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ABSTRACT General Terms

A stencil computation repeatedly updates each point da-a Algorithms, Languages, Performance.

dimensional grid as a function of itself and its near neighbors. Par-

allel cac_he-etficient stencil algorithms based on “t_rapezoidal _dg- Keywords

compositions” are known, but most programmers find them diffi-

cult to write. The Pochoir stencil compiler allows a programmer C++, cache-oblivious algorithm, Cilk, compiler, embedded

to write a simple specification of a stencil in a domain-specific domain-specific language, multicore, parallel computation, stencil,
stencil language embedded in C++ which the Pochoir compiler trapezoidal decomposition.

then translates into high-performing Cilk code that employs an ef-

ficient parallel cache-oblivious algorithm. Pochoir supports gen- 1. |[NTRODUCTION

eral d-dimensional stencils and handles both periodic and aperi-
odic boundary conditions in one unified algorithm. The Pochoir

system provides a C++ template library that allows the user’s sten-
cil specification to be executed directly in C++ without the Pochoir

compiler (albeit more slowly), which simplifies user debugging and

greatly simplified the i_mplementation of the Pochoir compile_r it- 28,33, 34,36, 40, 41] computes the stencil for each grid point over
self. _A host of stencil benchmarks run on a modern multicore many time steps.

lmach_meldemonst_rates tha_t Plfchow qutpgif;)(r)m_s stanfdard pa_:_%llel- Stencil computations are conceptually simple to implement us-
o0p IMp ementanons, typ.lca y running 2 times g;ter. N ing nested loops, but looping implementations suffer from poor
algorithm behind Pochoir improves on prior cache-efficient algo- cache performance. Cache-oblivious [15, 38] divide-and-genq

rltrr:_mhs qnlyultldlm?r:_smlrl\al grids by rl?a}klngf hytﬁ)]erspace cuts, stencil codes [16, 17] are much more efficient, but they are difficult
which yield asymptotically more parallelism for In€ same cache ., write, and when parallelism is factored into the mix, most appli-

Pochoir (pronounced “PO-shwar”) is a compiler and runtime
system for implementing stencil computations on multicore proces-
sors. Astencildefines the value of a grid point indadimensional
spatial grid at timet as a function of neighboring grid points at re-
cent times beforé. A stencil computation2,9,11,12,16,17,26—

efficiency. cation programmers do not have the programming skills or patience
to produce efficient multithreaded codes.

Categories and Subj ect Descriptors As an example, consider how the 2Bat equation13]

D.1.3 [Programming Techniques]: Concurrent Programming— du(xy) _ 0% (x,y) n 0%ur(x.y)

Parallel programming D.3.2 [Programming Languages]: Lan- ot ox? oy?

guage ClassificationsSpecialized application languagesG.4

[Mathematical Software]: Algorithm design and analysis on anX x Y grid, wherew(x,y) is the heat at a poirii,y) at ime

t anda is the thermal diffusivity, might be solved using a stencil
computation. By discretizing space and time, this partial differen-
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Looprqu;ta, th; xa xb; ya, yb) TRAP(u; ta, th; xa, xb, dxa dxb; ya, yb, dya dyb)

1 fort=tatotb—1 1 At=th—-ta
2 parallel for x = xatoxb—1 2 Ax = max{xb—xa, (xb+ dxbAt) — (xa+dxaAt)} // Longerx-base
3 fory = yatoya—1 3 Ay = max{yb—ya (yb+dybAt) — (ya+dyaAt)} // Longery-base
4 u((t+1) mod 2x,y) = u(t mod 2X,y) 4 k= 01/l Try hyperspace cut
+CX- (u(t mod 2 (x— 1) modX,y) 5 if Ax> 204At
+u(t mod 2 (x+1) modX,y) —2u(t mod 2x,y)) 6 Trisect the zoid with-cuts
+CY- (u(t mod 2x,(y—1) modY) 7 k+=1
+u(t mod 2x,(y+1) modY) —2u(t mod 2x,y)) 8 if Ay > 20,At
9 Trisect the zoid witly-cuts
10 k+=1
Figure 1. A parallel looping implementation of a stencil computation for 11 ifk> 0. .
the 2D heat equation with periodic boundary conditions. dimayu keeps 12 Ass_lgn dependency levelsh). .., k to SUbZ.O'dS
two copies of arK x Y array of grid points, one for timeand one for time 13 fori = Oltofk I Iflor each dependency level
t+1. The parameters andtb are the beginning and ending time steps, 14 paralle or_ all subzoids )
andxa, xb, ya, andyb are the coordinates defining the region of the atray (ta, th; xal, xf, dxl, dxtf yal, yb, dyd, dytf)
on which to perform the stencil computation. The const@Xs= aAt/Ax? with depgndency level )
and CY = a/At/Ay? are precomputed. The calldopgu;0,T;0,X;0,Y) 12 dsaif At >T:[z//?PEitr?{ébél>jta(,xU,dxd,de,yd,yU,dyd,dyU)
performs the stencil computation over the whole 2D arraylftime steps. 17 /I Recursively walk the lower zoid and then the upper
copies of the spatial grid, swapping their roles on alternate time 18  TRAP(ta,ta+At/2;xa xb, dxa dxbya yb, dya dyb)

19 TRAP(ta+ At /2, th; xa+ dxaAt /2, xb+ dxiAt /2, dxa dxb;
ya-+dyait/2,yb-+ dybAt /2, dya dyb)

else// base case
fort =tatotb—1

steps. This code assumes that the boundary conditiongeaire
odic, meaning that the spatial grid wraps around to form a torus,
and hence the index calculations foandy are performed modulo

20
21

X andY, respectively. 22 for x = xatoxb—1
This loop nest is simple and fairly easy to understand, but its 23 fory = yatoyb—1
performance may suffer from poor cache locality. ¥étbe the 24 u((t+1) mod 2x,y) = u(t mod 2x,y)
; ; 4 +CX- (u(t mod 2 (x—1) modX,y)
number of grid points that fit in cache, and ®the the number of
. . ) . . . -+ u(t mod 2 (x+ 1) modX,y) — 2u(t mod 2X,y))
grid points that fit on a cache line. If the space grid does not fit in +CY- (u(t mod 2x, (y— 1) modY)
cache — that isXY > M — then this simple computation incurs +u(t mod 2x, (y+1) modY) — 2u(t mod 2x,y))
O(T XY/B) cache misses in the ideal-cache model [15]. 25 xa 4= dxa
Figure 2 shows the pseudocode for a more efficient cache- 26 xb += dxb
oblivious algorithm called ®RAP, which is the basis of the algo- 27 ya += dya
28 yb += dyb

rithm used by the Pochoir compiler. We shall explain this algo-
rithm in Section 3. It achieve®(T XY/BvV M) cache misses,
assuming thaX ~ Y andT = Q(X). TRAP easily outperforms

. Figure 2. The Pochoir cache-oblivious algorithm that implements a 2D
Loopson large data sets. For example, we ran both algorithms

stencil computation to solve the 2D heat equation using &neigal de-

on a 5000x 5000 spatial grid iterated for 5000 time steps using
the Intel C++ version 12.0.0 compiler with Intel Cilk Plus [23] on
a 12-core Intel Core i7 (Nehalem) machine with a private 32-KB

L1-data-cache, a private 256-KB L2-cache, and a shared 12-MB

L3-cache. The code based om&Psran in 248 seconds, whereas
the Pochoir-generated code based &’ required about 24 sec-
onds, more than a factor of 10 performance advantage.

