
dependences & dependability

Daniel Jackson, MIT
HDCP Review

Ames, June 18, 2003

2

dependability

dependable software
› ‘the software works’
› will it ever be a reality?

no, because for most systems
› requirements are complex
› codebase is large
› bugs are inevitable

so, change viewpoint
› dependable properties, not systems
› ‘with high probability, no catastrophes’
› example: ‘emergency stop button works’

3

guaranteeing properties

an approach SDG research areas
› identify properties & concerns problem frames
› design to encapsulate properties dependency model
› determine scope from code assumption trees
› check conformance statically Alloy analysis

other elements
› conformance monitors
› ‘software interlocks’

in this talk, focus on
› dependency model and assumption trees
› because funding primarily from HDCP

4

dependencies and decoupling

decoupling
› a key aim in software design
› reduce inter-module dependences
› limit scope of modification & reasoning

standard models are binary
› dependency exists or not
› quantity, not quality

in practice
› more flexible design has more dependences
› want to trace particular properties
› so need a richer model

5

standard model

module A ‘uses’ module B when
› correct working of A depends on correct working of B

example: Observer

David Parnas. Designing software for ease of extension and contraction.
IEEE Transactions on Sofware Engineering, 5(2), 1979.

Client

Subject Observeri

6

a new model

dependences mediated by specs
› module A has S-use of module C
› means A relies on C satisfying S

module as specification transducer
› for a given exported spec
› module relies on imported specs

example: module C
› exports S and T
› imports U and V
› transduces

S -> U, V
T -> V

A

C

D

S

U

E

V

B

T

7

example: observer pattern

MyClient

MySubject MyObserveri

MySubject.update Subject.reg

MyObserveri.new

Observer.notify

MySubject.geti

really 2 distinct patterns: Register and Notify

8

assumption trees

suppose we care about property P
› which modules must be checked?

approach
› identify set of partial module specs for P
› trace dependences from these, forming a tree
› verify each node in the tree

joint work with Drew Rae

9

example

A

B

Env

C

D E

T U

V
W

X

transducers
A: R->T ; S->T,U
B: T->V,W
D: V->X

suppose P is established by spec R

assumption tree is:

A: R
 B: T
 D: V
 Env: X
 E: W

checks

A: satisfies R given T
B: satisfies T given V, W
D: satisfies V given X
Env: satisfies X

10

application: TSAFE

› design of prototype expressed in model
› undesirable couplings led to changes

Greg Dennis’s
masters thesis

11

application: NPTC

› northeast proton therapy center
› property: emergency stop works
› assumptions discovered

treatment room is not room 3
disk is not full, so logging returns
other processes don’t hog msg queue

analysis by Drew Rae

12

future work

automating dependency analysis
› dependency extractor for Java: prototype complete
› now working on specification discovery

automating conformance checking
› find relevant code within module?
› extract transducers?

application to CTAS (with Notkin, Kotov)
› property: generated advisories don’t lead to conflicts
› establish with checker and gatekeeper

13

extra slides

14

grouping

A

B

C

A

B

C

A

B

C

A

B

C

stands for

stands for

15

templates

A

Bi

C

S

Ti

A

B1

C

S

T1

Bn…

Tn

S

stands for

16

related work

dependence models in other fields
› Eppinger’s Design Structure Matrix
› Suh’s Axiomatic Design

configuration models
› Units model, Felleisen et al

code dependences
› similar to my modular slicing (FSE 1994)

construction dependences
› make, etc

architectural dependences
› Richardson et al

