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Abstract

The StarTech massively parallel chess program, running
on a 512-processor Connection Machine CM-5 supercom-
puter, tied for third place at the 1993 ACM International
Computer Chess Championship. StarTech employs the
Jamboree search algorithm, a natural extension of J. Pearl’s
Scout search algorithm, to find parallelism in game-tree
searches. StarTech’s work-stealing scheduler distributes
the work specified by the search algorithm across the pro-
cessors of the CM-5. StarTech uses a global transposition
table shared among the processors. StarTech has an infor-
mally estimated rating of over 2400 USCF.

Two performance measures help in understanding the
performance of the StarTech program: the work,

�
, and

the critical path length, � . The Jamboree search algorithm
used in StarTech seems to perform about 2 to 3 times more
work than does our best serial implementation. The critical
path length, under tournament conditions, is less than 0.1%
of the total work, yielding an average parallelism of over
1000. The StarTech scheduler achieves actual performance
of approximately ��� 1 � 02

���	��

1 � 5 � on

�
processors.

The critical path and work can be used to tune performance
by allowing development of the program on a small, readily
accessable, machine while predicting the performance on
a big, tournament-sized, machine.

1 Introduction

Computer chess provides a good testbed for understanding
dynamic multithreaded computations. The parallelism in
computer chess is derived from a dynamic expansion of
a highly irregular game-tree, which has historically made
it difficult to implement parallel computer chess programs
and other dynamic applications. To investigate how to
program such applications, I engineered a parallel chess
program called StarTech (pronounced “Star-Tek”) on the
Connection Machine CM-5. Even though my primary area
of research is in parallel computing rather than computer
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chess, the StarTech project has produced some interest-
ing computer chess technology. This paper explains how
StarTech works and how it performs.

The chess knowledge of StarTech—which includes the
opening book of precomputed moves at the beginning
of the game, the endgame databases, the static position-
evaluation function, and the time-control strategy—is
based on H. Berliner’s Hitech program [BE89]. Hitech
runs on special-purpose hardware built in the mid 1980’s
and searches in the range of 100,000 to 200,000 positions
per second. Berliner provided me with an implementa-
tion of Hitech written in C (without any search extensions
except for quiescence with check extension) that runs at
2,000 to 5,000 positions per second. I built a parallel pro-
gram using Berliner’s serial code and reimplemented parts
of the serial program to make it faster. Both the serial and
parallel versions of my program are called StarTech. Star-
Tech, unlike Hitech, does not use the null-move search,
which probably costs StarTetch about a factor of two in
performance. StarTech uses the same search extensions in
both the serial and the parallel implementations.

I divided the programming problem into two parts: an
application and a scheduler. The application can be thought
of as a dynamically unfolding tree of chess positions. There
are dependencies among the positions. A position may not
be searched until the positions it depends on have been
searched. The application specifies the shape of the tree
and the dependencies between the positions. The sched-
uler, on the other hand, takes such an application and de-
cides on which processor each position should be evalu-
ated, and when the evaluation should be done. The appli-
cation’s job is to expose parallelism. The scheduler’s job is
to run the program as fast as possible, given the parallelism
in the application. Thus, StarTech is conceptually divided
into two parts: The parallel game tree search algorithm
(the application), which specifies what can be done in par-
allel; and the scheduler, which specifies when and where
the work will actually be performed.

The remainder of this paper is organized as follows. Sec-
tion 2 describes how StarTech works explaining the Jam-
boree game-tree search algorithm and sketching the imple-
mentation of the global transposition table. A performance
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study, relating StarTech’s performance to two fundamental
measures of parallel performance, is presented in Section 3.
Section 4 shows how I used those metrics to improve the
performance of StarTech. Section 5 concludes with some
remarks on the challenges of parallel computer chess.

2 How StarTech Works

Before examining the performance of StarTech in Sec-
tion 3, this section explains how StarTech works. First,
an overall description of how StarTech searches in par-
allel is presented. Then, the Jamboree algorithm is ex-
plained, starting with a review of the serial Scout search
algorithm. Next, the board-representation problem, which
is faced by the implementors of any parallel chess program,
is illustrated by showing how the repeated-position test is
implemented in StarTech. Finally the implementation of
StarTech’s global transposition table is explained.

StarTech’s game-tree search algorithm is called Jam-
boree search. The basic idea behind Jamboree search is to
do the following operations on a position in the game tree
that has

�
children:

� The value of the first child of the position is deter-
mined (by a recursive call to the search algorithm.)

� Then, in parallel, all of the remaining
���

1 children
are tested to verify that they are not better alternatives
than the first child.

� Any children that turn out to be better than the first
child are sequentially searched to determine which is
the best.

If the move ordering is best-first, i.e., the first move consid-
ered is always better than the other moves, then all of the
tests succeed, and the position is evaluated quickly and ef-
ficiently. We expect that the tests usually succeed, because
the move ordering is often best-first due to the application
of several chess-specific move-ordering heuristics.

This approach to parallel search is quite natural, and
variants of it have been used by several other paral-
lel chess programs, such as Cray Blitz [HSN89] and
Zugzwang [FMM93]. Still others have proposed or
analyzed variations of this style of game tree search
[ABD82, MC82, Fis84, Hsu90]. My Ph.D. thesis [Kus94]
provides a more complete discussion of how Jamboree
search is related to other search algorithms. I do not claim
that Jamboree search is an entirely novel search algorithm,
although some of the details of my algorithm are quite
different from the details of related algorithms. Instead, I
view the algorithm as a good testbed for understanding how
to design scalable, predictable, multithreaded programs.

