
Alloy
University of Wisconsin, Madison · November 4, 2009

Daniel Jackson, MIT

Daniel Jackson · MIT CSAIL · ER Online Summer Seminars · August 5, 2020

design
concept

desperately
seeking concepts

Conceptual integrity is the most important consideration
in system design (1975)

I am more convinced than ever. Conceptual integrity is
central to product quality (1995)

It is clear that users attempt to make sense—by building
mental models—of the behavior of a system as they use
it. If a simple model is not explicitly or implicitly provided,
users formulate their own myths about how the system
works... [I]f the user is to understand the system, the
system has to be designed with an explicit conceptual
model that is easy enough for the user to learn. We call
this the intended user’s model, because it is the model
the designer intends the user to learn.

1986

When the designers fail to provide a conceptual model,
we will be forced to make up our own, and the ones we
make up are apt to be wrong. Conceptual models are
critical to good design.

Donald Norman

1988

Conceptual modelling is the activity of formally
describing some aspects of the physical and social world
around us for purposes of understanding and
communication…

We are interested in conceptual modelling because it is
useful in rationalizing and supporting information system
development.

John Mylopoulos. Conceptual modeling and Telos, 1992

where’s the concept?

ReservationCustomer

Slot

reservations

slot

3 entities: how many concepts?

Customer Slot
reservedSlots

is the relation a concept?

The conceptual modelling community not only has no
clear, general agreement on what its models model, it
also has no clear picture of what the available options and
their implications are. One common claim is that models
represent concepts, but there is no clear articulation of
what the concepts are.

Chris Partridge, Cesar Gonzalez-Perez and Brian Henderson-Sellers. Are Conceptual Models Concept Models? 2013

why it matters

modularity is the essence of design
provides separation of concerns & structure for reuse

without concepts, what are conceptual models?
like formal models of a domain in Alloy (or Z, or Statecharts….)

we have an intuition that concepts are distinct
restaurant reservation app based on concept of “reservation”?

dropbox
delusions

Ava is a party planner Bella is having a party

does the name change for Ava too?

answer: it depends

if Ava just shares Bella Plan with Bella
and Bella renamed the folder, Ava sees no change

if Ava shares a folder Bella Party with Bella
containing the folder Bella Plan, and Bella renamed Bella Plan
then Ava does see the change

same two cases for deletion

Bella deletes Bella Plan from shared folder Bella Party Bella deletes shared folder Bella Party

two concepts

Bella DropboxAva Dropbox

Bella Party

Bella Plan

Bella Party

Ava Dropbox Bella Dropbox

Bella Party

Bella Plan

name follows metadata concept name is part of unixFolder concept

concept metadata

purpose tag items with properties for easy lookup

structure
 val: Item -> Property -> Value

actions
 define (i: Item, p: Property, v: Value)
 i.val[p] := v

 find (out is: Item, p: Property, v: Value)
 is = {i | i.val[p] = v}

 read (i: Item, p: Property, out v: Value)
 v := i.val[p]

principle

 define(i, p, v); no define(i, p,…); find(is,p,v)
 => i in is

concept unixFolder

purpose organize named items

structure
 member: Folder -> Name -> Item

actions
 add (i: Item, to: Folder, n: Name)
 to.member[n] := i

 rename (i: Item, f: Folder, old, new: Name)
 f.member := f.member - old->i + new->i

 find (f: Folder, n: Name, out i: Item)
 i := f.member[n]

principle

 add(i, f, n); no rename(i, f,…) or add(i’,f,n);
 find(f, n, i’) => i’ = i

a real dropbox disaster

how to make space: find big files & delete ones you don’t recognize

a sad dropbox tale

correctly predicting behavior

0.0%

20.0%

40.0%

60.0%

80.0%

good knowledge average knowledge poor knowledge

delete shared folder results in leaving delete shared subfolder removes it

Kelly Zhang

survey of dropbox users (MIT CS undergrads)

the big picture

what caused the dropbox problem? not these things

lack of technology

bugs in the code

classic UI design flaws

avoid bugs in code

design the user interface

understand the user

for robust, usable software…

get the concepts right

metadata unixFolder

physical linguistic conceptual

color, size, layout,
type, touch, sound

icons, labels, tooltips,
site structure

semantics, actions,
data model, purpose

concrete abstract

levels of UX design

Perceptual Fusion,
Fitt’s Law, Accessibility

Consistency, Info Foraging,
Navigation Aids

Undo, Norman’s mapping,
mental model alignment

a story of style

example: style concept

purpose consistent formatting purpose: why the concept exists

structure
 defined: Style -> one Format
 style: Element -> one Style
 format: Element -> one Format = style.defined

structure: localized data model

actions
 define (s: Style, f: Format)
 s.defined := f

 assign (e: Element, s: Style)
 e.style := s

actions: observable & atomic

name: essential for knowledge captureconcept style

There is no
problem

in computer
science

that cannot be
solved by

introducing
another level of

indirection.
David Wheeler principle

after define(s,f); assign(e1,s);
assign(e2,s); define(s,f’)
observe e1.format = e2.format = f’

OP justifies & explains design

how behavior fulfills purpose

Michael Polanyi
operational principle

the invention of style

Tim Mott visits Ginn in 1974
brings idea of styles to PARC

Charles Simonyi’s team
implements style in

Bravo text editor

Simonyi brings style
to Microsoft in 1983

Apple Pages 2005

Apple Keynote
adds style concept

c. 2017

other instances of style

Powerpoint color schemes Indesign swatches

Keynote image styles

non-instances: “pseudo-style”

