
The TokuFS Streaming File System

John Esmet
Tokutek &

Rutgers

Michael A. Bender
Tokutek &

Stony Brook

Martin Farach-Colton
Tokutek &

Rutgers

Bradley C. Kuszmaul
Tokutek &

MIT

Abstract

The TokuFS file system outperforms write-optimized file
systems by an order of magnitude on microdata write
workloads, and outperforms read-optimized file systems
by an order of magnitude on read workloads. Microdata
write workloads include creating and destroying many
small files, performing small unaligned writes within
large files, and updating metadata. TokuFS is imple-
mented using Fractal Tree indexes, which are primarily
used in databases. TokuFS employs block-level com-
pression to reduce its disk usage.

1 Introduction

File system designers often must choose between good
read performance and good write performance. For ex-
ample, most of today’s file systems employ some com-
bination of B-trees and log-structured updates to achieve
a good tradeoff between reads and writes. TokuFS em-
ploys neither B-trees nor log-structured updates, how-
ever, and achieves performance that dominates today’s
file systems by more than an order of magnitude. This
paper describes the data structures and algorithms of
TokuFS, and presents performance measurements of
TokuFS against several traditional file systems.

At one extreme, update-in-place file systems [7, 9, 13]
keep data and metadata indexes up-to-date as soon as the
data arrives. These file systems optimize for queries by,
for example, attempting to keep all the data for a single
directory together on disk. Data and metadata can be
read quickly, especially for scans of related data that are
together on disk, but the file system may require one or
more disk seeks per insert, update, or delete.

At the other extreme, logging file systems [4, 12], log
file-system updates rapidly to disk. Logging ensures that

files can be created and updated rapidly, but queries, such
as reads or metadata lookups, may suffer from the lack
of an up-to-date index or from poor locality in indexes
that are spread through the log.

Large-block reads and writes, which we call macro-
data operations, can easily run at disk bandwidth. For
small writes, which we call microdata operations, in
which the bandwidth time to write the data is much
smaller than a disk seek, the tradeoff becomes more se-
vere. Examples of microdata operations include creating
or destroying microfiles (small files), performing small
writes within large files, and updating metadata (e.g., in-
ode updates).

In this paper, we introduce the TokuFS file system.
TokuFS achieves good performance for both reads and
writes and for both microdata and macrodata. Compared
to ext4, XFS, Btrfs, and ZFS, TokuFS runs at least 18.4
times faster than the nearest competitor (Btrfs) for cre-
ating microfiles and 13.5 times faster than the nearest
competitor (ext4) for reading data. Although today’s file
systems make a tradeoff between reads and writes, they
are nowhere near the actual optimal tradeoff curve.

TokuFS uses Fractal TreeR© indexes, which are some-
times called streaming B-trees [1]. Fractal Tree indexes
can improve the performance of databases by allowing
systems with few disk drives to maintain many high-
entropy indexes without slowing down data ingestion.

The rest of this paper is organized as follows. Sec-
tion 2 provides an overview for how Fractal Tree in-
dexes operate. Section 3 explains how TokuFS uses Frac-
tal Tree indexes to represent a file system. Section 4
presents a performance study of TokuFS compared to
traditional file systems, and Section 5 concludes with a
discussion of future work.



2 Fractal Tree indexes

This section presents a high-level description of the Frac-
tal Tree index, a data structure that implements a dictio-
nary on key-value pairs. Let k be a key, and let v be a
value. A dictionary supports the following operations:

Operation Meaning
INSERT(k,v) Associate value v with key k.
v := SEARCH(k) Find the value associated with k.
DELETE(k) Remove key k and its value.
k′ := SUCC(k) Find the next key after k.
k′ := PRED(k) Find the previous key before k.

These operations form the API for both B-trees and Frac-
tal Tree indexes, and therefore a Fractal Tree index can
be thought of as a drop-in replacement for a B-tree.

The Fractal Tree index is a write-optimized indexing
scheme, in that it can index data orders of magnitude
faster than a B-tree. However, unlike many other write-
optimized schemes, it can perform queries on indexed
data at approximately the same speed as an unfragmented
B-tree. And unlike some other schemes, a Fractal Tree
index does not require that all the writes occur before all
the reads: a read in the middle of many writes is fast and
does not slow down the writes.

