LOGIC & LANGUAGE

Daniel Jackson - Lipari Summer School - July 18-22, 2005







what this lecture’s about

a relational logic
> first-order logic + relational operators

Alloy language
> signatures & fields
> constraint packaging

mostly review? but ...

> generalized join

> sets & scalars as relations
> first-order puns



introduction



why logic?

simplicity
> close to phenomena being described
> familiar syntax & semantics

one language
> for system & properties
> model checking research:
focus on property language; machine language ignored

declarative

> the more you add, the less happens

> so good for partial descriptions (esp. environment)
> and good for incremental modelling



imperative vs. declarative

anything can happen declarative

nothing can happen imperative



why relations?

simplest way to talk about structure?
> just like references in OOP

There is no problem in computer science that cannot be solved
by an extra level of indirection

-- David Wheeler

Roger Needham & David Wheeler
explain Cambridge Ring to chancellor of Cambridge University



3 logics

“everybody loves a winner”

predicate logic
Vw | Winner (w) = Vp | Loves (p,w)

relational calculus
Person : Winner-! C loves

my relational logic
all p: Person, w: Winner | p->w in loves
Person -> Winner in loves
all p: Person | Winner in p.loves



semantic basis: relations



everything’s a relation

Z based on ZF set theory

scalar —p tuple —» binding

S /isau S -

sequence —p function —p relation

SR e A

Alloy based on relational calculus

sequence

N
tuple M

scalar — set

S S



atoms & relations

atoms are individuals that are
> indivisible
can’t be broken into smaller parts
> immutable
don’t change over time
> uninterpreted
no built-in properties

a relation is a table

> set of tuples of atoms

> arity = number of columns, > 1
> size = number of rows, > 0



examples

Winner Person loves

alice alice alice | alice

scalar bob bob | alice
carol carol | alice
set relation

in standard set theory: scalar a, tuple (a), set {a}, relation {(a)}

in Alloy logic: scalar, tuple, set, relation {(a)}



typical kinds of relation

containment
msgs: Buffer -> Message

grouping
group: Graphic -> Group
sameGroup: Graphic -> Graphic

indirection
style: Paragraph -> Style

naming
addr: Alias -> Address

ordering
next: Time -> Time



constants, ops, quantifiers:
a lightning tour



constants

universal univ {(x) | x is an atom}
identity  iden {(x,X) | x € univ}

empty none {}



set operators

union p+Q {ti{tepvteq}
difference p-q {t|tepAte&ql}
intersection p&gq {t|ltepAteq}
subset ping, p:q {(p1, ... pn) € p} <€ {(q, --.
equality p=g {(p1, --- pn) € P} ={(qu, ...

File + Dir, Object - Dir, Open & File
File in Object

Object = File + Dir + Alias

brother + sister

sister in sibling

root: Dir

n) € q}
dn) € q}



arrow product

p->q {(p1, --- PnQ1, -+ Qu) | (P1, .- Pn) €EP A (Q1, -.. Om) € q}

alice -> bob

Person -> Winner
univ -> univ

alice -> bob in loves
f -> root in dir

dir: Object -> Dir



arrow idioms

when s and t are sets
> s -> t is their cartesian product
> 1: s ->t says r maps atoms in s to atoms in t

when x and y are scalars
> x ->yis atuple



dot & box join

P.q{(p1 .- Pn-1,92 -.- Am) | (P1, --- Pn) € P A (Pn, A2, - Gm) € q}

alice {(ALICE)}

loves {(ALICE, BOB}, (ALICE, CAROL},(CAROL, ALICE)}
alice.loves {(ALICE, CAROL})}

loves.alice {(CAROL})}

loves.loves {(ALICE, ALICE})}

p.expr [q] = q.(p.expr)

loves.loves[alice] {(ALICE})}



join idioms

when p and q are binary relations
> p.q is standard relational composition

when r is a binary relation and s is a set

> s.1 is relational image of s under r (‘navigation’)
univ.r is the range of r

> 1.5 is relational image of s under ~r (‘backwards navigation’)
r.univ is the domain of r

when f is a function and x is a scalar
> x.f is application of f to x

what is x.f when x outside domain of f?



the partial function tarpit

Romeo’s wife is Juliette or Romeo is unmarried
romeo.wife = juliette or romeo in Unmarried

> true if Romeo has no wife?

approaches

> 3-valued logic (eg, VDM, OCL) [complex, no congruence]
maybe or true

> all functions total (eg, Larch) [function not just a relation]
? = juliette or true

> undefined values (eg, OCL) [strictness]
undefined = juliette or true

> partial semantics (eg, Z) [complex, no congruence]
? or true = ?

