NAP (NO ALU PROCESSOR)
THE GREAT COMMUNICATOR,

§tJeff Fried and §}Bradley C. Kuszmaul

§MIT Laboratory for Computer Science
Cambridge, MA 02139

1GTE Laboratories
Waltham, MA 02254

ABSTRACT

Message routing networks are acknowledged to be one
of the most critical portions of massively parallel com-
puters. This paper presents a processor chip for use
in massively parallel computer. The programmable ap-
proach used in this processor provides enough flexibility
to make it a “universal” part for building a wide variety
of interconnection networks and routing algorithms. A
SIMD control scheme is used to make programming and
synchronizing large numbers of processors simple.

In the course of designing this processor, we were faced
with the decision of which logic operations to implement
in an ALU; informal design studies showed that it was
best to provide none. The processor performs all com-
putations by a sophisticated table lookup mechanism,
and has no ALU; it is thus called the No ALU Proces-
sor (NAP). Using tables rather than an ALU provides
a very flexible instruction set, and in real programs of-
ten allows more than one “operation” to be done in one
cycle.

Benchmarks written for the NAP show that indirect
addressing mechanisms can speed many common opera-
tions by a factor of about log N. We have therefore pro-
vided hardware to support indirect addressing, or Mul-
tiple Address Multiple Data (MAMD) operation. In ad-
dition, the NAP contains local storage used for flexible
instruction decoding: the same instruction can result in
different operations on different chips. These two mech-
anisms allow programmers to write programs for NAP
machines easily using SIMD style, and also provide the
power of different computations happening simultane-
ously in different parts of the machine.

Keywords: Universal, Table lookup, ALU, Parallel, Pro-
cessor, Network, VLSI

}Thinking Machines Corporation

Cambridge, MA 02139
INTRODUCTION

Message routing networks for parallel supercomputers
occupy & unique place in the spectrum from special-
ized to general-purpose machines. Although these rout-
ing networks can used to build general-purpose parallel
computers (as well as specialized computers), they them-
selves are usually built out of very specialized hardware.
This paper presents a single processor design which is
useful for building a variety of different networks; in this
sense it is a general-purpose element within the spe-
cialty of interconnection networks. This processor is
an experimental design incorporating several novel ar-
chitectural features which make it simple to program,
general purpose, and efficient. Specifically, no ALU is
provided in the processor. The arithmetic functions nor-
mally performed by an ALU are instead performed by
table lookups into memory. In addition, a very flexi-
ble programming model is provided, which supports in-
direct addressing and multiple concurrent instructions
while operating in a SIMD or Multiple SIMD (MSIMD)
mode.

The NAP chip described in this paper is the result
of a design experiment which explores architectures for
communication network support. The experiment has
three main design goals:

e Act as a “universal” element for routing networks.
By universal we mean both general purpose and ef-
ficient. The performance of the NAP when used as
a node within a network should be as close as pos-
sible to the performance of a special purpose chip
designed especially for that network.

o Provide communications control which is as flexible
as possible.

o Keep the processor’s I/O pins (which connect to
other NAP chips) and memory as busy as possible
performing useful work.

383

CH2649-2/89/0000/0383%$01.00 © 1988 IEEE

In the course of designing the NAP, we were faced with
the decision of which logic operations to implement in an
ALU; informal design studies showed that it was best to
provide none. Using tables rather than an ALU provides
a very flexible instruction set, and in real programs of-
ten allows more than one “operation” to be done in one
cycle. One of the most interesting lessons from the de-
sign of the NAP was that table lookup is a very powerful
mechanism.

A collection of NAP chips can be wired together and
can be programmed to simulate many things. We have
programmed our simulators to perform several impor-
tant parallel algorithms, including reduction and paral-
lel prefix in a tree network (Ref. 1), connection-machine
style routing on a cube connected cycle (Ref. 3), cellu-
lar automata programs (such as Conway’s game of Life)
(Ref. 7). We are able to support any network with a
large number of nodes (up to about 232 nodes) of con-
stant degree, including fat-trees (Refs. 4, 2), butterfly
networks (Refs. 8, 5, 6), cube connected cycles, trees,
and meshes.

