
Summary of `iWARP Forum'
held 12 September 1989, in Washington DC

Bradley C. Kuszmaul

Abstract: iWarp is Intel's implementation of CMU's WARP (systolic)
architecture. Apparently, Intel decided to add some architectural
features to make iWarp into a real computer :-). This paper is a
summary of the 'First Annual iWarp Forum: A Direct Dialog with
Technical Developers'.

Introduction

The iWarp (which stands for 'integrated Warp' or 'Intel Warp') parallel
computing system is being developed by Carnegie Mellon Unisversity and
Intel Corporation. Intel is responsible for implementing hardware and
CMU is responsible for implementing software. The funding is provided
by SPAWAR (Space and Naval Warfare Systems Command) through DARPA.
Apparently the original iWarp contract called for a straightforward
integration and speedup of the WARP architecture, but Intel has done
some things, beyond the specifications of the contract, to extend the
architecture.

Intel went to great pains to state that this meeting not a product
announcement. This meeting is a status report. The implementation
status of the project is that the chip is going to tape-out this week.

Technical Overview

The iWarp component is a 600,000 transisistor, 0.9 micron CMOS, custom
VLSI chip, packaged in a 271 pin PGA. The die size is 551 mils square
(14.0mm square). The hardware clock is 40Mhz.

It is expected that the chip can be mil-spec'ed (e.g., it uses the same
process as the 80386, which is on the list of 'approved' parts for the
space station - that means that it is pretty rad-hard).

Everything in the chip is static logic (except for the register read
lines, which are precharged and then pulled down by the presense of a
'0'.)

The local memory bus has 64. bit wide data bus and a 23 bit wide address
bus. (The bus addresses are to 64-bit values, giving a 67 megabyte
local address space)

The local memory is implemented with 25ns SRAM.

The communications network can do systolic communication with
arbitrary interconnection patterns, and it is possible to do message
passing pretty well. All communications is done through registers
(e.g., to send a word to a reighbor, one writes that word to a
register).

The floating point units operate at 10MHZ for 32 bit operations and
5MHZ for 64 bit operations.

The iWarp system's performance is about 1 GFLOPS per cubic foot.

Processor Architecture

Instruction set: 	(See Figure 1)
RISC-like instructions (32 bit instructions)

(running at 20Mhz for integer operations, 10Mhz for single
precesion floating point, 5Mhz for double precision floating
point.)

plus
Long instruction word (96 bit instructions) capable of

1 floating point add
1 floating point multiply
loop decrement, test, and branch
and either

2 memory address calculations (offset+base)
1 memory read (of a 64 bit value)
1 (additional) memory read or write (of a 64 bit value)

or
an ILU operation (including branch)

The long instruction runs at 10MHz if it is the fadd an fmul are
single precision,

5MHz if either the fadd or the fmul are double precision.

The floating point units are not pipelined, and the result of the
floating point operation can be used immediately in the next
instruction. On the other hand, the floating point units slow the chip
down.

They implemented floating point DIVIDE, REMAINDER, and SQRT directly
in hardware because it was easier to do it right in hardware than to
provide the hooks for software. (E.g., to do IEEE rounding and
denormalized numbers correctly is tricky, so they just did it in
hardware.) By 'easier' they said it actually took fewer gates just to
implement the logic to do these operations in hardware than to provide
the control lines for software. This is easy to understand, since the
control lines would have just haired up the ILU's design.

Event support: One can explicitly test events e.g., with a busy-wait
(polling the event flags), or one can set up an interupt vector for
implicit event testing.

Registers: The register file is 128 32-bit words, accessable as 64
bit, 32 bit, 16 bit or 8 bit registers. The register file has many
ports. Most of the registers (numbered 0 through 119) are just data
registers that do not interact with the communications network; Those
registers have 6 read ports and 3 write ports.