Figure 3 shows Pochoir's performance on a wider range of
benchmarks, including heat equation (Heat) [13] on a 2D grid,
a 2D torus, and a 4D grid; Conway’'s game of Life (Life) [18];
3D finite-difference wave equation (Wave) [32]; lattice Boltzmann
method (LBM) [30]; RNA secondary structure prediction (RNA)

composition with hyperspace cuts. The paramater anX x Y array of
grid points. The remaining variables describe the hypeetzajol, or “zoid,”
embedded in space-time that is being processadndtb are the begin-
ning and ending time stepsa, xb, ya, andyb are the coordinates defining
the base of the zoidjxa dxb, dya anddybare the slopes (actually inverse
slopes) of the sides of the zoid. The valugsandoy are the slopes of the
stencil in thex- andy-dimensions, respectively, which are both 1 for the
heat equation.

can sometimes significantly mitigate a cache-efficient algorithm’s
advantage in incurring fewer cache misses.

The Berkeley autotuner [8,26,41] focuses on optimizing the per-
formance of stencil kernels by automatically selecting tuning pa-

[1, 6]; pairwise sequence alignment (PSA) [19]; longest common rameters. Their work serves as a good benchmark for the maximum
subsequence (LCS) [7]; and American put stock option pricing possible speedup one can get on a stencil. K. Datta and S. Williams
(APOP) [24]. Pochoir achieves a substantial performance improve- graciously gave us their code for computing a 7-point stencil and
ment over a straightforward loop parallelization for typical stencil a 27-point stencil on a 25&yrid with “ghost cells” (see Section 4)
applications, such as Heat and Life. Even LBM, which is a com- using their system. Unfortunately, we were unable to reproduce
plex stencil having many states, achieves good speedup. Wherthe reported results from [8] — presumably because there were too
Pochoir does not achieve as much speedup over the loop code, itmany differences in hardware, compilers, and operating system —
is often due to the spatial grid being too small to yield good par- and thus we are unable to offer a direct side-by-side comparison.
allelism, the innermost loop containing many branch conditionals, Instead, we present in Figure 5 a comparison of our results to their
or the benchmark containing a high ratio of memory accesses toreported results.

floating-point operations. For example, RNAs small grid size of We tried to make the operating conditions of the Pochoir tests
30( yields a parallelism of just over 5 for both Pochoir and paral- as similar as possible to the Berkeley environment reported in [8].
lel loops, and its innermost loop contains many branch condition- We compared Pochoir running 8 worker threads on a 12-core sys-
als. PSA operates over a diamond-shaped domain, and so the aptem to the reported numbers for the Berkeley autotuner running 8
plication employs many conditional branches in the kernel in order threads on 8 cores. The comparison may result in a disadvantage
to distinguish interior points from exterior points. These overheads to the Berkeley autotuner, because their reported numbers involve



Benchmark Dims Grid Time Pochoir Serial loops 12-core loops

size steps | lcore 12cores speedupg time ratio time ratio
Heat 2 16000 500 277s 24s 11.5 612s 255 149s 6.2
Heat 2p 16000 500 281s 24s 11.7 | 1,647s  68.6| 248s 10.3
Heat 4 156 100 154s 54s 2.9 433s 8.0 104s 1.9
Life 2p 16,0007 500 345s 28s 12.3 | 2,419s  86.4| 332s 119
Wave 3 1000° 500 | 3,082s 447s 6.9 | 3,170s 7.1| 1,071s 2.4
LBM 3 1007 x 130 3,000 345s 68s 5.1 304s 45| 220s 3.2
RNA 2 300 900 90s 20s 45 121s 6.1 26s 1.3
PSA 1 100000 200,000 105s 18s 5.8 432s  24.0 77s 43
LCS 1 100000 200,000 57s 9s 6.3 105s  11.7 27s 3.0
APOP 1 2000,000 10,000 43s 4s 10.7 515s 128.8 48s 12.0

Figure 3: Pochoir performance on an Intel Core i7 (Nehalem) machine. Treis are nonperiodic unless tBéms column contains a “p.” The header
Serial loopameans a seridlor loop implementation running on one core, whereasd loopsmeans a paralleli | k_f or loop implementation running on
12 cores. The headeatio indicates how much slower the looping implementation is thanl®core Pochoir implementation. For nonperiodic stenttits,
looping implementations employ ghost cells [8] to avoid boungaocessing.

only a single time step, whereas the Pochoir code runs for 200 time Berkeley Pochoir
steps. (It does not make sense to run Pochoir for only 1 time step, glgé{( X§°6”6>é?_|5250 Xg%%ésgfo
since its efﬁuenqy is in large measure Fjue to the temppral Iogallty cores/socket 4 6
of cache use.) Likewise, the Pochoir figures may exhibit a disad- Total # cores 8 12
vantage compared with the Berkeley ones, because Pochoir had to Hyperthreading Enabled Disabled
cope with load imbalances due to the scheduling of 8 threads on 12 L1 data cache/core 32KB 32KB
cores. Notwithstanding these issues, as can be seen from the fig- L'ézcgiﬁé%g‘(’:ﬁzt 2;&';‘3 igﬁl\*;g
ure, Pochoir’'s performance is generally comparable to that of the Peak computation| 85 GFLOPS | 120 GFLOPS
Berkeley autotuner on these two benchmarks. Compiler cc100.0 cc12.00
The Pochoir-generatedRRP code is a cache-oblivious [15, 38] Linux kernel 2.6.32
divide-and-conquer algorithm based on the notiorirapezoidal Threading model Pthreads Cilk Plus
decompositionsntroduced by Frigo and Strumpen [16, 17]. We 3D 7-point 2.0 GStencil/s | 2.49 GStencills
improve on their code by usingyperspacecuts, which produce 8 cores 15.8 GFLOPS | 19.92 GFLOPS
an asymptotic improvement in parallelism while attaining essen- 3D 27-point | 0.95 GStencil/s| 0.88 GStencil/s
tially the same cache efficiency. As can be seen from Figure 2, 8 cores 28.5GFLOPS | 264 GFLOPS

however, this divide-and-conquer parallel code is far more com-

plex than LOOPS involving recursion over irregular geometric re- 7-point stencil requires 8 floating-point operations ped goint, whereas

gions. Moreover, RAP presents many opportunities for optimiza-  the 27-point stencil requires 30 floating-point operatipasgrid point.
tion, including coarsening the base case of the recursion and han-

dling boundary conditions. We contend that one cannot expect av-
erage application programmers to be able to write such complex
high-performing code for each stencil computation they wish to  pgchoir's novel two-phase compilation strategy allowed us to
perform. _ _ _ ~ . build significant domain-specific optimizations into the Pochoir

The Pochoir stencil compiler allows programmers to write sim- - ¢ompjler without taking on the massive job of parsing and type-
ple functlo.nal specm.catlon for arbltrargi-Q|menS|opa! stencils, checking the full C++ language. Knowing that the source program
and then it automatically produces a highly optimized, cache- ¢ompiles error-free with the Pochoir template library during Phase
efficient, parallel implementation. The Pochoir language can be 1 jjows the Pochoir compiler in Phase 2 to treat portions of the
viewed as a domain-specific language [10,21, 31] embedded in theggyrce as uninterpreted text, confident that the Intel compiler will
base language C++ with the Cilk multithreading extensions [23].  compile it correctly in the optimized postsource. Moreover, the

As shown in Figure 4, the Pochoir system operates in two phases, pqchoir template library allows the programmer to debug his or her
only the second of which involves the Pochoir compiler itself. For ¢oqe using a comfortable native C++ tool chain without the com-
the first phase, the programmer compiles the source program Withplications of the Pochoir compiler.

the ordinary Intel C++ complle_r’us_lng the Pochoir template li- * Figyre 6 shows the Pochoir source code for the periodic 2D heat
brary, which implements Pochoir's linguistic constructs using un- equation. We leave the specification of the Pochoir language to
optimized but functionally correct algorithms. This phase ensures gection 2, but outline the salient features of the language using this
that the source program Bochoir-compliant For the second  ¢ode as an example.

phase, the programmer runs the source through the Pochoir com- | ine 7 declares th@ochoir shapeof the stencil, and line 8 cre-
piler, which acts as a preprocessor to the Intel C++ compiler, per- gies the 2-dimensionBbchoir objectheat having that shape. The
forming a source-to-source translation into a postsource C++ pro- pochoir object will contain all the state necessary to perform the
gram that employs the Cilk extensions. The postsource is then COM-computation. Each triple in the arra five_pt corresponds to a
piled with the Intel compiler to produce the optimized binary exe-  rejative offset from the space-time grid pojix, y) that the stencil
cutable. The Pochoir compiler makes the following promise: kernel (declared in lines 12—14) will access. The compiler cannot
infer the stencil shape from the kernel, because the kernel can be
arbitrary code, and accesses to the grid points can be hidden in sub-
routines. The Pochoir template library complains during Phase 1,
however, if an access to a grid point during the kernel computation
falls outside the region specified by the shape declaration.

