
HoareonJSP
A report on JSP by C.A.R. Hoare, 1977

A Tribute to Michael Jackson · Vancouver · May 2009
Daniel Jackson · MIT

15

!e Michael Jackson Design Technique:
A study of the theory with applications

C.A.R.Hoare

 Programs, Traces and Regular Expressions
!e execution of a computer program involves the execution of a series of elementary
commands, and the evaluation of a series of elementary tests (which, in fact, the Mi-
chael Jackson technique tends to ignore). It is in principle possible to get a computer to
record each elementary command when it is executed, and also to record each test as it
is evaluated (together with an indication whether it was true or false). Such a record is
known as a ‘trace’; and it can sometimes be helpful in program debugging.

It is obviously very important that a programmer should have an absolutely clear un-
derstanding of the relation between his program and any possible trace of its execution.
Fortunately, in the case of a structured program, this relation is very simple – indeed, as
Dijkstra pointed out, this is the main argument in favour of structured programming.
!e relation may be defined as follows:

(a) For an elementary condition or command (input, output, or assignment), the
only possible trace is just a copy of the command. !is is known as a ‘terminal
symbol’, or ‘leaf ’, of the structure tree.

(b) For a sequence of commands (say P ; Q), every possible trace consists of a trace
of P followed by a trace of Q (and similarly for sequences longer than two).

(c) For a selection (say P ! Q), every possible trace is either a trace of P or a trace of
Q (and similarly for selections of more than two alternatives).

(d) For an iteration (say P*), every possible trace is a sequence of none or more
traces, each of which is a (possibly different) trace of P. Zero repetitions will give
rise to an ‘empty’ trace <>. !us it can be seen that a program is a kind of regular
expression, and that the set of possible traces of the program is the ‘language’
defined by that expression. In fact, the ‘language’ will contain many traces that
can never be the result of program execution; but for the time being it will pay
to ignore that fact.

Of course, a complete trace of every action of a program will often be too lengthy for
practical use. We therefore need a selective trace, which is a record of all actions affect-
ing some particular variable, or some particular input or output file. (Note that a com-
plete trace is a merging of all the selective traces derived from it; but it is not possible to
work out which merging it was from the selective traces alone.)

A record of all input instructions on a particular input file will be effectively the same
as a copy of the particular data presented to the program on that particular execution of
it; and similarly a selective trace of output instructions will be nothing but a copy of the
output file. For program debugging such traces would never be required. But the idea of
the selective trace is the basis of the whole Michael Jackson Design Technique.

a JSP example

stores movement problem

step 1: structures

step 1: structures

SMF

PART-GROUP*

MOVEMT-REC*

ISSUE RECEIPT

step 1: structures

SMF

PART-GROUP*

MOVEMT-REC*

ISSUE RECEIPT

REPORT

SUMMARY
LINE

*

step 1: structures

SMF

PART-GROUP*

MOVEMT-REC*

ISSUE RECEIPT

REPORT

SUMMARY
LINE

*

step 2: operations

1. smf = open (…)
2. close (smf)
3. rec = read (smf)
4. display (pno, net)
5. pno = rec.part_number
6. net = 0
7. net = net + rec.quantity
8. net = net - rec.quantity

step 2: operations

1. smf = open (…)
2. close (smf)
3. rec = read (smf)
4. display (pno, net)
5. pno = rec.part_number
6. net = 0
7. net = net + rec.quantity
8. net = net - rec.quantity

1 23

45 6

78

SMF

PART-GROUP*

MOVEMT-REC*

ISSUE RECEIPT

3

the !nal program

smf = open (…); rec = read (smf);
while (!eof (rec)) {
 pno = rec.part_number;
 net = 0;
 while (!eof (rec) && pno == rec.part_number) {
 if (rec.code == ISSUE)
 net = net - rec.quantity;
 else
 net = net + rec.quantity;
 rec = read (smf);
 }
 display (pno, net);
 }
 close (smf);