Section of this paper describes the instruction set ar-
chitecture of the NAP. Section discusses the processor
design and the implementation of the NAP chip. Fi-
nally, Section evaluates the NAP in the light of our
design goals, and summarizes the lessons learned from
this project.

INSTRUCTION SET ARCHITECTURE

We adopt the (M)SIMD model of one or more con-
trollers broadcasting microinstructions to sets of pro-
cessors; each set of processors is controlled by one con-
troller. The controller handles all instruction sequenc-
ing, like loops or branches. In this SIMD model all
processors are globally synchronized at the instruction
level. Each processor communicates with other proces-
sors through eight bidirectional wires. The bidirectional
wires may be connected in any fashion to form an in-
terconnection network; the NAP chips form the nodes
of that network, and may do computations in parallel
to perform routing, do actual computing for the system,
or both. A system-level view of the NAP is shown in
Figure 1. Examples of networks which can be built us-
ing NAPs are Butterfly or Fat-Tree networks, Banyan or
Flip-type networks, Hypercubes (more than 28 proces-
sors require multiple NAPs per node), Cube-Connected-
Cycles, Shuffle-Exchange networks, Torus and Mesh net-
works, restructurable networks, and Trees. An impor-
tant restriction is that the networks are regular enough
to have fewer than 16 distinct types of nodes; most prac-
tical networks have one or two.

384

Indirect Addressing and MIMD

One very important mechanism provided by the NAP
which is not found in conventional SIMD computers is
indirect addressing. We support indirect addressing be-
cause of the wave nature of the computations performed
by many routing networks. Consider for example paral-
lel prefix (Ref. 1), which is a class of parallel algorithms
which use a tree interconnection structure between pro-
cessors to perform many operations (such as addition)
in logN time. At any stage of a parallel prefix computa-
tion, each level of the tree may be accessing a bit at a
different address than other levels of the tree are access-
ing. Conventionally, this would be handled by enabling
or disabling the processors at different levels of the tree,
and running the computation on different levels at differ-
ent times, thus slowing down the overall computation.
Indirect addressing provides a mechanism for different
processors to access different memory addresses at the
same time under SIMD control. The result is that par-
allel programming can be done more flexibly and more
efficiently.

In addition to indirect addressing, there are three
means of differentiating processors within the SIMD con-
trol structure and hence making programming more flex-
ible and efficient.

1. Conditional execution: the instructions broadcast
on the SIMD bus can conditionally load a local in-
struction store called the nanostore, conditionally
load the memory, conditionally load configuration
bits within the NAP (called I/O-or-State-Select or
ISS bits), and conditionally execute sequences of in-
structions. An instruction may be conditioned on
any of the 16 bits of state within the NAP.

2. The instructions stored within the nanostore of each
NAP may be different, so that different processors
may perform totally different operations in response
to the same broadcast instruction.

3. Processors can have different tables at the same ad-
dress in local memory, and thus perform different
functions even while they are accessing the same
address.

These three mechanisms, which are explained in more
detail below, provide a large degree of flexibility to NAP
programmers.

Instruction Philosophy

We assume that off-chip wire delays are slow compared
to on-chip cycle times and local memory access time,
since we are implementing systems with long wires.

\\\\

fob
:I al Broadcast
¢ro- Control
Controller

Network

EZ

of NAPs

Add
No-Alu >
Broadcast P RAM
SIMD napy o | pata
Control () D

e .

-—--. .

8 Bidirectional
‘Network’ wires

Figure 1. System-level view of a NAP-based computer. Global microcontrollers broadcast instructions to sets of
NAP chips. Each NAP chip is connected to an off-chip RAM, a SIMD instruction broadcast bus, and 8 bidirectional

network lines.

Therefore, we chose a microcycle/nanocycle timing ap-
proach. At each microcycle, the controller broadcasts a
global microinstruction, and each processor can read or
write from each of its eight pins. Within each microcy-
cle, there are four minor cycles called nanocycles. Dur-
ing each nanocycle, a nanoinstruction is executed which
nearly always references the external memory twice (one
read and one write or write-back). Thus, the NAP uses a
two-phase timing methodology internally, and the mem-
ory may be accessed during each phase. Two phases
make a nanocycle, and four nanocycles make a micro-
cycle. The memory address may be changed once a
nanocycle.