Figure 5: A comparison of Pochoir to the reported results from [8]. The

is compiled with the Pochoir compiler or during the
subsequent running of the optimized binary.

The Pochoir Guarantee: If the stencil program com-
piles and runs with the Pochoir template library during
Phase 1, no errors will occur during Phase 2 when it
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Figure 4: Pochoir's two-phase compilation strategy. (a) During PHate pro
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grammer uses the normal Intel C++ compiler to compilerttigpcode with

the Pochoir template library. Phase 1 verifies that the progrer’s stencil specification is Pochoir compliant. (b) Durifgée 2 the programmer uses the
Pochoir compiler, which acts as a preprocessor to the Intelc@mpiler, to generate optimized multithreaded Cilk code.

1 #define mod(r,m ((r)%m + ((r)<0)? (m:0)

2 Pochoir_Boundary_2D( heat _bv, a, t, x, y)

3 return a.get(t,mod(x,a.size(1l)),md(y,a.size(0)));

4 Pochoi r _Boundary_End

5 int main(void) {

6 const int X = 1000, Y = 1000, T = 1000;

7 Pochoi r _Shape_2D 2D_five_pt[] = {{1,0,0}, {0,0,0},
{0,1,0}, {0,-1,0}, {0,0,-1}, {0,0,1}};

8 Pochoi r_2D heat (2D_five_pt);

9 Pochoi r _Array_2D(double) u(X, Y);

10 u. Regi st er _Boundary( heat _bv);

11 heat . Regi ster _Array(u);

12 Pochoi r _Kernel _2D( heat _fn, t, x, y)

13 u(t+1, x, y) = CX * (u(t, x+1, vy) 2 % u(t, x,
y) +u(t, x-1, y)) + CY * (u(t, x, y+l) - 2
u(t, x,y) +ou(t, o x,y-1)) +ou(t, x, )

14 Pochoi r _Ker nel _End

15 for (int x = 0; x < X; ++x)

16 for (int y =0;, y <Y; ++y)

17 u(0, x, y) = rand()

18 heat.Run(T, heat_fn);

19 for (int x = 0; x < X; ++x)

20 for (int y = 0; y <Y; ++y)

21 cout << u(T, x, y);

23 return 0;

24}

Figure 6: The Pochoir stencil source code for a periodic 2D heat eguati
Pochoir keywords are boldfaced.

Line 9 declares as anXxY Pochoir array of double-precision
floating-point numbers representing the spatial grid. Lines 2—4 de
fine aboundary functionthat will be called when the kernel func-
tion accesses grid points outside the computing domain, that is, i
it tries to access(t, X, y) withx <0,x > Xy <0, ory >Y.
The boundary function for this periodic stencil performs calcula-

tions modulo the dimensions of the spatial grid. (Section 2 shows

Line 18 executes the stencil objéetat for T time steps using ker-
nel functionheat _f n. Lines 19-21 prints the result of the compu-
tation by reading the element6T, x, y) of the Pochoir array. In
fact, Pochoir overloads the€” operator so that the Pochoir array
can be pretty-printed by simply writingbut << u;”.

The remainder of this paper is organized as follows. Section 2
provides a full specification of the Pochoir embedded language.
Section 3 describes the cache-oblivious parallel algorithm used
by the compiled code and analyzes its theoretical performance.
Section 4 describes four important optimizations employed by the
Pochoir compiler. Section 5 describes related work, and Section 6
offers some concluding remarks.

2. THE POCHOIR SPECIFICATION
LANGUAGE

This section describes the formal syntax and semantics of the
Pochoir language, which was designed with a view to offer as much
expressiveness as possible without violating the Pochoir Guarantee.
Since we wanted to allow third-party developers to implement their
own stencil compilers that could use the Pochoir specification lan-
guage, we avoided to the extent possible making the language too
specific to the Pochoir compiler, the Intel C++ compiler, and the
multicore machines we used for benchmarking.

The static information about a Pochoir stencil computation, such
as the computing kernel, the boundary conditions, and the stencil
shape, is stored inRochoir object which is declared as follows:

e Pochoi r _dimDname( shape) ;
This statement declaressmeas a Pochoir object wittim spatial
_dimensions and computing shagigape wheredimis a small pos-
itive integer andshapeis an array of arrays which describes the
fshape of the stencil as elaborated below.

We now itemize the remaining Pochoir constructs and explain

the semantics of each.

e Pochoi r _Shape_dimDname[] = {cellg

how nonperiodic stencils can be specified, including how to specify This statement declaramameas aPochoir shapethat can hold

Dirichlet and Neumann boundary conditions [14].) Line 10 asso-
ciates the boundary functiomeat _bv with the Pochoir array.

shape information fodim spatial dimensions. The Pochoir shape
is equivalent to an array of arrays, each of which contdins+ 1

Each Pochoir array has exactly one boundary function to supply jyieqer numbers. These numbers represent the offset of each mem

a value when the computation accesses grid points outside of the

computing domain. Line 11 registers the Pochoir atrayith the
heat Pochoir object. A Pochoir array can be registered with more

ory footprint in the stencil kernel relative to the space-time grid
point (t,x,y,---). For example, suppose that the computing kernel
employs the following update equation:

than one Pochoir object, and a Pochoir object can have multiple

Pochoir arrays registered.
Lines 12—-14 define kernel function heat _f n, which specifies
how the stencil is computed for every grid point. This kernel can

be an arbitrary piece of code, but accesses to the registered Pochoir

arrays must respect the declared shape(s).
Lines 15-17 initialize the Pochoir arraywith values for time

Ut,]_(X, y)

aAt
+E(Ut—l

Ut (X,y)
(X=Ly)+w_1(x+1y) - 2u_1(xY))

alt
+A72(ut71(x,yf D4u-1(xy+1) —2u_1(x,y)) -

step 0. If a stencil depends on more than one prior step as indicatedThe shape of this stencil i§${0,0,0}, {-1,1,0}, {-1,0,0},
by the Pochoir shape, multiple time steps may need to be initialized. {—1,—1,0}, {—1,0,1}, {—1,0,—1}}.



