
m
icrom

odels of softw
are

declarative m
odelling

and analysis w
ith A

lloy

lecture 3: analysis

Daniel Jackson
M

IT Lab for Com
puter Science

M
arktoberdorf, August 2002

2

A
lloy’s analysis

2

A
lloy’s analysis

only one kind of analysis
›given form

ula, find instance

2

A
lloy’s analysis

only one kind of analysis
›given form

ula, find instance

instance
›assignm

ent that m
akes form

ula true
›to free variables
›witnesses to existential by skolem

izing

2

A
lloy’s analysis

only one kind of analysis
›given form

ula, find instance

instance
›assignm

ent that m
akes form

ula true
›to free variables
›witnesses to existential by skolem

izing

kinds of analysis
›sim

ulation: instance of form
ula, or exam

ple
›check: instance of negation, or counterexam

ple

3

sim
ulation

3

sim
ulation

form
ula

Person: set PERSON

Date: set DATE

bb, bb’ : Person ->? Date

p: Person

d: Date

bb’ = bb ++ p->d

3

sim
ulation

form
ula

Person: set PERSON

Date: set DATE

bb, bb’ : Person ->? Date

p: Person

d: Date

bb’ = bb ++ p->d

exam
ple

PERSON = {(P0),(P1),(P2)}

Person = {(P0),(P1)}

DATE = {(D0),(D1)}

Date = {(D0),(D1)}

p = {(P1)}

d = {(D1)}

bb = {(P0,D0),(P1,D0)}

bb’ = {(P0,D0),(P1,D1)}

4

checking

4

checking

form
ula

t: set T

r: t -> t

a, b: set t

not (a-b).r = a.r - b.r

4

checking

form
ula

t: set T

r: t -> t

a, b: set t

not (a-b).r = a.r - b.r

counterexam
ple

T = {(T0),(T1)}

t = {(T0),(T1)}

r = {(T0,T0),(T1,T0)}

a = {(T0)}

b = {(T1)}

5

scope

5

scope

scope
›gives dim

ensions of space
›num

ber of atom
s in each basic type

instance I in scope S iff for all types T, #I(T) = S(T)

5

scope

scope
›gives dim

ensions of space
›num

ber of atom
s in each basic type

instance I in scope S iff for all types T, #I(T) = S(T)

explosion!
›suppose scope (T) = s for all T, m

 relations of arity k
each k-relation has s^k possible edges, so 2^(s^k) values
m

 relations, so #space = (2^(s^k))^m
 = m

(s^k) bits
›typical exam

ple
s = 5, m

 = 20, k = 2, #space = 500 bits

6

scope for exam
ple

form
ula

Person: set PERSON

Date: set DATE

bb, bb’ : Person ->? Date

p: Person

d: Date

bb’ = bb ++ p->d

exam
ple

PERSON = {(P0),(P1),(P2)}

Person = {(P0),(P1)}

DATE = {(D0),(D1)}

Date = {(D0),(D1)}

p = {(P1)}

d = {(D1)}

bb = {(P0,D0),(P1,D0)}

bb’ = {(P0,D0),(P1,D1)}

6

scope for exam
ple

form
ula

Person: set PERSON

Date: set DATE

bb, bb’ : Person ->? Date

p: Person

d: Date

bb’ = bb ++ p->d

exam
ple

PERSON = {(P0),(P1),(P2)}

Person = {(P0),(P1)}

DATE = {(D0),(D1)}

Date = {(D0),(D1)}

p = {(P1)}

d = {(D1)}

bb = {(P0,D0),(P1,D0)}

bb’ = {(P0,D0),(P1,D1)} scope is
3 PERSON, 2 DATE

7

scope for counterexam
ple

form
ula

t: set T

r: t -> t

a, b: set t

not (a-b).r = a.r - b.r

counterexam
ple

T = {(T0),(T1)}

t = {(T0),(T1)}

r = {(T0,T0),(T1,T0)}

a = {(T0)}

b = {(T1)}

7

scope for counterexam
ple

form
ula

t: set T

r: t -> t

a, b: set t

not (a-b).r = a.r - b.r

counterexam
ple

T = {(T0),(T1)}

t = {(T0),(T1)}

r = {(T0,T0),(T1,T0)}

a = {(T0)}

b = {(T1)}

scope is 2 for T

8

sm
all scope hypothesis

cum
ulative invalid assertions

90%

sm
allest

revealing
scope 5

m
iss

catch

8

sm
all scope hypothesis

search within finite scope
›sound: exam

ples are correct
›incom

plete: m
ay m

iss an exam
ple

›but in practice, sm
all scopes are enough

cum
ulative invalid assertions

90%

sm
allest

revealing
scope 5

m
iss

catch

9

analyzer architecture

translate
form

ula
translate

m
odel

m
apping

boolean
form

ula
boolean
instance

SAT
solver

alloy
form

ula
alloy

instance

scope

10

w
hich instance?