The B-tree has worst-case insert and search I/O cost
of O(logB N), though it is common for all internal nodes
of a B-tree to be cached in memory, and so most oper-
ations require only about one disk I/O. If a query com-
prises a search or successor query followed by k succes-
sor queries, which we refer to as a range query, the num-
ber of disk seeks is O(logB N + k/B). In practice, if the
keys are inserted in random order, the B-tree becomes
fragmented and range queries can be an order of magni-
tude slower than for keys inserted in sequential order.

An alternative to a B-tree is to append all insertions
to the end of a file. Append-to-file optimizes insertions
at the expense of queries. Since B inserts can be bun-
dled into one disk write, the cost per operation is O(1/B)
I/Os on average. However, performing a search requires
reading the entire file, and thus takes O(N/B) I/Os in the
worst case.

An LSM tree [11] also misses the optimal read-write
tradeoff curve, requiring O((log2

B N)) I/Os for queries.
(The query time can be mitigated for point queries, but
not range queries, by using a Bloom filter [3]; Cassandra
[8] uses this approach.)

The Fractal Tree index provides much better write per-
formance than a B-tree and much better query perfor-
mance than append-to-file or an LSM-tree. Indeed, a
Fractal Tree index can be tuned to provide essentially the

same query performance as an unfragmented B-tree with
orders-of-magnitude improvements in insertion perfor-
mance. The Fractal Tree index is based on ideas from the
buffered repository tree [6] and extended by [1] to pro-
vide cache-oblivious results. Here we give a brief sketch
of the Fractal Tree index.

Consider a tree with branching factor b < B. Asso-
ciate with each link a buffer of size b/B. When an in-
sert or delete is injected into the system, place an in-
sert/delete command into the appropriate outgoing buffer
of the root. When the buffer gets full, flush the buffer and
recursively insert the messages in the buffers in the child.
As buffers on a root-leaf path fill, an insertion or deletion
command makes its way toward its target leaf. During
queries, all messages needed to answer a query are in the
buffers on the root-leaf search path.

When b =
√

B, the query cost is O(logB N), or within
a constant of a B-tree, and when caching is taken into ac-
count, the query time is comparable. On the other hand,
the insertion time is O((logB N)/

√
B), which is orders of

magnitude faster than a B-tree. This performance meets
the optimal read-write tradeoff curve [5].

For TokuFS we use TokuDB [14], Tokutek’s imple-
mentation of Fractal Tree indexes. TokuDB takes care
of many other important considerations such as ACID,
MVCC, concurrency, and compression. Fractal Tree in-
dexes do not fragment, no matter the insertion pattern.

3 TokuFS design

TokuFS consists of two Fractal Tree indexes: A metadata
index and a data index.

A metadata index is a dictionary that maps pathnames
to file metadata:

full pathname→ size,owner, timestamps,etc . . .

Files are broken up into data blocks of fixed size. In
this paper, we chose the block size to be 512. This choice
of block size worked well for microdata and reasonably
well for large data. If we wanted to tune for larger files,
we would choose a larger value for this parameter.

The blocks can be addressed by path name and block
number, according to the data index, defined by

pathname,block number→ data[512].

The last block in any file is padded out to the nearest
multiple of 512 length. However, the padding does not
have a substantial impact on storage space, since Fractal
Tree indexes use compression.

Note that path names can be long and repetitive, and
thus one might expect that addressing each block by

2



pathname would require a substantial overhead in disk
space. However, the sorted path names in this experi-
ment compress by a factor of 20, making the disk-space
overhead manageable.

The lexicographic ordering of the keys in the data in-
dex guarantees that the contents of a file are logically ad-
jacent. Since Fractal Tree indexes do not fragment, logi-
cal adjacency translates into physical adjacency. Thus, a
file can be read at near disk bandwidth. Indeed, the lexi-
cographic ordering also places files in the same directory
near each other on disk.

