dependences & dependability

Daniel Jackson, MIT
HDCP Review
Ames, June 18, 2003

dependability

dependable software
> ‘the software works’
» will it ever be a reality?

no, because for most systems
» requirements are complex
» codebase is large
> bugs are inevitable

so, change viewpoint
» dependable properties, not systems
» ‘with high probability, no catastrophes’
» example: ‘emergency stop button works’

guaranteeing properties

an approach SDG research areas
» identify properties & concerns problem frames
» design to encapsulate properties dependency model
» determine scope from code assumption trees
» check conformance statically Alloy analysis

other elements
» conformance monitors
4 .)
» ‘software interlocks

in this talk, focus on
» dependency model and assumption trees
» because funding primarily from HDCP

dependencies and decoupling

decoupling
» a key aim in software design
» reduce inter-module dependences
» limit scope of modification & reasoning

standard models are binary
» dependency exists or not
» quantity, not quality

in practice
» more flexible design has more dependences
» want to trace particular properties
» so need a richer model

standard model

module A ‘uses’ module B when
» correct working of A depends on correct working of B

Client \

Subject ——» Observer;

N

David Parnas. Designing software for ease of extension and contraction.

IEEE Transactions on Sofware Engineering, 5(2), 1979.

example: Observer

a hew model

dependences mediated by specs
» module A has S-use of module C
» means A relies on C satistying S

module as specification transducer
» for a given exported spec
» module relies on imported specs

example: module C
» exports Sand T
» imports U and V
» transduces

S->U,V
T->V

example: observer pattern

/ MyClient MyObserver;.new

MySubject.update Subject.reg

\‘MySubject Observer.notify»MyObserveri

‘e

L)

W -
MySubject.get;

really 2 distinct patterns: Register and Notify

assumption trees

suppose we care about property P
» which modules must be checked?

approach
» identify set of partial module specs for P
» trace dependences from these, forming a tree
» verify each node in the tree

joint work with Drew Rae

example
suppose P is established by spec R

A assumption tree 1s:
"1/\[‘] A: R
5 ‘ BBTV

W °

v L\A Env: X
D E E:W
N
checks
Env

A: satisfies R given T
transducers B: satisfies T given V, W
A:R->T; 5->T,U D: satisfies V given X

B: T->V,W Env: satisfies X
D: V->X

application: TSAFE

> design of prototype expressed in model
» undesirable couplings led to changes

teafe.cliant toofo.anging
Flighilst + ¥ TaaicMenu Engine
Results
naw ts params | Traiectory
gelFlightsBlinders/] r X Synthesize
TeareClient Trajectories Engire
EngineObserws =t Tl Engine new. Parameters
‘I---- e .---E----- Conferrance
m p,é'ﬁm' nnnnnn o
. Parameters !
Flightiag Dizlog r ! |
i
H
H
i
teafemain Tsxelaahase FlightTrack
T +
EngnsCalzalats RouteTracker RoueTrack
Runtire leCalculzt
Datakase plesa
feDatabase
fofood |
EngineCaleulstar FeedFarser
taafo fead asdl tzafa.d
.
o Peadar BiP Figh FlighiPlan Fouts Paint2h
M ——
R L ’|‘
. [1] ;
Greg Dennls S Messags] Message | | \aepiide Eii h:'mrjc Airwe Fie e gatlat
=9 Extractor N 9 LA getlan
ters thesis |
ServerRaesdar RoutePerser —— FizFarser Trajectory -3 Faints 0 Fomxy LatLonBaund:

10

application: NPTC

> northeast proton therapy center
» property: emergency stop works

IMNITIATE

» assumptions discovered GALLBACK

treatment room is not room 3
disk is not full, so logging returns
other processes don’t hog msg queue

LOG
ERROR

All Other
dataDagq 2 Modules

AVOID
INTERFEREMCE

[3

ACCEPT REGISTRATION

tmgrmain
REFPORT
SYSTEM

STATE
REGISTER CALLBACHK
— rtdaqin
TRANSMIT
INHIBIT
BEAM
hJ
eventsinterruptions BUILD AMD
SEMD MESSAGE

arrorDef

TRANSMIT
ERROR

"

eventReporter

analysis by Drew Rae

v

‘ msgOutBuildMessage

TRANSMIT
MESSAGE

RTServer

11

future work

automating dependency analysis
» dependency extractor for Java: prototype complete
» now working on specification discovery

automating conformance checking
» find relevant code within module?
» extract transducers?

application to CTAS (with Notkin, Kotov)
» property: generated advisories don’t lead to conflicts
» establish with checker and gatekeeper

12

extra slides

13

grouping

-

templates

15

related work

dependence models in other fields
» Eppinger’s Design Structure Matrix
» Suh’s Axiomatic Design

configuration models
» Units model, Felleisen et al

code dependences
> similar to my modular slicing (FSE 1994)

construction dependences
» make, etc

architectural dependences
> Richardson et al

16