The first cell in the shape is th®mecell, whose spatial coordi-  This function call runs the stencil computation on the Pochoir ob-
nates must all be 0. During the computation, this cell corresponds jectnamefor T time steps using computing kernel functikern
to the grid point being updated. The remaining cells must have  After running the computation fol steps, the results of the
time offsets that are smaller than the time coordinate of the home computation can be accessed by indexing its Pochoir arrays at time
cell, and the corresponding grid points during the computation are T +k— 1, wherek is the depth of the stencil shape. The program-
read-only. mer may resume the running of the stencil after examining the re-
The depth of a shape is the time coordinate of the home cell sult of the computation by callingameRun(T’ kern), whereT’ is
minus the minimum time coordinate of any cell in the shape. The the number of additional steps to execute. The result of the compu-
depth corresponds to the number of time steps on which a grid pointtation is then in the computation’s Pochoir arrays indexed by time
depends. For our example stencil, the depth of the shape is 1, sincél +T’ +k—1.
a point at time& depends on points at tinie- 1.. If a stencil shape
has depttk, the programmer must initialize all Pochoir arrays for Rationale

time steps (L,...., k-1 before running the computation. The Pochoir language is a product of many design decisions, some

e Pochoi r _Array_dimD( type depth namé sizjim_1,-- ., of which were influenced by the current capabilities of the Intel
size,size) 12.0.0 C++ compiler. We now discuss some of the more important
design decisions.
Although we chose to pass a kernel function to e method
of a Pochoir object, we would have preferred to simply store the
kernel function with the Pochoir object. The kernel function is

;Zeggg;‘%?rrzlhgIrgegﬁg)grza::usgz?rﬁééﬂzrgz tlﬁetr::irgeﬂtgtgn a C++ lambda function [5], however, whose type is not available
Pe, p to us. Thus, although we can pass the lambda function as a tem-

proceeds. The user may not obtain an alias to the Pochoir array Orplate type, we cannot store it unless we creased : f uncti on

This statement declaremmeas aPochoir array of typetypewith
dim spatial dimensions and a temporal dimension. The size of the
ith spatial dimension, wheriec {0,1,...,dim}, is given bysizg.

its elements. : . :
to capture its type. Since the Intel compiler does not yet support
e Pochoi r _Boundar y_dimD(namearray, idx, idXdim_1, std: : function, this avenue was lost to us. There is only one ker-
..., idxq,idxp) nel function per Pochoir object, however, and so we decided as a
(definition second-best alternative that it would be most convenient for users
Pochoi r _Boundary_End if they could declare a kernel function in any context and we just
This construct defines &oundary function called name that pass it as an argument to tRen member function.

will be invokeda to supply a value when the stencil computa- The lack (_)f support for function_objects also had an impact on
tion accesses a point outside the domain of the Pochoir arraythe declaration of boundary functions. We wanted to store each

array. The Pochoir arrarray hasdim spatial dimensions, and boundary function with a Pochoir array so that whenever an access

(idXgim_1. ... ,idx1,idxo) are the spatial coordinates of the given to the array fallls outside the computing domain, we can call the
point outside the domain afrray. The coordinate in the time di-  Poundary function to supply a value. The only way to create a
mension is given bydx. The function body(definition}) is C++ function that can be stored is to use an ordinary function, which

code that defines the values arfray on its boundary. A current ~ Must be declared in a global scope. We hope to improve Pochoir's
restriction is that this construct must be declared outside of any linguistic design when function objects are fully supported by the

function, that is, the boundary function is declared global. compiler. , o ,
) ) o We chose to specify the kernel function imperatively rather than
e Pochoi r _Ker nel _dimD(namearray, idx, idXgim-1; - - -, as a pure function or as an expression that returns a value for
idxy,idX0) the grid point being updated. This approach allows a user to
(definitiory write multiple statements in a kernel function and provides flexi-
Pochoi r _Ker nel _End bility on how to specify a stencil formula. For example, the user
This construct defineskernel function namednamefor updating can choose to specify a stencil formulaas$, i, j) = ... or
a stencil on a spatial grid wittim spatial dimensions. The spa- a(t+l, i, j) = ..., whicheveris more convenient.
tial coordinates of the point to update &i&Xgim_1,. . . ,idxy, idxo), We chose to make the user copy data in and out of Pochoir inter-

andidx; is the coordinate in time dimension. The function body nal data structures, rather than operate directly on the user’s arrays.
(definitior) may contain arbitrary C++ code to compute the sten- Since the user is typically running the stencil computation for many
cil. Unlike boundary functions, this construct can be defined in any time steps, we decided that the copy-in/copy-out approach would
context. not cause much overhead. Moreover, the layout of data is now un-
nameRedi st er Arr " der the control of the compiler, allowing it to optimize the storage
* nameRegi st er _Array(aray) for cache efficiency.
A call to this member function of a Pochoir obje@meinforms
namethat the Pochoir arragrray will participate in its stencil com- ,
outation, Ty WIT paricip 3. POCHOIR’'S CACHE-OBLIVIOUS
PARALLEL ALGORITHM

This section describes the parallel algorithm at the core of
Pochoir’s efficiency. RAP is a cache-oblivious algorithm based
on “trapezoidal decompositions” [16, 17], but which employs
a novel “hyperspace-cut” strategy to improve parallelism with-
‘out sacrificing cache-efficiency. On d-dimensional spatial
grid with all “normalized” spatial dimensions equal % and
the time dimension a power-of-2 multiple of, TRAP achieves
o nameRun(T, kern) O(wd—19(d+2)+1/42) parallelism, whereas Frigo and Strumpen’s

e nameRegi st er _Boundar y (bdry)

A call to this member function of a Pochoir arramame asso-
ciates the declared boundary functiodry with name The bound-

ary function is invoked to supply a value whenever an off-domain
memory access occurs. Each Pochoir array is associated with ex
actly one boundary function at any given time, but the programmer
can change boundary functions by registering a new one.



original parallel trapezoidal decomposition algorithm [17] achieves ! m"”{ff’jé’ 77777 Ve m’fbjff’fb"m

OWI-192*+1)+1 /2d) — O(w) parallelism. Both algorithms exhibit th ¥ ‘ : :

the same asymptotic cache complexityathw? /2/1/48) proved At

by Frigo and Strumpen, wheteis the height of the time dimen- ta -*

sion, M is the cache size, arl is the cache-block size. ‘
TRAP uses a cache-oblivious [15] divide-and-conquer strategy feommmmeees Ax; rmmmmmmooooooes N

based on a recursive trapezoidal decomposition of the space-time ad xbi

grid, which was introduced by Frigo and Strumpen [16]. They orig-
inally used the technique for serial stencil computations, but later
extended it to parallel stencil computations [17]. Whereas Frigo
and Strumpen’s parallel algorithm cuts the spatial dimensions of a
hypertrapezoid, or “zoid,” one at a time with “parallel space cuts,”
TRAP performs ahyperspace cutvhere it applies parallel space
cuts simultaneously to as many dimensions as possible, yielding
asymptotically more parallelism when the number of spatial di-
mensions is 2 or greater. As we will argue later in this section,

TRAP achieves this improvement in parallelism while attaining the (b)
same cache complexity as Frigo and Strumpen’s original parallel ! xag+dxaAt xb+dxbAt
algorithm. o Vg

TRAPoperates as follows. Line 5 of Figure 2 determines whether " i
thex-dimension of the zoid can be cut with a parallel space cut, and ,
if so, line 6 trisects the zoid, as we shall describe later in this sec- At
tion and in Figure 7, but it does not immediately spawn recursive
tasks to process the subzoids, as Frigo and Strumpen’s algorithm @ H
would. Instead, the code attempts to make a “hyperspace cut” by
proceeding to thg-dimension, and if there were more dimensions, e Ax, oommmmn KA
to those, cutting as many dimensions as possible before spawning xa;
recursive tasks to handle the subzoids. The counteseps track ©
of how many spatial dimensions are cut.klf- 0 spatial dimen-
sions are trisected, as tested for in line 11, then line 12 assigns eac
SUb_ZO'd to one ok +1 depende_ncy levels such that the subzoids ing a parallel space cut produces two black trapezoids #rabe processed
assigned to the same level are independent and can be processed |} parallel and a gray trapezoid that must be processed hétdrlack ones.
parallel, as we describe later in this section and in Figure 8. Lines (b) Trisecting an inverted trapezoid using a parallel spat@roduces two
13-15 recursively walk all subzoids level by level in parallel. Lines black trapezoids that can be processed in parallel and aigipgzoid that
17-19 perform a time cut if no space cut can be performed. Lines must be processed before the black ones. (c) A time cut produloeser
20-28 perform the base-case computation if the zoid is sufficiently and @n upper trapezoid where the lower trapezoid must begsed®efore
small that no space or time cut is productive. the upper.