> bad applications are false (eg, Parnas) [x = y, -x = y differ]
false or true



joins on multirelations

given a relation on books/aliases/addresses
addr {(B0,A0,D0), (B0,A1,D1), (B1,A1,D2), (B1,A2,D3)}

b {(BO)}
a {(A0)}
d {(D3)}

we have

b.addr {(A0,D0), (A1,D1)}
b.addr[a] {(DO)}

addr.d.univ {(B1)}



playing with the analyzer



other handy operators

transpose ~p {(pn, -.- P1) | (P1, --- Pn) € P}
transitive closure “p smallest | .S gqApPSq
restriction S<:p {(p1, --- pn) | (P1, --- Pn) €E P A p1 € s}
domain domp {(p1) | (p1, --- pPn) € P}

override p++q g+ (p-domq<:Dp)



quantifiers & cardinalities

quantifiers
all, some, no, one, lone

quantified formulas
all x: e | F Avex F[{(v)}/X]

cardinality expressions
#e size of relation e
no e #te=0
somee #He>0
lonee fle<1
one e fle =1



declarations & multiplicity

multiplicity keywords: some, one, lone, set

set declarations
ssme sCeAme

S. € S. one e

relation declarations
nrem->ne 1Cexe A Vxie|nxr A Vxie|mrx

examples

alice: Winner

Winner: set Person

loves: Person some -> some Person
root: Dir

dir: (Object - root) -> one Dir



puns

to support familiar declaration syntax

> Alloy declaration r: A->B

> has traditional reading re 2(4xB)

> has Alloy reading rc AxB

to support ‘navigation expressions’

> Alloy expression x.f.g

> has traditional reading g(f(x)) unless f(x) undefined or a set

> has Alloy reading image (image({(x)}, f), g)



summary of features

simple syntax

> same operators for sets, scalars, relations
> no lifting {x}

> conventional, but puns

simple semantics
> no undefined expressions: all operators total
> two-valued logic

why does this work?
> first order: no sets of sets needed
> no boolean expressions



language



structure of an alloy model

signatures & fields
> introduces sets and relations
> ‘extends’ hierarchy for classification & subtypes

constraints paragraphs

> facts: assumed to hold

> predicates: reusable constraints
> functions: reusable expressions
> assertions: conjectures to check

commands
> run: generate instances of a predicate
> check: generate counterexamples to an assertion



instances

alloy analyzer is a model finder

> finds solutions to constraints

> run predicate: solution is instance

> check assertion: solution is counterexample

solution
> assignment of relational values to variables
> variables are
sets (signatures)
relations (fields)
skolem constants (witnesses, predicate arguments)



a model

module examples/addressBook/addLocal

abstract sig Target {}

sig Addr extends Target {}

sig Name extends Target {}

sig Book {addr: Name -> Target}

fact Acyclic {all b: Book | no n: Name | n in n.”(b.addr)}

fun lookup (b: Book, n: Name): set Addr {n.*(b.addr) & Addr}
pred add (b, b": Book, n: Name, t: Target) {b'.addr = b.addr + n->t}
run add for 3 but 2 Book

assert addLocal {
all b,b": Book, n,n": Name, a: Addr |
add (b,b',n,a) and n !=n'=> lookup (b,n") = lookup (b',n’) }
check addLocal for 3 but 2 Book



declarations

module examples/addressBook/addLocal

abstract sig Target {}

sig Addr extends Target {}

sig Name extends Target {}

abstract: Target in Addr + Name

extends: Addr in Target and Name in Target and no Addr & Name

sig Book {addr: Name -> Target}
addr: Book -> Name -> Target



variables

module examples/addressBook/addLocal

abstract sig Target {}

sig Addr extends Target {}

sig Name extends Target {}

sig Book {addr: Name -> Target}

fact Acyclic {all b: Book | no n: Name | n in n.”(b.addr)}
fun lookup (b: Book, n: Name): set Addr {n.*(b.addr) & Addr}
pred add (b, b": Book, n: Name, t: Target) {b'.addr = b.addr + n->t}

run add for 3 but 2 Book



negating an assertion

assert addLocal {
all b,b": Book, n,n': Name, a: Addr |
add (b,b',n,a) and n !=n'=> lookup (b,n") = lookup (b',n’) }
check addLocal for 3 but 2 Book

for analysis, equivalent to these:

pred addLocal () {
some b,b": Book, n,n': Name, a: Addr |
add (b,b",)n,a) and n !=n' and not lookup (b,n') = lookup (b',n") }
run addLocal for 3 but 2 Book

