## LOGIC \& LANGUAGE

Daniel Jackson • Lipari Summer School • July 18-22, 2005


## handshaking solution



## what this lecture's about

a relational logic
> first-order logic + relational operators
Alloy language
> signatures $\mathcal{E}$ fields
> constraint packaging
mostly review? but ...
> generalized join
$>$ sets $\mathcal{E}$ scalars as relations
> first-order puns

## introduction

## why logic?

simplicity
> close to phenomena being described
> familiar syntax $\mathcal{E}$ semantics
one language
> for system $\mathcal{E}$ properties
> model checking research:
focus on property language; machine language ignored
declarative
> the more you add, the less happens
> so good for partial descriptions (esp. environment)
> and good for incremental modelling

## imperative vs. declarative

anything can happen

nothing can happen
declarative

imperative

## why relations?

simplest way to talk about structure?
> just like references in OOP
There is no problem in computer science that cannot be solved by an extra level of indirection
-- David Wheeler


Roger Needham \& David Wheeler

## 3 logics

"everybody loves a winner"
predicate logic
$\forall \mathrm{w} \mid$ Winner $(\mathrm{w}) \Rightarrow \forall \mathrm{p} \mid$ Loves ( $\mathrm{p}, \mathrm{w}$ )
relational calculus
Person ; Winner ${ }^{-1} \subseteq$ loves
my relational logic
all p: Person, w: Winner | p->w in loves
Person -> Winner in loves
all p: Person | Winner in p.loves

## semantic basis: relations

## everything's a relation

## Z based on ZF set theory



## Alloy based on relational calculus



## atoms \& relations

atoms are individuals that are
> indivisible
can't be broken into smaller parts
> immutable
don't change over time
> uninterpreted
no built-in properties
a relation is a table
> set of tuples of atoms
$>$ arity = number of columns, $\geq 1$
$>$ size $=$ number of rows, $\geq 0$

## examples

| Winner | Person | loves |  |
| :---: | :---: | :---: | :---: |
| alice | alice   <br> scalar bob alice alice <br> bob alice <br>  carol <br>  set <br> relarol  alice |  |  |

in standard set theory: scalar a, tuple (a), set \{a\}, relation $\{(a)\}$ in Alloy logic: scalar, tuple, set, relation $\{(\mathrm{a})\}$

## typical kinds of relation

containment<br>msgs: Buffer -> Message<br>grouping<br>group: Graphic -> Group<br>sameGroup: Graphic -> Graphic<br>indirection<br>style: Paragraph -> Style<br>naming<br>addr: Alias -> Address<br>ordering<br>next: Time -> Time

## constants, ops, quantifiers: a lightning tour

## constants

universal univ $\{(\mathrm{x}) \mid \mathrm{x}$ is an atom $\}$
identity iden $\quad\{(x, x) \mid x \in$ univ $\}$
empty none \{\}

## set operators

| union | $\mathrm{p}+\mathrm{q}$ | $\{\mathrm{t} \mid \mathrm{t} \in \mathrm{p} \vee \mathrm{t} \in \mathrm{q}\}$ |
| :--- | :--- | :--- |
| difference | $\mathrm{p}-\mathrm{q}$ | $\{\mathrm{t} \mid \mathrm{t} \in \mathrm{p} \wedge \mathrm{t} \in \mathrm{q}\}$ |
| intersection | $\mathrm{p} \& \mathrm{q}$ | $\{\mathrm{t} \mid \mathrm{t} \in \mathrm{p} \wedge \mathrm{t} \in \mathrm{q}\}$ |
| subset | p in $\mathrm{q}, \mathrm{p}: \mathrm{q}$ | $\left\{\left(\mathrm{p}_{1}, \ldots \mathrm{p}_{\mathrm{n}}\right) \in \mathrm{p}\right\} \subseteq\left\{\left(\mathrm{q}_{1}, \ldots \mathrm{q}_{\mathrm{n}}\right) \in \mathrm{q}\right\}$ |
| equality | $\mathrm{p}=\mathrm{q}$ | $\left\{\left(\mathrm{p}_{1}, \ldots \mathrm{p}_{\mathrm{n}}\right) \in \mathrm{p}\right\}=\left\{\left(\mathrm{q}_{1}, \ldots \mathrm{q}_{\mathrm{n}}\right) \in \mathrm{q}\right\}$ |