There are some registers wtich are 'special' (numbered 120 through 127)
They are the interface to tte communcations network and have 9 read
ports and 6 write ports (for those registers there are presence bits or
something; if a processor reads a register associated with a
communications channel, and there is no data, the processor stalls.
There is a timeout mechanism (configurable by the user)).

It appears that the register file serves partly as part of the memory
heirarchy (i.e., things from registers are faster than things from
memory), and partly as the synchronization namespace (e.g., all logical
connections are named (at the source and destination processors) by
registers. Synchronization is done on a word-by-word basis on the data
in a logical connection. This seems to greatly increase the difficulty
of defining the 'context' tat might need to be swapped out in some sort
of multi-threaded programming model (or even worse, for a multi-user
operating system, since there are no protection mechanisms on memory,
the communications network, and there is no automatic address
translation (except for doing in the user software).

I understand that the 9 read-port, 6 write-port register takes about
three times the area of a single-ported register. They were clever
about the use of the bit-lines. To write a register, they use
double-railed logic, but to read a register they use a single precharged
bit line (and then they can use the BIT and BIT-BAR drivers to drive
different bit lines).

Memory architecture:
The local memory is implemented using static RAM. 	They can put 6
Mbytes/board now using 256K SRAM (64K by 4) They expect to use 1M
SRAM in 1990, and 4M SRAM in 1994. With 4 cells/board that is 1.5
megabytes/cell. With 1 cell/board that is 6 megabytes/cell. The
SRAM is 25ns access time, allowing it to keep up with the 20Mhz
processor with no wait states or interleaving. The local memory
bandwidth is 160Mbytes/second. There is no ECC (it is not really
needed for SRAM), but there is parity (parity exceptions can be
handled by software in the on-chip ROM).

For power-consumption reasons, they run each of the four processors
on the board out of phase, so that only one of the memory banks will
be active at any given time. This reduces the peak instantaneous
power requirements substantially.

Instruction cache:
There is a 1Kbyte I-cache. It is organized as 4 sections of 4 blocks
of 16 words. I think this means each memory address is direct-mapped
to one of 4 sections, and within a section, the cache is fully
associative. The cache line size is 16 words. The cache does `next
instruction' prefetch (even across block boundaries). The cache also
automagically aranges for the long instructions (3 words each) to be
aligned correctly (again, even across block boundaries).

The communications network

Overview of communications protocol
When two computation agents want to communicate, there are three phases:
* Send a `connection header'
- which reserves unidirectional routing resources from one cell

to some other cell in the array (like "dialing the
telephone")

- Contains the pat 7 for source to destination (expressed as
`streetsign routing'.

- hardware allocatEs routing resources here.
* send messages. Eact message has a head and a tail which are

interpreted by thE computation agent rather than by the
communications agEnt. (I don't understand what this is used for)
The header may contain some sort of `virtual processor'
address.
A message is like `a sentence spoken over the open line'.

* Send a `connection tail' frees the resources and terminates the
connection (`like hanging up the telephone).

It appears that, for a 2D interconnect topology, there is a 96 bit
(three word) overhead for establishing and closing a connection.

It appears that there is a (4 bit (two word) overhead for the message
header and tail.

In typical systolic computing, the connections are established once at
the begining of the computation, and then a bunch of messages are sent
during the computation, and when the task is done, the connections are
terminated.

For message passing, the connections contain exactly one message, and
there appears to be a 5 word overhead for sending a message. All of the
examples that were `shown' indicate that they believe that for message
passing there are at least 5 or 10 words of data per message.

Streetsign routing:
Every node in the communications network has a collection of 20 bit
`streetsigns' (I don't know how many streetsigns can be stored at a
given node). From a node, there are five directions a message can

go to and come from: Left, right, up, down, and to the
communications agent.

