Concurrent Cache-Oblivious B-Trees Using Transactional
Memory

Bradley C. Kuszmaul

ABSTRACT

Cache-oblivious B-trees for data sets stored in externahong
represent an application that can benefit from the use ofdaian
tional memory (TM), yet pose several challenges for exisfiiv
implementations. Using TM, a programmer can modify a serial
in-memory cache-oblivious B-tree (CO B-tree) to supportiao-
rent operations in a straightforward manner, by perforngoeries
and updates as individual transactions. In this paper, werite
three obstacles that must be overcome, however, beforeame c
implement an efficient external-memory concurrent CO Bxtre

First, CO B-trees must perform input/output (I/O) insideant-
action if the underlying data set is too large to fit in main noeyn
Many TM implementations, however, prohibit such trangactiO.
Second, a CO B-tree that operates on persistent data reguilr!
system that supports durable transactions if the programisbes
to be able to restore the data to a consistent state aftergagpno
crash. Finally, CO B-trees operations generate megalithitsac-
tions, i.e., transactions that modify the entire data $tmec because
performance guarantees on CO B-trees are only amortizettsou
In most TM implementations, these transactions createa bet-
tleneck because they conflict with all other concurrentdaations
operating on the CO B-tree.

Of these three issues, we argue that a solution for the fist tw
issues of transaction 1/0 and durability is to use a TM sysieamh
supports transactions on memory-mapped data. We demienstra
the feasibility of this approach by using LibXac, a librahat sup-
ports memory-mapped transactions, to convert an exisenigls
implementation of a CO B-tree into a concurrent version witly
a few hours of work. We believe this approach can be generjliz
that memory-mapped transactions can be used for othercappli
tions that concurrently access data stored in external memo

1. INTRODUCTION

Whereas most hardware and software transactional memsry sy
tems (e.g., [1, 2, 14-17, 19, 20, 23, 28]) implement atomicion-
sistency, and isolation, but not durability (the so-calta€ID”
properties [13]), we have developed a software transaaitgystem
that can provide full ACID properties for memory-mappedkelis
resident data. This paper reports our experience usingnaaca
tional memory interface, with full ACID properties, to ingshent
a cache-oblivous B-Tree.

Today, traditional B-trees [5, 10] are the dominant datacstire
for disk-resident data because they perform well in practiic the-
ory, traditional B-trees perform well in a performance maddled
the Disk-Access Machine (DAM) Modgl], an idealized two-level
memory model in which all block transfers have unit cost ftloek
size isB, and the main-memory size M. The choice oB defines
the single granularity of optimization in the DAM model. Fex-

Permission to make digital or hard copies of all or part o thbrk for personal or
classroom use is granted without fee provided that copesar made or distributed
for profit or commercial advantage and that copies bear titiseand the full citation
on the first page.

WTW’06June 10th, 2006, Ottawa, Ontario

Copyright 2006 Bradley C. Kuszmaul and Jim Sukha.

Jim Sukha

ample, an optimized B-tree with fixed-sized keys has a biiagch
factor of ©(B), and thus require®(logg N) memory transfers for
queries, which is optimal within the DAM model. The widesgae
use of B-trees suggests that the DAM model is used impliesha
simplifying approximation for writing disk-intensive ced

Itis difficult to choose the right value fds, however. The block
size could be set to correspond to the CPU'’s cache line s&e (p
haps 64 bytes), to the disk’s advertised block size (perd89é
bytes), or possibly some larger value, such as the averagjesize
on disk (on the order of 4 megabyte for today’s disks). Ideally, a
B-tree would simultaneously minimize the number of cachedi
the number of disk blocks, and the number of tracks acceased d
ing a query.

One way to avoid this block-size tuning problem is to employ
data structures that work well no matter what the block sszeAi
cache-oblivious data structure is a data structure in which the pa-
rameters of the memory hierarchy (such as the cache-liee thie
cache size, the disk block size, or the main memory size) atre n
coded explicitly, nor are they discovered by an active tgrpro-
cess. In contrast, eache aware data structure knows about the
memory hierarchy.