To distribute work among the CM-5 processors, Star-
Tech uses a randomized work-stealing approach, in which
idle processors request work. Processors run code that is

nearly serial. When a processor discovers some work that
could be done in parallel, it posts the work into a local
data structure. When a processor runs out of work locally,
it sends a message to another processor, selected at ran-
dom, and removes work from that processor’s collection
of posted work. The CM-5 has sufficient interprocessor
communications performance that there is no appreciable
advantage in trying to steal locally rather than from a ran-
dom processor, and the randomized approach to scheduling
is provably efficient [BL94].

Scout Search

Before delving into the details of Jamboree search, let
us review the serial Scout search algorithm. For a parallel
chess program, one needs an algorithm that both effectively
prunes the tree and can be parallelized. I started with
a variant on serial � - � search, called Scout search, and
modified it to be a parallel algorithm.

Figure 1 shows the serial Scout search algorithm. (Many
chess researchers refer to the Scout algorithm as “PV
Search”, but it appears that J. Pearl’s “Scout” terminology
takes precedence [Pea80].) Procedure scout is similar to
the familiar � - � search algorithm which takes paramaters
� and � used to prune the search [KM75]. The Scout al-
gorithm, however, when considering any child that is not
the first child, first performs a test of the child to determine
if the child is no better a move than the best move seen so
far. If the child is no better, the test is said to succeed. If
the child is determined to be better than the best move so
far, the test is said to fail, and the child is searched again
(valued) to determine its true value. The idea is that testing
a position is cheaper than determining its true value.

The Scout algorithm performs tests on positions to see
if they are greater than or less than a given value. A test is
performed by using an empty-window search on a position.
For integer scores one uses the values � � � � 1 � and � � ���
as the parameters of the recursive search, as shown on
Line (S9). A child is tested to see if it is worse than the
best move so far, and if the test fails on Line (S12) (i.e.,
the move is better than the best move seen so far), then the
child is valued, on Line (S13), using a non-empty window
to determine its true value.

If it happens to be the case that � 
 1 	
� , then
Line (S13) never executes because ���� implies ���� ,
which causes the return on Line (S11) to execute. Conse-
quently, the same code for Algorithm scout can be used
for the testing and for the valuing of a position.

Line S10, which raises the best score seen so far accord-
ing to the value returned by a test, is necessary to insure
that if the test fails low (i.e., if the test succeeds), then the
value returned is an upper bound to the score. If a test were
to return a score that is not a proper bound to its parent,
then the parent might return immediately with the wrong
answer when the parent performs the check of the returned
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(S1) Define scout � ��� � � ��� as
(S2) If � is a leaf then return static eval � � � .
(S3) Let

���� the children of � , and
(S4)

� � � scout � � 0
� � � � � � � � ;; Value

(S5) ;; The first child’s valuation may cause this node to fail high.
(S6) If

� � � then return
�
.

(S7) If
� � � then set � � �

.
(S8) For � from 1 below 	 �� 	 do: ;; the rest of the children
(S9) Let � � � scout � ���
�� � � � 1 � � ��� � ;; Test
(S10) If � � �

then set
� � � .

(S11) If � � � then return � . ;; Fail High
(S12) If � � � then ;; Test failed
(S13) Set � � � scout � �� 
 � � � � � ��� . ;; Research for value
(S14) If � � � then return � . ;; Fail High
(S15) If � � � then set � � � .
(S16) If � � �

then set
� � � .

(S17) enddo
(S18) return

�
.

Figure 1: Algorithm scout.

score against � on Line S11.
A test is typically cheaper to execute than a valuation be-

cause the � - � window is smaller, which means that more
of the tree is likely to be pruned. If the test succeeds,
then algorithm scout has saved some work, because test-
ing a node is cheaper than finding its exact value. If the
test fails, then scout searches the node twice and has
squandered some work. Algorithm scout bets that the
tests will succeed often enough to outweigh the extra cost
of any nodes that must be searched twice, and empirical
evidence [Pea80] justifies its dominance as the search algo-
rithm of choice in modern serial chess-playing programs.

Jamboree Search

The Jamboree algorithm, shown in Figure 2, is a paral-
lelized version of the Scout search algorithm. The idea is
that all of the testing of the children is done in parallel,
and any tests that fail are sequentially valued. A paral-
lel loop construct, in which all of the iterations of a loop
run concurrently, appears on Line (J7). Some synchro-
nization between various iterations of the loop appears on
Lines J12 and J18. The Jamboree algorithm sequentializes
the full-window searches for values, because, whereas we
are willing to take a chance that an empty window search
will be squandered work, we are not willing to take the
chance that a full-window search (which does not prune
very much) will be squandered work. Such a squandered
full-window search could lead us to search the entire tree,
which is much larger than the pruned tree we want to
search.

The abort-and-return statements that appear on Lines
J10 and J15 return a value from Procedure jamboree

and abort any of the children that are still running. Such
an abort is needed when the procedure has found a value
that can be returned, in which case there is no advantage
to allowing the procedure and its children to continue to
run, using up processor and memory resources. The abort
causes any children that are running in parallel to abort their
children recursively, which has the effect of deallocating
the entire subtree.

Parallel search of game-trees is difficult because the most
efficient algorithms for game-tree search are inherently
serial. We obtain parallelism by performing the tests in
parallel, but those tests may not all be necessary in a serial
execution order. In order to get any parallelism, we must
take the risk of performing extra work that a good serial
program would avoid. By taking our chances with the
tests rather than the valuations, we minimize the risk of
performing a huge amount of wasted work.

Copying Data for Parallel Search

Most serial chess programs use data structures that make
them difficult to parallelize. For example, a typical se-
rial program uses many global variables. Every time a
subsearch is started the global variables are modified, and
when the subsearch finishes, the modifications to the global
variables are undone. This approach efficiently supports
board representations that are large, as long as relatively
few bytes change on any given move. It can be difficult to
parallelize a program written in this style, however, since
when a steal-request arrives, there is no explicit represen-
tation of the boards that need to be stolen from the middle
of the search tree.

