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Abstract – The rise of big data systems has created a need for 
benchmarks to measure and compare the capabilities of these 
systems.  Big data benchmarks present unique scalability 
challenges.  The supercomputing community has wrestled with 
these challenges for decades and developed methodologies for 
creating rigorous scalable benchmarks (e.g., HPC Challenge).  
The proposed PageRank pipeline benchmark employs 
supercomputing benchmarking methodologies to create a 
scalable benchmark that is reflective of many real-world big 
data processing systems.  The PageRank pipeline benchmark 
builds on existing prior scalable benchmarks (Graph500, Sort, 
and PageRank) to create a holistic benchmark with multiple 
integrated kernels that can be run together or independently.  
Each kernel is well defined mathematically and can be 
implemented in any programming environment.  The linear 
algebraic nature of PageRank makes it well suited to being 
implemented using the GraphBLAS standard.  The 
computations are simple enough that performance predictions 
can be made based on simple computing hardware models.  
The surrounding kernels provide the context for each kernel 
that allows rigorous definition of both the input and the output 
for each kernel.  Furthermore, since the proposed PageRank 
pipeline benchmark is scalable in both problem size and 
hardware, it can be used to measure and quantitatively 
compare a wide range of present day and future systems.  
Serial implementations in C++, Python, Python with Pandas, 
Matlab, Octave, and Julia have been implemented and their 
single threaded performance has been measured. 

Keywords – benchmarking, big data, supercomputing, 
PageRank	

I. INTRODUCTION 
Before describing the proposed benchmark we outline, 

in some detail, the motivation and goals that underlie the 
benchmark design and scope. Big data processing systems 
are the backbone of many enterprises. The challenges 
associated with big data are commonly referred to as the 
three V’s of big data - volume, velocity, and variety [Laney 
2001].  Big data volume stresses the storage, memory, and 
compute capacity of a system and requires access to large 
amount of computing infrastructure.  Big data velocity 
stresses the rate at which data can be absorbed and 
meaningful answers produced. Big data variety emphasizes 
the heterogeneity and dynamic characteristics of 
information that is processed by big data systems, making it 

difficult to develop algorithms and tools that can address 
these diverse data formats. 

Many technologies have been developed to address big 
data volume, velocity, and variety challenges.  A typical big 
data system contains the services shown in Figure 1.  A 
typical big data processing scenario for such a system is as 
follows.  First, data is collected and stored as files.  Second, 
the data is parsed, sorted, and ingested into a database.  
Third, data from the database is queried and analyzed.  
Fourth, the results of the analysis are made available to 
users via web services.  The computing resources to run this 
scenario are brokered by a scheduler on an elastic 
computing platform. 

 

	
Figure 1.  Common architecture for connecting diverse data and 
users. Typical systems consist of seven major components: files, 
ingest processes, databases, analytics, web services, and a 
scheduler that brokers the resources of an elastic computing 
infrastructure. 

The services of a big data processing system can be 
implemented with a wide range of technologies drawn from 
both the big data and supercomputing domains. 

Common big data software includes the Hadoop 
distributed file systems (HDFS); Hadoop, Yarn, and Mesos 
schedulers [Bialecki et al 2005, Vavilapalli et al 2013, 
Hindman et al 2011]; NoSQL and NewSQL databases 
including HBase, Accumulo, Cassandra, and SciDB  
[George 2011, Wall et al 2013, Lakshman & Malik 2010, 
Balazinska et al 2009]; and analytics environments such as 
Pig, Hive, Spark, pMatlab, and D4M [Thusoo 2009, Zaharia 
et al 2010, Kepner 2009, Kepner et al 2012].  These big data 
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technologies are often bundled together by vendors into 
software stacks that can be deployed onto a system. 

Common supercomputing technologies include the 
parallel file systems such as Lustre and GPFS [Bramm 
2004, Schmuck & Haskin 2002]; resource 
managers/schedulers such as SLURM, LSF, and Maui [Yoo 
et al 2003, Jackson et al 2001]; and parallel programming 
environments including MPI, OpenMP, and UPC [Gropp et 
al 1996, Dagum & Enon 1998, Carlson et al 1999]. 

Each of the above choices in software can have a 
significant effect on performance.  Big data system builders 
and technology providers are keenly interested in measuring 
and understanding the impacts and trade-offs. 