Theoretical developments on cache-oblivious data strestand
algorithms have shown in principal how to achieve nearlyroak
locality of reference simultaneously at every granularity the
cache-oblivious modglL2, 26], an alternative to the DAM model,
one can prove results about unknown memory hierarchies»and e
ploit data locality at every scale. The main idea of the cache
oblivious model is that if it can be proved that some algoniter-
forms a nearly optimal number of memory transfers in a twelle
model with unknown parameters, then the algorithm alscopers$
a nearly optimal number of memory transfers on any unknown,
multilevel memory hierarchy.

Our study focuses on the cache-oblivious B-tree (CO B-tree)
data structure described in [6], and how to use a transadtinem-
ory interface to support concurrent queries and updateBetrée.
Transactional memory is well-suited for programming a corent
CO B-tree, since, arguably, a serial CO B-tree is alreadyeroom-
plex to implement than a traditional serial B-tree. The C@rd
is representative of the kind of data structure that we caplém
ment with transactional memory: a data structure that maydre
complicated, but asymptotically more efficient than thelitranal
alternative.

Furthermore, the cache-oblivious nature of the CO B-treleamia
it difficult to parallelize the search tree operations ugnaglitional
methods for mutual exclusion. In a normal B-tree, the blaek s
B presents a natural granularity for locking. For a CO B-ties t
has no tunable parameters to set, however, the locking Igirtyu
would also need to be specified at an abstract level. Traosatt
memory interacts synergystically with cache-obliviousadstruc-
tures because transactions allow the programmer to speaify-
lelism in an implementation-independent way.

A natural approach to programming a concurrent CO B-treg is t
convert every query or update operation of a serial CO Bitree
its own transaction. We encountered three obstacles tongakis

strategy work. transaction I/O and durability. LibXac provides supportdarable

The first obstacle for the simple concurrent CO B-tree issaan memory-mapped transactions, allowing programmers t@watle
tion 1/0. When the entire data set no longer fits into main msmo that operates on persistent data as though it were storeafimah
a query or update transaction may need to perform 1/O toeregri memory. In this section, we present LibXac’s programmirtgrin
data from disk. If the programmer is working in a system with face and an overview of its implementation.
two levels of storage, then the programmer must make ekpl@i
calls inside the transaction, typically through a buffemagement Programming Interface
subsystem, to bring a new page into memory and kick an egistin
page out. Buffer pool management adds another layer of ¢oaapl
tion to an already complex concurrent CO B-tree implemériat
Furthermore, calls to the buffer management system shailtden
included as part of the transaction, since we can not easiip u
1/0 operations. Many proposed TM systems have not specified a
programming interface or semantics for 1/O operations titaur
inside a transaction.

The second obstacle is transaction durability. For a COeB-tr
that stores persistent data, the user would like the gussathiat
the stored data will not be corrupted if the program accessisk
crashes. Database systems usually support durable ttiansaoy
updating a log on disk after every transaction commit. The lo
contains enough information to restore persistent datactmnais-
tent state. Since TM systems already track the changes nyade b
a transaction, support for durable transactions would bataral
extension.

The final obstacle with using TM on a CO B-tree is that the
CO B-tree sometimes generates what we gabalithic transac-
tions A megalithic transaction is one that modifies a huge amount
of state, effectively serializing performance. For the Carée,
there are some updates that must rebuild the entire datisey
producing a megalithic transaction. A megalithic tranisectepre-
sents an extreme case because it runs for a long time andctenfli
with all other transactions.