StarTech addresses this problem by copying the board
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(J1) Define jamboree � ��� � � � � as
(J2) If � is a leaf then return static eval � � � .
(J3) Let

���� the children of � , and
(J4)

� � � jamboree � � 0
� � � � � � � �

(J5) If
� � � then return

�
.

(J6) If
� � � then set � � �

.
(J7) In Parallel: For � from 1 below 	 �� 	 do:
(J8) Let � � � jamboree � ���
 � � � � 1 � � ��� �
(J9) If � � �

then set
� � � .

(J10) If � � � then abort-and-return � .
(J11) If � � � then
(J12) Wait for the completion of all previous iterations
(J13) of the parallel loop.
(J14) Set � � � jamboree � �� 
 � � � � � � � . ;; Research for value
(J15) If � � � then abort-and-return � .
(J16) If � � � then set � � � .
(J17) If � � �

then set
� � � .

(J18) Note the completion of the � th iteration of the parallel loop.
(J19) enddo
(J20) return

�
.

Figure 2: Algorithm jamboree.

state when a subsearch is started. Thus, when a child
completes, the parent still has its original, unmodified,
copy of the board, and therefore no “unmodify” needs to
be done. When the board is copied, however, every byte
of the board representation must be copied, whether it is
modified or not.

The board state can include some things that one might
not expect. Consider the problem of detecting repeated po-
sitions. Most serial programs use a hash table that stores
all the positions in the game history and the variation lead-
ing to a particular position. The hash table can be incre-
mentally modified and unmodified. Somehow the set of
previous positions must be represented in the board state.

StarTech represents the positions in the variation with an
array of hash keys (one key for each position.) This array
of positions can be thought of as the part of the board-
state. (The entire game is broadcast to all the processors,
so that the processors are able to examine the positions in
the actual game without copying those positions repeat-
edly.) When a position is stolen, the sequence of positions
between the root of the search tree and the stolen position
is sent through the data network to the stealing processor.

The cost of copying the move history is not as great
as one might expect. Only the hashes of the positions
encountered since the last irreversible move need to be
copied. In StarTech, the average length of the repeated-
position history that is actually copied is less than one,
partly because in quiescence search most of the moves are
irreversible.

The Global Transposition Table

StarTech, like most chess programs, uses a transposition
table to cache results of recent searches. For a search from
a given position to a certain depth, the transposition table
indicates the value of the position and the best move for that
position. The transposition table is indexed by a hash key
derived from the position. Whenever the search routine
finishes with a position, it modifies the transposition table
by writing the value back. (It may decide that the old value
stored was better to keep than the new value.) Whenever
the search routine examines a position, the routine first
checks to see if the position’s value has been stored in the
transposition table. If the value is present, then the routine
can simply return the value. Sometimes, the value for the
position is not present, but a best move is present for a
search to a shallower depth. In this case the best move
for the shallow depth can be used to improve the move
ordering. Since the Jamboree search algorithm depends
on good move ordering, the transposition table is very
important to the performance of StarTech.

Program StarTech uses a global transposition table dis-
tributed across all the nodes of the machine, as shown in
Figure 3. To access the transposition table, which requires
communicating from one node to another, a message-
passing protocol is used. The hash key used to index
the table is divided into two parts: a processor number and
a memory offset. When a processor needs to look up a
position in the table, it sends a message to the processor
named by the hash key, and that processor responds with a
message containing the contents of the table entry. (A sim-
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Offset

P0 P512P1 P2 P3 P4 P5

Processor

M0

M1

M2

M3

M4

M2097152

processor memory offset collision resolution bitsHash Key

Table element collision resolution bits search depth best move lower bound upper bound

Globally Distributed Transposition Table

Figure 3: The Startech transposition table is globally distributed. The hash key for a position is divided into a processor
number, memory offset, and collision resolution bits. The processor number and memory offset identify a unique
table element in the machine. The collision resolution bits discriminate between positions that map to the same table
element. The table element contains the depth to which the tree was searched, the best move, a lower bound to the
value of the position, and an upper bound to the value of the position.

ilar transposition table scheme is used by the Zugzwang
parallel chess program [FMM93].)

Historically parallel chess programs have often avoided
global transposition tables. F. Popowich and T. Marsland
concluded that local transposition tables are better than
global transposition tables [PM83]. Local transposition
tables do not incur any message-passing overhead, but lo-
cal transposition tables have a much lower hit rate than
global transposition tables. With message passing over-
heads that measure in the tens of milliseconds, Popowich
and Marsland were forced to choose between bad perfor-
mance due to message-passing costs, or bad performance
due to poor transposition table effectiveness. The decision
is much easier for StarTech, which uses low-overhead (10
microsecond) messages on the CM-5. (Similarly, Cray
Blitz uses a global transposition table because accessing
global memory is also inexpensive on a Cray supercom-
puter [HSN89].)

3 The Performance of StarTech

The previous section explained how StarTech works. This
section explores the performance of StarTech. We start
by estimating StarTech’s rating using a ratings estimation
benchmark. Then, by using two fundamental parallel per-
formance metrics, the work and the critical path length, we
gain a deeper understanding of StarTech’s performance.
Finally, we present a few analytical results on the Jam-
boree search algorithm.

