micromodels of software
declarative modelling
and analysis with Alloy

lecture 3: analysis

Daniel Jackson
MIT Lab for Computer Science
Marktoberdorf, August 2002



Alloy’s analysis

only one kind of analysis
» given formula, find instance

instance
» assignment that makes formula true
» to free variables
» witnesses to existential by skolemizing

kinds of analysis
» simulation: instance of formula, or example
» check: instance of negation, or counterexample



simulation

formula example
Person: set PERSON PERSON = {(P0),(P1),(P2)}
Date: set DATE Person = {(P0),(P1)}
bb, bb" : Person ->? Date DATE = {(D0),(D1)}
p: Person Date = {(D0),(D1)}
d: Date p={(P1)}
bb" = bb ++ p->d d = {(D1)}

bb = {(P0,D0),(P1,D0)}
bb’ = {(P0,D0),(P1,D1)}



checking

formula counterexample
t:set T T = {(T0),(T1)}
rt->t t = {(T0),(T1)}
a, b:sett r = {(T0,T0),(T1,T0)}
not (a-b).r=a.r - b.r a={(T0)}

b = {(T1)}



scope

scope
» gives dimensions of space
» number of atoms in each basic type
instance I in scope S iff for all types T, #I(T) = S(T)

explosion!
» suppose scope (T) = s for all T, m relations of arity k
each k-relation has sk possible edges, so 2”(s"k) values
m relations, so #space = (2"(s"k))"m = m(s"k) bits
» typical example
s =5, m = 20, k = 2, #space = 500 bits



scope for example

formula example
Person: set PERSON
Date: set DATE
bb, bb’ : Person ->? Date

p: Person Date = {(D0),(D1)}
d: Date p={(P1)}
bb" = bb ++ p->d d = {(D1)}

bb = {(P0,D0),(P1,D0)}
bb’ = {(P0,D0),(P1,D1)}



scope for counterexample

formula counterexample
rt->t t = {(T0),(T1)}
a, b:sett r = {(T0,T0),(T1,T0)}
not (a-b).r=a.r - b.r a={(T0)}

b = {(T1)}



small scope hypothesis

5

smallest
revealing
scope

cumulative invalid assertions 90%

search within finite scope
» sound: examples are correct
» incomplete: may miss an example
» but in practice, small scopes are enough



analyzer architecture

alloy
formula

translate
formula

boolean
formula

- Emﬁﬁmﬂm -

alloy

instance

translate
model

SAT boolean
solver instance




which instance?

no guarantees
» if instance in scope, Alloy will find it
> but may not be smallest, nicest, etc
> not even deterministic

in practice
» instances usually small
» can ask for another
» can make deterministic

10



translation to SAT

idea

relation’s value can be represented as adjacency matrix
so space of values represented as matrix of boolean vars
translate expr to matrix of boolean formulas

translate formula to boolean formula

v

v

v

v

11



example

tisetT;r:t->t;a b:sett
not (a-b).r=a.r - b.r
t, a, b: (T), r: (T,T)

scope of 2, T = {(t0),(t1)}

t(1) true means tuple (T;) in t
1(1,]) true means tuple Aﬂh_.v Inr
a(1) true means tuple (T;) in a
b(1) true means tuple (T;) in b

(a-b) (1) — a(i) AND NOT b(1)

(a-b).r (1) — OR; r(i) AND (a(i) AND NOT b(i)) call this F;
(a.r-b.r) (1) — (OR; r(i) AND a(i)) AND NOT (OR; r(i) AND b(3)) G;
not (a-b).r = a.r - b.r — NOT AND; (F; IFF G;)

solution: ty t) 1y o Y1 g 3g by

t = {(T0),(T1)}, r = {(T0,T0),(T1,T0)}, a = {(T0)}, b = {(T1)}



translation issues

quantifiers
» ground them out
» skolemize when possible

conversion to CNF
» use standard techniques

exploiting repeated subformulas
» detect sharing and make formula a DAG, not a tree
» avoid repeated translations

symmetry
» formula is invariant on permutations of atoms in a type
» add symmetry-breaking predicates

13



solver experience

which solvers?

» wrapped by backend; user selects
» Chaff (Malik) and Berkmin (Goldberg) work best

performance
> no systematic studies yet
» for <1kbit of declared state, terminates in seconds
» grounding out often a bottleneck

14



software engineering experience

where effort goes
» CNF construction most tricky & error prone
» now in Java rather than C++, should be easier
» most code in front-end (type inference, static semantics)

display of results
» crucial aspect of tool
» visualization in 3rd version
» tree/text sync hard to do well

15