To address the first two obstacles of transaction /0O anda@n
tion durability, we use LibXac, a page-based software aetisnal
memory system that we developed, to implement the CO B-tree.
LibXac supports transactions on memory-mapped data, iltpw

In many operating systems, different processes can shame me
ory by using the system cathmapto memory-map the same file
in shared mode. Programmers must still use locks or other syn
chronization primitives to eliminate data races, howesirge this
mechanism does not provide any concurrency control. Usibg L
Xac, programmers transactionally memory-map a file usifrgap
and prevent data races by specifying transactions on thpedag-
gion.

Figure 1 illustrates LibXac's basic features with two pramgs
that access the same data concurrently. Both programs yrtoeif
first 4-byte integer in filedata.db . The program on the left in-
crements the integer, and the program on the right decrenient
When both programs run concurrently, the net effect is tedehe
integer unchanged. Without some sort of concurrency cbintrg-
ever, a race condition could cause the data to be corrupted.

Line 1 initializes LibXac, specifying the directory wherébL
Xac will store its log filest LibXac will write enough information
to guarantee that the data in the file can be restored to astensi
state even if the program crashes during execution. Lineugssh
down LibXac.

Line 2 opens a shared memory segment by ugvigap() to
memory-map a particular file. ThéMmap() function takes a file-
name and number of bytes to map as arguments, and returns a
pointer to the beginning of the shared region. LibXac allees-
currency at a page-level granularity, and requires thatipe length
be a multiple of the page size.

Lines 3-8 contain the actual transaction. Line 5 is the iy
of the transaction.

any application to concurrently access data from the sameiil Transactions are delimited bypegin() ~ andxend() function
disk without explicit locking or 1/0 operations. We belietéb- calls. Thexend() fu_nctlon returns a status code that specifies
Xac's interface is useful for generic concurrent extemnaimory whether the transaction was committed or aborted. If thestra
data structures, since the issues of transaction /O arability action commits, then thehile loop stops executing. Otherwise
are not specific to the CO B-tree. the code invokes thieackoff() at Line 7, and then thehile loop

More generally, external-memory data structures are a gaddh tries.to run the transaction agajn. The application prognamcan
for a software transactional memory system (STM), becange a Provide whatever implementation of theckoff() function they
runtime overheads of the STM can be amortized against thetos ~ Wish (for example, it might employ randomized exponentetie
disk I/0. Even if a memory access using an STM system costs an ©ff [22]). o
order of magnitude more than a normal memory access this over ~When using LibXac, the control flow for a program always pro-
head is small compared to the cost of a disk access for mederat ceeds through fromxbegin toxend, even if the transaction is aborted.

size transactions. It is the programmer’s responsibility to ensure tkizdgin() and
This paper describes the issues we encountered when using &end() function calls are properly paired, so that control flow does

transactional-memory interface to implement a concurcache- not jump out of the transaction without first executkegd() . Lib-

oblivious B-tree. Section 2 describes LibXac, our pageetiamft- ~ Xac also provides axvalidate ~ function that the programmer can

ware transactional memory imp'ementation_ Section 3 dB=sr call in the middle of a transaction to check whether a tratsac
our experience implementing the CO B-tree, and explainswiew Wil need to abort because of a transaction conflict. The ramog

used LibXac to address the first issues of transaction I/Cdanat mer can then insert code to stop executing a transactionitiat

bility. Section 4 describes the CO B-tree structure in gredetail, not commit.

explains how update operations can generate megalithisaca Nested transactions are automatically subsumed into the ou

tions, and discusses possible solutions for this probleinally, ermost transaction. This mechanism allows programmerslto ¢

Section 5 concludes with a description of related work amdedi ~ functions inside a transaction that may themselves coatéians-

tions for future work. action. Anxend() call nested inside another transaction always
succeeds, since the subtransaction successfully “cofiwittsre-

2. THE LibXacTM SYSTEM spect to the outer transaction.

We developed LibXac, a prototype page-based softwaredcans 1| ibXac can also be configured to support transactions theatair
tional memory implementation that addresses the two pnablef durable.

