms in each basic type

instance I in scope S iff for all types T, #I(T) = S(T)

explosion!

- $\rightarrow$  suppose scope (T) = s for all T, m relations of arity k each k-relation has  $s^k$  possible edges, so  $2^{(s^k)}$  values m relations, so #space =  $(2^{(s^k)})^m = m(s^k)$  bits
- typical example s = 5, m = 20, k = 2, #space = 500 bits

## scope for example

formula Person: set PERSON Date: set DATE bb, bb' : Person ->? Date p: Person d: Date bb' = bb ++ p->d

example PERSON = {(P0),(P1),(P2)} Person = {(P0),(P1)} DATE = {(D0),(D1)} Date = {(D0),(D1)} p = {(P1)} d = {(D1)} bb = {(P0,D0),(P1,D0)} bb' = {(P0,D0),(P1,D1)}

## scope for example

scope is 3 PERSON, 2 DATE

formula Person: set PERSON Date: set DATE bb, bb' : Person ->? Date p: Person d: Date bb' = bb ++ p->d

example PERSON = {(PO),(P1)} Person = {(PO),(P1)} DATE = {(D0),(D1)} p = {(P1)} d = {(D1)} bb = {(P0,D0),(P1,D0)} bb' = {(P0,D0),(P1,D1)}

# scope for counterexample

| formula                 | counterexample          |
|-------------------------|-------------------------|
| t: set T                | $T = {(T0), (T1)}$      |
| r: t -> t               | $t = {(T0), (T1)}$      |
| a, b: set t             | $r = {(T0,T0),(T1,T0)}$ |
| not (a-b).r = a.r - b.r | $a = \{(T0)\}$          |
|                         | $b = {(T1)}$            |

# scope for counterexample

scope is 2 for T

formula

t: set T

r: t -> t

a, b: set t

not (a-b).r = a.r - b.r

counterexample



 $t = {(T0), (T1)}$ 

 $r = {(T0,T0),(T1,T0)}$ 

 $a = {(T0)}$ 

 $b = {(T1)}$ 

## small scope hypothesis



cumulative invalid assertions 90%

## small scope hypothesis



cumulative invalid assertions 90%

search within finite scope

- > sound: examples are correct
- incomplete: may miss an example
- but in practice, small scopes are enough



### which instance?

### which instance?

no guarantees

- if instance in scope, Alloy will find it
- but may not be smallest, nicest, etc
- > not even deterministic

### which instance?

no guarantees

- if instance in scope, Alloy will find it
- but may not be smallest, nicest, etc
- > not even deterministic

in practice

- instances usually small
- can ask for another
- can make deterministic

## translation to SAT

## translation to SAT

idea

- relation's value can be represented as adjacency matrix
- so space of values represented as matrix of boolean vars
- translate expr to matrix of boolean formulas
- > translate formula to boolean formula

t: set T ; r: t -> t; a, b: set t not (a-b).r = a.r - b.r t, a, b: (T), r: (T,T)

t: set T ; r: t -> t; a, b: set t not (a-b).r = a.r - b.r t, a, b: (T), r: (T,T) scope of 2, T = {(t0),(t1)}

t: set T ; r: t -> t; a, b: set t not (a-b).r = a.r - b.r t, a, b: (T), r: (T,T) scope of 2, T = {(t0),(t1)} t(i) true means tuple (T<sub>i</sub>) in t r(i,j) true means tuple (T<sub>i</sub>) in r a(i) true means tuple (T<sub>i</sub>,T<sub>j</sub>) in r b(i) true means tuple (T<sub>i</sub>) in a

t: set T ; r: t -> t; a, b: set t not (a-b).r = a.r - b.r t, a, b: (T), r: (T,T) scope of 2, T = {(t0),(t1)} t(i) true means tuple (T<sub>i</sub>) in t r(i,j) true means tuple (T<sub>i</sub>) in t a(i) true means tuple (T<sub>i</sub>) in a b(i) true means tuple (T<sub>i</sub>) in a b(i) true means tuple (T<sub>i</sub>) in b (a-b) (i)  $\rightarrow$  a(i) AND NOT b(i)

(a.r-b.r) (i)  $\rightarrow$  ( $OR_j r(i)$  AND a(i)) AND NOT ( $OR_j r(i)$  AND b(i)) not (a-b).r = a.r - b.r  $\rightarrow$  NOT AND<sub>i</sub> ( $F_i$  IFF  $G_i$ ) (a-b).r (i)  $\rightarrow$  OR<sub>i</sub> r(i) AND (a(i) AND NOT b(i)) call this  $F_i$ പ്പ

t: set T ; r: t -> t; a, b: set t not (a-b).r = a.r - b.r t, a, b: (T), r: (T,T) scope of 2, T = {(t0),(t1)} t(i) true means tuple (T<sub>i</sub>) in t r(i,j) true means tuple (T<sub>i</sub>) in t a(i) true means tuple (T<sub>i</sub>) in a b(i) true means tuple (T<sub>i</sub>) in b (a-b) (i)  $\rightarrow$  a(i) AND NOT b(i) (a-b).r (i)  $\rightarrow$  OR<sub>j</sub> r(i) AND (a(i) AD

(a.r-b.r) (i)  $\rightarrow$  ( $OR_j r(i)$  AND a(i)) AND NOT ( $OR_j r(i)$  AND b(i)) not (a-b).r = a.r - b.r  $\rightarrow$  NOT AND<sub>i</sub> ( $F_i$  IFF  $G_i$ ) (a-b).r  $(i) \rightarrow OR_i r(i) AND (a(i) AND NOT b(i))$ call this  $F_i$ പ്പ

solution:  $t_0 t_1 r_{0,0} r_{1,0} a_0 b_1$ t = {(T0),(T1)}, r = {(T0,T0),(T1,T0)}, a = {(T0)}, b = {(T1)}

quantifiers

- > ground them out> skolemize when possible

quantifiers

- ground them out
- skolemize when possible

conversion to CNFuse standard techniques

quantifiers

- > ground them out
- skolemize when possible

conversion to CNF

use standard techniques

exploiting repeated subformulas

- > detect sharing and make formula a DAG, not a tree
- avoid repeated translations

quantifiers

- > ground them out
- skolemize when possible

conversion to CNF

y use standard techniques

exploiting repeated subformulas

- > detect sharing and make formula a DAG, not a tree
- > avoid repeated translations

symmetry

- formula is invariant on permutations of atoms in a type
- add symmetry-breaking predicates

## solver experience

## solver experience

which solvers?

- wrapped by backend; user selects
  Chaff (Malik) and Berkmin (Goldberg) work best

## solver experience

which solvers?

- wrapped by backend; user selects
- Chaff (Malik) and Berkmin (Goldberg) work best

#### performance

- no systematic studies yet
- for <1kbit of declared state, terminates in seconds
- grounding out often a bottleneck

# software engineering experience

# software engineering experience

where effort goes

- CNF construction most tricky & error prone
- now in Java rather than C++, should be easier
- > most code in front-end (type inference, static semantics)

# software engineering experience

where effort goes

- CNF construction most tricky & error prone
- now in Java rather than C++, should be easier
- most code in front-end (type inference, static semantics)

display of results

- crucial aspect of tool
- visualization in 3rd version
- > tree/text sync hard to do well