We first introduce some notations and definitions, many of Section 2), definénome be the time index of the home cell. We
which have been borrowed or adapted from [16, 17]. A define theslopé of a cellc = (t,X0,X1,...,X4_1) € S along di-

H:igure 7: Cutting projection trapezoids. The spatial dimension iases to
the right, and the time runs upward. (a) Trisecting an uprigtgezoid us-

(d + 1)-dimensional space-time hypertrapezaidor (d + 1)- mensioni € {0,1,...,d — 1} asaj(c) = |X/(thome—1)|, and we
zoid, Z = (ta,tb; xap,Xbp,dxap, dxhy; Xaq,xbp,dxay,dxby; ...; define theslopeof the stencil along spatial dimensioras o; =
Xaq—1,Xby—1,dxay—1,dxky—1), where all variables are integers, is  max..s[oi(c)]. (Pochoir assumes for simplicity that the stencil is
the set of integer grid pointét,Xo, X1, ..,Xd—1) such thatta < symmetric in each dimension.) We define themalized widthof

t < th and xg + dxa(t —ta) < x < xby + dx(t —ta) for all a zoid Z along dimension by W = w; /20;.

i €{0,1,...,d—1}. The height of Z is At = tb—ta. Define

the projection trapezoidZ; of Z along spatial dimension to Parallel space cuts

be the 2D trapezoid that results from projecting the zBidnto
the dimensions andt. The projection trapezoidz; has two
baseg(sides parallel to the; axis) of lengthsAx; = xly — xg and
Ox = (xby + dxhAt) — (xa + dxaAt). We define thevidth! w; of
Z; to be the length of the longer of the two bases (parallel sides)
of Zj, that isw; = max{Ax;,0x; }. The valuew; is also called the
width of Z along spatial dimension We say thatZ; is upright
if wi = Ax; — the longer base corresponds to titae— andin-
vertedotherwise. A zoidz is well-definedif its height is positive,
its widths along all spatial dimensions are positive, and the lengths
of its bases along all spatial dimensions are nonnegative. A pro-
jection trapezoidz; is minimal if Z; is upright anddx; = O, or
Zj is inverted and\x; = 0. A zoid Z is minimal if all its Zj's are
minimal.

Given the shap& of a d-dimensional stencil (as described in

Our trapezoidal decomposition differs from that of Strumpen and
Frigo in the way we do parallel space cutspérallel space cutan

be applied along a given spatial dimensi@f a well-defined zoid

Z provided that the projection trapezait] can be trisected into 3
well-defined subtrapezoids, as shown in Figures 7(a) and 7(b). The
triangle-shaped gray subtrapezoid that lies in the middle is a mini-
mal trapezoid. The larger base &f is split in half with each half
forming the larger base of a black subtrapezoid. These three sub-
trapezoids ofZ; correspond to three subzoids &f Since the two
black subzoids have no interdependencies, they can be processed
in parallel. As shown in Figure 7(a), for an upright projection
trapezoid, the subzoids corresponding to the black trapezoids are
processed first, after which the subzoid corresponding to the gray
subtrapezoid can be processed. For an inverted projection trape-

2Actually, the reciprocal of slope, but we follow Frigo andiBhpen’s ter-
1Frigo and Strumpen [16, 17] define width as the average of thebages. minology.




Level 1

Level 0 Level 2

(b)

Figure 8: Dependency levels of subzoids resulting from a hyperspate c
along both spatial dimensions of a 3-zoid. (a) Labeling ofrdoates of
subzoids and their dependency levels. (b) The correspgripendency
graph.

zoid, as shown in Figure 7(b), the opposite is done. In either case,
the 3 subzoids can be processed in parallel in the time to process 2

of them, what we shall call arallel steps The following lemma
describes the general case.

LEmMmA 1. All 3X subzoids created by a hyperspace cut on
k > 1 of the d> k spatial dimensions of & + 1)-zoid Z can be
processed in k-1 parallel steps.

PROOF Assume without loss of generality that the hyperspace
cut is applied to the firdt spatial dimensions of. For each such
dimensioni, label the projection subtrapezoids in 2D space-time

resulting from the parallel space cut (see Figures 7(a) and 7(b))
with the numbers 1, 2, and 3, where the black trapezoids are labeled
1 and 3 and the gray trapezoid is labeled 2. When the hyperspac

cut consisting of alk parallel space cuts is applied, it creates a set
Sof 3 subzoids ink+ 1)-dimensional space-time. Each subzoid
can be identified by a uniguetuple (up, us,...,ux_1), whereu; €
{1,2,3}fori=0,1,...,k—1. Letl; = 1 if the projection trapezoid
Z; along theith dimension is upright ant = 0 if Z is inverted.
Thedependency levelf a zoid(ug, U, ..., Ux_1) € Sis given by
k-1
dep((Uo, U, ., Uk-1)) = »_((ti+1i) mod 2.

i=0
Observe that this equation implies exadtly 1 dependency lev-

els, since each term of the summation may be either O or 1. Fig-
ure 8(a) shows the dependency levels for the subzoids of a 3-zoid,
both of whose projection trapezoids are inverted, generated by a

hyperspace cut with = 2.

We claim that all zoids irS with the same dependency level
are independent, and thus all 8fcan be processed ik+ 1
parallel steps.
a directed graplG = (S E) that captures the dependency rela-
tionships among the subzoids 8fas follows. Given any pair
of zoids (Up,us, ..., ux_1), (Uy,Uy,....U_;) € S we include an
edge ((uo,Us, ..., Uk1), (Uy,Uy,...,U_)) € E, meaning that a
grid point in (uy, Uy,...,u_,) directly depends on a grid point in

€

As illustrated in Figure 8(b), we can construct

(up,u,...,ux_1), if there exists a dimensione {0,1,...,k—1}
such that the following conditions hold:

o Uj :u’j forall j€{0,1,...,i—1,i+1,...,.k—1},

e (li+u) mod2=0,

e (li+u) mod 2=1.
Under these conditions, we havdep({up,u},...,U_;)) =
dep((up,us,...,Uux_1)) +1. Thus, along any path i, the depen-
dency levels are strictly increasing, and no two nodes with the same
dependency level can lie on the same path. As a result, all zoids in
S with the same dependency level form an antichain and can be
processed simultaneously. Thus, all zoidSican be processed in
k+ 1 parallel steps with stepe {0,1,...,k} processing all zoids
having dependency level [

Pochoir’'s cache-oblivious parallel algorithm

Given a well-defined zoidz, the algorithm RAP from Figure 2
works by recursively decomposing into smaller well-defined
zoids as follows.

Hyperspace cut. Lines 4-10 in Figure 2 apply a hyperspace
cut involving all dimensions on which a parallel space cut can be
applied, as shown in Figures 7(a) and 7(b). If the numbef
dimensions ofZ on which a space cut can be applied is at least
1, as tested for in line 11 of Figure 2, then dependency levels are
computed for all resulting subzoids in line 12, and then lines 13-15
recursively process them in order according to dependency level as
described in the proof of Lemma 1.

Timecut. If a hyperspace cut is not applicable afidhas height
greater than 1, as tested for in line 16, then lines 17-1%cint

the middle of its time dimension and recursively process the lower
subzoid followed by the upper subzoid, as shown in Figure 7(c).

Base case. If neither a hyperspace cut nor a time cut can be
applied, lines 20—28 processé&sdirectly by invoking the stencil-
specific kernel function. In practice, the base case@&@senedsee
Section 4) by choosing a suitable threshold larger than Dfan
line 16, which cuts down on overhead due to the recursion.

Analysis

We can analyze the parallelism using a work/span analysis [7,
Ch. 27]. Thework T; of a computation is its serial running time,
and thespan Tw is the longest path of dependencies, or equiva-
lently, the running time on an infinite number of processors assum-
ing no overheads for scheduling. Tparallelismof a computation
is the ratioTy /T, of work to span.