0 /* Increment the 1st integer in data.db */ 10 /* Decrement the 1st integer in data.db */
1 xInit("/logs"); 11 xInit("/logs");
2 memptr = (int*)xMmap("data.db", 4096); 12 memptr = (int*)xMmap("data.db", 4096);
3 while (1) { 13 while (1) {
4 xbegin(); 14 xbegin();
5 memptr[0] ++; 15 memptr[0] --;
6 if (xend() == COMMITTED) break; 16 if (xend() == COMMITTED) break;
7 backoff(); 17 backoff();
8 } 18 }
9 xShutdown(); 19 xShutdown();
Figure 1: Two programsthat access shared data concurrently, using LibXac transactions.
Memory Model action processing becomes quiescent, the original file will

LibXac's memory model provides the standard transacticoal contain the final version of the database.

rectness condition, that transactions seealizable. In fact, Lib- 6. After a committed version of a page is copied back into the
Xac makes a stronger guarantee, that even transactiongritiat original file, it eventually gets written to disk, either ifig

up aborting always see a consistent view of memory. Because itly by the operating system’s page eviction policy, or éxpl
LibXac employs a variation of a multiversion concurrencytcol itly by a checkpoint operation.

algorithm [8], it can guarantee that an aborted transacioays During a transaction commit, our implementation perforire t
sees a consistent view of the shared memory segment dugieg-ex synchronous disk write required for logging, but we have ywit
tion, even if it conflicted with other transactions. Saidetiéntly, implemented checkpointing or a recovery program.

the only distinction between committed and aborted traimasis

that a committed transaction atomically makes permanearigds 3. TRANSACTION I/O AND DURABILITY

that are visible to other transactions, whereas an abaaaddction

atomically makes temporary changes that are never seerhby ot~ In this section, we explain how transactional memory-magpi
transactions. solves the issues of transaction /O and durability, andrites our
When a transaction is aborted, only changes to the shared seg ®*Perience using LibXac toimplementa CO B-tree.
ment roll back however. Changes to local variables or otremm A typical approach to managing disk-resident data is to pro-
ory remain, allowing programmers to retain informationvgesn gram in a two-level store model with explicit disk I/O, mairaga
different attempts to execute a transaction. See [30] farerde- ~ cache explicitly. Programming a two-level store is labosichow-
tails LibXac's memory model. ever, because the programmer must constantly translatedisk
addresses to memory addresses. Moreover, programming-cach
Implementation oblivious file structures using a two-level store is prodgie) be-
) o)) o cause the nature of cache-obliviousness precludes definpag-
LibXac is implemented on Linux, without any modificationsthe ticular block size for reading and writing.
kernel or special operating system support. See [30] for e2mo We began with a serial implementation of a CO B-tree [18] that
thorough description of the implementation. employs memory mapping, thereby handling the I/O issue-auto
At a high-level LibXac executes transaction as follows. matically in the serial case. The Unixmapfunction call provides
1. When a transaction begins, the protection is set to “nesscc the illusion of a single-level store to the programmer. Timaap
allowed” on the entire memory-mapped region. function maps the disk-resident data into the virtual asslipace
2. The transaction’s first attempt at reading (or writinglege ©Of the program, providing us with a large array of bytes intack
causes a segmentation fault on that page.SEGFAULThan- we embed our data structure. Thus, the CO B-tree code can rely

dler installed by LibXac maps the appropriate version of the ©n the underlying operating system to handle I/O insteacltihg
page into the transaction’s address space as read-only data€Xplicit I/O operations.