Apple color swatches
TextEdit “styles"

a concept handbook

concepts indexed by purpose
consistent formatting:

style, template, copy settings, …
design variants
override formats
style inheritance

next style
partial styles

shareable stylesheet

known issues
deleting styles: what happens to elements?

copying elements between documents
need for “as is” values

troublesome properties (eg, fontstyle)
typical uses

formatting paragraphs & characters
formatting graphic objects

Word, Pages, CSS, …

often used with
paragraph

formatimplementation hints
…

key properties of a concept: style as an example

behavioralinventive purposeful self-contained reusable

style has a long
history of creativity

& refinement

style in Keynote
inspired by style in
Pages, inspired by

Style in Word…

for consistency of
formatting, esp. in
large documents

style concept
independent of

format, paragraph,
typeface

“if you update the
style of multiple
paragraphs their

formatting all
changes in concert”

not domain entities
that are just “out there”

often not
domain-specific

not arbitrary
fragments of
functionality

not datatypes
or modules

not data models
or ontologies

composing
concepts

weakest: existence coupling

folder label

most common: action synchronization

folder accessControl

tightest: structure synchronization

folder trash

property added in Lion (2011)folder sortable by volume!

designing
on purpose

understanding why: the key to usability

Macintosh Trash Photoshop Layers Available Funds

deleting things

undeleting things
stacking objects

non-destructive editing

signal that deposits are safe

permission to use

wrong purpose

right purpose

a conceptual flaw in Twitter

Nov 2, 2015: Twitter changes Favorite (Star) to Like (Heart)

We are changing our star icon for
favorites to a heart and we’ll be
calling them likes. We want to make
Twitter easier and more rewarding to
use, and we know that at times the
star could be confusing, especially
to newcomers. You might like a lot
of things, but not everything can be
your favorite. Twitter

I've favorited more than 60,000 tweets over
the years, and in that time I've come to
appreciate how versatile that little button is. I
use it as a kind of read receipt to
acknowledge replies; I use it whenever a tweet
makes me laugh out loud; I use it when
someone criticizes me by name in the hopes
that seeing it's one of my "favorite" tweets will
confuse and upset them. Casey Newton

The problem for Twitter is that the “favorite”
function had developed a range of uses over
time, many of which are known only to the
journalists and social-media experts who
spend all their time on the service. For some
(including me), clicking the star icon was a
way of saving a tweet for later, or of sending
a link that was being shared to a service like
Instapaper or Pocket. Mathew Ingram

If Twitter integrated a simple heart
gesture into each Tweet,
engagement across the entire
service would explode. More of us
would be getting loving feedback
on our posts and that would
directly encourage more posting
and more frequent visits to Twitter.
Chris Sacca

confused concepts lead to confused users

how Twitter resolved the conceptual flaw

Like: public Bookmark: private

design rules

the specificity rule

P1 C1

P2 C2

specificity
purposes:concepts are 1:1

P1 C1

C2

redundancy
>1 concept per purpose

P1 C1

P2

overloading
>1 purpose per concept

example
category vs label in Gmail

example
page size vs feed in Epson

redundancy gmail categories

initial reaction to categories

redundancy gmail categories

how Google explains labels

overloading epson driver

result: can’t create custom size for front loading
also, page size presets in Lightroom hold feed setting

overloading commit concept

feature setup

feature completion

backup just in case

the familiarity rule

A1

P1

C1

A2

P1

C1

familiarity
steal, don’t invent

A1

P1

C11

A2

P1

C12

needless specialization
custom concept, standard purpose

example
CollectionSet vs Folder in Lightroom

familiarity Lightroom’s collection (set) concept

✗ Lightroom: only collection sets can contain collections ✓Zotero: collections can contain collections

familiarity Powerpoint’s section concept

in Powerpoint Powerpoint commandsin Keynote

familiarity Lightroom’s export preset concept

ok, highlighting selects the preset

huh, what are the checkboxes?

and why the warning message?

the integrity rule

P1 C1

P2 C2

integrity
concepts safe when composed

P1 C1

P2 C2

interference
one concept breaks another

example
Label broken by Conversation in Gmail

integrity Gmail conversation breaks label concept

integrity cloudapp breaks sync concept

slides.pdfslides.gdoc

slides.pdfslides.gdoc

Google drive in cloud

Google drive on client machine

Another directory on client machine

slides.pdfslides.gdoc

slides.pdfslides.gdoc

Google drive in cloud

Google drive on client machine

Another directory on client machine

slides.pdfslides.gdoc

Google drive in cloud

Google drive on client machine

Another directory on client machine

slides.pdfslides.gdoc

slides.pdfslides.gdoc

url

Google drive in cloud

Google drive on client machine

Another directory on client machine

slides.pdfslides.gdoc

slides.pdfslides.gdoc

url

Google drive in cloud

Google drive on client machine

Another directory on client machine

slides.pdfslides.gdoc

url

Google drive in cloud

Google drive on client machine

Another directory on client machine

move sync

integrity proFont breaks toggleFormat concept

Regular

Italic

Bold

BoldItalic

I I

B

B

B B

conclusions

a research & teaching program

case studies patterns

design theory

tools

design by concept
a new way to think

about software

Daniel Jackson

design by concept / a new
 w

ay to think about softw
are / jackson

Design by concept is a new approach to creating
so!ware. A so!ware product—whether an app, a
service or a system—is viewed as a collection of
interacting concepts, each with its own purpose,
structure and behavior. Concepts can be invented
afresh, but they can also be reused, exploiting
the knowledge embodied in previous successful
designs.

