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dependability

dependable software
> ‘the software works’
» will it ever be a reality?

no, because for most systems
» requirements are complex
» codebase is large
> bugs are inevitable

so, change viewpoint
» dependable properties, not systems
» ‘with high probability, no catastrophes’
» example: ‘emergency stop button works’




guaranteeing properties

an approach SDG research areas
» identify properties & concerns problem frames
» design to encapsulate properties dependency model
» determine scope from code assumption trees
» check conformance statically Alloy analysis

other elements
» conformance monitors
4 . )
» ‘software interlocks

in this talk, focus on
» dependency model and assumption trees
» because funding primarily from HDCP



dependencies and decoupling

decoupling
» a key aim in software design
» reduce inter-module dependences
» limit scope of modification & reasoning

standard models are binary
» dependency exists or not
» quantity, not quality

in practice
» more flexible design has more dependences
» want to trace particular properties
» so need a richer model



standard model

module A ‘uses’ module B when
» correct working of A depends on correct working of B

Client \

Subject ——» Observer;

N

David Parnas. Designing software for ease of extension and contraction.

IEEE Transactions on Sofware Engineering, 5(2), 1979.

example: Observer



a hew model

dependences mediated by specs
» module A has S-use of module C
» means A relies on C satistying S

module as specification transducer
» for a given exported spec
» module relies on imported specs

example: module C
» exports Sand T
» imports U and V
» transduces

S->U,V
T->V




example: observer pattern

/ MyClient MyObserver;.new

MySubject.update Subject.reg

\‘MySubject Observer.notify»MyObserveri

‘e

L)

W -
MySubject.get;

really 2 distinct patterns: Register and Notify



assumption trees

suppose we care about property P
» which modules must be checked?

approach
» identify set of partial module specs for P
» trace dependences from these, forming a tree
» verify each node in the tree

joint work with Drew Rae



example
suppose P is established by spec R

A assumption tree 1s:
"1/\[‘] A: R
5 ‘ BBTV

W °

v L\A Env: X
D E E:W
N
checks
Env

A: satisfies R given T
transducers B: satisfies T given V, W
A:R->T; 5->T,U D: satisfies V given X

B: T->V,W Env: satisfies X
D: V->X



application: TSAFE

> design of prototype expressed in model
» undesirable couplings led to changes
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application: NPTC

> northeast proton therapy center
» property: emergency stop works

IMNITIATE

» assumptions discovered GALLBACK

treatment room is not room 3
disk is not full, so logging returns
other processes don’t hog msg queue
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analysis by Drew Rae
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future work

automating dependency analysis
» dependency extractor for Java: prototype complete
» now working on specification discovery

automating conformance checking
» find relevant code within module?
» extract transducers?

application to CTAS (with Notkin, Kotov)
» property: generated advisories don’t lead to conflicts
» establish with checker and gatekeeper
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extra slides
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grouping

-




templates
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related work

dependence models in other fields
» Eppinger’s Design Structure Matrix
» Suh’s Axiomatic Design

configuration models
» Units model, Felleisen et al

code dependences
> similar to my modular slicing (FSE 1994)

construction dependences
» make, etc

architectural dependences
> Richardson et al
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