The next lemma provides a tight bound on the span RAA
algorithm on a minimal zoid.

LEMMA 2. Consider a minimald + 1)-zoid Z with height h
and normalized widthsy; = h for i € {0,1,...,d—1}. Then the
span of TRAP when processing; is ©(dH9(d+2)),

PrRoOOF For simplicity we assume that a call to the kernel func-
tion costsO(1), as in [17]. As TRAP processesz, some of the
subzoids generated recursively have normalized widths equal to
their heights and some have twice that amount. Let us denote by
T (h,k,d — k) the span of RAP processing gd + 1)-zoid with
heighth wherek > 0 of thed spatial dimensions have normalized
width 2h andd — k spatial dimensions have normalized width
Using Lemma 1, the span ofRRP processing a zoidz when it
undergoes a hyperspace cut can be described by the recurrence

Too(h,k,d — k)

k
(k4+1)Tw(h,0,d) +© <Zlg(3k)>

i=0
(k4 1)Te(h,0,d) +O(K?)



whereT(1,0,d) = O(1) is the base case. The summation in this
derivation represents the span due to spawning. A pafaflelith

r iterations add®(Igr) to the span, and since the number of zoids
at all levels is &, this value upper-bounds the number of iterations
at any given level. Moreover, the lower bound on the number of
zoids on a given level is at least the averaly§8+ 1), whose log-
arithm is asymptotically the same a$3l), and hence the bound is
asymptotically tight.

A time cut can be applied when the zadidlis minimal. Assume
thatk > O projection trapezoidg’'s are upright and the rest are
inverted. Then for each upright projection trapezdid the nor-
malized width of the lower zoid generated by the hyperspace cut is
W; = h, the same as faf, and for each inverted projection trapezoid
Z;, the lower zoid has normalized widify —h/2 =h/2. Similarly,
for each upright projection trapezoig, the normalized width of
the upper zoid isV; —h/2 = h/2, and for each inverted projection
trapezoidZ;, the upper zoid has normalized widf. Thus, the
recurrence for the span ofRRP when a minimalZ undergoes a
time cut can be written as follows:

Tew(n,0,d) = Tw(h/2,k,d — K) + T (h/2,d — k k) + O(1) .

Applying hyperspace cuts to the subzoids on the right-hand side of
this recurrence yields

Tw(h,0,d) (d+2)Tw(h/2,0,d) +O(K?) + O((d — k)?)
(d+2)Tw(h/2,0,d) + ©(d?)
O(d?(d+2)'9"1) + o((d+2)'9")

o hlg(d+2)) O

THEOREM 3. Consider &d+ 1)-dimensional gridZ withw; =
wforie {0,1,...,d — 1} and height h= 2"w. Then the parallelism
of TRAP when processing using a stencil with constant slopes is
G(M7|g<d+2)+l/d2).

PrROOF Assume without loss of generality that the stencil is pe-
riodic. (As will be discussed in Section 4, Pochoir implements
TRAP so that the control structure for nonperiodic stencils is the
same as that for periodic.) The algorithm first applies a series of
time cuts, dividing the original time dimension irfigw = 2" sub-
grids withw; = w with heightw. These grids are processed serially.
The next action of RAP applies a hyperspace cut to dllspatial
dimensions oz, dividing the grid intod + 1 minimal zoids which
are then processed serially. Applying Lemma 2 yields a span of

(h/w)(d+ 1) - ©(dw9(d+2))
@((d2h)W|g (d+2)71) ]

The work is the volume df, which isT; = ©(hwd), since the sten-
cil has constant slopes. Thus, the parallelism is

Ti/Tw = OWAT19(@+2+1 /g2y O

Teo

We can compare RAP with a version of Frigo and Strumpen’s
parallel stencil algorithm [17] we call'®AP, which performs the

LEMMA 4. Consider a minimald + 1)-zoid Z with height h
and normalized widthsl; = h for i € {0,1,...,d—1}. Then the

span of STRAP when processingg is ©(hl9(2+1).

THEOREM 5. Consider &d+ 1)-dimensional gridZ withw; =
wforie {0,1,...,d — 1} and height h= 2"w. Then the parallelism
of STRAP when processing using a stencil with constant slopes
is @(wA-9@+1)+1 2d) - [

Discussion

As can be seen from Theorems 3 and 5, bataFand ST/RAP have
the same asymptotic parallelig@fw?'93) for d = 1, but ford = 2,
TRAP has@(W?) while STRAP has@(w?~'95), and the difference
grows with the number of dimensions.

The cache complexities ofRIAP and STRAP are the same, which
follows from the observation that both algorithms apply exactly the
same time cuts in exactly the same order, and immediately before
each time cut, both are in exactly the same state in terms of the
spatial cuts applied. Thus, they arrive at exactly the same configu-
ration — number, shape, and size — of subzoids before each time
cut.

Frigo and Strumpen’s parallel stencil algorithm is actually
slightly different from SRAP. For any fixed integer > 1, a space
cut in their algorithm produces black zoids and between— 1
andr +1 gray zoids. 3$RAP is a special case of that algorithm
with r = 2 for upright projection trapezoids amd= 1 for inverted
projection trapezoids. For larger valuesrpfrigo and Strumpen’s
algorithm achieves more parallelism but the cache efficiency drops.
It is straightforward to extend RAP to performr multiple cuts
along each dimension to match the cache complexity of Frigo and
Strumpen’s algorithm while providing asymptotically more paral-
lelism.

Empirical results

Figure 9 shows the results of using the Cilkview scalability an-
alyzer [20] to compare the parallelism ofRAP and STRAP on

two typical benchmarks. We measured the two algorithms with
uncoarsened base cases. As can be seen from the figresT
asymptotic advantage in parallelism is borne out in practice for
these benchmarks.

We used the Linux perf tool [29] to verify thatRIRP does not
suffer any loss in cache efficiency compared to th&/& algo-
rithm. Figure 10 also plots the cache-miss ratio of the straightfor-
ward parallel loop algorithm, showing that it exhibits poorer cache
performance than the two cache-oblivious algorithms.

4. COMPILER OPTIMIZATIONS

The Pochoir compiler transforms code written in the Pochoir
specification language into optimized C++ code that employs the
Intel Cilk multithreading extensions [23]. The Pochoir compiler is
written in Haskell [37], and it performs numerous optimizations,
the most important of which are code cloning, loop-index calcula-
tions, unifying periodic and nonperiodic boundary conditions, and
coarsening the base case of recursion. This section describes how

space cuts serially as in Figures 7(a) and 7(b). Each space cut rethe Pochoir compiler implements these optimizations.

sults in one synchronization point, and hence a sequericspzce
cuts applied by SrRAP introduces ¥ parallel steps compared to
thek+ 1 parallel steps generated brAP (see Lemma 1). Thus,
each space cut virtually doubles@AP's span. Figure 8(a) shows a
simple example wheret®AP produces 2— 1 = 3 synchronization
points while TRAP introduces only 2. The next lemma and theorem
analyze SRAP, mimicking Lemma 2 and Theorem 3. Their proofs
are omitted.

Before a programmer compiles a stencil code with the Pochoir
compiler, he or she is expected to perform Phase 1 of Pochoir’s two-
phase methodology which requires that it be compiled using the
Pochoir template library and debugged. This C++ template library
is employed by both Phases 1 and 2 and includes both loop-based
and trapezoidal algorithms. Differences between stencils, such as
dimensionality or data structure, are incorporated into these generic
algorithms at compile-time via C++ template metaprogramming.
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Figure 9: Parallelism comparison on two benchmarks betwe&ar]
which employs hyperspace cuts, antR8P, which uses serial space cuts.
Measurements are of code without base-case coarseningD (a)riperi-
odic heat equation. Space-time size is 1980(b) 3D nonperiodic wave
equation. Space-time size is 1000

Handling boundary conditions by code cloning

The handling of boundary conditions can easily dominate the run-
time of a stencil computation. For example, we coded the 2D heat
equation on a periodic torus using Pochoir, and we compared itto a
comparable code that simply employs a modulo operation on every
array index. For a 5060spatial grid over 5000 time steps, the run-
time of the modular-indexing implementation degraded by a factor
of 2.3.