In the simple dictionary specification described in Sec-
tion 2, an index may be changed by inserts and deletes.
Consider, however, the case where fewer than 512 bytes
need to be changed, or where a write is unaligned with
respect to the data index block bounderies. Using the op-
erations specified, would do a SEARCH(k) first, would
change the value associated with k to reflect the update,
and then a new block would be associated with k via
an insertion. Searches are slow, since they require disk
seeks. Section 4 describes how to implement upsert op-
erations to solve this problem with orders-of-magnitude
performance improvements. The alternative would be to
index every byte in the file system, which would be slow
and have a large on-disk footprint.

We introduce an UPSERT message into the dictionary
specification to speed up such cases. A data index UP-
SERT is specified by UPSERT(k,offset,v, length), where
the key k specifies a pathname and block number. If k
is not in the dictionary, this operation inserts k with a
value of v at position offset of the specified block. Un-
specified bytes in the block are set to 0. Otherwise, the
value associated with k is changed by replacing the bytes
from offset to offset+ length− 1 by the bytes in v. The
UPSERT removes the search associated with the naive
update method, and provides an order-of-magnitude-or-
more boost in performance.

As noted above, the data index maps from path and
block number to data block. Although this makes in-
sertions and scans fast, especially on data in a directory
tree, it makes the renaming of a directory slow, since the
name of a directory is part of the key not only of every
data block in every file in the directory, but for every file
in the subtree rooted at that directory. Our current im-
plementation does a naive delete from the old location
followed by an insert into the new location. An alterna-
tive which we did not implement is to move the subtrees
around with only O(log2 N) work. The pathnames can
then be updated with a multicast upsert message (upsert
messages are explained below).

The metadata index maps pathname to a so-called

struct stat of its metadata. The struct stat stores all the
metadata – permission bits, mode bits, timestamps, link
count, etc – that is output by a stat command. The stat
struct is approximately 150 bytes uncompressed, but it
seems to compress well in practice.

The sort order in the metadata index differs from that
of the data index. Paths are sorted lexicographically by
(directory depth,pathname). This sort order is useful for
reading directories, since all of the children for a partic-
ular directory appear sequentially after the parent. With
this scheme, the maximum number of files is extremely
large and is not fixed at formatting time (unlike, say,
ext4, which needs to know how many inodes to create
at format time and thus ran out of inodes in the microfile
benchmark after a second run because the default was not
high enough).

A directory in TokuFS is an entry in the metadata in-
dex that maps the directory path to a struct stat with the
O DIRECTORY bit set. A directory exists iff there is a cor-
responding entry in this index. A directory is empty iff
the next entry in the meta index does not share the di-
rectory path plus a slash as its prefix. This algorithm is
easier than tracking whether the directory is empty in the
metadata because with that scheme, we would need to
update the parent directory every time one of its children
was removed.

A directory has no entry in the data index and does not
keep a list of its children. Because of the sort order on
the metadata index, reading the metadata for the files in a
directory consists of a range query, and is thus efficient.

We define a new set of upsert types that plays a critical
role in the efficiency of the metadata index. For example,
a file created with O CREAT and no O EXCL can be en-
coded as a message that creates an entry in the metadata
if it does not exist, or does nothing if it does. Another
example is when a file is written at offset O for N bytes,
a message can be injected into the metadata index that
updates the modification time for the file and possibly
updates the highest offset of the file to be O+N (i.e.,
its size). Or when a file is read, we can insert a mes-
sage into the meta index to update the access time effi-
ciently. Some file systems have mount options to avoid
doing this altogether because updating the read time has
a measurable performance hit in other implementations.
These upsert messages share in common that they avoid a
search into the metadata index and encode enough infor-
mation to update the struct stat once the upsert message
makes it to the leaf.

Symbolic links are supported by storing the target
pathname as the file data for the source pathname. For
simplicity, our implementation does not support hard

3



links, though it could in the future. Hard links could be
emulated using the same algorithm we use for symbolic
links. We would also kept track of the link count for ev-
ery file, so when a target pathname reaches a link count
of zero, the file can finally be removed.

4 Performance

This section compares the performance of TokuFS to
several traditional file systems. One big advantage of
TokuFS is that it can handle microwrites, so we measured
two kinds of microwrite benchmarks: writing many
small blocks spread throughout a large file, and writing
many small files in a directory hierarchy. We also mea-
sured the performance of large writes, which is where
traditional file systems do well, and TokuFS is relatively
slower. In the future, we hope to include optimizations
for large file creation.