Every word of the connection-header contains a 20-bit streetsign and
an 'action' which is interpreted as "go straight until you find a
matching streetsign and then take the action". The implementation
of this is that when a .3onnection-header arrives at a node, the node
checks to see if the streetsign mentioned in the connection-header
matches any of the streetsigns held by the node. If not, the
connection goes straight (e.g., left->right, top->bottom,
right->left, bottom->toc). If the streetsigns match, then the
action is taken (the action can say `go left', `go right', `go up',
`go down', `go to the computation agent'.)

Logical Pathways:
There are 20 logical pathways available in each node of the network.
The 20 logical pathways are dynamically allocated to the 5
'directions'. Each of the five physical channels are multiplexed
among the logical pathways allocated to that channel (they are
multiplexed smartly enough that if only one of the logical pathways
actually has any data to send, then that logical pathway gets the
full bandwidth of the physical channel) Every word transmitted
across a communications channel (from a intermediate-source to an
intermediate-destination) is sent along with the logical pathway
number (in the intermediate-source).

When a connection is established, a logical pathway is allocated to
the connection. If they run out of logical pathways that is like
'running out of registers' or `running out of memory'. It all
sounds pretty dangerous to me.

spooling, streaming, and systolic communication
Spooling: Incoming(outgoing) data can be received(sent) directly
to(from) memory to the communications network without processor
intervention; There is a finite state machine to interface the memory
with the router. The memory is accessed via `cycle stealing', but I
do not know whether the 7outer has higher priority than the
processor. There are 8 F.pool registers.
Streaming (Systolic): Incoming(outgoing) data can be received(sent)
directly to(from) procesEor registers via registers reads (writes)
When a processor reads a stream register, the processor stalls until
a single word of data becomes available from the connection. If the
processor reads the stream register, then the flow control mechanism
backs up the message into the router. (Corespondingly for writes, if
the processor tries to write a message and the flow control mechanism
is saying "stop", then the processor stalls.) There is a user
configurable timeout mechanism for the stalls (so that the processor
can recover from the case that a message `never' comes.). This
mechanism is the 'systolic' computation mechanism, because the
processors produce and consume data out of 'infinitely long' streams.
Note that in streaming mode, the arrival of a word of data can also
be implicitly or explicitly tested by setting up an event handler
(i.e., an interupt) rather than stalling on read. There are 4 stream
registers.

Note: The processor can combine spooling and streaming, effectively
using memory as a buffer for a stream, by spooling data from the
router into memory, and then streaming it from memory into the
processor. (I.e., there is some mechanism to stream from memory as
well as directly from the router). I asked about how they keep the
consumer from overtaking the producer in that scheme, and it turns
out that they use a single word of data (32 or 64 bits?) to represent
the 'fifo' pointers, and there is a special condition code which
checks to see if the `read' pointer has overtaken the 'write'
pointer. This condition code can be tested explicitly (polling) or
implicitly (interupts).

Note: If my understanding of the router is correct, I know how to
deadlock the router. 	They are providing an iPSC compatability package,
and I know what program to write to deadlock the router.

Physical Channel:

A physical channel between two iWarp chips is implemented as follows:
(I use many terms which the iWarp people don't use, e.g 	'flit' is the
smallest unit of data physically transmitted.)

Physical Channel Data Format:
There are (See Figure 2.)
8 data signals
2 enqueue signals
1 parity signal
1 data-clock signal
2 dequeue signals (going back to the source)

for a total of 14 signals.

The handshaking is done on a 32-bit basis; and the 2 enqueue bits
actually provide a total of 8 bits of data per handshaking. It takes
four flit-times to send a word.

The enqueue bits say which logical path the word is associated with.
The dequeue bits are used to say when a word from a logical path has
been consumed.

The flit time is 25ns. 	(40 Mhz)

There is a 200ns latency through the chip for straight-through routing,
250ns latency to turn a corner (this appears to be true for every
word of the message: It seems as though the connection-header
is even slower, e.g., by at least another 100ns for the turns because
the header is consumed at the turn, so it takes at least another
10Ons before the next word of the connection-header can be sent to
the next chip.