The NAP is heavily memory based. As we have seen,
each phase of a nanocycle may involve a memory access,
so that the performance of the NAP is driven by memory
performance. Most programs written for the NAP are
also very memory-oriented. Operations are performed
using tables in memory under the control of broadcast
microinstructions. Typically, these table-based opera-
tions take as operands an arbitrary combination of state

385

and input wire values, an integer, or an address. Each
table (called a function table) requires 256 words (8 bits
each). Our prototype supports up to 2K words of ex-
ternal RAM, so that up to eight different tables can be
stored in memory at once; additional tables are down-
loaded as needed. Tables may be accessed using either
direct or indirect addressing.

The NAP microword

Figure 2 shows the format of the NAP microword. This
word is the instruction broadcast from a controller to a
number of NAP chips in (M)SIMD fashion each micro-
cycle. The 39 bits of the microword are common to all
the NAPs in a set. Each microword contains distinct op-
eration codes for every nanocycle, as well as condition
codes, a direct memory address, and two table offsets
used for indirect addressing or table-based logical oper-
ations. The microword is also very memory-oriented; 17
of its 39 bits are used for memory addressing.

The microword does not contain the actual nanoin-

Name Function Width
INIT initialization and download control 1 bit
OP0 four-bit indexes into the nanostore 4 bits
OP1 which specify which nanoinstruction 4 bits
OP2 to perform in each nanocycle 4 bits
OP3 OPs share one address and condition code 4 bits
CC Condition code; this decodes to 16 conditions 4 bits
MIP Memory address (for direct addressing) 11 bits
FoO Function table offsets (for indirect addressing) 3 bits
F1 normally contains the start address of a table 3 bits
total number of microword bits 39

Figure 2. The microinstruction word format shows the mnemonics, functions, and width of each instruction field.

structions executed each nanocycle by the NAPs.
Rather, it contains four four-bit OP codes which specify
an address in an on-chip memory called the nanostore.
The nanostore contains the nanoinstructions in the form
of a bit for every control line needed by the NAP hard-
ware. The OP fields give the ‘address’ of the nanoin-
struction within the nanostore. This approach reduces
the number of bits broadcast to the processors and thus
economizes on chip pins. In addition, it provides a mech-
anism for different processors to perform different work
under the control of the same microinstruction, since
different processors may have different nancinstructions
loaded into the same address in the nanostore.

Memory Addressing Modes

A number of memory addressing modes are supported
by the NAP. Bit-read, bit-write, word-read, and word-
write modes are supported, and each of these may be ad-
dressed using any combination of bits available to the ad-
dress multiplexors. A memory address is built as shown
in Figure 3. Bits are multiplexed onto the SRAM ad-
dress pins from the microinstruction (the MIP, F0, and
F1 fields), or from internal state bits. There are sixteen
bits of state in the NAP: eight bits from the external
SRAM held in a Memory Data Latch (MDL), and eight
bits which can be configured as any arbitrary combina-
tion of I/O bits or additional State bits (called IS bits).
All of the these state bits may control the memory ad-
dress.

A memory address specifies an eight-bit word. Within
that word, the low order three bits of the MDL specify a
bit in that word. A memory address is 11 bits (providing
8K bits of address space) in the NAP chip. Each mem-
ory address is used for one nanocycle only, although the
memory addressing fields are held constant for a whole
microcycle.

386

Providing a Global OR-tree

A global-or line to the microcontroller (the computer
which broadcasts the SIMD instruction stream) can be
derived from any of the I/O/State bits by ORing the ex-
ternal wires together. This capability is extremely use-
ful. For example, when checking for a condition (e.g-
does any processor contain zero, or does any processor’s
memory contain a pattern which matches the broadcast
pattern), the result can be returned to the microcon-
troller within a microcycle. The distance from the mi-
crocontroller to the NAP chips through the SIMD bus
and back through the global-or tree might be more than
200 ns, so that programmers using the global-or mecha-
nism might have to take account of the pipelining effect.
Any bidirectional communications pin on the NAP may
be used to construct a wired-OR tree.

