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handshaking solution



what this lecture’s about
a relational logic
› first-order logic + relational operators

Alloy language
› signatures & fields
› constraint packaging

mostly review? but …
› generalized join
› sets & scalars as relations
› first-order puns



introduction



why logic?
simplicity
› close to phenomena being described
› familiar syntax & semantics

one language
› for system & properties
› model checking research:

focus on property language; machine language ignored

declarative
› the more you add, the less happens
› so good for partial descriptions (esp. environment)
› and good for incremental modelling



imperative vs. declarative

anything can happen

nothing can happen

…

…

imperative

declarative



why relations?
simplest way to talk about structure?
› just like references in OOP

!ere is no problem in computer science that cannot be solved
by an extra level of indirection

-- David Wheeler

Roger Needham & David Wheeler
explain Cambridge Ring to chancellor of Cambridge University



3 logics
“everybody loves a winner”

predicate logic
∀w | Winner (w) ⇒ ∀p | Loves (p,w)

relational calculus
Person ; Winner-1 ⊆ loves

my relational logic
all p: Person, w: Winner | p->w in loves
Person -> Winner in loves 
all p: Person | Winner in p.loves



semantic basis: relations



everything’s a relation

scalar tuple binding

function relation setsequence

is a

Z based on ZF set theory

Alloy based on relational calculus

tuple

function

scalar set

relation

sequence



atoms & relations
atoms are individuals that are
› indivisible

can’t be broken into smaller parts
› immutable

don’t change over time
› uninterpreted

no built-in properties

a relation is a table
› set of tuples of atoms
› arity = number of columns, ≥ 1
› size = number of rows, ≥ 0



examples

alice

Winner

scalar

alice
bob
carol

Person

set

alice alice
bob alice
carol alice

loves

relation

in standard set theory: scalar a, tuple (a), set {a}, relation {(a)}

in Alloy logic: scalar, tuple, set, relation {(a)}



typical kinds of relation
containment
msgs: Buffer -> Message

grouping
group: Graphic -> Group
sameGroup: Graphic -> Graphic

indirection
style: Paragraph -> Style

naming
addr: Alias -> Address

ordering
next: Time -> Time



constants, ops, quantifiers:
a lightning tour



constants
universal univ  {(x) | x is an atom}

identity  iden  {(x,x) | x ∈ univ}

empty  none  {}



set operators

union    p + q   {t | t ∈ p ∨ t ∈ q}

difference  p - q   {t | t ∈ p ∧ t ∉ q}

intersection  p & q   {t | t ∈ p ∧ t ∈ q}

subset   p in q, p : q {(p1, … pn) ∈ p} ⊆ {(q1, … qn) ∈ q}

equality   p = q   {(p1, … pn) ∈ p} = {(q1, … qn) ∈ q}

File + Dir, Object - Dir, Open & File
File in Object
Object = File + Dir + Alias
brother + sister
sister in sibling
root: Dir



arrow product

p -> q  {(p1, … pn,q1, … qm) | (p1, … pn) ∈ p ∧ (q1, … qm) ∈ q} 

alice -> bob
Person -> Winner
univ -> univ
alice -> bob in loves
f -> root in dir
dir: Object -> Dir



arrow idioms
when s and t are sets
› s -> t is their cartesian product
› r: s -> t says r maps atoms in s to atoms in t

when x and y are scalars
› x -> y is a tuple



dot & box join

p . q {(p1, … pn-1,q2, … qm) | (p1, … pn) ∈ p ∧ (pn, q2, … qm) ∈ q} 

alice   {(ALICE)}
loves   {(ALICE, BOB}, (ALICE, CAROL},(CAROL, ALICE)}
alice.loves {(ALICE, CAROL})}
loves.alice {(CAROL})}
loves.loves {(ALICE, ALICE})}

p.expr [q] = q.(p.expr)

loves.loves[alice] {(ALICE})}



join idioms
when p and q are binary relations
› p.q is standard relational composition

when r is a binary relation and s is a set
› s.r is relational image of s under r (‘navigation’)

univ.r is the range of r 
› r.s is relational image of s under ~r (‘backwards navigation’)

r.univ is the domain of r

when f is a function and x is a scalar
› x.f is application of f to x

what is x.f when x outside domain of f?



the partial function tarpit
Romeo’s wife is Juliette or Romeo is unmarried
romeo.wife = juliette or romeo in Unmarried
› true if Romeo has no wife?

