
Concurrent Cache-Oblivious B-Trees Using Transactional
Memory

Bradley C. Kuszmaul Jim Sukha

ABSTRACT
Cache-oblivious B-trees for data sets stored in external memory
represent an application that can benefit from the use of transac-
tional memory (TM), yet pose several challenges for existing TM
implementations. Using TM, a programmer can modify a serial,
in-memory cache-oblivious B-tree (CO B-tree) to support concur-
rent operations in a straightforward manner, by performingqueries
and updates as individual transactions. In this paper, we describe
three obstacles that must be overcome, however, before one can
implement an efficient external-memory concurrent CO B-tree.

First, CO B-trees must perform input/output (I/O) inside a trans-
action if the underlying data set is too large to fit in main memory.
Many TM implementations, however, prohibit such transaction I/O.
Second, a CO B-tree that operates on persistent data requires a TM
system that supports durable transactions if the programmer wishes
to be able to restore the data to a consistent state after a program
crash. Finally, CO B-trees operations generate megalithictransac-
tions, i.e., transactions that modify the entire data structure, because
performance guarantees on CO B-trees are only amortized bounds.
In most TM implementations, these transactions create a serial bot-
tleneck because they conflict with all other concurrent transactions
operating on the CO B-tree.

Of these three issues, we argue that a solution for the first two
issues of transaction I/O and durability is to use a TM systemthat
supports transactions on memory-mapped data. We demonstrate
the feasibility of this approach by using LibXac, a library that sup-
ports memory-mapped transactions, to convert an existing serial
implementation of a CO B-tree into a concurrent version withonly
a few hours of work. We believe this approach can be generalized,
that memory-mapped transactions can be used for other applica-
tions that concurrently access data stored in external memory.

1. INTRODUCTION
Whereas most hardware and software transactional memory sys-

tems (e.g., [1, 2, 14–17, 19, 20, 23, 28]) implement atomicity, con-
sistency, and isolation, but not durability (the so-called“ACID”
properties [13]), we have developed a software transactional system
that can provide full ACID properties for memory-mapped disk-
resident data. This paper reports our experience using a transac-
tional memory interface, with full ACID properties, to implement
a cache-oblivous B-Tree.

Today, traditional B-trees [5,10] are the dominant data structure
for disk-resident data because they perform well in practice. In the-
ory, traditional B-trees perform well in a performance model called
theDisk-Access Machine (DAM) Model[4], an idealized two-level
memory model in which all block transfers have unit cost, theblock
size isB, and the main-memory size isM. The choice ofB defines
the single granularity of optimization in the DAM model. Forex-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page.
WTW’06June 10th, 2006, Ottawa, Ontario
Copyright 2006 Bradley C. Kuszmaul and Jim Sukha.

ample, an optimized B-tree with fixed-sized keys has a branching
factor of Θ(B), and thus requiresO(logB N) memory transfers for
queries, which is optimal within the DAM model. The widespread
use of B-trees suggests that the DAM model is used implicitlyas a
simplifying approximation for writing disk-intensive code.

It is difficult to choose the right value forB, however. The block
size could be set to correspond to the CPU’s cache line size (per-
haps 64 bytes), to the disk’s advertised block size (perhaps4096
bytes), or possibly some larger value, such as the average track size
on disk (on the order of 1/4 megabyte for today’s disks). Ideally, a
B-tree would simultaneously minimize the number of cache lines,
the number of disk blocks, and the number of tracks accessed dur-
ing a query.

One way to avoid this block-size tuning problem is to employ
data structures that work well no matter what the block size is. A
cache-oblivious data structure is a data structure in which the pa-
rameters of the memory hierarchy (such as the cache-line size, the
cache size, the disk block size, or the main memory size) are not
coded explicitly, nor are they discovered by an active tuning pro-
cess. In contrast, acache aware data structure knows about the
memory hierarchy.