LibXac relies on the ability to change the memory mapping ~ The fact that LibXac's interface is based on memory-mapping
of a particular virtual page, which Linux supports, but some also solves the problem of transaction 1/O for a concurredtss

operating systems may not. tree. Th_e _o_nly additiona_l complication concurrency in_troels is
the possibility of transactions with I/O aborting. Sincé&Xac only
tracks operations on the mapped shared memory segmentvdmwe
oy : S the 1/O operations are automatically excluded from thesaation.
(because in Linux there is no easy way to distinguish between S
. : } Thus, the application programmer does not need to worrytadoou
reads and writes.) LibXac generates a new version of the)
- . transaction being aborted in the middle of an I/O operation.
page and maps that version into the address space with read-" "~
b I LibXac also satisfies the requirement for transaction dlitgab
write permissions. . L
o) because it logs the contents of pages that a transactiongiesod
4. When thexend() function is invoked, the runtime deter- and synchronously writes the commit record to disk whenmstra
mines whether the transaction can commit. If so, then alog action commits. Our prototype system does not have recawery
cludes a copy of both the old and new version of each page, recovery program to restore thimaped file to a consistent state.
as well as a commit record. The memory map is then resetto gecause of the simplicity of LibXac’s programming intesac
no-access. starting with LibXac and a serial memory-mapped CO B-tree, w
5. Each transaction that modifies a page creates a new versionwere able to easily create a CO B-tree that supports comturre
of the page. Eventually, after the runtime determines thatn queries and updates with only a few hours of work. To demon-
transaction will ever need the version that is actuallyedlor strate that our approach is practical, we ran a simple expge
in the original file, it copies the youngest committed vemsio performing 100,000 inserts into various implementatioha con-
of the page it can back to the original file. Thus, if the trans- current B-tree. Each insertion is performed as a durabhsaetion,

3. When the transaction attempts to write to a page for the firs
time, the system must handle a second segmentation fault

with a randomly chosen 8-byte integer as the key. In a run Rith
processes, each process performed eith&2%| or | 109000 | 7
insertions.

We ran this test in three different environments: in a norBial
tree implemented using LibXac, a CO B-tree using LibXac, amd
a Berkeley DB [29] B-tree. The block size for both B-trees(9@é

bytes, and the keys of all B-trees are actually padded to §tEsh

Concurrent B-Tree Inserts

T T T

T T
COB-Tree —&8—

B-Tree --—+--
200 Berkeley DB B-tree ---o---

Transactions Per Second
N
)
S
T

Processes

Figure 2: 100,000 I nsertson concurrent B-trees performed by multiple
processes.

Figure 2 presents preliminary performance results. Natettie
poor performance of the two B-trees relative to the CO B-isee

likely due to the fact thaB was not properly tuned. In practice, the
effective value oB should be much larger than the default 4K page

size specified by Linux.

Since each transaction in this case touches relatively tayes
the cost of a transaction is dominated by the cost of the sgnclus
disk write during commit. Even though our experiment is rareo
machine with only 4 processors and a single disk, all threeeBs
are able to achieve speedup using multiple processes leettays
all implement group commit [11].

but if the gaps are managed properly [6], the average cossef-
tions remains small. The CO B-tree stores its values in a PAA,
uses a static cache-oblivious search tree as an index mt@NtA.

Thus, an insertion into the CO B-tree involves an insertida the
PMA and an update of the index.

We only sketch the algorithm for insertion into the PMA (s6E [
for more details). To insert an element into a PMA, if therauis
gap between the inserted element’'s neighbors, then wet itieer
element into a gap position. Otherwise, we look for a neighbod
around the insertion point that has laensity that is, look for
a subarray that is not storing too many data elements. Given a
sufficiently sparse neighborhood, webalancethe neighborhood,
i.e., space out the the elements evenly. In order to getanbes
to run quickly on average, one must apply stricter densilgsréor
larger neighborhoods. The idea is that because rebalaadarge
neighborhood is expensive, after the rebalance we needategre
return, i.e., a sparser final neighborhood. Once the neitlolod
corresponding to thentire PMA is above the maximum density
threshold, we double the size of the array and rebuild theeent
PMA, and thus the entire CO B-tree.

For the CO B-tree, updates that must rebalance the entire,PMA
or at least a large fraction of it, produce what we call a nidgal
transaction. A megalithic transaction is one that modifi¢aige
amount of state, effectively serializing performance. Agaighic
transaction represents the extreme case because it issalang-
action that conflicts with all other transactions. Thus, eaon-
tention management strategy [16] is needed to avoid likeldmen
transactions conflict.