Estimating StarTech’s Rating

The most common questions about StarTech’s performance
are “What is StarTech’s Rating?” and “How much real per-
formance improvement does StarTech get by using more
processors?” This section attempts to answer those ques-
tions. The standard way to determine the rating of a chess
player is to play lots of games. Since playing games is
very time consuming, I use a set of benchmark prob-
lems designed by I.M. L. Kaufman [Kau92, Kau93] to
estimate StarTech’s performance using the Elo rating sys-
tem [Elo78]. Kaufman cautions against misuse of his rat-
ings estimator, for example by tuning a program to do well
against only the benchmark problems. Since StarTech has
not been tuned against Kaufman’s benchmark, we can get
some idea of StarTech’s rating by using Kaufman’s esti-
mator.

To obtain an estimated Elo rating for a program, Kauf-
man uses 25 chess positions (20 tactical, 5 positional), each
of which has a correct answer. To obtain an estimated rat-
ing, one measures the time it takes for the program to find
Kaufman’s correct answer for each position. Then, one
throws away the worst 5 times and sums up the remaining
times. Let

�
20 be the sum of the times, in seconds, to solve

the fastest 20 positions. Given
�

20, Kaufman estimates the
USCF rating as

USCF Rating � 2930
�

200 � log10
�
20
� (1)

which means that a factor of 10 in performance is estimated
to be worth 200 ratings points. In addition to looking at
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Trans- Positions Time Estimated
position Visited (seconds) Rating

Table top 20
Entries

0 161,625,376 23337.14 2056
216 94,409,196 13506.36 2104
217 85,753,262 12670.01 2109
218 76,498,040 10925.46 2122
219 65,568,814 9605.36 2133
220 55,910,651 8040.08 2149
221 48,256,980 7138.08 2159
222 42,627,585 5799.31 2177
223 40,805,974 6120.18 2173
224 40,805,974 6364.99 2169

Figure 4: Performance of my best serial implementation
of StarTech as a function of transposition table size. The
number of chess positions in the search tree is shown,
along with the time in seconds, and, the estimated rating
using Kaufman’s ratings estimation function, given by
Equation 1.

the fast 20 positions, I also find it interesting to look at the
sum of the times for all 25 positions.

I wanted to measure the improved rating of StarTech
as a function of the number of processors, but first I had
to isolate other factors. The biggest other factor is the
effect of the transposition-table size which varies with the
number of processors.

Hsu argues [Hsu90] that if one increases the size of the
transposition table along with the number of processors,
then the results are suspect. Hsu states that increasing
the transposition table size by a factor of 256 can easily
improve the performance by a factor of 2 to 5. My strategy
is to choose a transposition table size that is sufficiently
large that increasing it further doesn’t help the performance
on this benchmark. Figure 4 shows the estimated rating of
the serial program as a function of the transposition table
size, and it also shows the number of positions visited by
the program under each configuration.

Note that the number of positions visited by the search
tree monotonically decreases as the table gets larger, but
that after 223 entries, the number of positions becomes
constant. We can conclude that for Kaufman’s ratings test
any transposition table size of more than 223 entries is quite
sufficient, and a larger transposition table will not, by itself,
raise the estimated rating of the program.

I believe that the slight decrease in estimated rating (i.e.,
the increase in time to solve the problems) beyond 223

entries is due to paging and cache effects, because the
machine I ran these tests on could not reliably hold the
working set in main memory when the transposition table
is larger than 223 entries. Any transposition table of size

Processors Time for Estimated Time for
Top 20 Rating all

(seconds) (USCF) (seconds)
1 8936.95 2139 38261.91
2 5376.45 2183 22007.46
4 3152.54 2230 11614.43
8 1932.27 2272 7411.54

16 1240.72 2311 4398.32
32 844.00 2344 2803.33
64 573.19 2378 1670.29

128 444.78 2400 1129.68
256 378.72 2414 907.24
512 319.38 2429 677.11

Figure 5: The estimated rating of our parallel implemen-
tation of Startech as a function of the number of pro-
cessors. The time to solve the fastest 20 of Kaufman’s
test problems is shown, along with the estimated rating
(computed with Equation 1), and the time to solve all 25
positions.

222 entries or smaller easily fit within the main memory of
the serial computer I used.

I ran Kaufman’s test on a variety of different CM-5 con-
figurations. Each configuration includes a transposition
table of with at least 226 entries total. The transposition
table size was set at 221 entries per processor, which is the
largest size that fits in the 32 Megabyte memory of the
CM-5 processors. For runs on fewer than 32 processors,
I actually used a 32-processor machine with some proces-
sors ‘disabled’. In this case, I used the entire distributed
memory of the 32-processor machine to implement the
global transposition table. As a result, in every parallel
run, the transposition table contains a total of at least 226

entries.

Figure 5 shows the estimated rating of Startech as a
function of the number of processors. According to Kauf-
man’s test, there is a diminishing return as the number of
processors increases when only the fastest 20 problems are
considered. If we consider the time to solve all 25 prob-
lems, however, there are still significant performance gains
being made even when moving from a 256-node CM-5 to
512-nodes.

Several other chess problem sets have appeared in the
literature to test the skill of a chess program. The Bratko-
Kopec set [KB82], one of the earliest test sets published
for computers, was designed to show the deficiencies of
a program rather than to estimate the program’s strength.
Feldmann et al. [FMM93] found that the Bratko-Kopec
test set could not differentiate between master-level chess
programs, and so they picked a collection of positions from
actual games they had played to measure the performance
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of their program. Kaufman’s problem set was specifically
designed to estimate the rating of a program that plays
master-level chess.