The sender keeps track of how many free spots are in the receiver (the
FIFO is four words deep, but there is apparently one FIFO for each
logical path: If I understand this correctly, that means there are 80
FIFO's (because each of the four physical inter-chip channels may have
20 logical paths on it). 	Note that this protocol means that even if
the time delay between two chips becomes huge, the protocol is correct
(with reduced effective bandwidth): The protocol would allow for four
words to be sent from source to dest, and then it might take a while
for the words to be consumed at the destination and for the 'dequeue'
signal to come back. Then more data could be sent, but in the
meanwhile, nothing can be sent.) They believe that they can build
systems with 15 foot wires (50 ns propogation delays) before suffering
any degradation with this problem. The reason they didn't build the
FIFO's deeper may be related to the issue of there being 80 FIFO's
(remember that the 80 FIFO's is guesswork on my part.)

Physical Channel Electrica:_ Characteristics:
The wires are connected point-to-point (i.e. there is only one writer
and one reader on each wire). Each wire only sends signal in one
direction. Within a card-cage, the wires are single-ended (not
differential pairs). If a signal leaves the backplane it goes through
a converter and is transmitted as a differential signal on twisted
pair. The converter sits on a card about 2 by 3 inches in size. The
converter does its conversion in about 7ns. The converter chip, which
requires only a 5V power supply, is made by AT&T. Thus, at the chip
level, the number of signals equals the number of pins, however, they
need a tremendous number of ground pins to avoid ground-bounce (the
phenomena where the ground voltage locally (in space and time) pulled
up (e.g., by as much as one volt) because of all current it is

sinking; this phenomena is much less of a problem for differential
pairs because the current always goes right back where it came from.)

They send a data-clock along with the data. They did not understand
my question about synchronization failure with the asynchronous clocks
writing and reading from the 4 word FIFO. (Review: There is always
the possiblity that, given asynchronous reads and writes out of a
FIFO, that the system will enter a meta-stable state, causing the
machine to fail. The standard solution is to somehow reduce the
probability of such failuce to an acceptable level. However, in the
iWarp scheme, the read and write events are not asynchronous; they are
just out of phase. For a naive implementation of this FIFO, there is
some phase of skew that always produces a metastable state. The
question is: How did the designers avoid the case where the write
always happens at 'just the wrong time'?

speed and voltage
The iWarp channels run at 40Mhz (25ns), but they allow the wires to be
up to 50ns long. They stack bits on the wires to make this work. The
reason it can't be longer is because their FIFO's are shallow, and if
the channel was longer, they would not achieve receive the "flow"
acknowledgement soon enough to keep the channel busy. (Note: Their
flow protocol will still work correctly, since it is a
"consumed-the-word" signal rather than a "flow")

The channels run with 3.8 volt swings (according to everything I have
seen). (It looks like high-out is $V_{cc}-0.8$ volts and low-out is
$0.4 $ volts. $V_fccl=5$ volts.

However this voltage swing seems inconsistent with the chip power
budget (5 to 7 watts) and the board-level power budget (50 watts).
They are using 50 ohm parallel terminated (terminated at the driver)
transmission lines.

The best guess that I can come up with to make this work is that the
50 ohm termination resistcr built into the driver must sink no power
at 2.3 volts, and when driving a logic 1 (at 4.2 volts) or a logic 0
(at 0.4 volts) the termination resistor sees a 1.9 volt drop. The
power disipated by that resistor is then 72.2mW. There are 56 driven
pins for the communicatio:s networks, giving 4.04W. However, now I
still have not accounted for the power disipated by the driver itself.
There is a 0.8V drop from the power supply to high-out, so each driver
is disipating (via resistive heating) at least 12.8mW, for a total of
0.71W, and during switching the resistive load through the driver is
somewhat higher. I don't neccessarily understand where the power is
disipated in these systems, but at the minimum I can count up 4.75W
just to drive the pins to the communications network. If the memory
pins are also using some sort of tranmission line, then there are
another 100 pins worth of stuff to drive, and if the memory wires are
capacitors, the power is :ike CV^2f, and since f is so high there must
be significant power disipated there.