An operation that modifies all of memory does not necessarily
cause performance problems in the serial case, but it daese ca
problems in the parallel case. For the serial case, the Cf@e-t
we used has good amortized performance. Although the awerag
cost of an update is small, some updates are expensive. hiah se
data structure, the cost of the expensive operation can beiaed
against previous operations. In the parallel implemeoatihe ex-
pensive updates cause performance problems becausecthegsia

We do not interpret these results as evidence that one systemth€ critical path of the program, reducing the average fedisah.

(LibXac or Berkeley DB) or data structure (CO B-tree vs. nafm
B-tree) necessarily outperforms the other. Our claim iy dhat

a system that supports memory-mapped transactions andh vghic

competitive with the traditional alternatives can be fbkesto im-
plement in practice.

4. MEGALITHIC TRANSACTIONS

If updates are infrequent compared to searches, theirmpeaftce
impact can be mitigated by using a multiversion concurrezary
trol [8], in which read-only transactions never conflict kviither
transactions. Our LibXac prototype provides multiversmm-
currency control and allows the user to specify special-@ad
transactions that will always succeed. But although we hente
confirmed this fact experimentally, this particular CO Betrdata
structure appears to have limitations in the parallelisibsafpdate

Of the three problems we described for a CO B-tree implengente operations.

using transactional memory, the problem of megalithicgeations
is the most troublesome. In this section, we describe the @&
data structure of [6] in more detail, explain how update apens
give rise to megalithic transactions, and briefly commentvags
to address this issue.

Rather than explaining the entire CO B-tree data structuee,
focus on a piece of the data structure, gaeked memory array

The best solution for a megalithic transaction is to elirténia
altogether, through algorithmic cleverness. ldeally,ndexizing
the operations on a CO B-tree would make the footprint ofyever
update transaction small, thereby eliminating any medgalitans-
actions. Another approach may be to find a way to split up the
large rebalancing operations of the CO B-tree’s PMA intotipld
transactions. The worst-case time for a single update nilapest

(PMA), that illustrates the problems we faced. A PMA is an array large in this case, but that update would at least not bldaktlaér

of sizeO(N), which dynamically maintainsl values in sorted or-
der. The values are kept approximately evenly spaced, witils
gaps to allow insertions without having to move too many eets
on average. Occasionally a large amount of data needs tovmdmo

2We ran our experiments on a 4-processor Opteron 1.4Ghz 840
with 16 GB of RAM, running Suse Linux 9.1 and the 2.6.5-

concurrent transactions from committing.

Since improving or deamortizing a data structure often ntake
structure more complicated, transactional memory can belpy
simplifying the implementation. In general, programminghna
transational memory interface instead of with explicit @akes
it plausible that a programmer could implement an even mote s

7.155.29-smp kernel. The system had an IBM Ultrastar 146GB Phisticated data structure such asaghe-oblivious |ookahead ar-

10,000RPM disk with an ext3 filesystem. We placed the logs and ray [25] (which provides dramatic performance improvements fo
the data on the same disk. workloads with many more insertions than searches) cache-

obliviousstring B-tree[7] (which can handle huge keys efficiently).

Another approach to working around megalithic transastisn
to use some sort of loophole in the strict transactional s¢ice

(7]

M. A. Bender, M. Farach-Colton, and B. C. Kuszmaul. Cache
oblivious string b-trees. Iifo appear in PODS’06Chicago,
lllinois, June 2006.

such as the release mechanism [16] or so-called open-ttansa
[24].

[8] P. A. Bernstein and N. Goodman. Multiversion concurren-
cy control—theory and algorithmsACM Transaction on
Database Systems (TOD8J4):465-483, Dec. 1983.