Theoretical developments on cache-oblivious data structures and
algorithms have shown in principal how to achieve nearly optimal
locality of reference simultaneously at every granularity. In the
cache-oblivious model[12, 26], an alternative to the DAM model,
one can prove results about unknown memory hierarchies and ex-
ploit data locality at every scale. The main idea of the cache-
oblivious model is that if it can be proved that some algorithm per-
forms a nearly optimal number of memory transfers in a two-level
model with unknown parameters, then the algorithm also performs
a nearly optimal number of memory transfers on any unknown,
multilevel memory hierarchy.

Our study focuses on the cache-oblivious B-tree (CO B-tree)
data structure described in [6], and how to use a transactional mem-
ory interface to support concurrent queries and updates on the tree.
Transactional memory is well-suited for programming a concurrent
CO B-tree, since, arguably, a serial CO B-tree is already more com-
plex to implement than a traditional serial B-tree. The CO B-tree
is representative of the kind of data structure that we can imple-
ment with transactional memory: a data structure that may bemore
complicated, but asymptotically more efficient than the traditional
alternative.

Furthermore, the cache-oblivious nature of the CO B-tree makes
it difficult to parallelize the search tree operations usingtraditional
methods for mutual exclusion. In a normal B-tree, the block size
B presents a natural granularity for locking. For a CO B-tree that
has no tunable parameters to set, however, the locking granularity
would also need to be specified at an abstract level. Transactional
memory interacts synergystically with cache-oblivious data struc-
tures because transactions allow the programmer to specifyparal-
lelism in an implementation-independent way.

A natural approach to programming a concurrent CO B-tree is to
convert every query or update operation of a serial CO B-treeinto
its own transaction. We encountered three obstacles to making this

strategy work.
The first obstacle for the simple concurrent CO B-tree is transac-

tion I/O. When the entire data set no longer fits into main memory,
a query or update transaction may need to perform I/O to retrieve
data from disk. If the programmer is working in a system with
two levels of storage, then the programmer must make explicit I/O
calls inside the transaction, typically through a buffer management
subsystem, to bring a new page into memory and kick an existing
page out. Buffer pool management adds another layer of complica-
tion to an already complex concurrent CO B-tree implementation.
Furthermore, calls to the buffer management system should not be
included as part of the transaction, since we can not easily undo
I/O operations. Many proposed TM systems have not specified a
programming interface or semantics for I/O operations thatoccur
inside a transaction.

The second obstacle is transaction durability. For a CO B-tree
that stores persistent data, the user would like the guarantee that
the stored data will not be corrupted if the program accessing disk
crashes. Database systems usually support durable transactions by
updating a log on disk after every transaction commit. The log
contains enough information to restore persistent data to aconsis-
tent state. Since TM systems already track the changes made by
a transaction, support for durable transactions would be a natural
extension.

The final obstacle with using TM on a CO B-tree is that the
CO B-tree sometimes generates what we callmegalithic transac-
tions. A megalithic transaction is one that modifies a huge amount
of state, effectively serializing performance. For the CO B-tree,
there are some updates that must rebuild the entire data structure,
producing a megalithic transaction. A megalithic transaction repre-
sents an extreme case because it runs for a long time and conflicts
with all other transactions.

To address the first two obstacles of transaction I/O and transac-
tion durability, we use LibXac, a page-based software transactional
memory system that we developed, to implement the CO B-tree.
LibXac supports transactions on memory-mapped data, allowing
any application to concurrently access data from the same file on
disk without explicit locking or I/O operations. We believeLib-
Xac’s interface is useful for generic concurrent external-memory
data structures, since the issues of transaction I/O and durability
are not specific to the CO B-tree.

More generally, external-memory data structures are a goodmatch
for a software transactional memory system (STM), because any
runtime overheads of the STM can be amortized against the cost of
disk I/O. Even if a memory access using an STM system costs an
order of magnitude more than a normal memory access this over-
head is small compared to the cost of a disk access for moderate-
size transactions.