For nonperiodic stencil computations, where a value must be

provided on the boundary, performance can degrade even more if

a test is made at every point to determine whether the index falls
off the grid. Stencil implementers often handle constant nonperi-
odic boundary conditions with the simple trick of introducitgpst
cells[8] that form ahalo around the periphery of the grid. Ghost
cells are read but never written. The stencil computation can apply
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Figure 10: Cache-miss ratios for two benchmarks usingAP, STRAP,

and a parallel-loop algorithm. The cache-miss ratio is the cdtthe cache
misses to the number of memory references. Measurements areef cod
without base-case coarsening. (a) 2D nonperiodic heattiequaSpace-
time is 1000N2. (b) 3D nonperiodic wave equation. Space-time is 1000

Pochoi r _Boundary_2D(dirichlet,
return 100 + 0.2*%t;
Pochoi r _Boundary_End

@

Pochoi r _Boundary_2D( neumann, arr,
int newx X;
if (x <0) newx = 0;
if (x >= arr.size(1))
int newy = y;
if (y <0) newy = 0;
if (y > arr.size(0)) newy = arr.size(0);
return arr.get(t, newx, newy);

Pochoi r _Boundary_End

(b)

arr, t, x, y)

WN -

t, X, y)

newx arr.size(1);

©CO~NOURWNE

Figure 11: Pochoir code for specifying nonperiodic boundary condgio
(a) A Dirichlet condition with constrained boundary valieet equal to a
function oft). (b) A Neumann condition with constrained derivative at the
boundary (set equal to 0).

the kernel function to the grid points on the real grid, and accessestake on the boundary [14]. Figure 11(a) shows a Pochoir specifica-

that “fall off” the edge into the halo obtain their values from the
ghost cells without any need to check boundary conditions.

In practice, however, nonperiodic boundary conditions can be
more complicated than simple constants, and we wanted to al-
low Pochoir users flexibility in the kinds of boundary conditions
they could specify. For example, Dirichlet boundary conditions
may specify boundary values that change with time, and Neumann
boundary conditions may specify the value the derivative should

tion of a Dirichlet boundary condition, and Figure 11(b) shows the
Pochoir specification of a Neumann boundary condition.

To handle boundaries efficiently, the Pochoir compiler generates
two code clones of the kernel function: a sloviberundaryclone
and a fastemterior clone. The boundary clone is used fund-
ary zoids: those that contain at least one point whose computation
requires an off-grid access. The interior clone is usedritarior
zoids: those all of whose points can be updated without indexing
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1 Pochoir_Kernel _1D(heat_1D fn, t, i) 53.10° + Kewnennnnn ..
2 a(t+l, i) = 0.125 * (a(t, i-1) + 2 * a(t, i) + L %
a(t, i+1)); < split-noi
3 Pochoir_Kernel _End -8 --split-pointer
(@) 3
1 /* a.interior() is a function to dereference the T T = S,
val ue without checking ,\9 109 - : B G a 8
% :/boundary condi tions .g ,E":-split-rracro-shadow
4 #define a(t, i) a.interior(t, i) o X o
5 Pochoir_Kernel _1D(heat_1D_fn, t, i) g
6 a(t + 1, i) = 0.125 * (a(t, i - 1) + 2 * a(t, ) L
7 Pochoi )K+a(|t'Eid+ D) e
'ochol r erne n e
8 #undef a(t, i) 12108 IB'/ 1 1 1 1 1 1 )
(b) 100 200 400 800 1600 3200 6400 12800
; /P?C?ﬁlerﬁgsgngharlgggegg _%Eéf rI]D’octhbi Ir) array 'a' */ Grid side lengthN
3 double *a_base = a.data();
4 |[* Pointers to be used in the innermost |oop */ . . . . .
5 double *iter0, *iterl, *iter2, *iter3: Figure13: The performance of_dl_ffere_nt Ioop-lr_]dex optimizations on a 2D
6 /* Total size of the Pochoir array 'a’ */ heat equation on torus. The gridN&€ with 1000 time steps.
7 const int | _a_total _size = a.total _size();
B oIm gap a0 e a0 = astri de(0): names, the optimizations are callesipl i t - macr o- shadow and
10 for Ejint)lt Etba; t < th; ++t) { -split-pointer.
11 ouble * baselter_1; _ P _ ; R _
12 double * basel ter 0. _The split-macro sh_adow optlor_l causes the Poc_ho_lr com
13 baselter 0 = a_base + ((t + 1) & Oxb) * piler to employ macro tricks on the interior clone to eliminate the
1 1 * . . . . .
|-a-total_size + (I_grid. xa[0]) boundary-checking overhead. Consider the code shippet in Fig-
14 baselter_1 = a_base + ((t) & Oxb) * ure 12(a) which defines the kernel function for a 1D heat equation.
_ _b ((t) )
:-g‘t—: I"Lg' SShee (I_grid.xa[0]) * Figure 12(b) shows the postsource code generated by the Pochoir
15 iter0 = baselTer 0 + (0) * | stride a 0; compiler using-spl it -macro-shadow. Line 4 defines a macro
16 iterl = baselter 1 + (-1) * | _stride_a 0; that replaces the original accessing functmpnwhich also does
17 iter2 = baselter_1 + (0) * | _stride_a_0; . . .
18 iter3 = baselter 1 + (1) * I stride a 0: boundary checking, with one that performs the address calculation
19 for (int i = tl _gori d. X_at[ 0]1: i< tl _gzri d. X'bt[ O]é but without boundary checking.
++ ++ ++ ++ ++ . . . . .
Poorriter0, wtiterl, tviter2, ++iterd) { The-split-pointer command-line option causes the Pochoir
20 (*iter0) = 0.125 * ((*iterl) + 2 * (*iter2) + compiler to transform the indexing of Pochoir arrays in the inte-
* N . . . - . . . .
21 (riter3)): } rior clone into C-style pointer manipulation, as illustrated in Fig-
22 Pochoi r _Ker nel _End ure 12(c). A C-style pointer represents each term in the stencil

© formula. The resulting array indexing appears on line 20. For each
consecutive iteration, the code increments each pointer. When it-
erating outer loops, the code adds a precomputed constant to each
pointer as shown in lines 15-18.

The Pochoir compiler tries to use thaplit-poi nter opti-
mization if possible. It can do so if it can parse and “under-
off the edge of the grid. Whether a zoid is interior or boundary is stand” the C++ syntax of the user’s specification. Because our
determined at runtime. prototype Haskell compiler does not contain a complete C++ front

In the base case of the recursive trapezoidal decomposition, theend, however, it sometimes may not understand unusually com-
boundary clone invokes the user-supplied boundary function to per- plex C++ code written by the user, in which case, it employs the
form the relatively expensive checks on the coordinates of each-split-macro- shadowoptimization, relying on Phase 1 to ensure
point in the zoid to see whether they fall outside the boundary. that the code is Pochoir-compliant.

If so, the user-supplied boundary function determines what value Figure 13 compares the performances of the two optimizing op-
to use. The base case of the interior clone avoids this calculation,tions for a 2D heat equation on a torus. Other benchmarks show
since it knows that no such test is necessary, and it simply accessesimilar relative performances.

the necessary grid points.

The trapezoidal-decomposition algorithm exploits the fact that Unifying periodic and nonperiodic boundary conditions
all subzoids of an interior zoid remain interior. If all the dimensions
of the grid are approximately the same size, the boundary of the
grid is much smaller than its (hyper)volume. Consequently, the
faster interior clones dominate the running time, and the slower
boundary clones contribute little.