#is book explains what concepts are and why they
are central to so!ware design; shows examples of
concepts (from the most e$ective and ingenious to
the most %awed and frustrating) taken from well-
known applications; and presents design principles
that can identify and eliminate %aws in existing and
new designs.

Daniel Jackson is Professor of Computer Science,
a MacVicar fellow, and Associate Director of the
Computer Science and Arti&cial Intelligence Lab
at MIT. His past research focused on so!ware
modeling and analysis; he is the creator of the Alloy
language, and author of So!ware Abstractions: Logic,
Language, and Analysis (MIT Press; second ed.
2012). His current interests include so!ware design
for improved usability, security and safety, and new
programming paradigms. He was a recipient of the
2016 ACM SIGSOFT Impact Award, the 2017 ACM
SIGSOFT Outstanding Research Award, and is an
ACM Fellow.

https://deja-vu-platform.com

https://gitless.com

some research challenges

formalizing design criteria
genericity, uniformity, decoupling

smooth transition to code
new architectures, like microservices

design language
an extension of Alloy? a logic for OPs

stay in touch!

https://tinyurl.com/conceptdesignlist

register here for updates about the book etc:

extra slides

apps = {concepts}

Finder (1984) Word (1983) Photoshop (1988) Facebook (2004) Drive (2012) Google Doc (2009)
pixelarray,
layer, mask

update, friend,
like

paragraph,
format, style

folder, trash synchronization,
sharing

edit (OT),
cloud file

software app = {concepts}

software app class = {concepts}

word processor (eg, Word)
paragraph,

format, style
page, textflow

desktop publisher (eg, Quark)text editor (eg, Emacs)
line, buffer

concept choices within an app class

sharing content
post/comment/repost

controlling access
friend/follow/group/channel

how you react
upvote/rating/reaction

personal organizing
favorite/bookmark

shared organizing
hashtag/mention/label

concepts for social media apps

comparing apps via concepts

Lightroom Photoshop Capture One

concepts for editing images? action
tool

preset

adjustment
layer/mask

tool

adjustment
layer/mask

tool

filter/preset/style
adjustment

control point

Silver Efex

inventory of concepts for a single app: Lightroom

Package

Template

Watermark

Printing

Preset

Action

Snapshot

Settings

DevelopLibrary

Collection

Folder

Keyword

Label

Flag

Rating

VirtualCopy

Metadata

Undo

Preference

LocalAdj

Adjustment

Preset

Settings

LocalAdj

Adjustment

preset uses
settings

✗

Selection

software that
“just works”

software that “just works”

Shira Ovide, NYT, April 27, 2020

“just works” is not so easy

frictionless
unobtrusive

natural
learnable

predictable
robust

safe & secure
error-tolerant

powerful
capable
flexible
efficient

what it’s not about

cool technology: cloud, machine learning, blockchain

removing or preventing bugs in code

a theory of software design

structure
elements, relationships, composition

criteria
objective measures of goodness

patterns
capturing design experience

examples of theories

typography
structure
page, text block, margin
glyph, ligature, alternate
ascender, bowl, serif
justification, spacing, alignment

criteria
readability: x-height, line length
consistent color: italics not bold
avoiding widows & orphans

patterns
classic text block ratios
standard leading
serif/sans pairings

bread baking
structure
crust, interior, air pockets
fermenting & raising agents
flour varieties

criteria
shaping & elasticity
density & crumb
caramelization of crust

patterns
Lahey no-knead sourdough
Irish soda bread
pan cooked flat bread

software engineering
structure
function, module, package
closure, functional, callback
loop, iterator, stream

criteria
encapsulation of rep
simple interfaces
avoiding dependences

patterns
layered architecture
immutable datatype
model-view-controller
map/reduce/filter

concept
structure &
semantics

purpose consistent formatting purpose: why the concept exists

structure
defined: Style -> one Format
style: Element -> one Style
format: Element -> one Format = style.defined

structure: localized data model

actions
define (s: Style, f: Format)
 s.defined := f
assign (e: Element, s: Style)
 e.style := s

actions: observable & atomic

name: essential for knowledge captureconcept Style

There is no
problem

in computer
science

that cannot be
solved by

introducing
another level of

indirection.
David Wheeler principle

after define(s,f); assign(e1,s);
assign(e2,s); define(s,f’)
observe e1.format = e2.format = f’