This paper describes the issues we encountered when using a
transactional-memory interface to implement a concurrentcache-
oblivious B-tree. Section 2 describes LibXac, our page-based soft-
ware transactional memory implementation. Section 3 describes
our experience implementing the CO B-tree, and explains howwe
used LibXac to address the first issues of transaction I/O anddura-
bility. Section 4 describes the CO B-tree structure in greater detail,
explains how update operations can generate megalithic transac-
tions, and discusses possible solutions for this problem. Finally,
Section 5 concludes with a description of related work and direc-
tions for future work.

2. THE LibXac TM SYSTEM
We developed LibXac, a prototype page-based software transac-

tional memory implementation that addresses the two problems of

transaction I/O and durability. LibXac provides support for durable
memory-mapped transactions, allowing programmers to write code
that operates on persistent data as though it were stored in normal
memory. In this section, we present LibXac’s programming inter-
face and an overview of its implementation.

Programming Interface

In many operating systems, different processes can share mem-
ory by using the system callmmapto memory-map the same file
in shared mode. Programmers must still use locks or other syn-
chronization primitives to eliminate data races, however,since this
mechanism does not provide any concurrency control. Using Lib-
Xac, programmers transactionally memory-map a file usingxMmap,
and prevent data races by specifying transactions on the mapped re-
gion.

Figure 1 illustrates LibXac’s basic features with two programs
that access the same data concurrently. Both programs modify the
first 4-byte integer in filedata.db . The program on the left in-
crements the integer, and the program on the right decrements it.
When both programs run concurrently, the net effect is to leave the
integer unchanged. Without some sort of concurrency control how-
ever, a race condition could cause the data to be corrupted.

Line 1 initializes LibXac, specifying the directory where Lib-
Xac will store its log files.1 LibXac will write enough information
to guarantee that the data in the file can be restored to a consistent
state even if the program crashes during execution. Line 9 shuts
down LibXac.

Line 2 opens a shared memory segment by usingxMmap() to
memory-map a particular file. ThexMmap() function takes a file-
name and number of bytes to map as arguments, and returns a
pointer to the beginning of the shared region. LibXac allowscon-
currency at a page-level granularity, and requires that specified length
be a multiple of the page size.

Lines 3-8 contain the actual transaction. Line 5 is the actual body
of the transaction.

Transactions are delimited byxbegin() and xend() function
calls. Thexend() function returns a status code that specifies
whether the transaction was committed or aborted. If the trans-
action commits, then thewhile loop stops executing. Otherwise
the code invokes thebackoff() at Line 7, and then thewhile loop
tries to run the transaction again. The application programmer can
provide whatever implementation of thebackoff() function they
wish (for example, it might employ randomized exponential back-
off [22]).

When using LibXac, the control flow for a program always pro-
ceeds through fromxbegin to xend , even if the transaction is aborted.
It is the programmer’s responsibility to ensure thatxbegin() and
xend() function calls are properly paired, so that control flow does
not jump out of the transaction without first executingxend() . Lib-
Xac also provides anxValidate function that the programmer can
call in the middle of a transaction to check whether a transaction
will need to abort because of a transaction conflict. The program-
mer can then insert code to stop executing a transaction thatwill
not commit.

Nested transactions are automatically subsumed into the out-
ermost transaction. This mechanism allows programmers to call
functions inside a transaction that may themselves containa trans-
action. Anxend() call nested inside another transaction always
succeeds, since the subtransaction successfully “commits” with re-
spect to the outer transaction.

1LibXac can also be configured to support transactions that are not
durable.

0 /* Increment the 1st integer in data.db */
1 xInit("/logs");
2 memptr = (int*)xMmap("data.db", 4096);
3 while (1) {
4 xbegin();
5 memptr[0] ++;
6 if (xend() == COMMITTED) break;
7 backoff();
8 }
9 xShutdown();

10 /* Decrement the 1st integer in data.db */
11 xInit("/logs");
12 memptr = (int*)xMmap("data.db", 4096);
13 while (1) {
14 xbegin();
15 memptr[0] --;
16 if (xend() == COMMITTED) break;
17 backoff();
18 }
19 xShutdown();

Figure 1: Two programs that access shared data concurrently, using LibXac transactions.