File + Dir, Object - Dir, Open \& File
File in Object
Object $=$ File + Dir + Alias
brother + sister
sister in sibling
root: Dir

## arrow product

$\mathrm{p} \rightarrow \mathrm{q} \quad\left\{\left(\mathrm{p}_{1}, \ldots \mathrm{p}_{\mathrm{n}}, \mathrm{q}_{1}, \ldots \mathrm{q}_{\mathrm{m}}\right) \mid\left(\mathrm{p}_{1}, \ldots \mathrm{p}_{\mathrm{n}}\right) \in \mathrm{p} \wedge\left(\mathrm{q}_{1}, \ldots \mathrm{q}_{\mathrm{m}}\right) \in \mathrm{q}\right\}$
alice -> bob
Person -> Winner
univ -> univ
alice -> bob in loves
$\mathrm{f}->$ root in dir
dir: Object -> Dir

## arrow idioms

when $s$ and $t$ are sets
$>s->t$ is their cartesian product
> r : s -> t says r maps atoms in s to atoms in t
when $x$ and $y$ are scalars
> $x->y$ is a tuple

## dot \& box join

$\mathrm{p} \cdot \mathrm{q}\left\{\left(\mathrm{p}_{1}, \ldots \mathrm{p}_{\mathrm{n}-1}, \mathrm{q}_{2}, \ldots \mathrm{q}_{\mathrm{m}}\right) \mid\left(\mathrm{p}_{1}, \ldots \mathrm{p}_{\mathrm{n}}\right) \in \mathrm{p} \wedge\left(\mathrm{p}_{\mathrm{n}}, \mathrm{q}_{2}, \ldots \mathrm{q}_{\mathrm{m}}\right) \in \mathrm{q}\right\}$

```
alice {(ALICE)}
loves {(ALICE, BOB}, (ALICE, CAROL},(CAROL, ALICE)}
alice.loves {(ALICE, CAROL})}
loves.alice {(CAROL})}
loves.loves {(ALICE, ALICE})}
```

p.expr [q] = q.(p.expr)
loves.loves[alice] \{(ALICE\})\}

## join idioms

when $p$ and $q$ are binary relations
> p.q is standard relational composition
when $r$ is a binary relation and $s$ is a set
> $\mathrm{s} . \mathrm{r}$ is relational image of s under r ('navigation')
univ.r is the range of $r$
> r.s is relational image of $s$ under $\sim r$ ('backwards navigation') r.univ is the domain of $r$
when $f$ is a function and $x$ is a scalar
> $\mathrm{x} . \mathrm{f}$ is application of f to x
what is $x . f$ when $x$ outside domain of $f$ ?

## the partial function tarpit

Romeo's wife is Juliette or Romeo is unmarried romeo.wife = juliette or romeo in Unmarried
> true if Romeo has no wife?
approaches
> 3-valued logic (eg, VDM, OCL) [complex, no congruence] maybe or true
> all functions total (eg, Larch) [function not just a relation] ? = juliette or true
> undefined values (eg, OCL) [strictness] undefined = juliette or true
> partial semantics (eg, Z) [complex, no congruence] ? or true $\Rightarrow$ ?
> bad applications are false (eg, Parnas) $[x \neq y, \neg x=y$ differ $]$ false or true

## 

given a relation on books/aliases/addresses
addr \{(B0,A0,D0), (B0,A1,D1), (B1,A1,D2), (B1,A2,D3)\}
b \{(BO) \}
a $\{(\mathrm{A} 0)\}$
d \{(D3) $\}$
we have
b.addr $\{(\mathrm{AO}, \mathrm{DO}),(\mathrm{A} 1, \mathrm{D} 1)\}$
b.addr[a] \{(D0)\}
addr.d.univ \{(B1)\}