Figure 12: Pochoir’s loop-indexing optimizations illustrated on a 1&ah
equation. (a) The original Pochoir code for the kernel figrct (b) The
code as transformed byspl it - macro- shadow. (c) The code as trans-
formed by-split-pointer.

Typical stencil codes discriminate between periodic and nonperi-
odic stencils, implementing them in different ways. To make the
specification of boundary functions as flexible as possible, we in-
vestigated how periodic and nonperiodic stencils could be imple-
mented using the same algorithmic framework, leaving the choice
. . of boundary function up to the user. Our unified algorithm al-
Loop indexing lows the user to program boundary functions with arbitrary peri-
Because the interior zoids asymptotically dominate the comput- odic/nonperiodic behavior, providing support, for example, for a
ing time, most of the optimizations performed by Pochoir com- 2D cylindrical domain, where one dimension is periodic and the
piler focus on the interior clone. Two important optimizations re- other is nonperiodic.

late to loop indexing. The particular optimization is chosen auto-  The key idea is to treat the entire computation as if it were peri-
matically by the Pochoir compiler, or it can be mandated by user odic in all dimensions and handle nonperiodicity and other bound-
as a command-line option. Consistent with their command-line ary conditions in the base case of the boundary clone where the



kernel function is invoked. When a zoid wraps around the grid in a the input language, from which multiple formats of output can be
given dimension, meaning thaka > xby, we represent the lower-  generated, including Fortran, C, and CUDA. The parallelization is
and upper-bound coordinates of the zoid in dimensioy virtual based on blocked loops.

coordinategxa;, N; +xbi ), whereN; is the size of the periodic grid We have discussed Frigo and Strumpen’s seminal trapezoidal-
in dimensioni. In the base of the recursion of the boundary clone, decomposition algorithms [16, 17] at length, since they form the
Pochoir calls the kernel function and supplies it with the true co- foundation of the Pochoir algorithm. Nitsure [34] has studied how
ordinates of the grid point being updated by performing a modulo to use Frigo and Strumpen’s parallel algorithm to implement 2D
computation on each coordinate. Within the kernel function, ac- and 3D lattice Boltzmann methods. In addition to several other
cesses to the Pochoir arrays now call the boundary function, which optimizations, Nitsure employs two code clones for the kernel to
provides the correct value for grid points that are outside the true reduce the overhead of boundary checking, which Pochoir does as
grid. Of course, no such checking is required for interior zoids, well. Nitsure’s stencil code is parallelized with OpenMP [35], and

which are always represented by true coordinates. data dependencies among subdomains are maintained by locking.
) Cache-aware techniques have been used extensively to improve
Coarsening of base cases the stencil performance. Dattd al. [9] and Kamil et al. [26, 27]

Previous work [9, 26, 27, 34] has found that although trapezoidal have applied both algorithmic and coding optimizations to loop-
decomposition dramatically reduces cache-miss rates, overall per-based stencil computations. Their algorithmic optimizations in-
formance can suffer from function-call overhead unless the base clude an explicitly blocked time-skewing algorithm which overlaps
case of the recursion is coarsened. For example, proper coarsensubregions to improve parallelism at the cost of redundant mem-
ing of the base case of the 2D heat-equation stencil (running for ory storage and computation. Their coding optimizations include
5000 time steps on a 50005000 toroidal grid) improves the per-  processor-affinity binding, kernel inlining, an explicit user stack,
formance by a factor of 36 over running the recursion down to a early cutoff, indirection instead of modulo, and autotuning.
single grid point. Researchers at the University of Southern California [11, 12, 36]
Since choosing the optimal size of the base case can be difficult,have performed extensive studies on how to improve the perfor-
we integrated the ISAT autotuner [22] into Pochoir. Despite the mance of high-order stencil computations though parallelization
advantage of finding the optimal coarsening factor on any specific and optimization. Their techniques, which apply variously to mul-
platform, this autotuning process can take hours to find the optimal ticore and cluster machines, include intranode, internode, and data-
value, which may be unacceptable for some users. parallel optimizations, such as cache blocking, register blocking,
In practice, Pochoir employs some heuristics to choose a rea-manual SIMD-izing, and software prefetching.
sonable coarsening. One principle is that to maximize data reuse,
we want to make the spatial dimensions all about the same size. 5, CONCLUDING REMARKS
Anothgr prin(_:iple is tha_t to gxploit hz_;lrdw_are pr_efetching, wewant i is remarkable how complex a simple computation can be when
to avoid cutting the unit-stride spatial dimension and avoid odd- performance is at stake. Parallelism and caching make stencil com-
shaped.base cases. For example, for 2D problems, a squaesishap putations interesting. As discussed in Section 5, many researchers
computing domain often offers the best performance. We h_ave have investigated how various other features of modern machines
found that for 3D problems, the effect of ha_rdware prefetching ¢ ,cp a5 prefetching units, graphical processing units, and clus-
can often be more important than cache efficiency for reasonably_tering — can be exploited to provide even more performance. We

sized base cases. Consequently, for 3 or more dimensions, Pochmgee many ways to improve Pochoir by taking advantage of these
adopts the strategy of never cutting the unit-stride spatial dimen- machine capabilities

sion, and it cuts the rest of the spatial dimensions into small hyper- In addition, we see ample opportunity to enhance the linguis-
cubes to ensure that the entire ba§e (?ase St.ay.s in cache. G'\.’en a“c features of the Pochoir specification language to provide more
that potential complexity, the compllers heuristic is actually fairly generality and flexibility to the user. For example, we are con-
simple. I;oriD p.r?]bgems’ Pochowsl,:topzltjhe reé:lursmn ﬁmmo .__sidering how to allow the user to specify irregularly shaped do-
space chunks with 5 time steps. For 3D problems, the recursion . aing “aAs long as the boundary of a region, however irregular, is

stops at 1006 3 x 3 with 3 time steps. small compared to the region’s interior, special-case code to handle
the boundary should not adversely impact the overall performance.
5. RELATED WORK Even more challenging is coping with boundaries that change with
Attempts to compile stencils into highly optimized code are not time. We believe that such capabilities will dramatically speed up
new. This section briefly reviews the history of stencil compilers the PSA, RNA, and LCS benchmarks which operate on diamond-
and discusses some of the more recent innovative strategies for opshaped space-time domains.
timizing stencil codes. Pochoir's two-phase compilation strategy introduces a new
Special-purpose stencil compilers for distributed-memory ma- method for building domain-specific languages embedded in C++.
chines first came into existence at least two decades ago [3, 4, 39] Historically, the complexity of parsing and type-checking C++
The goal of these researchers was generally to reduce interproceshas impeded such separately compiled domain-specific languages.
sor data transfer and improve the performance of loop-based stencilC++’s template programming does provide a good measure of ex-
computations through loop-level optimizations. The compilers ex- pressiveness for describing special-purpose computations, but it
pected the stencils to be expressed in some normalized form. provides no ability to perform the domain-specific optimizations
More recently, Krishnamoorthgt al. [28] have considered au-  such as those that Pochoir employs. Pochoir's compilation strategy
tomatic parallelization of loop-based stencil codes through loop offers a new way to build optimizing compilers for domain-specific
tiling, focusing on load-balancing the execution of the tiles. Kamil languages embedded in C++ where the compiler can parse and “un-
et al. [25] have explored automatic parallelization and tuning of derstand” only as much of the programmer’s C++ code as it is able,
stencil computations for chip multiprocessors. The stencils are confident that code it does not understand is nevertheless correct.
specified using a domain-specific language which is a subset of For- The Pochoir compiler can be downloaded fromtp://
tran 95. An abstract syntax tree is built from the stencil specified in supertech. csail.nit. edu/ pochoir.
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