[9] P. A. Buhr and A. K. Goel. uDatabase annotated reference

manual, version 1.0. Technical report, Department of Com-

puter Science, University of Waterloo, Waterloo, Ontario,

Canada, N2L 3G1, Sept. 1998&://plg.uwaterloo.ca/

pub/uDatabase/uDatabase.ps.gz

D. Comer. The ubiquitous B-treACM Computing Surveys

11(2):121-137, June 1979.

D. J. DeWitt, R. H. Katz, F. Olken, L. D. Shapiro, M. R.

Stonebraker, and D. Wood. Implementation techniques for

main memory database systemsPioceedings of the 1984

ACM SIGMOD International Conference on Management of

Data, pp. 1-8, Boston, Massachusetts, 18—-21 June 1984.

M. Frigo. Portable High-Performance ProgramBhD thesis,

MIT EECS, June 1999.

J. Gray. The transaction concept: Virtues and limatasi In

Seventh International Conference of Very Large Data Bases

pp. 144-154, Sept. 1981.

L. Hammond, V. Wong, M. Chen, B. D. Carlstrom, J. D.

Davis, B. Hertzberg, M. K. Prabhu, H. Wijaya, C. Kozyrakis,

and K. Olukotun. Transactional memory coherence and con-

sistency. InProceedings of the 31st Annual International

Symposium on Computer Architecture (ISCA '20@44) 102—

113, Munich, Germany, 19—-23 June 1997.

T. Harris and K. Fraser. Language support for lightvaig

transactions. IOOPSLA pp. 388—-402, Anaheim, California,

Oct. 2003.

M. Herlihy, V. Luchangco, M. Moir, and W. N. Scherer, .llI

Software transactional memory for dynamic-sized datacstru

tures. InProceedings of the ACM SIGACT-SIGOPS Sympo-

sium on Principles of Distributed Computingp. 92—-101,

2003.

M. P. Herlihy and J. Moss. Transactional support foklbiee

data structures. Technical Report 92/07, Digital Camiaridg

Research Lab, One Kendall Square, Cambridge, MA 02139,

Dec. 1992.ftp://ftp.cs.umass.edu/pub/osl/papers/

crl-92-07.ps.Z

Z. Kasheff. Cache-oblivious dynamic search trees.rnd.e

5. RELATED AND FUTURE WORK

Using LibXac, we are able to overcome the obstacles of tansa
tional I/O and durability for a concurrent CO B-tree implerted
using transactional memory.

Our experimental results suggest that LibXac provides ftece
able performance for durable transactions. We would payh hi
penalty in performance, however, if we were to use LibXadlier
sort of non-durable transactions that many transactiorethory
systems provide. The LibXac runtime must handI8EGFAULT
and make ammapsystem call every time a transaction touches a
new page. This method for access detection introduces paugr-
overhead that on some systems can b@slor more. With operat-
ing system support to speed 8gGFAULThandlers, or introduction
of a system call that reports which pages a transaction leasae
written, one might be able to use a system such as LibXac fier ef
cient non-durable transactions.

Without operating system or compiler support, implememntin
durable transactions on memory-mapped data has been vasved
an open research problem [3,9]. The problem is that the tpera
ing system may write memory-mapped data back to disk at any
time. The correctness of a transaction logging scheme lyseal
quires that the data be written back to disk only after thetag
been written, but with memory mapping, the operating systean
write the data back too soon. A relatively slow implemeiatati
of portable transactions for single-level stores that iaca syn-
chronous disk write after every page accessed by a traneastile-
scribed by [21]. Recoverable virtual memory [27] suppotisatle
transactions, but the interface requires programmers péiciky
identify the shared memory being accessed by a transadtion.
Xac'’s approach of remapping pages as they are modified isirto o
knowledge, the first portable and efficient solution to dieaans- [17]
actions on memory mapped data.

6. REFERENCES

[1] C.S. Ananian, K. Asanovic, B. C. Kuszmaul, C. E. Leiserso

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(18]

and S. Lie. Unbounded transactional memorylith Inter-

national Symposium on High-Performance Computer Archi-

tecture (HPCA-11)pp. 316-327, San Francisco, California,
Feb. 2005.