# playing with the analyzer 

## other handy operators

| transpose | $\sim \mathrm{p}$ | $\left\{\left(\mathrm{p}_{\mathrm{n}}, \ldots \mathrm{p}_{1}\right) \mid\left(\mathrm{p}_{1}, \ldots \mathrm{p}_{\mathrm{n}}\right) \in \mathrm{p}\right\}$ |
| :--- | :--- | :--- |
| transitive closure | $\wedge \mathrm{p}$ | smallest $\mathrm{q} \mid \mathrm{q} \cdot \mathrm{q} \subseteq \mathrm{q} \wedge \mathrm{p} \subseteq \mathrm{q}$ |
| restriction | $\mathrm{s}<: \mathrm{p}$ | $\left\{\left(\mathrm{p}_{1}, \ldots \mathrm{p}_{\mathrm{n}}\right) \mid\left(\mathrm{p}_{1}, \ldots \mathrm{p}_{\mathrm{n}}\right) \in \mathrm{p} \wedge \mathrm{p}_{1} \in \mathrm{~s}\right\}$ |
| domain | dom p | $\left\{\left(\mathrm{p}_{1}\right) \mid\left(\mathrm{p}_{1}, \ldots \mathrm{p}_{\mathrm{n}}\right) \in \mathrm{p}\right\}$ |
| override | $\mathrm{p}++\mathrm{q}$ | $\mathrm{q}+(\mathrm{p}-$ dom $\mathrm{q}<: \mathrm{p})$ |

## quantifiers \& cardinalities

quantifiers
all, some, no, one, lone
quantified formulas
all x: e|F $\quad \Lambda_{v \in x} \quad F[\{(v)\} / x]$
cardinality expressions
\#e size of relation e
no e $\# \mathrm{e}=0$
some e \#e > 0
lone e $\# \mathrm{e} \leq 1$
one e $\# \mathrm{e}=1$

## declarations \& multiplicity

multiplicity keywords: some, one, lone, set
set declarations

$$
\begin{array}{ll}
\mathrm{s}: m \mathrm{e} & \mathrm{~s} \subseteq \mathrm{e} \wedge m \mathrm{e} \\
\mathrm{~s}: \mathrm{e} & \mathrm{~s}: \text { one } \mathrm{e}
\end{array}
$$

relation declarations

$$
\mathrm{r}: \mathrm{e} m-\mathrm{n} \mathrm{e}^{\prime} \quad \mathrm{r} \subseteq \mathrm{e} \times \mathrm{e}^{\prime} \wedge \forall \mathrm{x}: \mathrm{e}\left|n \mathrm{x} . \mathrm{r} \wedge \forall \mathrm{x}: \mathrm{e}^{\prime}\right| m \mathrm{r} . \mathrm{x}
$$

examples
alice: Winner
Winner: set Person
loves: Person some -> some Person
root: Dir
dir: (Object - root) -> one Dir

## puns

to support familiar declaration syntax
> Alloy declaration
r: A -> B
$>$ has traditional reading $r \in 2^{(A \times B)}$
> has Alloy reading
$r \subseteq A \times B$
to support 'navigation expressions'
> Alloy expression
> has traditional reading
> has Alloy reading
x.f.g
$g(f(x))$ unless $f(x)$ undefined or a set
image (image( $\{(\mathrm{x})\}, \mathrm{f}), \mathrm{g})$

## summary of features

simple syntax
> same operators for sets, scalars, relations
$>$ no lifting $\{x\}$
> conventional, but puns
simple semantics
> no undefined expressions: all operators total
> two-valued logic
why does this work?
> first order: no sets of sets needed
> no boolean expressions
language