OP justifies design and explains it

shows how behavior fulfills purpose

purpose consistent formatting

structure
defined: Style -> one Format
style: Element -> one Style
format: Element -> one Format = style.defined

actions
define (s: Style, f: Format)
 s.defined := f
assign (e: Element, s: Style)
 e.style := s

concept Style

principle
after define(s,f); assign(e1,s);
assign(e2,s); define(s,f’)
observe e1.format = e2.format = f’

maximal polymorphism

no dependences

separation of concerns

OP is an archetypal scenario

Michael Polanyi
operational principle

a theorem about behaviors

generalizes concept variants

shows how purpose fulfilled

justifies packaging as concept

purpose identify users

concept AuthUser

structure
name, password: User -> one String
sessions: Client -> set User

actions
register(n: Name, p: String, out u: User)
login (n: Name, p: String, c: Client)
logout (c: Client)
auth (c: Client, out u: User)

principle
register(n,p,u); login(n,p,c); auth(c,u’)
=> u’ = u

{
< >,
<register(n0,p0,u0)>,
<register(n0,p0,u0), login(n0,p0,c0)>,
<register(n0,p0,u0), register(n1,p1,u1)>,
…
<register(n0,p0,u0), login(n0,p0,c0), auth(c0,u0)>,
…
}

meaning is set of traces:

meaning of a single concept

trace <register(n0,p0,u0)> is projection of history
<
({name={}, password={}, sessions={}},
register(n0,p0,u0),
{name={u0->n0}, password={u0->p0, sessions={}})
>

actually, transition histories:

purpose track relative popularity

concept Upvote

structure
votes: Item -> User

actions
upvote (i: Item, u: User)
 votes += i->u
count (i: Item, out k: int)
 k = #i.votes

principle
no upvote(i,u) then …
count(i, k); upvote(i,u); count(i, k’)
=> k’>k

meaning of a single concept

{
< >, …
< count(i0, 0) >, …
< upvote(i0, u0) >, …
< upvote(i0, u0), count(i0, 1) >, …
< count(i0, 0), upvote(i0, u0), count(i0, 1) >, …
}

traces:

{
<>,
<({votes={}}, upvote(i0,u0), {votes={i0->u0}})>
…
}

histories:

formalizing transitions, histories & traces

transitions
a transition is a triple (pre-state, action-with-args, post-state)
let pre(x), action(x), post(x) be the pre-state, action and post-state of x
let inits(c) and trans(c) be the initial states and set of transitions of concept c

histories
a history is a sequence of transitions
history h is consistent if for all f, g != <>, h = f∧g implies post(last(f)) = pre(first(g))

concept histories
histories(c), the histories of a concept c include:
(1) the empty history <>
(2) any <x> where x in trans(c) and pre(x) in inits(c)
(3) any consistent history f∧<x> where f in histories(c) and x in trans(c)

concept traces
if h in histories(c), map(h, action) in traces(c)

theorems
prefix closure: if f∧g in histories(c) then f in histories(c) [and same for traces]
complete state: if h and f∧g in histories(c), h∧g in histories(c) if it’s consistent

semantics of
composition

post concept

upvote concept

comment concept

auth concept

app HackerNews
includes Post, Comment, Upvote, AuthUser, Owner
synchronizes
newPost

concept Comment
actions
new (a: Author, s: String, t: Target, out c: Comment)
get (t: Target, out cs: set Comment)

concept Upvote
actions
upvote (i: Item, u: User)
count (i: Item, out r: Int)

concept Post
actions
new (a: Author, s: String, out p: Post)
edit (p: Post, s: String)
get (a: Author, out ps: set Post)

concept Owner
actions
register (o: Owner, i: Item)
owns (o: Owner, i: Item)

editPost
 AuthUser.auth (c, u)
 Owner.owns(u, p)
 Post.edit(p, s)
newComment
 AuthUser.auth (c, u)
 Comment.new(u,s,p,x)
upvotePost
 AuthUser.auth (c, u)
 Upvote.upvote (p, u)
…

 Post.new(u, s, p)

 Owner.register(u, p)

 AuthUser.auth (c, u)

concept AuthUser
actions
register (n: Name, p: String, out u: User)
login (n: Name, p: String, c: Client)
logout (c: Client)
auth (c: Client, out u: User)

making an app by composing concepts

projecting transition

each transition in composite system
is interpreted as a transition in one of the concepts

concept A

concept B

composite

code icon by Freepik from www.flaticon.com

Tony Hoare
CSP (1978)

http://www.flaticon.com
http://www.flaticon.com

register
 AuthUser.register (n1, p1, u1)
…
login
 AuthUser.login (n1, p1, c1)
…
newPost
 AuthUser.auth (c1, u1)
 Post.new(u1, s1, p1)
 Owner.register(u1, p1)
upvotePost
 AuthUser.auth (c1, u1)
 Upvote.upvote (p1, u1)

Post.new(u1 ,s1, p1)

Owner.register(u1, p1)

Upvote.upvote (p1, u1)

AuthUser.register (n1, p1, u1)
AuthUser.login (n1, p1, c1)
AuthUser.auth (c1, u1)
AuthUser.auth (c1, u1)

concept AuthUser

concept Post

concept Owner

concept Upvote

✔

✔

✔

✔

check that projected transitions meet concept specifications

formalizing composites histories & synchronizations

recall: transitions
trans(c) is the set of transitions of concept c [and trans(C) for concept set C]

composite histories
h is a composite history of an app made of concepts c in C if
 every transition in h is in trans(C) and the subhistory h@c is in histories(c)

composite transitions and synchronizations
a composite transition X for concepts C is a non-empty sequence of trans(C)
a synchronization S is a set of composite transitions
an execution of S is a concatenation of some members of S

app histories
the histories of an app composed of concepts C with sync S are
 the composite histories of C that are executions of S

not prefix-closed
note that the histories of an app are not generally prefix-closed
transitions of a composite transition must occur all-or-none