Real world big data applications such as text processing, 
computer network defense, or bioinformatics may perform 
some or all of these steps in Figure 1.  Within a given 
application, there are many specific operations such as 
selecting files for further processing or extending a search 
of a graph to nearest neighbors. Examples of these specific 
operations are shown in Figure 2. These example operations 
can be approximately grouped into three categories: initial 
bulk storage and processing, search and analysis, and 
administrative tasks.   

 

	
Figure 2.  Example operations performed by big data systems 
divided into three categories: bulk storage and processing, search 
and analysis, and administrative tasks. 

The specific operations listed in Figure 2 are at a 
sufficient level of detail that it is possible to anticipate 
which parts of a data processing system (hardware and 
software) will have the largest impact on the performance of 
those operations.  The different elements of a big data 
processing system are as diverse as the applications that are 
performed with these systems and include internal network 
bandwidth, processor capabilities, memory architectures, 
database memory usage, implementation languages, and 
programmer effort.  Figure 3 illustrates how specific 
operations required by a big data application might be 
impacted by the specific elements of big data system.  The 
application impacts shown in Figure 3 are unique for each 
application/system combination, so generalizing can be 
difficult.  However, it is often the case that big data systems 
stress the parts of a system that intensively store and move 
data around the system. 

Qualitative analysis of big data applications, operations, 
and systems is a useful starting point for assessing big data 
technologies (hardware and software), but the qualitative 
analysis must be supplemented with quantitative 
measurements.  Ideally, each real-world big data application 
could be carefully measured against each big data 
technology, but this is cost prohibitive.  Benchmarks can 
play a role in informing this discussion by allowing big data 
technology providers, big data application developers, and 
big data users to have a common point-of-reference for 
comparing the capabilities of their systems.  Benchmarks do 
not eliminate the need for each stakeholder to analyze and 
understand their requirements in detail.  Benchmarks do 
allow this analysis to be spread out among the stakeholders 
and allow each stakeholder to focus on analyzing what they 
know best. 

 

	
Figure 3.  Example analysis with black squares in the table 
showing the connections between the performance impact of 
specific elements of a big data system and the operations that the 
system is performing.  Such an analysis is unique to each specific 
application/system combination. 

The major purpose of our proposed benchmark is to 
create a tool to efficiently inform this type of discussion in 
the big data space.  The design of the benchmark addresses 
a delicate trade-off between complexity, simplicity, 
generality, and specificity. 

We describe a new big data benchmark rooted in the 
widely used PageRank algorithm.  The benchmark draws 
heavily on prior benchmarking work that has proved 
valuable.  Section II reviews existing big data and 
supercomputing benchmarks that have informed the 
development of the proposed PageRank pipeline 
benchmark.  Section III summarizes PageRank.  Section IV 
describes the PageRank pipeline benchmark. Section V 
gives a discussion of next steps and future work.		 

II. SELECTED RELEVANT BENCHMARKS  
The rise of big data has resulted in a corresponding rise 

in big data benchmarks.  It is not possible to survey all the 
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relevant big data benchmarks and thus only a few 
representative big data benchmarks are discussed. 

Some important big data benchmarks are the HiBench 
suite [Huang et al 2010], the Yahoo cloud serving 
benchmark (YCSB) [Cooper et al 2010], the Big Data 
Benchmark [Pavlo et al 2009], and Sort [Gray 1988].  The 
most common element of these benchmarks is their focus on 
data intensive operations.  Most of the computations in the 
above benchmarks do a relatively small number of 
operations per data element.   

Some important supercomputing benchmarks include 
Top500 (Linpack) [Dongarra 1988], NAS [Bailey et al 
1991], HPC Challenge (Linpack, Stream, FFT, 
RandomAccess) [Luszczek et al 2006], and Graph500 
(Graph Analysis [Bader et al 2007], BFS)  [Murphy et al 
2010], and HPCG (conjugate gradient) [Dongarra & Heroux 
2013].  The most common elements of these benchmarks 
are their mathematical simplicity and their focus on 
scalability both in data and in hardware resources.  
Mathematical simplicity allows the performance of the 
benchmark to be estimated using simple models of the 
hardware, which is vital in validating the peak performance 
of a system.  Scalability allows the benchmark to be 
relevant to a wide range of systems and stand the test of 
time. 

All of these benchmarks (as well as others) can be 
divided into different categories: goal-oriented, algorithm-
oriented, code-oriented, and standards-oriented. 