PROCESSOR DESIGN

A block diagram of the NAP processor is shown in Fig-
ure 4. The major subcircuits are a set of datapath cir-
cuitry, a Nanocode store consisting of 16 by 28 bits of
static RAM, Nanosequencer logic to control the execu-
tion of instructions, and a set of Instruction pipeline
registers. The NAP uses a three-phase (1.5 nanocycle)
pipeline internally: operation lookup, nanocode access,
and datapath operations happen sequentially in every
nanoinstruction.

The NAP is designed to work with 35-ns external
Static RAMs. These are expensive. It would make sense
to move this memory on-chip.

Sixteen words by 28 bits of nanocode store are pro-
vided which are addressed in sequence by each of four
opcode fields in the microinstruction. These nanoin-
structions are downloadable and may differ for different
processors. The outputs of the nanostore are the con-

Address bits bit source 0 bit source I bit source 2
Bits 0:4 MIP[0:4] MDL[3:7] 1S[0:4]

Bits 5:7 MIP[5:7] IS[5:7]

Bits 8:10 MIP{8:10] F0[0:2] F1[0:2]

Figure 3. The memory address is constructed from combinations of the Memory Immediate Pointer (MIP), the
Memory Data Latch (MDL), the I/O-State bits (IS), and the Function table pointers (F0 and F1).

} y
7
" o RAM
qan)3 1)
7 7
1
— . (3
) b x
& 4 ’lr
— i . 0 RAM
F1 A '
()] 4

Figure 4. The block diagram of the NAP chip shows the SIMD instruction latches (left), the nanosequencer (lower
left), the state and I/O circuitry (top center), the data-path (right), and the RAM interface (lower right)

387

trol bits used directly by the logic in the processor; the
nanostore itself is a static RAM with decoders, write
amps, and sense amps. This RAM has a access time
goal of 25 ns, and is 1974 by 1620 microns in area using
a 3 micron CMOS technology.

Conditional instruction execution is provided in the
nanosequencer via an enable control which may disable
all outputs of the nanostore. This disabling happens
if the bit in the microinstruction condition code field
selected by the state bits is high. This mechanism allows
up to 16 different classes of processors.

The NAP is designed using a fully static CMOS cir-
cuit methodology in MOSIS scalable CMOS design rules.
A two phase non-overlapping clocking approach is used;
Approximately half of the circuitry on the chip (and ex-
actly half of the control lines) are ‘active’ on phase 1,
while the other half is active on phase 2. The MAGIC
layout system was used for the layout of the chip. Each
chip contains four NAPs, although only one of these pro-
cessors is fully connected to the pins of the chip. The
other three processors are accessible through scan path
circuitry. The overall circuit is 7900 by 9200 microns in
a 3 micron CMOS process.

EVALUATION AND CONCLUSIONS

We have shown that it is feasible to design a processor
chip which supports a variety of bit-serial routing net-
works efficiently. This type of chip is a step towards
understanding how to build and operate interconnection
networks for massively parallel computers. The NAP
chip we have designed provides very flexible address-
ing mechanisms, and allows indirect addressing so that
MAMD operation is possible. This chip also supports
three distinct means of multithread operation, so that
different processors operating off the same instruction
stream can do different things. Finally, this processor
chip has no ALU; table lookup is used for all operations.
We have found all of these mechanisms useful in writing
example programs, and believe that the NAP approach
can teach designers about how to provide addressing and
processor selection mechanisms in SIMD processors, and
about the issues involved in providing flexible and high-
performance interconnection networks.

How well has the NAP design stood up to its original
design goals? Let us examine those goals one by one:

e Provide communications control which is as
flexible as possible. The operation of the pro-
cessor is completely programmable at both the
microinstruction and nanoinstruction levels. Pro-
cessors have considerable flexibility in addressing
modes, and indirect addressing at both the bit and
word level is well supported. In addition, there are

388

three distinct means for processors operating from
the same instruction stream to do different things:
in addition to the standard conditional execution
(which is made very general in the NAP), they can
have different nanoinstructions in their nanostore,
or use different operation tables in their memory.
In practice, this allows programmers to write pro-
grams with the simplicity implicit in SIMD control
and synchronization, yet keep processors efficiently
utilized doing different things at the same time. Es-
sentially, one can program a machine built of NAPs
as sets of processors, even if those processors share
the same controller.