axes of
synchronization

sync on actions alone

sync post (c: Client, s: String, out u: User, out p: Post)
AuthUser.auth (c, u)
Post.new (u, s, p)

sync edit (c: Client, p: Post, s: String, out u: User)
AuthUser.auth (c, u)
Post.edit (u, p, s)

concept AuthUser
actions
register (n: Name, p: String, out u: User)
login (n: Name, p: String, c: Client)
logout (c: Client)
auth (c: Client, out u: User)

concept Post
actions
new (a: Author, s: String, out p: Post)
edit (a: Author, p: Post, s: String)
get (a: Author, out ps: set Post)

sync on actions & pre-state

sync moveToTrash (o: File + Folder)
Folder.move (o, Folder.trash)
for x: o.*(Folder.contents) | Trash.delete (x)

sync empty ()
Trash.empty()
for x: Trash.trashed | Folder.delete(x)

sync restore (o: File + Folder, to: Folder)
{no (to + o.(Folder.parent)) & Trash.trashed}
Folder.move(o, to}
for x: o.*(Folder.contents) | Trash.restore (x)

concept Trash
state
all, trashed: set Object
actions
create (out o: Object)
delete (o: Object)
restore (o: Object)
emptyTrash ()

concept Folder
state
contents: Folder -> (File + Folder)
static root, trash: disjoint Folder
initially contents = root -> trash
actions
newFolder (parent: Folder, out f: Folder)
newFile (parent: Folder, f: File)
move (o: File + Folder, to: Folder)
delete (f: File + Folder)

sync on actions & post-state

sync applyAdjustment (i: Image, a: Adjustment, p: Param)
Adjustment.adjust (i, a, p)
Channel.edit (i, e)
{e = Channel.pixel[i]}

concept Adjustment
state
pixel: Image -> Coord -> Pixel
adjFuns: Adjustment -> Param -> Pixel -> Pixel
actions
adjust (i: Image, a: Adjustment, p: Param)

concept Channel
state
rc, gc, bc: Image -> Channel
pixel: (Image + Channel) -> Coord -> Pixel
static red, green, blue: Pixel -> Pixel // color to greyscale
inv
all i: Image, c: Coord | i.pixel[c].red = i.rc.pixel[c] …
actions
edit (x: Channel + Image, e: Coord -> Pixel)

concept
polymorphism

purpose consistent formatting

structure
defined: Style -> one Format
style: Element -> one Style
format: Element -> one Format = style.defined

actions
define (s: Style, f: Format)
 s.defined := f
assign (e: Element, s: Style)
 e.style := s

concept Style

this concept is polymorphic in
the types Style and Format: they
are essentially type variables

a fully polymorphic concept

permuting transitions

typed transitions
the elements of each transition can be typed based on the decls

example
{defined={}, style={}, format={}}
define(s0: Style, f0: Format)
{defined={s0: Style->f0: Format}, style={}, format={}}

permuting a transition
given a permutation 𝜋 on type T, 𝜋: T ⟶ T
permutation 𝜋 (t) of transition t just lifts 𝜋 over t

example
𝜋: Style ⟶ Style = {s0->s1, s1->s0}
𝜋 (t) =
 {defined={}, style={}, format={}}
 define(s1: Style, f0: Format)
 {defined={s1: Style->f0: Format}, style={}, format={}}

purpose consistent formatting

structure
defined: Style -> one Format
style: Element -> one Style
format: Element -> one Format = style.defined

actions
define (s: Style, f: Format)
 s.defined := f
assign (e: Element, s: Style)
 e.style := s

concept Style

permutation invariance & polymorphism

invariance & polymorphism
a concept C is invariant (or polymorphic) in type T iff
for any permutation 𝜋 on type T, 𝜋: T ⟶ T
whenever t is a transition of C, 𝜋 (t) is also

what this means
the concept just does database-like operations
similar to Tarski’s notion of “logical operations”

example
Style concept is polymorphic in Style and Format

purpose consistent formatting

structure
defined: Style -> one Format
style: Element -> one Style
format: Element -> one Format = style.defined

actions
define (s: Style, f: Format)
 s.defined := f
assign (e: Element, s: Style)
 e.style := s

concept Style

purpose track relative popularity

concept Upvote

structure
votes: Item -> User

actions
upvote (i: Item, u: User)
 votes += i->u
count (i: Item, out k: int)
 k = #i.votes

primitive types are not polymorphic

an example of a non-polymorphic type
Upvote is not polymorphic in the type int

example of non-invariant transition
𝜋: int ⟶ int = {0->1, 1->0}
{votes={}} count (i0:Item, 0:int) {votes={}} is a transition
{votes={}} count (i0:Item, 1:int) {votes={}} is not a transition

note
a concept may be polymorphic in a primitive type
but that indicates a specification error

special values break polymorphism

an example of special values
this (very simplified) Format concept defines special values
represented as variables of the state, set initially

an initialization subtlety
initial values aren’t given in the spec
but they must be chosen in any implementation
so Format concept is not polymorphic in the type Format

incomplete specification
this spec does not say what print does
but implied that it italicizes text formatted as italic, etc

opaque types
call these non-polymorphic, non-primitive types “opaque”
polymorphic type ∼ type variable
opaque type ∼ abstract data type

purpose stylize text

structure
static Bold, Underline, Italic: disjoint Format
format: Text -> set Format