Memory Model

LibXac’s memory model provides the standard transactionalcor-
rectness condition, that transactions areserializable. In fact, Lib-
Xac makes a stronger guarantee, that even transactions thatend
up aborting always see a consistent view of memory. Because
LibXac employs a variation of a multiversion concurrency control
algorithm [8], it can guarantee that an aborted transactionalways
sees a consistent view of the shared memory segment during execu-
tion, even if it conflicted with other transactions. Said differently,
the only distinction between committed and aborted transactions is
that a committed transaction atomically makes permanent changes
that are visible to other transactions, whereas an aborted transaction
atomically makes temporary changes that are never seen by other
transactions.

When a transaction is aborted, only changes to the shared seg-
ment roll back however. Changes to local variables or other mem-
ory remain, allowing programmers to retain information between
different attempts to execute a transaction. See [30] for more de-
tails LibXac’s memory model.

Implementation

LibXac is implemented on Linux, without any modifications tothe
kernel or special operating system support. See [30] for a more
thorough description of the implementation.

At a high-level LibXac executes transaction as follows.

1. When a transaction begins, the protection is set to “no access
allowed” on the entire memory-mapped region.

2. The transaction’s first attempt at reading (or writing) a page
causes a segmentation fault on that page. TheSEGFAULThan-
dler installed by LibXac maps the appropriate version of the
page into the transaction’s address space as read-only data.
LibXac relies on the ability to change the memory mapping
of a particular virtual page, which Linux supports, but some
operating systems may not.

3. When the transaction attempts to write to a page for the first
time, the system must handle a second segmentation fault
(because in Linux there is no easy way to distinguish between
reads and writes.) LibXac generates a new version of the
page and maps that version into the address space with read-
write permissions.

4. When thexend() function is invoked, the runtime deter-
mines whether the transaction can commit. If so, then a log
is generated of all the pages that were modified. That log in-
cludes a copy of both the old and new version of each page,
as well as a commit record. The memory map is then reset to
no-access.

5. Each transaction that modifies a page creates a new version
of the page. Eventually, after the runtime determines that no
transaction will ever need the version that is actually stored
in the original file, it copies the youngest committed version
of the page it can back to the original file. Thus, if the trans-

action processing becomes quiescent, the original file will
contain the final version of the database.

6. After a committed version of a page is copied back into the
original file, it eventually gets written to disk, either implic-
itly by the operating system’s page eviction policy, or explic-
itly by a checkpoint operation.

During a transaction commit, our implementation performs the
synchronous disk write required for logging, but we have notyet
implemented checkpointing or a recovery program.

3. TRANSACTION I/O AND DURABILITY
In this section, we explain how transactional memory-mapping

solves the issues of transaction I/O and durability, and describe our
experience using LibXac to implement a CO B-tree.

A typical approach to managing disk-resident data is to pro-
gram in a two-level store model with explicit disk I/O, managing a
cache explicitly. Programming a two-level store is laborious, how-
ever, because the programmer must constantly translate from disk
addresses to memory addresses. Moreover, programming cache-
oblivious file structures using a two-level store is problematic, be-
cause the nature of cache-obliviousness precludes defininga par-
ticular block size for reading and writing.

We began with a serial implementation of a CO B-tree [18] that
employs memory mapping, thereby handling the I/O issue auto-
matically in the serial case. The Unixmmapfunction call provides
the illusion of a single-level store to the programmer. Themmap
function maps the disk-resident data into the virtual address space
of the program, providing us with a large array of bytes into which
we embed our data structure. Thus, the CO B-tree code can rely
on the underlying operating system to handle I/O instead of calling
explicit I/O operations.