[2] C. S. Ananian and M. Rinard. Efficient object-based safev
transactions. IIiBynchronization and Concurrency in Object-
Oriented Languages (SCOQL$an Diego, California, Oct.
2005.

[38] A. W. Appel and K. Li. Virtual memory primitives for user
programs. IrProceedings of the Fourth International Confer-

ence on Architectural Support for Programming Languages

and Operating Systempp. 96-107, Santa Clara, California,
Apr. 1991.

[4] L. Arge and J. S. Vitter. Optimal dynamic interval manage
ment in external memory. IRroceedings of the 37th Annual

IEEE Symposium on Foundations of Computer Scieppe
560-569, Burlington, VT, Oct. 1996.

[5] R. Bayer and E. M. McCreight. Organization and mainte-

nance of large ordered indexe&cta Informatica 1(3):173—
189, Feb. 1972.

[6] M. A. Bender, E. Demaine, and M. Farach-Colton. Cache-

oblivious B-trees. IFFOCS pp. 399-409, 2000.

[19]

[20]

[21]

[22]

(23]

Department of Electrical Engineering and Computer Science
Massachusetts Institute of Technology, June 20@g./
bradley.csail.mit.edu/papers/Kasheff04 .

T. Knight. An architecture for mostly functional lanages. In
Proceedings of the 1986 ACM Conference on Lisp and Func-
tional Programming (LFP)pp. 105-112. ACM Press, 1986.
A. McDonald, J. Chung, B. Carlstrom, C. C. Minh, H. Chafi,
C. Kozyrakis, and K. Olukotun. Architectural semantics for
practical transactional memory. FRroceedings of the 33rd
Intl. Symposium on Computer Architecture (ISCBpston,
Massachusetts, June 2006.

D. J. McNameeVirtual Memory Alternatives for Transac-
tion Buffer Management in a Single-level StoRhD the-
sis, University of Washington, 1996ttp://www.cse.ogi.
edu/"dylan/Thesis.pdf

R. M. Metcalfe and D. R. Boggs. Ethernet: Distributed
packet switching for local computer network€ommun.
ACM, 19(7):395-404, July 1976.

K. E. Moore, J. Bobba, M. J. Moravan, M. D. Hill, and D. A.
Wood. LogTM: Log-based transactional memorylRth An-
nual International Symposium on High Performance Com-
puter Architecture (HPCA-12Austin, Texas, Feb. 2006.

[24] E. Moss and T. Hosking. Nested transactional memory:
Model and preliminary architecture sketches. Rroceed-
ings of the Workshop on Synchronization and Concurrency
in Object-Oriented Languages (SCOOL 0pp. 39-48, San
Diego, California, Oct. 2005.

[25] J. Nelson. External-memory search trees with fastriises.
Master’s thesis, Massachusetts Institute of Technolagye J
2006.

[26] H. Prokop. Cache-oblivious algorithms. Master’s theBe-
partment of Electrical Engineering and Computer Science,
Massachusetts Institute of Technology, June 1999.

[27] M. Satyanarayanan, H. H. Mashburn, P. Kumar, D. C. $teer
and J. J. Kistler. Lightweight recoverable virtual memory.
ACM Trans. Comput. Sysi.2(1):33-57, 1994.

[28] N. Shavit and D. Touitou. Software transactional membr
Proceedings of the 14th Annual ACM Symposium on Princi-
ples of Distributed pp. 204-213, Ottawa, Ontario, Canada,
1995.

[29] Sleepycat Software. The Berkeley databastp.://www.
sleepycat.com , 2005.

[30] J. Sukha. Memory-mapped transactions. Master's shesi
Massachusetts Institute of Technology Department of Elec-
trical Engineering and Computer Science, Cambridge, Mas-
sachusetts, May 2005.