## structure of an alloy model

signatures $\mathcal{E}$ fields
> introduces sets and relations
> 'extends' hierarchy for classification $\mathcal{E}$ subtypes
constraints paragraphs
> facts: assumed to hold
> predicates: reusable constraints
> functions: reusable expressions
> assertions: conjectures to check
commands
> run: generate instances of a predicate
> check: generate counterexamples to an assertion

## instances

alloy analyzer is a model finder
> finds solutions to constraints
$>$ run predicate: solution is instance
> check assertion: solution is counterexample
solution
> assignment of relational values to variables
> variables are
sets (signatures)
relations (fields)
skolem constants (witnesses, predicate arguments)

## a model

module examples/addressBook/addLocal
abstract sig Target $\}$
sig Addr extends Target \{\}
sig Name extends Target $\}$
sig Book \{addr: Name -> Target
fact Acyclic \{all b: Book | no n: Name | n in $\left.\mathrm{n} .{ }^{\wedge}(\mathrm{b} . \mathrm{addr})\right\}$ fun lookup (b: Book, n: Name): set Addr \{n.^(b.addr) \& Addr\} pred add (b, b': Book, n: Name, t: Target) $\{b ' . a d d r=b . a d d r+n->t\}$ run add for 3 but 2 Book
assert addLocal \{
all b,b': Book, n, n': Name, a: Addr |
add (b,b',n,a) and n != n' => lookup (b,n') = lookup ( $\mathrm{b}^{\prime}, \mathrm{n}^{\prime}$ ) \}
check addLocal for 3 but 2 Book

## declarations

module examples/addressBook/addLocal
abstract sig Target \{\}
sig Addr extends Target \{\}
sig Name extends Target $\}$
abstract: Target in Addr + Name
extends: Addr in Target and Name in Target and no Addr \& Name
sig Book \{addr: Name -> Target\}
addr: Book -> Name -> Target

## variables

module examples/addressBook/addLocal
abstract sig Target \{\}
sig Addr extends Target \{\}
sig Name extends Target $\}$
sig Book \{addr: Name -> Target $\}$
fact Acyclic \{all b: Book | no n: Name | n in $\mathrm{n}^{\wedge}$ (b.addr) \} fun lookup (b: Book, n: Name): set Addr \{n.^(b.addr) \& Addr\} pred add (b, b': Book, n: Name, t: Target) $\left\{\mathrm{b}^{\prime} . \mathrm{addr}=\mathrm{b} . \mathrm{addr}+\mathrm{n}->\mathrm{t}\right\}$ run add for 3 but 2 Book

## negating an assertion

assert addLocal \{
all b,b': Book, n,n': Name, a: Addr |
add (b,b',n,a) and n != n' => lookup (b,n') = lookup (b',n') \}
check addLocal for 3 but 2 Book
for analysis, equivalent to these:
pred addLocal () \{
some b,b': Book, n,n': Name, a: Addr |
add (b,b', n, a) and n $!=n$ ' and not lookup (b,n') = lookup ( $\mathrm{b}^{\prime}, \mathrm{n}^{\prime}$ ) \} run addLocal for 3 but 2 Book
pred addLocal (b,b': Book, n, n': Name, a: Addr) \{
add ( $\mathrm{b}, \mathrm{b}$ ', $\mathrm{n}, \mathrm{a}$ ) and $\mathrm{n}!=\mathrm{n}^{\prime}$ and not lookup ( $\mathrm{b}, \mathrm{n}^{\prime}$ ) = lookup ( $\mathrm{b}^{\prime}, \mathrm{n}^{\prime}$ ) \} run addLocal for 3 but 2 Book

## counterexample: textual

module examples/addressBook/addLocal sig Target extends univ = \{Addr_0, Name_0, Name_1\}
sig Addr extends Target = \{Addr_0
sig Name extends Target = \{Name_0, Name_1 $\}$
sig Book extends univ = \{Book_0, Book_1\}
addr: \{Book_0 -> Name_1 -> Name_0,
Book_1 -> \{Name_0 -> Addr_0, Name_1 -> Name_0\}\}
skolem constants
addLocal_b = \{Book_0\}
addLocal_b' = \{Book_1\}
addLocal_n = \{Name_0\}
addLocal_n' = \{Name_1\}
addLocal_a = \{Addr_0\}