Even Kaufman’s problem set is not difficult enough to
test a program like StarTech. Partly this is because Star-
Tech inherits HiTech’s strategy of analyzing a position for
a few seconds before starting the search, and partly be-
cause it takes the parallel search routine a few seconds
to expose any parallelism. StarTech wants problems that
will take more than just a few seconds to solve. On the
512-processor run, for many of Kaufman’s positions, the
program spends only a few seconds on the position. On
average the time spent on the fastest 20 moves is only
16 seconds—less than a tenth of the time allowed un-
der tournament time conditions (roughly 180 seconds per
move.) The positions in Kaufman’s test that achieve the
best speedup are often discarded by Kaufman’s evaluation
scheme because they were among the slowest five posi-
tions. In tournament play, StarTech’s performance, mea-
sured in positions per second, is generally much better in
the second 90 seconds of a search than during the first 90
seconds of search. Under such conditions, StarTech seems
to achieve a factor of between 50 and 100 speedup on 512
processors.

The authors of the Zugzwang chess program [FMM93]
encountered similar problems, finding that when search-
ing ‘easy’ positions to a very deep depth, more speedup
is achieved than can realistically be expected under tour-
nament conditions. On the other hand, searching the easy
problems to a shallow depth does not give the program an
opportunity to find parallelism.

In summary, I found it difficult to obtain a clear estimate
of the strength of StarTech from these benchmarks, but it
appears safe to say that StarTech’s rating would be over
2400 USCF. An effort needs to be made to find harder
problems to test parallel programs.

Critical Path and Work of StarTech

Simply measuring the runtime of StarTech does not provide
much insight into why the program behaves as it does. We
now examine how to use two fundamental performance
metrics, critical path and work, to better understand the
performance of StarTech.

It was not clear to me, when I started programming Star-
Tech, how to predict the performance of a parallel chess
program. Chess programs search a dynamically generated
tree, and obtain their parallelism from that tree. Differ-
ent branches of the tree have vastly different amounts of
total work and average parallelism. Chess programs use
large global data structures and are nondeterministic. I
wanted predictable performance. For example, if I de-
velop a program on a small machine, I would like to be
able to instrument the program and predict how fast it will
run on a big machine. How can predictable performance

be salvaged from a program with these characteristics?

I found that two numbers, the critical path length and the
work, can be used to predict the performance of StarTech.
The critical path length � is the time it would take for the
program to run on an infinite-processor machine with no
scheduling overheads. It is a lower bound on the runtime
of the program. It turns out that � can be measured as
the program runs, by a method of timestamping, without
actually performing an infinite-processor simulation. The
work

�
is the number of processor cycles spent doing

useful work.
�

does not include cycles spent idle when
there is not enough work to keep all the processors busy.
On
�

processors, I define
���	�

to be the linear speedup
term. Both � and

���	�
are lower bounds to the runtime

on
�

processors. (Another way to think about � and
�

is to consider the program to be a dataflow graph. � is
the depth of the graph, and

�
is the size of the graph.)

We can compare
�

to � � , the runtime of a corresponding
serial chess program, and we can compare � to

�
. The

ratio � �
� �

is the efficiency of the parallel program, and
indicates how much overhead is inherent in the parallel
algorithm. The ratio

��� � is the average parallelism of
the program, and indicates how many processors we can
hope to effectively use. A good application keeps

�
and

� small. Usually, I simply measure � and
�

as the
program runs. The values for � and

�
can also be derived

analytically for a few special cases.

For many non chess applications the values of
�

and �
depend only on the application, rather than on the sched-
uler. In StarTech’s search algorithm, however, the values
of
�

and � are partially dependent on decisions made
by the scheduler. I found that

�
and � seem to be, in

practice, mostly independent of those decisions.

It is easy to measure the work of a program. I mea-
sured, using the microsecond-accurate timers of the CM-5,
the total number of cycles spent running chess code on
each processor. Figure 6 shows how the measured work
varies with the machine size for each of several executions
of each of the 25 chess positions. The time for solving
the problem on my best serial version of StarTech is also
shown. Note that the amount of work increases (that is, the
efficiency drops) as the machine size grows. (It turns out
that StarTech always runs faster on a big machine than on
a small machine, however.) Whereas the efficiency drops
as the machine gets larger, if we fix the machine size, and
let problems run longer, the efficiency improves. (The
longer running positions are shown first, and they are the
positions on which less extra work is done by bigger ma-
chines.) Jamboree search achieves efficiencies of between
33% and 50%.

The critical path length is a little bit more difficult to
measure. Using the CM-5 timers, I measured the length
of the longest dependency chain of each tree, as the search
runs. (The measurement is performed as follows: Each po-
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sition’s critical-path depth is defined to be the maximum
of the critical path depths of the positions it depends on,
plus the time it takes to do move generation and static eval-
uation on that position.) Figure 7 shows how the measured
critical path length varies with the machine size for each of
25 different chess positions. The critical path also varies
with the machine size because search algorithm interacts
with the scheduler.

The critical path and work can actually be used to predict
the performance of StarTech. I found that the run-time on�

processors of StarTech is accurately modeled as

� � � 1 � 02
�
� 
 1 � 5 � 
 4 � 3 seconds. (2)

Except for the constant term of 4.3 seconds, this estimate is
within a factor of 2.52 of the lower bounds given by � and���	�

. The 4.3-second constant term comes from the time
StarTech spends at the beginning of every search analyzing
the board and initializing the evaluation tables.

The scheduler and the Jamboree algorithm have positive
interactions. Abstractly, the scheduler and the algorithm
are separated. But in practice, there are interactions be-
tween them. If there is more parallelism than there are
processors, then processors tend to do their work locally,
effectively creating a larger grain size, and the efficiency of
the underlying serial algorithm becomes the determining
performance factor. The StarTech scheduler attempts to
steal work that is near the root of the game tree, rather than
work that is near the leaves. By stealing work near the root
of the game tree, the size of stolen work is increased. On
the other hand, if work is stolen that later is determined not
to have been useful, more processor cycles are wasted. I
found that for a given tree search, the average size of stolen
work is larger for smaller machines.