actions
apply (t: Text, f: Format)
 f in Bold + Underline + Italic
 t.format :=
 f in t.format => t.format - f, t.format + f
print (t: Text) …

concept Format

implications of polymorphism

joining polymorphic types
polymorphic types can be joined in concept compositions
so AuthUser.User can be joined to Post.Author
this is how Deja Vu works

exposing implementation detail
AuthUser is polymorphic in String, so should be Password, say
(but if validated password, would no longer be polymorphic)concept AuthUser

actions
register (n: Name, p: String, out u: User)
login (n: Name, p: String, c: Client)
logout (c: Client)
auth (c: Client, out u: User)

concept Post
actions
new (a: Author, s: String, out p: Post)
edit (p: Post, s: String)
get (a: Author, out ps: set Post)

sync
AuthUser.auth (c, u)
Post.new (u, s, p)

implications of opacity

sync
Adjustment.adjust (i, a, p)
Channel.edit (i, e)
{e = Channel.pixel[i]}

joining opaque types
if opaque types are joined, concepts must share interpretation
not truly independent of each other

example
Channel and Adjustment both have Pixel as opaque
must have common interpretation of pixel values

concept Adjustment
state
pixel: Image -> Coord -> Pixel
adjFuns: Adjustment -> Param -> Pixel -> Pixel
actions
adjust (i: Image, a: Adjustment, p: Param)

concept Channel
state
rc, gc, bc: Image -> Channel
pixel: (Image + Channel) -> Coord -> Pixel
static red, green, blue: Pixel -> Pixel
actions
edit (x: Channel + Image, e: Coord -> Pixel)

example: waze

purpose track condition of a public resource

concept CrowdsourcedConditionTracking

structure
reports: User -> Resource -> Condition -> Time
inferred: Resource -> Condition

actions
report (u: User, r: Resource, c: Condition, t: Time)
update () // compute inferred from reports

principle
with accurate reports and frequent updating,
inferred condition reflects reality

which types are opaque
in this concept?

purpose predict future from past conditions

concept ConditionPrediction

structure
history: Resource -> Time -> one Condition
predicted: Resource -> TimeSlot -> one Condition
slot: Time -> one TimeSlot

actions
report (r: Resource, t: Time, c: Condition)
update () // compute inferred from reports

principle
with accurate reports and frequent updating,
inferred condition reflects reality

which types are opaque
in this concept?

example: group

purpose control access to shared assets

concept Group

structure
members: Group -> User
assets: Group -> Asset

actions
join (u: User, g: Group)
 g.members += u
contribute (u: User, g: Group, a: Asset)
 u in g.members
 g.assets += a
access (u: User, a: Asset)
 a in (members.u).assets

principle
if you join a group and some contributes an asset,
you can access it

group concept

purpose grant optional access to resource

concept Invitation

structure
pending, accepted: set Invitation
from, to: Invitation -> one User
for: Invitation -> Resource

actions
invite (inviter, invitee: User, r: Resource, out i: Invitation)
 i not in pending + accepted
 pending += i
 i.from := inviter; i.to := invitee; i.resource :- r
accept (invitee: User, i: Invitation)
 i in pending and i.from = invitee
 accepted += i; pending -= i
access (u: User, r: Resource)
 some i: accepted | i.to = user and i.for = r

invitation concept

http://i.to
http://i.to
http://i.to
http://i.to

synchronizing group and invitation

Group
join (u: User, g: Group)
contribute (u: User, g: Group, a: Asset)
access (u: User, a: Asset)

Invitation
invite (inviter, invitee: User, r: Resource, out i: Invitation)
accept (invitee: User, i: Invitation)
access (u: User, r: Resource)

sync
join (u, g) || accept (u, i) where Invitation.for[i] = g

purpose as
design criterion

OP as a criterion for being a concept

social media
upvote: when you upvote, post ranked higher
friend: when you become friend, can access updates
post: after submitting post, people can read it
user account: when login, authenticated as particular user
user profile: : just a data structure without an OP
edit post: : just an action
timeline: an action? (show posts chronologically by author?)

image editing
image-local: when you edit pixels with local adjustment, get new image
image-global: when you apply global adjustment, image changes
image-channel: when you edit channel, whole image changes
channel, pixel, etc (alone): just data structures without an OP
brush, gradient, etc: just an action

why does this matter?
guides granularity,
structure of design

if you can formulate a
compelling OP, you
have a concept

what’s compelling?
intricate protocol
non-trivial outcome

what’s not?
entity with CRUD
can’t stand alone

some design criteria for reusability & simplicity

make concepts as polymorphic as possible
example: Group should not include user profiles (opaque)

break into smallest concepts you can
example: separate Invitation from Group

but not so small that OP is lost
example (good): Group
example (bad): Pixel
example (on the edge): UserProfile

gmail design issues

a label

show messages with label hacking

also implemented as a label

using labels to organize messages

a surprising behavior

hacking

meetups

labels are attached to messages

message

conversation

1. filter is applied to set of messages: some match
2. conversation appears if it includes a matched message

what’s going on?

so this is not a surprise

and this makes sense too (but order is special)

and this almost makes sense

the label concept

concept Label
purpose organize items for easy retrieval
structure
label: Item -> one String
actions
mark (i: Item, p: Label)
 i.label += p
unmark (i: Item, p: Label)
 i.label -= p
find (ps: set Label): set Item
 result = {i | ps in i.labels}
story
if mark(i,p); find(p):is then i in is
if no mark(i,p); find(p):is then i !in is

Label

Message

composite
system

sendMsg(m)

send(m)

mark(m, sent)

when message m is sent
Label.mark(m, ’sent’)
occurs implicitly

when Sent link is clicked
Label.find(‘sent’):ms
occurs

but ms includes
messages never marked

not a strawman!
about 1.5B users

20% of global market
27% of all email opens

“The details are not the details; they make
the product”—Charles and Ray Eames

why pick on gmail? do these nitpicks matter?