They have invented a 50 Ohm driver which automatically compensates for
voltage, tempurature, and process variation. They claim to have a
patent-pending on this driver. They said something about a
charge-pump type circuit to control the Vref (the reference bias
voltage) on the output driver. (Note: This sounds very similar to
Tom Knight's low-voltage self-terminating output-driver. The reference
bias is being used to control the resistance of the termination
resistor).

Clock Skew (see Figure)
2ns on a board
4.4ns between components inside a card cage
28.4ns between anything (this is done with the differential signals
etc.) Most of this clock skew seems to come from unmatched cable

length. The main constraint they have is to keep the hold-time in
good shape. Apparently they are right on the edge in the worst case.
(Note, hold time is hurt when the clock skew makes the sender change
state before the receiver has sampled the input. Slowing down the
clock does not fix this problem (slowing down the clock can improve
the setup-time), so it is really important to get this right. This is
a symptom of using edge-triggered clocks instead of level-sensitive
logic. Maybe it never occured to these guys to use level-sensitive
logic.

Packaging: The packaging vvis very impresive. The whole system seemed
rugged and clean.

The chip is a 271 pin PGA (die facing downward, huge heat sink on
top). -100 pins are memory, -100 pins are communication, -70 pins
are power and ground. The power budget for the chip is 7W.

Each card is 9" by 11" and can hold either one or four processors and
a total of 6 Megabytes of memory (divided among the one or four
processors). They indicated that they plan to mostly use the
four-processor cards.

There is a daughter board to hold extra surface mounted memory.
Intel has developed a 132 pin surface mount connector to connect the
daughter board to the mother board. (They have 3.5 signals for every
power or ground connection).

The power budget for the card is 50W.

The cardcage holds 16 cards (16 to 64 processors), and has its own
fans and power supply. The cardcage can sit in any 19" rack or on a
tabletop, and it will run fine. The cardcage is UL approved (but
not FCC certified).

The power supply is mounted behind the backplane on a roll-out chasis
to provide room to get into the space behind the backplane and
reconfigure it. The powEr supply uses a 220 volt 3-phase supply (to
keep the AC current down for UL approval), and produces 5 Volts at
300 Amps on the board si?e (you could do some serious arc welding if
you pulled a board out w3th the power on). They said something about
using a "power factored" power supply instead of a "linear" power
supply (I don't know what that means).

For signals leaving a cardcage, there is a specal differential
converter board (mentioned above) mounted behind the card cage.

They use a 50 Ohm controlled impedence ribbon cable to rewire the
backplane. (Apparently the backplane can be reconfigured away from
the 'standard toroidal configuration'.

The connectors for plugging the card into the back plane are 'through
connectors', so one can plug things directly into the backplane and
they end up connected to the cards. They plug the 50 ohm ribbon
cable here, and they plug the differential convert card here. The
back-plane connector has 480 pins.

The back-plane is 12 layE:r 50 Ohm strip-line (controlled impedence).
There are 3 ground planes and 2 VCC planes. They have measured less
than 30mV drop across the backplane (under some test to measure
ground bounce and so forth.) They use a bus-bar to stiffen the
back-plane (in the

They are extremely worried about ground-bounce (which they wouldn't
have had as much of if they had used differential signals
everywhere).

The cards are mounted vertically and air flow is from bottom-to-top
in the card cage. The air (for cooling) is passed through the bottom
card cage then the next card cage and so forth (so the last card cage
has a warmer air source). They move the air at 300 linear feet per
minute.