The fact that LibXac’s interface is based on memory-mapping
also solves the problem of transaction I/O for a concurrent CO B-
tree. The only additional complication concurrency introduces is
the possibility of transactions with I/O aborting. Since LibXac only
tracks operations on the mapped shared memory segment, however,
the I/O operations are automatically excluded from the transaction.
Thus, the application programmer does not need to worry about a
transaction being aborted in the middle of an I/O operation.

LibXac also satisfies the requirement for transaction durability
because it logs the contents of pages that a transactions modifies
and synchronously writes the commit record to disk when a trans-
action commits. Our prototype system does not have recoveryim-
plemented, but it saves enough information to the log to allow a
recovery program to restore thexMmap’ed file to a consistent state.

Because of the simplicity of LibXac’s programming interface,
starting with LibXac and a serial memory-mapped CO B-tree, we
were able to easily create a CO B-tree that supports concurrent
queries and updates with only a few hours of work. To demon-
strate that our approach is practical, we ran a simple experiment
performing 100,000 inserts into various implementations of a con-
current B-tree. Each insertion is performed as a durable transaction,

with a randomly chosen 8-byte integer as the key. In a run withP
processes, each process performed either⌊ 100000

P ⌋ or ⌊ 100000
P ⌋+1

insertions.
We ran this test in three different environments: in a normalB+-

tree implemented using LibXac, a CO B-tree using LibXac, andon
a Berkeley DB [29] B-tree. The block size for both B-trees is 4096
bytes, and the keys of all B-trees are actually padded to 512 bytes.2

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 0 2 4 6 8 10 12

T
ra

ns
ac

tio
ns

 P
er

 S
ec

on
d

Processes

Concurrent B-Tree Inserts

COB-Tree
B-Tree

Berkeley DB B-tree

Figure 2: 100,000 Inserts on concurrent B-trees performed by multiple
processes.

Figure 2 presents preliminary performance results. Note that the
poor performance of the two B-trees relative to the CO B-treeis
likely due to the fact thatB was not properly tuned. In practice, the
effective value ofB should be much larger than the default 4K page
size specified by Linux.

Since each transaction in this case touches relatively few pages,
the cost of a transaction is dominated by the cost of the synchronous
disk write during commit. Even though our experiment is run on a
machine with only 4 processors and a single disk, all three B-trees
are able to achieve speedup using multiple processes because they
all implement group commit [11].

We do not interpret these results as evidence that one system
(LibXac or Berkeley DB) or data structure (CO B-tree vs. normal
B-tree) necessarily outperforms the other. Our claim is only that
a system that supports memory-mapped transactions and which is
competitive with the traditional alternatives can be feasible to im-
plement in practice.

4. MEGALITHIC TRANSACTIONS
Of the three problems we described for a CO B-tree implemented

using transactional memory, the problem of megalithic transactions
is the most troublesome. In this section, we describe the CO B-tree
data structure of [6] in more detail, explain how update operations
give rise to megalithic transactions, and briefly comment onways
to address this issue.

Rather than explaining the entire CO B-tree data structure,we
focus on a piece of the data structure, thepacked memory array
(PMA), that illustrates the problems we faced. A PMA is an array
of sizeO(N), which dynamically maintainsN values in sorted or-
der. The values are kept approximately evenly spaced, with small
gaps to allow insertions without having to move too many elements
on average. Occasionally a large amount of data needs to be moved,

2We ran our experiments on a 4-processor Opteron 1.4Ghz 840
with 16 GB of RAM, running Suse Linux 9.1 and the 2.6.5-
7.155.29-smp kernel. The system had an IBM Ultrastar 146GB
10,000RPM disk with an ext3 filesystem. We placed the logs and
the data on the same disk.

but if the gaps are managed properly [6], the average cost of inser-
tions remains small. The CO B-tree stores its values in a PMA,and
uses a static cache-oblivious search tree as an index into the PMA.
Thus, an insertion into the CO B-tree involves an insertion into the
PMA and an update of the index.