Keep the I/O pins and memory as busy as
possible performing useful work. Fach mi-
croinstruction may make up to four memory ref-
erences, each of a read-modify-write nature. Ev-
ery microinstruction executed by the processor can
be able to read from and write to up to eight I/O
pins on the processor. All of the programs written
on NAP to date have been able to keep the I/O
pins active at at least one bit per microcycle, which
corresponds to our assumptions about wire latency.
Similarly, most of these programs use most of the
nanocycles in a microcycle to perform useful work,
so that memory is well utilized. The cycle time of
the NAP is also in good agreement with the speed
available from state-of-the-art commercial SRAMs
or on-chip dRAM.

The NAP should serve as a ‘universal’ ele-
ment for routing networks. To date, we have
written NAP programs for message routing using
algorithms designed for butterfly networks (Ref. 6)
using the same number of cycles as a node designed
specifically for that purpose. We have also written
NAP programs for parallel prefix (Ref. 1) which ex-
ecute in one microcycle per bit. Although these
examples are not sufficient evidence to prove that
NAP is in fact a universal communication element,
they do indicate that NAPs would be useful in a
number of different networks.

Experiment with an ALU-less processor. Our
experience in writing NAP programs using tables
for operations is that ‘compressed tables’, which do
more than one thing in one operation, are immedi-
ately of use. For example, one portion of the table
might be used to increment a pointer while another
part might perform a boolean operation on a few
I/0O bits. We had hoped that experimenting with
table-based operations might lead us to a choice of
which operations to put into an ALU; instead, we

discovered that the generality offered by these ta-
bles was just the right thing for programming.

We hope that the NAP chip will eventually serve as
a testbed for experimentation with new interconnection
networks and parallel algorithms. We plan to test the
NAP design using a variety of ‘benchmark’ programs and
networks to test its utility as a general-purpose network
element. Measurement of effect of indirect addressing
and our processor differentiation mechanisms on proces-
sor utilization will tell us something about the efficiency
of our approach. Finally, using these mechanism to write
programs may lead to future insights about what pro-
gramming constructs are useful for writing effective par-
allel programs for communication networks.

ACKNOWLEDGEMENTS

The authors would like to thank Tom Cormen and Elliot
Kolodner for their hard work on the design, layout, and
programming of the NAP, Bill Dally for his direction
and feedback during the course of the NAP praject, and
Charles Leiserson for his insightful comments, direction,
and consultation in the early stages of the NAP design.

REFERENCES

1. A. Borodin and J. E. Hopcroft. Routing, merging,
and sorting on parallel models of computation. In
Proceedings of the 14th Annual ACM Symposium on
the Theory of Computing, pages 338-344, 1982.

. Ronald I. Greenberg and Charles E. Leiserson. Ran-
domized routing on fat-trees. In Proceedings of the
26th Annual IEEE Symposium on the Foundations of
Computer Science, November 1985,

. W. Daniel. Hillis. The Connection Machine.
Press, Cambridge, MA, 1985.

MIT

. Charles E. Leiserson. Fat-trees: universal networks
for hardware-efficient supercomputing. IEEE Trans-
actions on Computers, C-34(10), October 1985.

. Nicholas Pippenger. Parallel communication with
limited buffers. In Proceedings of the 25th Annual
IEEE Symposium on the Foundations of Computer
Science, October 1984.

. Abhiram G. Ranade. How to emulate shared mem-
ory. In Proceedings of the 28th Annual IEEE Sym-
posium on the Foundations of Computer Science,
pages 185-194, October 1987.

. Tommaso Toffoli and Norman Margolus. Cellular
Autonoma Machines. MIT Press, Cambridge, MA,
1987.

389

8. L. G. Valiant and G. J. Brebner. Universal schemes
for parallel communication. In Proceedings of the
18th Annual ACM Symposium on the Theory of Com-
puting, May 1981.