The Extraction of the Stone of Madness, Hieronymus BoschBronze Age skull with evidence of trepanning

trepanning: small symptoms of major surgery

font integrity example

pro fonts break integrity of format concept

Regular

Italic

Bold

BoldItalic

I I

B

B

B B

synergy examples

what is design?

refining concepts
click to select Group elements

reusing concepts
using Style for color swatches inventing concepts

Event Type in Calendly
synergy: merging concepts

channels in Photoshop

concept Trash
purpose undo deletion
structure
 all, inTrash: set Object
actions
 delete (o: Object)
 empty ()
 restore (o: Object)
 new (o: Object)
 exists (o: Object, out b: bool)
story
 delete(o); restore(o); exists(o, true)
 delete(o); empty(); exists(o, false)

Apple Lisa (1982): “Wastebasket”
Apple Macintosh (1984): “Trash”
Microsoft MS-DOS 6 (1993): “DeleteSentry”
Apple vs. Microsoft (1994): Apple lost, but ©Trash
Windows 95 (1995): “Recycle Bin”
 holds files not folders, so can’t recover structure

the trash concept & its history

concept Trash
purpose undo deletion
structure
 all, inTrash: set Object
actions
 delete (o: Object)
 empty ()
 restore (o: Object)
 new (o: Object)
 exists (o: Object, out b: bool)
story
 delete(o); restore(o); exists(o, true)
 delete(o); empty(); exists(o, false)

concept Folder
purpose local organization
structure
 root: Folder
 contents: Folder -> set (Folder + Object)
actions
 move (o: Object + Folder, to: Folder)
 new (p: Folder, out f: Folder)
 list (f: Folder, out os: set Object)
 delete (f: Folder)
 root (out f: Folder)
story
 list(f, os); move(o, to); list(f, os’)
 => if o not in os and to != f then os = os’

merging two concepts

trash x folder

can contain folder

generalizes date deleted
handle volumes

trash x folder

synergies
trash is not a special thing
all folder tools apply
can put folder in trash
move to trash = delete
move from trash = restore
date added = date deleted

anomalies
trash contains objects from >1 volume
in trash folder, can group by volume
delete immediately allows partial emptying
trash folder has no path (path concept)
can’t move trash folder or delete it

purpose: undo deletion purpose: local organization

email x server account

style/toc synergy

photoshop synergies

selection = mask = channel = image

the crazy power of photoshop

how to sharpen an image using an edge mask
select channel with greatest contrast
duplicate selected channel
apply Filter > Stylize > Find Edges
apply Image > Adjustments > Invert
apply Filter > Other > Maximum
apply Filter > Noise > Median
apply Image > Adjustment > Levels
apply Filter > Blur > Gaussian Blur
right-click to make channel a selection
select image layer
apply Select > Inverse
apply Filter > Sharpen > Unsharp Mask

treat channel as image

make selection from channel

apply filter using selection as mask

dropbox filename example

correctly predicting behavior

0.0%

20.0%

40.0%

60.0%

80.0%

good knowledge average knowledge poor knowledge

delete shared folder results in leaving
delete shared subfolder removes it

Kelly Zhang

survey of dropbox users (MIT CS undergrads)

a conceptual model of file names and deletion

rename

slides.pdfslide.pdf

delete

the actual model, courtesy of multics (1963-69!)

slide.pdf
foo.pdf

tog: conceptual models

Principle: Choose metaphors that will enable users to
instantly grasp the finest details of the conceptual model

Bruce Tognazzini
First Principles of Interaction Design

brooks essence and accident

[T]o see what rate of progress one can expect in software
technology, let us examine the difficulties of that
technology. Following Aristotle, I divide them into
essence, the difficulties inherent in the nature of
software, and accidents, those difficulties that today
attend its production but are not inherent.

The essence of a software entity is a construct of
interlocking concepts: data sets, relationships among
data items, algorithms, and invocations of functions. This
essence is abstract in that such a conceptual construct is

To design something really
well, you have to get it. You
have to really grok what it’s all
about. It takes a passionate
commitment to really
thoroughly understand
something, chew it up, not
just quickly swallow it. Most
people don’t take the time to
do that.

hoare simplicity

Almost anything in software can be implemented,
sold, and even used given enough determination...
But there is one quality that cannot be purchased in
this way—and that is reliability.