pred addLocal (b,b": Book, n,n": Name, a: Addr) {
add (b,b',n,a) and n !=n' and not lookup (b,n") = lookup (b',n’) }
run addLocal for 3 but 2 Book



counterexample: textual

module examples/addressBook/addLocal
sig Target extends univ = {Addr_0, Name_0, Name_1}
sig Addr extends Target = {Addr_0}
sig Name extends Target = {Name_0, Name_1}
sig Book extends univ = {Book_0, Book_1}
addr: {Book_0 -> Name_1 -> Name_0,
Book_1 -> {Name_0 -> Addr_0, Name_1 -> Name_0}}

skolem constants
addLocal_b = {Book_0}
addLocal_b' = {Book_1}
addLocal_n = {Name_0}
addLocal_n' = {Name_1}
addLocal_a = {Addr_0}



counterexample: graphical

without customization

Bookl
raddlocal_hk")

addr{Mam e0]

Addri Mamel
faddLocal_a) faddLocal_n)

Bookl
faddLocal_b)

addr{Mamel]

Mamel
faddLocal_n")

addr[Mamel]




counterexample: graphical

with Book projected
Mamel
faddLocal_n"
Mamel Addrid
faddLocal_n'") (addlLocal_a) addr
Mamel
addr faddLocal_n)
Mamel
dd
faddLocal_n) aaar
Addri
f — . (addlocal_a)
<< ‘Book_0 | 4 | (> )

.-'| . Book_1 | : ] Ty

([ <«




how the analysis works



alloy analyzer architecture

alloy analyzer

translate mapoin translate
formula ppIng instance




relational values

space of values for relation in scope 2

o

(

V\\‘*‘ =~ space of values as
A\ Oanm® 4 boolean vars

(
C

1[0,0]
N o’
r[0,1] r[1,0]

(
(
(

~ 1[1,1]

N A
£ 9 5
A

(
(
(
-
(
(
(
(

N
%
X
X

(
(



sample translation

example
b, b": Book
n: Name
names: Book -> Name
b.names = b.names + n

compositional translation
b [i] : true if ith element of Book is in the set b
names |1, ]| : true if names maps ith element of Book to jth element of Name
b.names + n [i] = (dk. b [k] A names [k, 1]) v n [i]
b.names = b.names + n =
Vi. (3k. b’ [k] A names [k, i]) < (k. b [k] A names [k, i]) v n [i]



quantification

grounding out
all x: t | F
becomes: F [x0/x] and F [x0/x] and ...

skolemization

somex:t|F

becomes: F [X/x] where X is a fresh free variable

all x: s | somey:t|F

becomes: all x: s | F [x.Y/y] where Y: s-> t is a free (function) var



optimizations

symmetry

> atoms of a signature are interchangeable

> so adds symmetry breaking predicates automatically
> for util/ordering, ordering is fixed A1, A2, A3, ...

other optimizations

> sharing: detecting shared formulas before they appear during
grounding out

> boolean simplifications

> careful conversion to CNF

> ‘atomization’ using subtypes



performance: SAT solvers

1986 1992 1996

size of solvable constraint in #boolean variables
from Sharad Malik




performance: moore’s law

speed of main processor offering in MHz
from intel.com



homework



homework: self-grandpa

I'M MY OWN GRANDPA (Dwight Latham & Moe Jaffe)

Many, many years ago when I was twenty-three
[ was married to a widow who was pretty as could be ...

... Now if my wife is my grandmother, then I'm her grandchild
And every time I think of it, it nearly drives me wild

‘Cause now I have become the strangest case you ever saw

As husband of my grandmother, [ am my own grandpa

I'm my own grandpa,
I'm my own grandpa,

It sounds funny, I know
But it really is so

I'm my own grandpa



self-grandpa in alloy

module examples/grandpa/grandpal

abstract sig Person {father: lone Man, mother: lone Woman}
sig Man extends Person {wife: lone Woman}
sig Woman extends Person {husband: lone Man}

fact {
no p: Person | p in p.*(mother+father)
wife = ~husband

}
fun grandpas (p: Person): set Person {p.(mother+father).father}

pred ownGrandpa (p: Person) {p in grandpas (p)}
run ownGrandpa for 4 Person



your task

find a solution to the song by
> changing the expression in the function grandpa
> adding any new constraints that seem necessary



free upgrades available!

new memory sticks for old!

ask me if you'd like:
> yesterday’s address book examples
> today’s updated lecture and examples