We only sketch the algorithm for insertion into the PMA (see [6]
for more details). To insert an element into a PMA, if there isa
gap between the inserted element’s neighbors, then we insert the
element into a gap position. Otherwise, we look for a neighborhood
around the insertion point that has lowdensity, that is, look for
a subarray that is not storing too many data elements. Given a
sufficiently sparse neighborhood, werebalancethe neighborhood,
i.e., space out the the elements evenly. In order to get rebalances
to run quickly on average, one must apply stricter density rules for
larger neighborhoods. The idea is that because rebalancinga large
neighborhood is expensive, after the rebalance we need a greater
return, i.e., a sparser final neighborhood. Once the neighborhood
corresponding to theentire PMA is above the maximum density
threshold, we double the size of the array and rebuild the entire
PMA, and thus the entire CO B-tree.

For the CO B-tree, updates that must rebalance the entire PMA,
or at least a large fraction of it, produce what we call a megalithic
transaction. A megalithic transaction is one that modifies ahuge
amount of state, effectively serializing performance. A megalithic
transaction represents the extreme case because it is a large trans-
action that conflicts with all other transactions. Thus, some con-
tention management strategy [16] is needed to avoid livelock when
transactions conflict.

An operation that modifies all of memory does not necessarily
cause performance problems in the serial case, but it does cause
problems in the parallel case. For the serial case, the CO B-tree
we used has good amortized performance. Although the average
cost of an update is small, some updates are expensive. In a serial
data structure, the cost of the expensive operation can be amortized
against previous operations. In the parallel implementation, the ex-
pensive updates cause performance problems because they increase
the critical path of the program, reducing the average parallelism.

If updates are infrequent compared to searches, their performance
impact can be mitigated by using a multiversion concurrencycon-
trol [8], in which read-only transactions never conflict with other
transactions. Our LibXac prototype provides multiversioncon-
currency control and allows the user to specify special read-only
transactions that will always succeed. But although we havenot
confirmed this fact experimentally, this particular CO B-tree data
structure appears to have limitations in the parallelism ofits update
operations.

The best solution for a megalithic transaction is to eliminate it
altogether, through algorithmic cleverness. Ideally, deamortizing
the operations on a CO B-tree would make the footprint of every
update transaction small, thereby eliminating any megalithic trans-
actions. Another approach may be to find a way to split up the
large rebalancing operations of the CO B-tree’s PMA into multiple
transactions. The worst-case time for a single update may still be
large in this case, but that update would at least not block all other
concurrent transactions from committing.

Since improving or deamortizing a data structure often makethe
structure more complicated, transactional memory can helpus by
simplifying the implementation. In general, programming with a
transational memory interface instead of with explicit I/Omakes
it plausible that a programmer could implement an even more so-
phisticated data structure such as acache-oblivious lookahead ar-
ray [25] (which provides dramatic performance improvements for
workloads with many more insertions than searches) or acache-

oblivious string B-tree [7] (which can handle huge keys efficiently).
Another approach to working around megalithic transactions is

to use some sort of loophole in the strict transactional semantics,
such as the release mechanism [16] or so-called open-transactions
[24].

5. RELATED AND FUTURE WORK
Using LibXac, we are able to overcome the obstacles of transac-

tional I/O and durability for a concurrent CO B-tree implemented
using transactional memory.

Our experimental results suggest that LibXac provides accept-
able performance for durable transactions. We would pay a high
penalty in performance, however, if we were to use LibXac forthe
sort of non-durable transactions that many transactional-memory
systems provide. The LibXac runtime must handle aSEGFAULT
and make anmmapsystem call every time a transaction touches a
new page. This method for access detection introduces a per-page
overhead that on some systems can be 10µs or more. With operat-
ing system support to speed upSEGFAULThandlers, or introduction
of a system call that reports which pages a transaction has read or
written, one might be able to use a system such as LibXac for effi-
cient non-durable transactions.