Hoare’s approach

programs & traces

smf = open (…); rec = read (smf);
while (!eof (rec)) {
 pno = rec.part_number;
 net = 0;
 while (...) {
 if (rec.code == ISSUE)
 net = net - rec.quantity;
 else
 net = net + rec.quantity;
 rec = read (smf);
 }
 display (pno, net);
 }
 close (smf);

programs & traces

smf = open (…); rec = read (smf);
while (!eof (rec)) {
 pno = rec.part_number;
 net = 0;
 while (...) {
 if (rec.code == ISSUE)
 net = net - rec.quantity;
 else
 net = net + rec.quantity;
 rec = read (smf);
 }
 display (pno, net);
 }
 close (smf);

programs & traces

smf = open (…); rec = read (smf);
while (!eof (rec)) {
 pno = rec.part_number;
 net = 0;
 while (...) {
 if (rec.code == ISSUE)
 net = net - rec.quantity;
 else
 net = net + rec.quantity;
 rec = read (smf);
 }
 display (pno, net);
 }
 close (smf);

a trace
<open, read, display, close>

programs & traces

smf = open (…); rec = read (smf);
while (!eof (rec)) {
 pno = rec.part_number;
 net = 0;
 while (...) {
 if (rec.code == ISSUE)
 net = net - rec.quantity;
 else
 net = net + rec.quantity;
 rec = read (smf);
 }
 display (pno, net);
 }
 close (smf);

a trace
<open, read, display, close>

programs & traces

smf = open (…); rec = read (smf);
while (!eof (rec)) {
 pno = rec.part_number;
 net = 0;
 while (...) {
 if (rec.code == ISSUE)
 net = net - rec.quantity;
 else
 net = net + rec.quantity;
 rec = read (smf);
 }
 display (pno, net);
 }
 close (smf);

a trace
<open, read, display, close>

selective trace on input
<open, read, close>

programs & traces

smf = open (…); rec = read (smf);
while (!eof (rec)) {
 pno = rec.part_number;
 net = 0;
 while (...) {
 if (rec.code == ISSUE)
 net = net - rec.quantity;
 else
 net = net + rec.quantity;
 rec = read (smf);
 }
 display (pno, net);
 }
 close (smf);

a trace
<open, read, display, close>

selective trace on input
<open, read, close>

programs & traces

smf = open (…); rec = read (smf);
while (!eof (rec)) {
 pno = rec.part_number;
 net = 0;
 while (...) {
 if (rec.code == ISSUE)
 net = net - rec.quantity;
 else
 net = net + rec.quantity;
 rec = read (smf);
 }
 display (pno, net);
 }
 close (smf);

a trace
<open, read, display, close>

selective trace on input
<open, read, close>

selective trace on output
<display>

programs & traces

smf = open (…); rec = read (smf);
while (!eof (rec)) {
 pno = rec.part_number;
 net = 0;
 while (...) {
 if (rec.code == ISSUE)
 net = net - rec.quantity;
 else
 net = net + rec.quantity;
 rec = read (smf);
 }
 display (pno, net);
 }
 close (smf);

a trace
<open, read, display, close>

selective trace on input
<open, read, close>

selective program
smf = open (…); rec = read (smf);
while (...) {
 while (...) {
 rec = read (smf);
 }
 }

selective programs & traces

merging selective programs

merging selective programs

GROUPS

PART-GROUP*

MOVEMT-REC*

ISSUE RECEIPT

open close

read

SMF

RECS

read

merging selective programs

BODY

SUMMARY
LINE

*

display

REPORT

GROUPS

PART-GROUP*

MOVEMT-REC*

ISSUE RECEIPT

open close

read

SMF

RECS

read

merging selective programs

BODY

SUMMARY
LINE

*

display

REPORT

GROUPS

PART-GROUP*

MOVEMT-REC*

ISSUE RECEIPT

open close

read

SMF

RECS

read BODY

SUMMARY
LINE

*

display

REPORT

GROUPS

*

MOVEMT-REC*

ISSUE RECEIPT

open close

read

SMF

RECS

read

PART-GROUP

merging selective programs

GROUPS/
BODY

*

MOVEMT-REC*

ISSUE RECEIPT

open close

read display

SMF/
REPORT

RECS

read

PART-GROUP/
SUMMARY LINE

formalization
annotating with non-terminals
‣ left (right) annotation puts non-terminal symbol at start (end)
‣ now traces include non-terminals!

correspondences
‣ two symbols correspond if they alternate <a, b, a, b, ...>

transformation rules
‣ how to make structures match?
‣ apply algebraic rewrites, eg. Q = Q ∪ Q

implications
methodical matching
‣ merged structure correct by construction
‣ in JSP, not formal but can check after

can project on variables too
‣ operation allocation subsumed

structures clash relative
‣ INPUT; OUTPUT always possible
‣ can do this at any level

paper available online at

http://tinyurl.com/hoarejsp

http://tinyurl.com/hoarejsp
http://tinyurl.com/hoarejsp