Analysis of Jamboree Search

The Jamboree search algorithm can be analyzed for a few
special cases of trees of uniform height and degree. It
turns out that I have two analytical results, one for best
ordered trees and one for worst ordered trees. The complete
statement of the theorems and proofs can be found in my
Ph.D. thesis [Kus94].

Theorem 1 states how Jamboree search behaves on best-
ordered trees. A best-ordered tree is one in which it turns
out that the first move considered is always the best move,
and thus the tests in the jamboree search algorithm always
succeed.

Theorem 1 For uniform best ordered trees of degree
�

and
height � , the efficiency is 1, and the average parallelism is
about � � � 2 � ����� 2 � .

Chess trees typically have degree between 30 and 40 in
the middle-game, and which means that on a full-width

search to depth 10, a best-ordered chess tree would have
several hundred-thousand fold parallelism.

If the tree is not best-ordered, then the performance of the
parallel algorithm can be much worse,however. Theorem 2
addresses worst-ordered trees. A worst-ordered tree is one
in which the worst move is considered first, and the second
worst move is considered second, and so on, with the best
move considered last.

Theorem 2 For uniform worst-ordered trees of degree
�

and height � , the efficiency is about 1
�
3 and the average

parallelism is about 3, and the speedup is always less
than 1.

Surprisingly, for worst-ordered uniform game trees, the
speedup of Jamboree search over serial � - � search turns out
to be under 1. That is, Jamboree search is worse than serial
� - � search, even on an “ideal” machine with no overhead
for communications or scheduling. For comparison, paral-
lelized negamax search achieves linear speedup on worst-
ordered trees, and Fishburn’s MWF algorithm achieves
nearly linear speedup on worst-ordered trees [Fis84].

In summary, critical path and work are the important pa-
rameters for understanding the performance of StarTech.
The average parallelism and efficiency of StarTech are both
good enough to achieve significant speedup on chess prob-
lems, which probably allows StarTech to performs at Se-
nior Master level.

4 Improving StarTech

We have seen how StarTech works, and some basic perfor-
mance characteristics of the program. This section shows
how the critical path and work can be used to improve the
performance of StarTech. First we look at a traditional pro-
file of how time is spent by StarTech, and then we review
three strategies that I found can improve the performance
of the program.

How Time is Spent in StarTech

Examining a timing profile can provide clues for how to
improve a program. Figure 8 shows how the processor
cycles are spent by StarTech on a typical chess position
that ran for about 100 seconds on a 512-processor machine.
The biggest chunk of time is devoted to the chess-work,
which further broken down in Figure 9.

More than a third of all the processor cycles, and more
than half the cycles spent by on ‘chess work’ are spent
by the code that implements the control flow of the Jam-
boree algorithm. In my serial program, the control flow
of the � - � search algorithm consumes about a quarter of
all the processor cycles. The biggest potential improve-
ment is to improve the code that executes the Jamboree
search, although I have not been able to find any obvious
improvements to the code.
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Figure 6: The total work of each of Kaufman’s 25 test positions, as measured on various machine sizes. Each box
represents one test position. The positions are named k01 through k25. The horizontal axis on each graph is the
machine size, where ‘S’ denotes my best serial implementation. The vertical axis is the total work executed, in
processor-seconds. The range of the total work for each position is shown at the left, just above the graph for that
position. The vertical axis is scaled to that range. Each plotted point corresponds to a single measured execution. The
positions are plotted in descending order according to the time taken by the serial implementation.
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Figure 7: The critical path of each of Kaufman’s 25 test positions, as measured on various machine sizes. Each box
represents one test position. The positions are named k01 through k25. The horizontal axis on each graph is the
machine size. The vertical axis is the critical path length, in seconds. The range of the critical path length for each
position is shown at the left, just above the graph for that position. The vertical axis is scaled to that range. Each plotted
point corresponds to a single measured execution. The positions are plotted in descending order according to the time
taken by the serial implementation.
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68.8% of the cycles is ‘chess-work’ done by the parallel algorithm. Of those cycles, 21.4% can be
accounted for by the time that our best serial implementation consumes.

14.4% of the cycles are spent by processors waiting for global transposition table reads to complete.
6.6% of the cycles are spent by idle processors sitting idle to avoid swamping busy processors with

requests for work.
3.6% of the cycles are spent by idle processors looking for work to do.
3.2% of the cycles are spent waiting for a child to complete, to determine if more work needs to be

done at a position.
2.2% of the cycles are spent by busy processors servicing a transposition table lookup.
0.6% of the cycles are spent by processors that have work to do responding to a request for work.
0.5% of the cycles are spent by a child waiting for an ‘abort’ message from its parent, after sending

the result to the parent.

Figure 8: How processor cycles are spent by 512 processor StarTech running a typical problem from Kaufman’s
problem set, using the deferred read strategy and recursive iterative deepening.

37.7% of all the cycles are spent on control flow for the Jamboree algorithm.
15.8% of all the cycles are spent moving the pieces on the board.

8.3% of all the cycles are spent on static evaluation.
3.3% of all the cycles are spent on move generation.
2.0% of all the cycles are spent sorting the moves.
1.6% of all the cycles are spent checking for repeated positions.
0.2% of all the cycles are spent checking for illegal moves.

68.8% of all the cycles are spent on ‘chess work’.

Figure 9: How the time is spent on ‘chess work’ for StarTech running on 512 processors on a typical problem.

A more complex scheduler could potentially get 14.4%
of the cycles back from waiting on transposition table reads,
3.2% of the cycles from the time waiting on children, and
0.5% of the cycles spent waiting on parents. To save those
18.1% of the cycles would require implementing a more
complex scheduler to handle context switching between
subsearches on a single processor. These improvements
are worth investigating.