The container holds 4 cardcages. The container is all metal (making
it easy to satisfiy FCC requirements and simplify the problems
associated with electro-static-discharge (ESD, aka lightning). The
front door has an LED panel on it. There is a serial processor (an
8251?) somewhere in the ffichine that sequentially polls the status
line of every iWarp chip and updates the LED display at 10Khz. There
is a yellow and green LED for every iWarp chip, and a red 'error' LED
for every card cage. They have been careful to leave space to route
the cables cleanly; One will not see masses of cables hanging out
anywhere (conversely, they did not really push the cabling density).
The container is the same one used for the iPSC (except the iPSC is
grey and the iWarp is black).
The power budget for the container is 5KW.

The biggest system that they are advertising is a 4-container system
(i.e. 256 to 1024 processors). This size limit is really a result of
the clock distribution board rather than anything else, so they could
probably easily make it bigger.
Clock distribution: Amazing chips (see Figure) to keep clock skew
below a few nanoseconds inside the same cardcage. I don't understand
how they lose so badly between cardcages (28 ns)
Sun interface board (See Figure 5) This is a VME master or slave board.
In master mode the iWarp cell is the bus master (for an array-centric
configuration). The board can also be a bus slave (for a
host-centric configuratin) It is a big board (the standard 'sun'
size rather than the sholter 'VME' size). This holds one
processor which can be hooked into an array via its communications
paths.

To interface a new device (e.g., a disk drive) to their machine, one
uses the local memory bus. The memory bus is very simple (one Intel
engineer said it was 'embarassing' . One can build a
memory-mapped I/O device (they showed a typical SCSI interface). One
could also use a dual-ported memory to interface to their device 	They
do not recomend trying to interface directly to the communications
network; use the iWarp comp:snent to go from the communications network
to the memory bus format.

software: I did not attend the software session (because it
conflicted with the hardware session - what a lose). The software guys
from CMU seemed to be not nearly as excited about their work as the
hardware guys from Intel, so I went with the hardware session (to learn
about the packaging and electrical characteristics). The software looks
pretty bad - they claim to be compiler driven, but the general
impression I got from the CPU guys was that the software could be made a
lot better - they believe in program generators, and if their compiler
can't analyse your program, I guess you can't run it... Basically they
are talking about AL and APPLY and all the standard iWarp software,
which to me looks hard to program in. The model of all that software is
that you build a special purpose machine 'in the shape of your problem'.
The hardware supports that model by allowing the logical connections to
be interesting.

They claim to have a C compiler (you can run C in any cell of the
iWARP), a FORTRAN 77 compiler (again, this is a serial compiler). The
compilers do the long instruction word optimization, you can call C from
FORTRAN, you can call assembly language from C, you can access the
communications primitives from C and FORTRAN. (E.g., communications
code is just as fast in C as in assembly language).

They are providing an iPSC compatability package (to allow iPSC
programs to run on the iWarp). Except for the message deadlocking
issue, this looks like a very fast implementation of iPSC.

Future trends

Intel and CMU both talked about future trends. The intel stuff was
interesting; they had specific goals and issues. The CMU stuff, with a
few exceptions, was generally more abstract, like "we have got to work
on software".

HTK said they will hook up iWarp into the Nectar network (100Mbyte/sec
fiber optimic with 16x16 crcssbars). 	They will also develop an HSC
interface (800 to 1600 Mbits/sec). (is 800 megabits the same as
100Mbytes? I may have this wrong...)

GWC said intel would probably
- implement quad-flat-pack & mil-specify the part (maybe in about 18

months)
- iWarp is the lead project in the Intel Multi-chip-module research.

They hope to get the 1.5 Megabytes of memory plus the iwarp chip all
onto a 2-inch square footprint (maybe 18 months to 2 years)

- Component shrink (iWarp 1.5)
- The next process is a 3-layer CMOS process, with a factor of 2.5

to 4 improvement in density.
- Same instruction set
- 64 bit floating point directly supported (at the same speed as 32

bit floating point)
- FP pipelining
- big data and instruction cache
- bigger busses (e.g. to the cache-line width to the local memory)
- 50 to 80 Mhz clock
- 100 to 160 MFLOPS pel cell (maybe in 24 to 30 months)

- iWarp 2
- More unification of communications models (e.g., currently they

do message passing and systolic communication 'well'. They hope
to do small-talk styJe things too (ala Dally), and
global-shared-memory things too.