approaches
› 3-valued logic (eg, VDM, OCL) [complex, no congruence]

maybe or true
› all functions total (eg, Larch) [function not just a relation]

? = juliette or true
› undefined values (eg, OCL) [strictness]

undefined = juliette or true
› partial semantics (eg, Z) [complex, no congruence]

? or true ➾ ?
› bad applications are false (eg, Parnas) [x ≠ y, ¬x = y differ]

false or true



joins on multirelations
given a relation on books/aliases/addresses
addr {(B0,A0,D0), (B0,A1,D1), (B1,A1,D2), (B1,A2,D3)}
b {(B0)}
a {(A0)}
d {(D3)}

we have
b.addr    {(A0,D0), (A1,D1)}
b.addr[a]   {(D0)}
addr.d.univ {(B1)}



playing with the analyzer



other handy operators

transpose    ~p   {(pn, … p1) | (p1, … pn) ∈ p}

transitive closure ^p   smallest q | q.q ⊆ q ∧ p ⊆ q

restriction   s <: p  {(p1, … pn) | (p1, … pn) ∈ p ∧ p1 ∈ s} 

domain    dom p  {(p1) | (p1, … pn) ∈ p}
override    p ++ q  q + (p - dom q <: p)



quantifiers & cardinalities
quantifiers
all, some, no, one, lone

quantified formulas
 all x: e | F  ∧v ∈ x   F [{(v)}/x]

cardinality expressions
 #e   size of relation e
 no e  #e = 0
 some e #e > 0
 lone e  #e ≤ 1
 one e  #e = 1



declarations & multiplicity
multiplicity keywords: some, one, lone, set

set declarations
 s: m e  s ⊆ e ∧ m e
 s: e  s: one e

relation declarations
 r: e m -> n e’  r ⊆ e × e’  ∧  ∀x: e | n x.r  ∧  ∀x: e’ | m r.x

examples
alice: Winner
Winner: set Person
loves: Person some -> some Person
root: Dir
dir: (Object - root) -> one Dir



puns
to support familiar declaration syntax
› Alloy declaration    r: A -> B
› has traditional reading  r ∈ 2(A × B)

› has Alloy reading    r ⊆ A × B

to support ‘navigation expressions’
› Alloy expression    x.f.g
› has traditional reading  g(f(x)) unless f(x) undefined or a set
› has Alloy reading    image (image({(x)}, f), g)



summary of features
simple syntax
› same operators for sets, scalars, relations
› no lifting {x}
› conventional, but puns

simple semantics
› no undefined expressions: all operators total
› two-valued logic

why does this work?
› first order: no sets of sets needed
› no boolean expressions



language



structure of an alloy model
signatures & fields
› introduces sets and relations
› ‘extends’ hierarchy for classification & subtypes

constraints paragraphs
› facts: assumed to hold
› predicates: reusable constraints
› functions: reusable expressions
› assertions: conjectures to check

commands
› run: generate instances of a predicate
› check: generate counterexamples to an assertion



instances
alloy analyzer is a model finder
› finds solutions to constraints
› run predicate: solution is instance
› check assertion: solution is counterexample

solution
› assignment of relational values to variables
› variables are

sets (signatures)
relations (fields)
skolem constants (witnesses, predicate arguments)



a model
module examples/addressBook/addLocal

abstract sig Target {}
sig Addr extends Target {}
sig Name extends Target {}
sig Book {addr: Name -> Target}

fact Acyclic {all b: Book | no n: Name | n in n.^(b.addr)}
fun lookup (b: Book, n: Name): set Addr {n.^(b.addr) & Addr}
pred add (b, b': Book, n: Name, t: Target) {b'.addr = b.addr + n->t}
run add for 3 but 2 Book

assert addLocal {
 all b,b': Book, n,n': Name, a: Addr |
  add (b,b',n,a) and n != n' => lookup (b,n') = lookup (b',n') }
check addLocal for 3 but 2 Book



declarations
module examples/addressBook/addLocal

abstract sig Target {}
sig Addr extends Target {}
sig Name extends Target {}
abstract: Target in Addr + Name
extends: Addr in Target and Name in Target and no Addr & Name

sig Book {addr: Name -> Target}
addr: Book -> Name -> Target



variables
module examples/addressBook/addLocal

abstract sig Target {}
sig Addr extends Target {}
sig Name extends Target {}
sig Book {addr: Name -> Target}