All of these experiments were performed on a Dual-
Core AMD Opteron Processor 1222 running Ubuntu
10.04, with a 1TB Hitachi 7200rpm SATA disk drive.
We chose this machine to demonstrate that the microdata
problem can be addressed with cheap hardware.

Although our TokuFS FUSE module works correctly,
it does not show TokuFS in its best light. We found that
before and after every file creation, FUSE performs a
stat system call, which transforms our write-only work-
load into a read-intensive workload. For any file system,
reads require disk seeks, since only a small fraction of
the files can be cached, and thus this workload is not
useful in differentiating file systems. Instead, we ran
our TokuFS benchmarks using a user-space library. In
the future, we hope to adapt FUSE so that it does not
perform so many read operations on a write-only work-
load. (When we run the same benchmarks using Berke-
ley DB [10], the performance is also bad because B-trees
perform insertions slowly compared to Fractal Tree in-
dexes. In that case, both the file system layer and the
underlying data structures cause microdata performance
problems.)

Figure 1 shows the time to create and scan 5 million
200-byte files in a balanced directory hierarchy in which
each directory contains at most 128 entries. TokuFS is
faster than the other file systems by one to two orders
of magnitude for both reads and writes. Btrfs does well
on writes, compared to the other traditional file systems.
Btrfs gets the advantage of a log-structured file system
for creating files, but suffers on reads since the resulting
directory structure has lost spacial locality; surprisingly
ZFS performs poorly, although it does better on a higher
thread write workload. Perhaps ZFS requires a disk sync

creation scan
1 thread 4 threads 8 threads 1 thread

ext4 217 365 458 10,629
XFS 196 154 143 731
Btrfs 928 671 560 204
ZFS 44 194 219 303
TokuFS 17,088 16,960 16,092 143,006

Figure 1: Microfile creation and scan performance in
a directory hierarchy. The first column names the file
system, the next three columns show write performance
in files per second when there are varying number of
threads, and the last column shows the scan rate, that is
how many files per second can be traversed in a recursive
directory walk.

create files/s scan files/s
ext4 10,426 8,995
TokuFS 89,540 231,332

Figure 2: File creation and scan rates for one million
empty files in the same directory. The performance is
measured in files per second.

to create a file. XFS performs poorly on file creation, but
relatively well on scans. The ext4 file system performs
better than the other traditional file systems on the scan,
probably because its hashed directory scheme preserves
locality on scans.

File systems such as ext2 perform badly if you create
a single directory with many files in it. Figure 2 shows
that ext4 does reasonably well in this situation, in fact it
does better than for the directory hierarchy. TokuFS is
slightly faster in one directory than in a hierarchy, and is
at least an order of magnitude faster than ext4.

Figure 3 shows the performance when performing
575-byte nonoverlapping random writes into a 10 GB
file. We chose 575-bytes because it is slightly larger than
one 512-byte sector and is unaligned. (For similar rea-

write MB/s
Btrfs 0.049
ZFS 0.032
TokuFS 2.01

Figure 3: Microupdate performance. This table shows
the rate (in MB/s) at which each file system can write
575-byte nonoverlapping blocks and random offsets.

4



sons Bent et al. [2] employed a 47,001-byte block size
in a similar benchmark for parallel file systems, stating
that this size was “particularly problematic.”) The tradi-
tional file systems achieve only tens of kilobytes per sec-
ond for this workload, whereas TokuFS achieves 2 MB/s.
Although TokuFS performance in absolute terms seems
small (utilizing only 2% of the bandwidth of the under-
lying disk drive), it is still two orders of magnitude better
than the alternatives.

time size file disk
bandwidth bandwidth

TokuFS 15.74s 72MB 27MB/s 1.7MB/s
XFS 5.53s 426MB 77MB/s 77MB/s
gzip -5 9.23s 52MB 46MB/s 5.6MB/s

Figure 4: Time to write a 426MB uncompressed tar file
(MySQL source). Since TokuFS compresses, we mea-
sured the size on disk, the file bandwidth (the original
size divided by time), and the disk bandwidth (the size
on disk divided by time).