- heterogeneious nodes
- locally shared memory (e.g , several nodes with physically shared

memory and then outside of that they do message passing)
- 3d packaging

They hope to make iWarp into an industry standard 'backplane' for
connecting computers and processors together.

Names of speakers

George W. Cox (GCW) (hands on manager)
Craig Peterson (chip guy?)
David Riss 	(software)
Dick Hofscheier (packaging engineer)
Les Furnanz 	(don't know: more of a marketing attitude than

engineering attitude.)

CMU
H. T. Kung (HTK)
Thomas R. Gross

Darpa
Stephen Squires

Bibliography (I have these as part of the handouts)

OSTA, 'The Federal High Performance Computing Program', 9/8/89
(available from DARPA, Call Steve Larson (Squires's secretary) at
202-694-5800) 	(Not in m notebook)

Intel, 'Introduction to iWarp', preliminary manual.

Borkar, et al., 'iWARP: An Integrated Solution to High Speed Parallel
Computing', proc IEEE supercomp. conf, orlando FL, Nov 1988

Cohn et al, 'Architecture and Compiler Tradeoffs for a Long Instruction
Word Microprocessor', 3rd Int. Conf on Arch. Support for Prog. Lang.
and Op. Sys. (ASPLOSS III), Boston, MA, Apr, 1989.

Hamey et al, 'APPLY, A Programming Language for Low-Level Vision on
Diverse Parallel Architectures', to appear in Parallel Computation and
Computers for Al, Janusz Kowalik (ed), Kluwer Academic Publisehrs, 1987.

Kung, 'Network-based multicomputers: redefining high preformance
computing for the 1990's', Decennial Caltech Conf on VLSI, Pasadena,
CA, March, 1989.

Operand for 1st Read Access

Word-3

Operand for 2nd Read / Write Access

3 0
1

(32
0

12 Sept. 89, (1313 Session III Slide. 8

Full ILU (Integer Logical Unit) Instruction or general Branch operation

Word-3

3 	3
1 	0

2
9

2 2 1 1 	1
54

1
3

0
7

0 0
(7) 3 2 (7) 6 (7) 6 (7) 0

OP 1 Offset 1 Base 1 OP 2 Offset 2 Base 2

Compute and Access "Long" Instruction

96-bit Instruction Format

Word-1

3
1

3
0

2
9

2
8

—(4)— 2
5

2
4

—(4)— 2
1

2 	 1 1
3

0 0 	 0
(7) 0 	 4 (7) 	7 (7) 6 	 0

J 1 1 Data Mode FADD B operand Reg A operand Reg K operand Reg

Word-2

3 2 2 	2
2 	1

2 	 1 1
3

0 0 	 0
1 (9) 3 0 	(7) (7) 	7 (7)4 6 	 0

Memory Control FMUL M operand Reg N operand Reg
—

R operand Reg

General Purpose "RISC-like" Instruction Summary

32-bit Instruction Format

Integer/Logical Operations

Floating-point Operations

Data Conversion Operations

Memory Access Operations

Flow Control

Extended Flow Control

Literal Loads

Communication Support

General Control

Logical ops, Arithmetic ops, Bit ops,
Shift & Rotate, Find MSB

Add, Sub, Compare, Max, Min, Logb,Scale
Mult, Div, Sq Root, Remainder

Integer to Floating-point,
Floating-point to Integer

Byte, Half-word, Word, Double-word

Call, Return, Branch, Push, Pop, Break,
Enter loop (Implicit Loops), Stack control