Without operating system or compiler support, implementing
durable transactions on memory-mapped data has been viewedas
an open research problem [3, 9]. The problem is that the operat-
ing system may write memory-mapped data back to disk at any
time. The correctness of a transaction logging scheme usually re-
quires that the data be written back to disk only after the loghas
been written, but with memory mapping, the operating systemmay
write the data back too soon. A relatively slow implementation
of portable transactions for single-level stores that incurs a syn-
chronous disk write after every page accessed by a transaction is de-
scribed by [21]. Recoverable virtual memory [27] supports durable
transactions, but the interface requires programmers to explicitly
identify the shared memory being accessed by a transaction.Lib-
Xac’s approach of remapping pages as they are modified is, to our
knowledge, the first portable and efficient solution to durable trans-
actions on memory mapped data.

6. REFERENCES
[1] C. S. Ananian, K. Asanovic, B. C. Kuszmaul, C. E. Leiserson,

and S. Lie. Unbounded transactional memory. In11th Inter-
national Symposium on High-Performance Computer Archi-
tecture (HPCA-11), pp. 316–327, San Francisco, California,
Feb. 2005.

[2] C. S. Ananian and M. Rinard. Efficient object-based software
transactions. InSynchronization and Concurrency in Object-
Oriented Languages (SCOOL), San Diego, California, Oct.
2005.

[3] A. W. Appel and K. Li. Virtual memory primitives for user
programs. InProceedings of the Fourth International Confer-
ence on Architectural Support for Programming Languages
and Operating Systems, pp. 96–107, Santa Clara, California,
Apr. 1991.

[4] L. Arge and J. S. Vitter. Optimal dynamic interval manage-
ment in external memory. InProceedings of the 37th Annual
IEEE Symposium on Foundations of Computer Science, pp.
560–569, Burlington, VT, Oct. 1996.

[5] R. Bayer and E. M. McCreight. Organization and mainte-
nance of large ordered indexes.Acta Informatica, 1(3):173–
189, Feb. 1972.

[6] M. A. Bender, E. Demaine, and M. Farach-Colton. Cache-
oblivious B-trees. InFOCS, pp. 399–409, 2000.

[7] M. A. Bender, M. Farach-Colton, and B. C. Kuszmaul. Cache-
oblivious string b-trees. InTo appear in PODS’06, Chicago,
Illinois, June 2006.

[8] P. A. Bernstein and N. Goodman. Multiversion concurren-
cy control—theory and algorithms.ACM Transaction on
Database Systems (TODS), 8(4):465–483, Dec. 1983.

[9] P. A. Buhr and A. K. Goel. uDatabase annotated reference
manual, version 1.0. Technical report, Department of Com-
puter Science, University of Waterloo, Waterloo, Ontario,
Canada, N2L 3G1, Sept. 1998.ftp://plg.uwaterloo.ca/
pub/uDatabase/uDatabase.ps.gz .

[10] D. Comer. The ubiquitous B-tree.ACM Computing Surveys,
11(2):121–137, June 1979.

[11] D. J. DeWitt, R. H. Katz, F. Olken, L. D. Shapiro, M. R.
Stonebraker, and D. Wood. Implementation techniques for
main memory database systems. InProceedings of the 1984
ACM SIGMOD International Conference on Management of
Data, pp. 1–8, Boston, Massachusetts, 18–21 June 1984.

[12] M. Frigo. Portable High-Performance Programs. PhD thesis,
MIT EECS, June 1999.

[13] J. Gray. The transaction concept: Virtues and limitations. In
Seventh International Conference of Very Large Data Bases,
pp. 144–154, Sept. 1981.