Goal-oriented benchmarks specify the required inputs 
and outputs of the benchmark and usually provide an 
example algorithm and/or implementation.  The user can 
implement the benchmark with the 
algorithm/software/hardware combination of their choice.  
Examples of this approach include NAS, Sort, and 
Graph500.  Goal-oriented benchmarks encourage 
algorithm/software/hardware co-design and provide a 
mechanism for highlighting these innovations.  In exchange, 
it is sometimes less clear what part of the system is being 
measured and it can be difficult for others to correlate 
benchmark performance with particular application 
performance. 

Algorithm-oriented benchmarks specify the required 
inputs, outputs, and algorithm of the benchmark and provide 
an example implementation. The user can implement the 
benchmark with the software/hardware combination of their 
choice.  Examples of this approach include Top500, HPC 
Challenge (optimized), and HPCG.  Algorithm-oriented 
benchmarks encourage software/hardware co-design and 
provide a mechanism for highlighting these innovations, and 
it is usually clear what part of the system is being measured.  
Algorithm-oriented benchmarks usually allow for 
proprietary optimizations, and users may not see the same 
performance without these optimizations. 

Code-oriented benchmarks provide a specific program 
that must be run. The user runs the provided code on their 
choice of system.  Examples of this approach include SPEC 

(spec.org), IOzone (iozone.org), and Intel HiBench.  Code-
oriented benchmarks provide a mechanism for highlighting 
hardware innovations and compiler/hardware co-design. 
Code-oriented benchmarks are easy to produce and easy-to-
run, but they usually cannot be used to assess a complete 
system stack. 

Standards-oriented benchmarks provide a specific 
program that must run using specific standard libraries (e.g., 
MPI, BLAS). The user can implement the benchmark with 
the libraries/hardware of their choice.  Examples of this 
approach include HPC Challenge (reference) and TPC-C 
(tpc.org).  Standards-oriented benchmarks encourage 
library/hardware co-design and provide a mechanism for 
highlighting these innovations.  In addition, standards-
oriented benchmarks provide a strong incentive for 
optimizing standard libraries that can be of benefit to a wide 
class of applications. 

The performance of a big data system is strongly 
influenced by the software environment on the system.  Big 
data benchmarks should be amenable to implementations in 
diverse environments.  Thus, in the big data domain, 
algorithm-oriented benchmarks would appear to be the most 
beneficial. 

Based on these prior benchmark efforts there are certain 
properties that are desirable to have in a big data 
benchmark.  These properties include a focus on data 
intensive operations, mathematical simplicity, and 
scalability.  Existing data intensive benchmarks that satisfy 
some of these properties include Graph500, Sort (included 
in HiBench), and PageRank (included in HiBench). 

III. PAGERANK ALGORITHM 
PageRank is a link analysis algorithm developed by 

Google co-founders Sergei Brin and Larry Page [Brin & 
Page 1998, Page et al 1999].  The algorithm was originally 
applied rank Web pages for keyword searches.  The 
algorithm measures each Web page’s relative importance by 
assigning a numerical rating from the most important to the 
least important page within the set of identified Web pages.  
The PageRank algorithm analyzes the topology of a graph 
representing links among Web pages and outputs a 
probability distribution used to represent the likelihood that 
a person randomly clicking on links will arrive at any 
particular page. 

This algorithm was originally applied specifically to 
rank webpages within a Google search.  However, the 
mathematics can be applied to any graph or network [Gleich 
2015].  The algorithm is applicable to social network 
analysis [Java 2007, Kwak et al 2009], recommender 
systems [Song et al 2012], biology [Morrison et al 2005], 
chemistry [Mooney et al 2012], and neuroscience [Zuo et al 
2011].  In chemistry, this algorithm is used in conjunction 
with molecular dynamics simulations that provides 
geometric locations for a solute in water.  The graph 
contains edges between the water molecules and can be 
used to calculate whether the hydrogen bond potential can 



 

	

act as a solvent.  In neuroscience, the brain represents a 
highly complex vertex/edge graph.  PageRank has recently 
been applied to evaluate the importance of brain regions 
given observed correlations of brain activity. In network 
analysis PageRank can analyze complex networks and sub-
networks that can reveal behavior that could not be 
discerned by traditional methods. 

The simplicity and generality of this algorithm makes it 
a good candidate for use in a big data benchmark.  By 
judiciously constructing data sets from a graph generator 
and then adding an ordered set of kernels consisting of file 
reads, writes, sorts and shuffles, one can construct a data 
pipeline flow similar to what is required of real world big 
data systems. 

IV. PAGERANK PIPELINE BENCHMARK  
In many existing HPC micro benchmarks the extract, 

transform and load operations are often not fully considered 
when designing big graph and big data implementations.  As 
a result, the cost of these operations is not fully recognized 
in many benchmark implementations.  Nevertheless, they 
are important components in determining performance and 
this proposed benchmark addresses these often neglected 
operations. 