Absolute call/branch, Indirect call/branch

Load literal

Pathway control, Spool control

Event control, Timer op, Pointer cntrl

12 Sept. 89, CBI) 	 Session Ill 	 Slide 7

12 Sept. 89, RIM
	

Session V
	

Slide 32

System Clock Distribution

Cell Board

Cable

• 01.410

Custom Clock
Chip

+ 200 psec

Clock /Sync Board :lackplanei AS1804

Other
CCA's

iWarp Component to Component Clock Skew

Same Board < 2ns'
Different Boards, Same Cardcage Assembly < 4.4ns'

Different Cardcage Assemblies < 28.4ns'

iWarp
Component

Other
iWarp

Components

Signal Distribution
Unit

Mhz

80 Mhz

; Matched
I i Traces

lOther Cell
Boards

12 Sept. 89, RH11
	

Session V
	

Slide 31

_ [0:7]

-NQ[0:1]

4'Parity

[8:15] 	_ [16:23]

-NQ[2:3] - NQ[4],

Mrk[0]

4-Parity 4"Parity

[24:31]

LM

rk[1 :2]

Parity

	/---

External Pathway Pins and Handshake

Data 8

Cell A
XR out

Enqueue (NQ) 	/2

01-
Parity 	2

1

1
Data Clk
Dequeue (DQ)

Cell B
XL in

One Word Transfer

4) 1

50 ns 	ns 	

Clock 1
(1) 2

Clock 2
2

Data

NQ

Parity

Data Clk

DQ
	

DQ[0:1] DQ[2:31 IDQ[4],DB1 Parity[0:1]I

Session III 	 Slide 29
\4140101.. 	

12 Sept. 89, CI3P

Cardcage Assembly

Backplane

17 Slot
Cardcage

12.25"

External Interface
Boards

1.5 KW
Power Supply

Slide Out
P/S Tray

19"
20"

Base (with fans)

• 	• 	•

12 Sept. 89, RHH
	

Session V
	

Slide 13

29 Rack Units (1 Rack Unit = 1.75")
5K WATTS

12 Sept 89, RHH Session V Slide 17

Max Single Container Array

I

Card Cage
Assembly

Card Cage
Assembly

Card Cage
Assembly

Card Cage
Assembly

8 Cables (typ 8 plcs)

16 x 16 Quad Cell Array (5.12GFlops)
8 x 8 Single Cell Array (1.28GFlops)

Session V 	 Slide 18 12 Sept. 89, RHH

Sun Interface Board Block Diagram

iWarT Cell

0
—

0
4.1

e
> E
8 t cr

XR
YR
XL
YL

High
Speed
RAM

Warp
Parity 411(

..., Data
Ai 	

Address

Buffer

Parity
	A

Generator

.411111-- Slave
Interface

Logic

31m* Dual
Port
RAM

V CLK2

CLK/Reset
Logic

-
	-1
	 Buffer EEPROM

L.

EEPROM

2
J

Buffer

Local
Registers

Master
Interface
Logic

Interrupt
Logic

Master Interface

12 Sept. 89, Rlili
	

Session V
	

Slide 21

The external connection to the iWarp array can be made at any of the loops in
either the X or the Y direction.

The iWarp System

Flexibility is the key characteristic of the iWarp system. From one to four iWarp
Cardcage Assemblies reside in a single System Cabinet, and up to four cabinets
can be connected to form even larger arrays. With a system of four cabinets, an
iWarp system can be extended to a 32 by 32 array of 1024 iWarp cells. Figure
2-21 shows the iWarp System Cabinet, which contains up to four Cardcage
Assemblies.

Figure 2-21: iWarp System Cabinet

The front door of the System Cabinet contains an LED display that shows status
conditions for each iWarp cell housed in the cabinet. The LED display consists of
four 8 by 8 LED arrays, with each array corresponding to one of the cardcages in
the cabinet. Each pair of LEDs in the array corresponds to the status of a specific
cell. There is also an error LED and a power LED for each array.

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20