It has been argued that using the Hitech static evaluator
is a bad match for an all-software computer chess proram.
Since Hitech uses special purpose hardware, the Hitech
static evaluator expects to run in constant time regardless of
how sophisticated the static evaluation function becomes.
So the Hitech static evaluation function is designed to be as
sophisticated as possible given the constraints of the Hitech
hardware. In StarTech only the 15.8% of the cycles spent
moving pieces on the board and the 8.3% of the cycles spent
on static evaluation are attributable to the Hitech emulation.
Perhaps a static evaluator designed for a software-only
system could be better than Hitech’s static evaluator, but
given the overheads of StarTech’s search routines, simply
speeding up the static evaluator would not make a huge
performance difference. I believe that the main weakness
of StarTech is its lack of search extensions rather than any
weakness in the static evaluator.

The code for move generation and checking illegal
moves, which takes a total of 3.5% of the cycles, was

optimized by hand in assembly language. Before the opti-
mization, the move generation and illegal move checking
accounted for about 9% of all the cycles.

Three Improvement Strategies

I found three strategies to improve the performance of
StarTech: Recursive iterative deepening, deferred-reads,
and a slight serialization of the search.

The first strategy for improving performance is to per-
form recursive iterative deepening in order to improve
move ordering. StarTech uses its global transposition ta-
ble to improve move ordering. Most other programs use
additional move-ordering mechanisms such as the killer
table [GEC67] and the history table [MOS86]. StarTech
does not use any such additional move-ordering heuristics.
Recursive iterative deepening works as follows. When
searching a chess position to depth

�
, the first thing Star-

Tech does is to lookup the position in the global transposi-
tion table to determine if anything from a previous search
has been saved. If a move for a search of depth

� �
1

or deeper is found, then StarTech uses that move as its
guess for the first child. If no such move is found, then
StarTech recursively searches the position to depth

� �
1

in order to find the move. By so doing, StarTech greatly
improves the probability that the best move is searched
first. Recent experiments performed by D. Dailey on his
Socrates program suggest that recursive iterative deepen-
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ing may actually slow down programs that already have
good move-ordering heuristics [Dai94]. (Recursive it-
erative deepening was used in T. Truscott’s unpublished
checkers program in the early 1980’s [Tru92], and was
briefly explored for the Hitech program by H. Berliner and
his students in the late 1980’s [Ber93].) Without recursive
iterative deepening, StarTech chooses the right first move
85%–95% of the time. With recursive iterative deepening,
a few percent more of the positions are searched in best-
first order. Recursive iterative deepending is worth about
a 20% performance improvement in StarTech.

The second strategy for improving performance is to
perform deferred-reads on the transposition table in or-
der to prevent more than one position from searching the
same position redundantly. When a processing node starts
searching a chess position, StarTech records in the global
transposition table that the position is being searched. If
another processor starts searching the same position, the
processor waits until the first processor finishes. It is much
better for the second processor to sit idle than to work on
the tree, since this prevents the second processor from gen-
erating work which may then be stolen by other processors,
causing an explosion of redundant work. Deferred-reads
are worth about a 4% performance improvement in Star-
Tech.

The third strategy is to serialize Jamboree search slightly.
Instead of searching one child serially and then the rest
in parallel, as basic Jamboree search does, our variation
sometimes searches two children serially. The precise con-
ditions for searching two children serially are that the node
be of Knuth-Moore type-2 [KM75], that recursive iterative
search of the node had a value greater than the � param-
eter of the subtree, and that the search of the first child
yielded a score that is less than or equal to the � parameter.
This serialization improves the efficiency of StarTech by
10%–15% without substantially increasing the critical path
length.

Serialization Heuristics for Jamboree Search

The story of that third strategy illustrates how critical path
and work can be used to make good decisions about tun-
ing a parallel chess program. During the development of
StarTech I found several heuristics that might improve the
efficiency of the Jamboree chess algorithm on real chess
positions. This improvement in efficiency often came at
the expense of an increased critical path length. I found one
heuristic that actually improves the performance without
significantly increasing the critical path, however.

I first set out to identify what work is wasted. There are
two cases where the Jamboree algorithm does work that is
not necessary:

failed work is work done to test a position when the test
fails, and the position must be searched for value.

Some of the failed work is a cost introduced by the se-
rial Scout algorithm, since serial Scout also performs
a research. Some additional failed work is incurred,
because in the serial search the test is possibly per-
formed with a tighter bound than is available during
the parallel search.

cutoff work is work that is done on a child of a position that
would not have been expanded in a serial execution
because an earlier child would have failed high.

I arranged for StarTech to compute the amount of failed
work and cutoff work. I found that most of the inefficiency
of Jamboree search is cutoff work. Depending on the
position, 10%–30% of all the work is cutoff work, while
less than 2% is failed work.

I found that depending on the position, 50%–90% of the
failed work is on Type 2 positions (positions that in a best-
ordered tree are off the principal variation and immediately
fail high) that dropped below � , while 10%–40% of the
failed work is on Type 3 (positions that are off the principal
variation and do not fail high) that dropped below � .

Using that data, I decided to try serializing the search
for Type 2 and Type 3 positions that drop below � . This
approach reduced the work by as much as 50%, which was
even more than my measurements indicated that it might.
The critical path was increased, however, so that the av-
erage parallelism dropped below 100. On small machines
the critical path was not a problem, but for big machines
the serialization hurt the performance of the program.