10

w
hich instance?

no guarantees
›if instance in scope, Alloy will find it
›but m

ay not be sm
allest, nicest, etc

›not even determ
inistic

10

w
hich instance?

no guarantees
›if instance in scope, Alloy will find it
›but m

ay not be sm
allest, nicest, etc

›not even determ
inistic

in practice
›instances usually sm

all
›can ask for another
›can m

ake determ
inistic

11

translation to SA
T

11

translation to SA
T

idea
›relation’s value can be represented as adjacency m

atrix
›so space of values represented as m

atrix of boolean vars
›translate expr to m

atrix of boolean form
ulas

›translate form
ula to boolean form

ula

12

exam
ple

12

exam
ple

t: set T ; r: t -> t; a, b: set t
not (a-b).r = a.r - b.r
t, a, b: (T), r: (T,T)

12

exam
ple

t: set T ; r: t -> t; a, b: set t
not (a-b).r = a.r - b.r
t, a, b: (T), r: (T,T)

scope of 2, T = {(t0),(t1)}

12

exam
ple

t: set T ; r: t -> t; a, b: set t
not (a-b).r = a.r - b.r
t, a, b: (T), r: (T,T)

scope of 2, T = {(t0),(t1)}

t(i) true m
eans tuple (Ti) in t

r(i,j) true m
eans tuple (Ti ,Tj) in r

a(i) true m
eans tuple (Ti) in a

b(i) true m
eans tuple (Ti) in b

12

exam
ple

t: set T ; r: t -> t; a, b: set t
not (a-b).r = a.r - b.r
t, a, b: (T), r: (T,T)

scope of 2, T = {(t0),(t1)}

t(i) true m
eans tuple (Ti) in t

r(i,j) true m
eans tuple (Ti ,Tj) in r

a(i) true m
eans tuple (Ti) in a

b(i) true m
eans tuple (Ti) in b

(a-b) (i) Æ
 a(i) AND NOT b(i)

(a-b).r (i) Æ
 OR

j r(i) AND (a(i) AND NOT b(i))
call this Fi

(a.r-b.r) (i) Æ
 (OR

j r(i) AND a(i)) AND NOT (OR
j r(i) AND b(i))

 G
i

not (a-b).r = a.r - b.r Æ
 NOT AND

i (Fi IFF G
i)

12

exam
ple

t: set T ; r: t -> t; a, b: set t
not (a-b).r = a.r - b.r
t, a, b: (T), r: (T,T)

scope of 2, T = {(t0),(t1)}

t(i) true m
eans tuple (Ti) in t

r(i,j) true m
eans tuple (Ti ,Tj) in r

a(i) true m
eans tuple (Ti) in a

b(i) true m
eans tuple (Ti) in b

(a-b) (i) Æ
 a(i) AND NOT b(i)

(a-b).r (i) Æ
 OR

j r(i) AND (a(i) AND NOT b(i))
call this Fi

(a.r-b.r) (i) Æ
 (OR

j r(i) AND a(i)) AND NOT (OR
j r(i) AND b(i))

 G
i

not (a-b).r = a.r - b.r Æ
 NOT AND

i (Fi IFF G
i)

solution: t0 t1 r0,0 r1,0 a0 b1
t = {(T0),(T1)}, r = {(T0,T0),(T1,T0)}, a = {(T0)}, b = {(T1)}

13

translation issues

13

translation issues

quantifiers
›ground them

 out
›skolem

ize when possible

13

translation issues

quantifiers
›ground them

 out
›skolem

ize when possible

conversion to CNF
›use standard techniques

13

translation issues

quantifiers
›ground them

 out
›skolem

ize when possible

conversion to CNF
›use standard techniques

exploiting repeated subform
ulas

›detect sharing and m
ake form

ula a DAG, not a tree
›avoid repeated translations

13

translation issues

quantifiers
›ground them

 out
›skolem

ize when possible

conversion to CNF
›use standard techniques

exploiting repeated subform
ulas

›detect sharing and m
ake form

ula a DAG, not a tree
›avoid repeated translations

sym
m

etry
›form

ula is invariant on perm
utations of atom

s in a type
›add sym

m
etry-breaking predicates

14

solver experience

14

solver experience

which solvers?
›wrapped by backend; user selects
›Chaff (M

alik) and Berkm
in (Goldberg) work best

14

solver experience

which solvers?
›wrapped by backend; user selects
›Chaff (M

alik) and Berkm
in (Goldberg) work best

perform
ance

›no system
atic studies yet

›for <1kbit of declared state, term
inates in seconds

›grounding out often a bottleneck

15

softw
are engineering experience

15

softw
are engineering experience

where effort goes
›CNF construction m

ost tricky & error prone
›now in Java rather than C++, should be easier
›m

ost code in front-end (type inference, static sem
antics)

15

softw
are engineering experience

where effort goes
›CNF construction m

ost tricky & error prone
›now in Java rather than C++, should be easier
›m

ost code in front-end (type inference, static sem
antics)

display of results
›crucial aspect of tool
›visualization in 3rd version
›tree/text sync hard to do well