## counterexample: graphical

## without customization



## counterexample: graphical

 with Book projected

33

how the analysis works

## alloy analyzer architecture



## relational values

space of values for relation in scope 2

space of values as
4 boolean vars


## sample translation

example<br>b, b': Book<br>n: Name<br>names: Book -> Name<br>b'.names $=$ b.names +n

compositional translation
b [i] : true if ith element of Book is in the set b
names [ $\mathrm{i}, \mathrm{j}]$ : true if names maps ith element of Book to jth element of Name
b.names $+\mathrm{n}[\mathrm{i}]=(\exists \mathrm{k} . \mathrm{b}[\mathrm{k}] \wedge$ names $[\mathrm{k}, \mathrm{i}]) \vee \mathrm{n}[\mathrm{i}]$
b'.names $=\mathrm{b}$.names $+\mathrm{n}=$
$\forall i .\left(\exists \mathrm{k} . \mathrm{b}^{\prime}[\mathrm{k}] \wedge\right.$ names $\left.[\mathrm{k}, \mathrm{i}]\right) \Leftrightarrow(\exists \mathrm{k} . \mathrm{b}[\mathrm{k}] \wedge$ names $[\mathrm{k}, \mathrm{i}]) \vee \mathrm{n}[\mathrm{i}]$

## quantification

grounding out
all x : $\mathrm{t} \mid \mathrm{F}$
becomes: $\mathrm{F}[\mathrm{x} 0 / \mathrm{x}]$ and $\mathrm{F}[\mathrm{x} 0 / \mathrm{x}]$ and ...
skolemization
some $x$ : $\mathrm{t} \mid \mathrm{F}$
becomes: $F[X / x]$ where $X$ is a fresh free variable all $x$ : $s$ | some $y: t \mid F$
becomes: all x: $s \mid F[x . Y / y]$ where $Y: s->t$ is a free (function) var

## optimizations

symmetry
> atoms of a signature are interchangeable
> so adds symmetry breaking predicates automatically
> for util/ordering, ordering is fixed A1, A2, A3, ...
other optimizations
> sharing: detecting shared formulas before they appear during grounding out
> boolean simplifications
> careful conversion to CNF
> 'atomization' using subtypes

## performance: SAT solvers


size of solvable constraint in \#boolean variables from Sharad Malik

## performance: moore's law


speed of main processor offering in MHz from intel.com
homework

## homework: self-grandpa

I'M MY OWN GRANDPA (Dwight Latham \& Moe Jaffe)
Many, many years ago when I was twenty-three I was married to a widow who was pretty as could be ...
... Now if my wife is my grandmother, then I'm her grandchild And every time I think of it, it nearly drives me wild 'Cause now I have become the strangest case you ever saw As husband of my grandmother, I am my own grandpa

I'm my own grandpa, I'm my own grandpa, It sounds funny, I know But it really is so I'm my own grandpa

## self-grandpa in alloy

module examples/grandpa/grandpa1
abstract sig Person \{father: lone Man, mother: lone Woman\} sig Man extends Person \{wife: lone Woman\}
sig Woman extends Person \{husband: lone Man\}
fact \{
no p: Person | p in $\mathrm{p} .{ }^{\wedge}$ (mother+father)
wife $=\sim$ husband
\}
fun grandpas (p: Person): set Person \{p.(mother+father).father\}
pred ownGrandpa (p: Person) \{p in grandpas (p)\} run ownGrandpa for 4 Person

## your task

find a solution to the song by
> changing the expression in the function grandpa
> adding any new constraints that seem necessary

## free upgrades available!

new memory sticks for old!
ask me if you'd like:
> yesterday's address book examples
> today's updated lecture and examples