I tried a finer strategy for serializing the search. My
idea was not to serialize the positions completely that were
causing failed work to appear, but simply to serialize the
position a little bit. I tried a strategy of searching exactly
one additional child serially, for positions of Type 2 that
drop below � , before searching the rest of the children
in parallel. This strategy worked out well, decreasing the
total work by 10%–15% while only increasing the critical
path slightly, so that the average parallelism was still over
500.

By measuring average parallelism we can understand the
impact of our algorithm design decisions. In contrast, one
recent enhancement to the Zugzwang program [FMM93]
is to explicitly compute the number of critical children
of a position, and when searching a position with exactly
one critical child, and several promising moves, Zugzwang
searches all the promising moves sequentially before start-
ing the parallel search of the other children. They express
concern that by serially searching the first child before
starting the other children they have reduced the aver-
age parallelism. Since the Zugzwang literature does not
analyze critical path lengths, it is difficult to determine
how Zugzwang’s serialization scales with the machine size
without actually running the program on a big machine.
Measuring critical path and work can answer such ques-
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tions.
In summary, by measuring the critical path and total

work, I was able to improve the performance of the Star-
Tech program over a wide variety of machine sizes. If I
had only studied the runtime on small machines, I would
have been misled into overserializing the program. By
measuring the critical path length, I was able to predict the
performance on a big machine. I then verified that the per-
formance of the tuned code matched the prediction when
run on a big machine.

5 Conclusions

Computer chess provides a good testbed for understand-
ing multithreaded computations. The parallelism of the
application derives from a dynamic expansion of a highly
irregular game-tree. The trees being searched are orders
of magnitude too large to fit into the memory of our ma-
chines, and yet serial programs can run game-tree searches
depth-first with very little memory, since the search tree is
at most 20 to 30 ply deep. Computer chess requires inter-
esting global and local data structures. Computer chess is
demanding enough to present engineering challenges to be
solved and to provide for some interesting results, yet it is
not so difficult that one cannot hope to make any progress
at all. Since there is an absolute measure of performance
(‘How well does the program play chess?’), there is no per-
centage in cheating, e.g., by reporting parallel speedups as
compared to a really bad serial algorithm. In addition to
those technical advantages, computer chess is also fun.

By separating the search algorithm and the scheduler,
the problems of each could be solved separately. Once I
had built a provably good scheduler, I was able to focus
my attention on the application, analyzing and improving
the performance of the underlying search algorithm. By
using critical path to understand the a program, one can
make good tradeoffs in algorithm design. Without such a
methodology it can be very difficult to do algorithm design.
My measurements demonstrate, for example, that there is
plenty of parallelism in StarTech.

Many researchers have tried to build parallel chess pro-
grams, with mixed success. The StarTech program owes its
success both to good hardware and good software. On the
hardware side, the CM-5’s fast user-level message passing
capability makes it possible to use a global transposition ta-
ble, and to distribute fine grained work efficiently. Fast tim-
ing facilities allow fine-scale performance measurement.
On the software side, StarTech uses a good search algo-
rithm, and systematically measures critical path length and
total work to understand the performance of the program.

I found that chess places great demands on a scheduler.
In another experiment I performed, I found, by reconstruct-
ing the schedule for an infinite-processor simulation, that
sometimes there is plenty of parallel work to do, and some-

times there is very little. I typically saw average parallelism
of at least several hundred, but for about a quarter of the
run-time on an infinite processor machine, the average par-
allelism was less than 4. It is crucial that the scheduler do a
good job when there is very little to do, so that the program
can get back to the highly parallel parts.

StarTech’s tournament performance demonstrates the
practicality of the parallel computer chess technology de-
scribed in this paper. StarTech, running on the 512-node
CM-5 at the National Center for Supercomputing Appli-
cations at University of Illinois, tied for third place at the
1993 ACM Computer Chess Tournament on its first outing.

The Future

The StarTech work points to several areas for future work,
including new algorithms, new programs, and new pro-
gramming paradigms.

There are several other approaches to game tree search
that are not based on � - � search, several of which might be
applicable to parallel search. For example, H. Berliner’s
B* search algorithm [Ber79] tries to prove that one of the
moves is better with respect to a pessimistic evaluation
than any of the other moves with respect to an optimistic
evaluation. D. McAllester’s Conspiracy search [McA88]
expands the tree in such a way that to change the value of
the root will require changing the values of many of the
leaves of the tree. The SSS* algorithm [Sto79] applies
branch and bound techniques to game tree search. These
algorithms all require space which is nearly proportional
to the run time of the algorithm, but the the constant of
proportionality may be small enough to be feasible. While
these algorithms all appear to be parallelizable, they have
not yet been successfully demonstrated as practical serial
algorithms. I wanted to be able to compare my work to
the best serial algorithms. Nonetheless, smarter algorithms
with higher overheads may become more valuable as ma-
chine performance increases.

One of the biggest open questions for tuning parallel
chess programs is the impact of additional search heuristics
on the critical path and total work. In StarTech we only
did a simple search to a given depth and then performed
quiescence search, trying out all the captures. Most state-
of-the-art chess programs employ search extensions and
forward pruning to improve the quality of their tree search.

I have been working on a newer program, called
� Socrates, with D. Dailey, L. Kaufman, C. F. Joerg,
C. E. Leiserson, R. D. Blumofe, M. Halbherr, and
Y. Zhou [JK94]. � Socrates uses more sophisticated search
extensions and seems to have even greater average paral-
lelism than StarTech. � Socrates uses a new programming
language and run-time system being developed at MIT
called Cilk (pronounced ‘Silk’) [BJK*94]. Cilk provides
a language and run-time system to separate the application
program from the problems of scheduling and load balanc-
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ing on a parallel computer. Cilk hopes to make it possible
for ordinary C programmers to write multithreaded appli-
cations without having to be experts in parallel computing.
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