The price of reliability is the pursuit of the utmost
simplicity. It is a price which the very rich find
most hard to pay.

physical linguistic conceptual

color, size, layout,
type, touch, sound

icons, labels, tooltips,
site structure

semantics, actions,
data model, purpose

concrete abstract

levels of UX design (export diagram)

quality beyond correctness

crashplan: this is success?

iPhone: storage catch-22

Dropbox: deleting shared files

“it’s not a bug, it’s a feature”

concept trash

data model, but encapsulated

succinct & precise behavior

rationale for designer & motivation for user

archetypal scenario, explains essence of design

purpose undo deletion

actions
 delete (o: Object)
 o in objects - trashed => trashed += o

 empty ()
 objects -= trashed; trashed := none

 restore (o: Object)
 o in trashed => trashed -= o

 new (o: Object)
 o !in objects => objects += o

structure
 objects, trashed: set Object

principle
… delete(o); restore(o) {o in objects - trashed}
… delete(o); empty() {o !in objects}

purpose consistent formatting purpose: why the concept exists

structure
 slots: Owner -> Slot
 holds: User -> Slot

structure: localized data model

actions
 create (o: Owner, s: Slot)
 no slots.s => slots += o -> s

 reserve (u: User, o: Owner, s: Slot)
 no holds.s and o -> s in slots => holds += u -> s

 cancel (u: User, s: Slot)
 u -> s in holds => holds -= u -> s

 use (u: User, o: Owner, s: Slot)
 u -> s in holds and o -> s in slots =>

actions: observable & atomic

name: essential for knowledge captureconcept reservation

principle
 if create and reserve and not cancel then can use

OP justifies design and explains it

shows how behavior fulfills purpose

elements of a concept design method

structure: how to express
& combine concepts

principles: applicable
distillation of experience

patterns: handbook of
known concepts & issues

tools: exploit computing
for analysis & synthesis

separation of concerns:
easier to focus, divide labor

avoiding predictable pitfalls,
speeding up design

capturing expertise and
experience for better design

catching subtle flaws,
reducing manual effort

a research & teaching program

case studies patterns

design theory

tools

design by concept
a new way to think

about software

Daniel Jackson

design by concept / a new
 w

ay to think about softw
are / jackson

Design by concept is a new approach to creating
so!ware. A so!ware product—whether an app, a
service or a system—is viewed as a collection of
interacting concepts, each with its own purpose,
structure and behavior. Concepts can be invented
afresh, but they can also be reused, exploiting
the knowledge embodied in previous successful
designs.

#is book explains what concepts are and why they
are central to so!ware design; shows examples of
concepts (from the most e$ective and ingenious to
the most %awed and frustrating) taken from well-
known applications; and presents design principles
that can identify and eliminate %aws in existing and
new designs.

Daniel Jackson is Professor of Computer Science,
a MacVicar fellow, and Associate Director of the
Computer Science and Arti&cial Intelligence Lab
at MIT. His past research focused on so!ware
modeling and analysis; he is the creator of the Alloy
language, and author of So!ware Abstractions: Logic,
Language, and Analysis (MIT Press; second ed.
2012). His current interests include so!ware design
for improved usability, security and safety, and new
programming paradigms. He was a recipient of the
2016 ACM SIGSOFT Impact Award, the 2017 ACM
SIGSOFT Outstanding Research Award, and is an
ACM Fellow.

principle: make concepts modular

concepts have no dependences

concepts are polymorphic

concepts encapsulate decisions

✓ label items not folders

✓labels independent of folder structure

✓trash does not “use” deleted labels

✗ Facebook tags change access control

✗ Twitter tweet content determines if reply or not

modularity groups

simple group functionality
user can create a new group
other users can request to join
users can contribute posts to the group
and can read other user’s posts

modularity group, most granular concepts
concept Request
state
owns, requested, granted, denied: User -> Resource
actions
register (owner: User, r: Resource)
request (u: User, r: Resource)
respond (o, u: User, r: Resource, answer: bool)

concept Group
state
owner, members: Group -> User
assets: Group -> Asset
actions
create (owner: User, out g: Group)
join (u: User, g: Group)
contribute (u: User, g: Group, a: Asset)
access (u: User, a: Asset)

concept Post
state
author: Post -> Author
content: Post -> String
actions
new (a: Author, s: String, out p: Post)
edit (p: Post, s: String)
get (a: Author, out ps: set Post)

sync newGroup (o: User, out g: Group)
Request.register(o, g)
Group.create(o, g)

sync requestJoin (u: User, g: Group)
Request.request(u, g)

sync join (o, u: User, g: Group)
Request.respond (o, u, g, true)
Group.join (u, g)

sync post (u: User, g: Group, s: String, out p: Post)
Post.new (u, s, p)
Group.contribute (u, g, p)

modularity design moves

REUSE
what: break into concepts that can be used independently
when: new concept is more focused, stands alone, and usable in other contexts

SEPARATE
what: factor out disjoint functionalities into separate concepts
when: some subsets of actions and states are decoupled; unclear purpose

ENCAPSULATE
what: bring functionality together to localize design decisions
when: invariants and couplings cross concept boundaries, and complicate sync

modularity design moves for group/post/request concepts

GPR

GP R GR P G PR

G P R

REUSE

REUSE
REUSE

REUSE

REUSE REUSE, SEPARATE
ENCAP
(no reqs

from existing
members)

ENCAP
(authors are

group members)

ENCAP

ENCAP

ENCAP

overloading outlook sync issues

synchronization logs are stored as messages in email folders
naturally, not sync’d with server

but create storage leak and can’t be accessed by admins

ht
tp

s:/
/t

ho
ug

ht
so

fa
ni

dl
em

in
d.

co
m

/2
01

2/
08

/2
9/

ou
tlo

ok
-s

yn
c-

iss
ue

/