fact Acyclic {all b: Book | no n: Name | n in n.^(b.addr)}
fun lookup (b: Book, n: Name): set Addr {n.^(b.addr) & Addr}
pred add (b, b': Book, n: Name, t: Target) {b'.addr = b.addr + n->t}

run add for 3 but 2 Book



negating an assertion
assert addLocal {
 all b,b': Book, n,n': Name, a: Addr |
  add (b,b',n,a) and n != n' => lookup (b,n') = lookup (b',n') }
check addLocal for 3 but 2 Book

for analysis, equivalent to these:

pred addLocal () {
 some b,b': Book, n,n': Name, a: Addr |
  add (b,b',n,a) and n != n' and not lookup (b,n') = lookup (b',n') }
run addLocal for 3 but 2 Book

pred addLocal (b,b': Book, n,n': Name, a: Addr) {
  add (b,b',n,a) and n != n' and not lookup (b,n') = lookup (b',n') }
run addLocal for 3 but 2 Book



counterexample: textual
module examples/addressBook/addLocal
sig Target extends univ = {Addr_0, Name_0, Name_1}
sig Addr extends Target = {Addr_0}
sig Name extends Target = {Name_0, Name_1}
sig Book extends univ = {Book_0, Book_1}
addr: {Book_0 -> Name_1 -> Name_0,
 Book_1 -> {Name_0 -> Addr_0, Name_1 -> Name_0}}

skolem constants
addLocal_b = {Book_0}
addLocal_b' = {Book_1}
addLocal_n = {Name_0}
addLocal_n' = {Name_1}
addLocal_a = {Addr_0}



counterexample: graphical
without customization



counterexample: graphical
with Book projected



how the analysis works



alloy analyzer architecture

alloy analyzer

alloy
formula

scope

boolean
formula

boolean
instance

alloy
instance

translate
formula

translate
instance

SAT
solver

mapping



relational values
space of values for relation in scope 2

r[0,0]

r[0,1] r[1,0]

r[1,1]

space of values as 
4 boolean vars



sample translation
example

b, b’: Book
n: Name
names: Book -> Name 
b’.names = b.names + n

compositional translation
b [i] : true if ith element of Book is in the set b
names [i, j] : true if names maps ith element of Book to jth element of Name
b.names + n [i] = (∃k. b [k] ∧ names [k, i]) ∨  n [i]
b’.names = b.names + n = 
 ∀i. (∃k. b’ [k] ∧ names [k, i]) ⇔ (∃k. b [k] ∧ names [k, i]) ∨  n [i]



quantification
grounding out
all x: t | F
becomes: F [x0/x] and F [x0/x] and …

skolemization
some x: t | F
becomes: F [X/x] where X is a fresh free variable
all x: s | some y: t | F
becomes: all x: s | F [x.Y/y] where Y: s-> t is a free (function) var



optimizations
symmetry
› atoms of a signature are interchangeable
› so adds symmetry breaking predicates automatically
› for util/ordering, ordering is fixed A1, A2, A3, ...

other optimizations
› sharing: detecting shared formulas before they appear during 

grounding out
› boolean simplifications
› careful conversion to CNF
› ‘atomization’ using subtypes



performance: SAT solvers

size of solvable constraint in #boolean variables
from Sharad Malik



performance: moore’s law

Text

speed of main processor offering in MHz
from intel.com



homework



homework: self-grandpa
I'M MY OWN GRANDPA  (Dwight Latham & Moe Jaffe)

Many, many years ago when I was twenty-three
I was married to a widow who was pretty as could be …

… Now if my wife is my grandmother, then I'm her grandchild
And every time I think of it, it nearly drives me wild
‘Cause now I have become the strangest case you ever saw
As husband of my grandmother, I am my own grandpa

I’m my own grandpa,
I’m my own grandpa,
It sounds funny, I know
But it really is so
I’m my own grandpa



self-grandpa in alloy
module examples/grandpa/grandpa1

abstract sig Person {father: lone Man, mother: lone Woman}
sig Man extends Person {wife: lone Woman}
sig Woman extends Person {husband: lone Man}

fact {
 no p: Person | p in p.^(mother+father)
 wife = ~husband
 }

fun grandpas (p: Person): set Person {p.(mother+father).father}

pred ownGrandpa (p: Person) {p in grandpas (p)}
run ownGrandpa for 4 Person



your task
find a solution to the song by
› changing the expression in the function grandpa
› adding any new constraints that seem necessary



free upgrades available!
new memory sticks for old!

ask me if you’d like:
› yesterday’s address book examples
› today’s updated lecture and examples