Figure 4 shows the performance when writing a sin-
gle large file. We used an uncompressed MySQL source
tarball. If we assume that XFS is achieving 100% of
the write bandwidth at 77MB/s, then TokuFS achieves
only about 35% of the underlying disk bandwidth. Part
of the reason for this performance hit is that TokuFS
compresses files using zlib, the same compressor used
in gzip. To try to understand how much of the TokuFS
performance hit is from compression, we timed gzip to
compress the same file, and found that the compression
time is about the same as the difference in time between
TokuFS and XFS. For this workload, TokuFS runs faster
on a higher core-count server. We believe that there is
the potential for further optimizations in the Fractal Tree
index implementation for large, incompressible files.

The biggest open problem for TokuFS is to map it into
the kernel file system in such a way as to avoid perform-
ing extra read operations when creating files.

5 Conclusion

In the future, we intend to investigate the use of Fractal
Tree file systems in the context of supercomputing. For
small file systems, the difference between Fractal Trees
and B-trees may be inconsequential, but as a file system
gets larger, poor microupdate scaling becomes serious.
Bent et al. [2] showed that an append-to-end file system
can solve the insertion problem at the expense of read

performance. Fractal Trees, which can support both effi-
cient writes and reads, may offer a more general solution
to the problem of maintaining a supercomputing file sys-
tem.

Acknowledgments

Richard Prohaska provided invaluable help and advice
for getting this project started. This work was supported
by DOE Grant DE-FG02-08ER25853 and by NSF grants
1058565, 0937860, and 0937829.

References
[1] BENDER, M. A., FARACH-COLTON, M., FINEMAN, J. T.,

FOGEL, Y. R., KUSZMAUL, B. C., AND NELSON, J.
Cache-oblivious streaming B-trees. In SPAA (2007), pp. 81–92.

[2] BENT, J., GIBSON, G. A., GRIDER, G., MCCLELLAND, B.,
NOWOCZYNSKI, P., NUNEZ, J., POLTE, M., AND WINGATE,
M. PLFS: A checkpoint filesystem for parallel applications. In
SC (2009).

[3] BLOOM, B. H. Space/time trade-offs in hash coding with
allowable errors. Commun. ACM 13, 7 (1970), 422–426.

[4] BONWICK, J. ZFS: the last word in file systems. https://
blogs.oracle.com/video/entry/zfs_the_last_word_in,
Sept. 14 2004.

[5] BRODAL, G. S., AND FAGERBERG, R. Lower bounds for
external memory dictionaries. In SODA (2003), pp. 546–554.

[6] BUCHSBAUM, A. L., GOLDWASSER, M.,
VENKATASUBRAMANIAN, S., AND WESTBROOK, J. R. On
external memory graph traversal. In SODA (2000), pp. 859–860.

[7] CARD, R., TS’O, T., AND TWEEDIE, S. Design and
implementation of the Second Extended Filesystem. In Proc. of
the First Dutch International Symposium on Linux (1994),
pp. 1–6.

[8] Cassandra wiki. http://wiki.apache.org/cassandra/,
2008.

[9] MASON, C. Btrfs design. https://btrfs.wiki.kernel.
org/articles/b/t/r/Btrfs_design.html, Dec. 2010.

[10] OLSON, M. A., BOSTIC, K., AND SELTZER, M. Berkeley DB.
In USENIX FREENIX Track (June 6–11 1999).

[11] O’NEIL, P., CHENG, E., GAWLICK, D., AND O’NEIL, E. The
log-structured merge-tree (LSM-tree). Acta Informatica 33, 4
(1996), 351–385.

[12] ROSENBLUM, M., AND OUSTERHOUT, J. K. The design and
implementation of a log-structured file system. In SOSP (Oct.
1991), pp. 1–15.

[13] SWEENY, A., DOUCETTE, D., HU, W., ANDERSON, C.,
NISHIMOTO, M., AND PECK, G. Scalability in the XFS file
system. In USENIX (San Diego, CA, Jan. 1996), pp. 1–14.

[14] TOKUTEK INC. TokuDB. http://www.tokutek.com/, 2011.

5