[14] L. Hammond, V. Wong, M. Chen, B. D. Carlstrom, J. D.
Davis, B. Hertzberg, M. K. Prabhu, H. Wijaya, C. Kozyrakis,
and K. Olukotun. Transactional memory coherence and con-
sistency. InProceedings of the 31st Annual International
Symposium on Computer Architecture (ISCA ’2004), pp. 102–
113, Munich, Germany, 19–23 June 1997.

[15] T. Harris and K. Fraser. Language support for lightweight
transactions. InOOPSLA, pp. 388–402, Anaheim, California,
Oct. 2003.

[16] M. Herlihy, V. Luchangco, M. Moir, and W. N. Scherer, III.
Software transactional memory for dynamic-sized data struc-
tures. InProceedings of the ACM SIGACT-SIGOPS Sympo-
sium on Principles of Distributed Computing, pp. 92–101,
2003.

[17] M. P. Herlihy and J. Moss. Transactional support for lock-free
data structures. Technical Report 92/07, Digital Cambridge
Research Lab, One Kendall Square, Cambridge, MA 02139,
Dec. 1992. ftp://ftp.cs.umass.edu/pub/osl/papers/
crl-92-07.ps.Z .

[18] Z. Kasheff. Cache-oblivious dynamic search trees. M.eng.,
Department of Electrical Engineering and Computer Science,
Massachusetts Institute of Technology, June 2004.http://
bradley.csail.mit.edu/papers/Kasheff04 .

[19] T. Knight. An architecture for mostly functional languages. In
Proceedings of the 1986 ACM Conference on Lisp and Func-
tional Programming (LFP), pp. 105–112. ACM Press, 1986.

[20] A. McDonald, J. Chung, B. Carlstrom, C. C. Minh, H. Chafi,
C. Kozyrakis, and K. Olukotun. Architectural semantics for
practical transactional memory. InProceedings of the 33rd
Intl. Symposium on Computer Architecture (ISCA), Boston,
Massachusetts, June 2006.

[21] D. J. McNamee.Virtual Memory Alternatives for Transac-
tion Buffer Management in a Single-level Store. PhD the-
sis, University of Washington, 1996.http://www.cse.ogi.
edu/˜dylan/Thesis.pdf .

[22] R. M. Metcalfe and D. R. Boggs. Ethernet: Distributed
packet switching for local computer networks.Commun.
ACM, 19(7):395–404, July 1976.

[23] K. E. Moore, J. Bobba, M. J. Moravan, M. D. Hill, and D. A.
Wood. LogTM: Log-based transactional memory. In12th An-
nual International Symposium on High Performance Com-
puter Architecture (HPCA-12), Austin, Texas, Feb. 2006.

[24] E. Moss and T. Hosking. Nested transactional memory:
Model and preliminary architecture sketches. InProceed-
ings of the Workshop on Synchronization and Concurrency
in Object-Oriented Languages (SCOOL 05), pp. 39–48, San
Diego, California, Oct. 2005.

[25] J. Nelson. External-memory search trees with fast insertions.
Master’s thesis, Massachusetts Institute of Technology, June
2006.

[26] H. Prokop. Cache-oblivious algorithms. Master’s thesis, De-
partment of Electrical Engineering and Computer Science,
Massachusetts Institute of Technology, June 1999.

[27] M. Satyanarayanan, H. H. Mashburn, P. Kumar, D. C. Steere,
and J. J. Kistler. Lightweight recoverable virtual memory.
ACM Trans. Comput. Syst., 12(1):33–57, 1994.

[28] N. Shavit and D. Touitou. Software transactional memory. In
Proceedings of the 14th Annual ACM Symposium on Princi-
ples of Distributed, pp. 204–213, Ottawa, Ontario, Canada,
1995.

[29] Sleepycat Software. The Berkeley database.http://www.
sleepycat.com , 2005.

[30] J. Sukha. Memory-mapped transactions. Master’s thesis,
Massachusetts Institute of Technology Department of Elec-
trical Engineering and Computer Science, Cambridge, Mas-
sachusetts, May 2005.