The proposed PageRank Pipeline benchmark consists of 
four mathematically defined kernels that culminate with 
performing the PageRank algorithm as defined by 
PageRank on Wikipedia [Wikipedia 2015].  The kernels 
consist of kernel 0 generating a graph and writing it to files; 
kernel 1 reading in the files, sorting by the starting vertex 
and writing out again; kernel 2 reading in the edges, 
constructing an adjacency matrix, computing the in-degree, 
eliminating high/low degree nodes, and normalizing each 
row by total number of edges in the row; kernel 3 
computing 20 iterations of PageRank via a sparse matrix 
vector multiply.  The linear algebraic nature of PageRank 
makes it well suited to being implemented using the  
GraphBLAS standard. Broadly kernels 0-1 characterize 
canonical ingest processes (see Figure 1), while kernels 2-3 
are akin to canonical analytics stages (see Figure 1). Each 
kernel in the pipeline must be fully completed before the 
next kernel can begin. Details of the individual kernels in 
the benchmark are as follows. 

A. Kernel 0: Generate Graph 
Kernel 0 generates a list of edges from an approximately 

power-law graph using the Graph500 graph generator (i.e., 
kernel 0 of Graph500).  Matlab/Octave code for the 
generator can be obtained from the Graph500 website 
(Graph500.org).  The parameters of the Graph500 generator 
are the integer scale factor S and the average number of 
edges per vertex k=16.  The maximum vertex label is given 
by 

 
N = 2S 

 

The total number of edges is given by 
 

M = k N 
 
Thus, for a value of S = 30, N = 1,073,741,824, and M = 
17,179,869,184.  A target scale for the benchmark could be 
a value of S that results in the memory footprint of the edge 
data consuming ~25% of the available RAM. 

The Graph500 generator is scalable, can be run in parallel 
without requiring communication between processors, and 
has been used to generate some of the largest graphs in the 
world [Burkhardt & Waring 2015, Kepner et al 2014].  Each 
edge in the graph is defined by a pair of numbers 
representing the start and end vertices of the edge.  For 
example, let all the starting and ending vertices be stored in 
the M element vectors u and v. After the edges are 
generated they are written to files on non-volatile storage as 
pairs of tab separated numeric strings with a newline 
between each edge: 

u(1) v(1) 
   :  : 

u(i) v(i) 
    :  : 

u(M) v(M) 
 
where i = 1, ..., M.  The number of files is a free parameter 
to be set by the implementer or the user.  The graph 
generation process is untimed and its performance is not 
part of the benchmark. 

The Graph500 generator has been a highly successful 
generator.  The subsequent kernels should be able to work 
with input from any graph generator.  Other generators also 
exist such as block two-level Erdos-Rényi (BTER) 
[Seshadhri et al 2012] and perfect power law (PPL) [Kepner 
2012, Gadepally 2015]. These graph generators may be 
worth investigating as they may make the validation of 
subsequent kernels easier. 

B. Kernel 1: Sort 
Kernel 1 reads in the files generated in kernel 0, sorts the 

edges by start vertex and writes the sorted edges to files on 
non-volatile storage using the same format as in kernel 0:  

 
u(1) v(1) 
 :  : 
u(i) v(i) 
 :  : 
u(M) v(M) 

 
where u(i-1) ≤ u(i) ≤ u(i+1). 

The number of files is a free parameter to be set by the 
implementer or the user.  The entire sorting process is timed 
and its performance is reported in terms of edges sorted per 
second (i.e., M divided by the run time).  This kernel has 
many similarities to the Sort benchmark and its performance 
should be similar and be dominated by a combination of the 



 

	

storage I/O time and the communication required to sort the 
data.  The type of sorting algorithm may depend upon the 
scale parameter.  For example, in the case where u and v fit 
into the RAM of the system, an in-memory algorithm could 
be used.  Likewise, if u and v are too large to fit in memory, 
then an out-of-core algorithm would be required. 

C. Kernel 2: Filter 
Kernel 2 reads in the files generated in kernel 1 and 

performs several filtering steps that are common for 
preparing a graph for subsequent analysis.  The steps are 
described below along with their Matlab/Octave 
equivalents. 

The first step consists of creating an N x N sparse 
adjacency matrix of the graph 
 

A = sparse(u,v,1,N,N) 
 
where A(u,v) is the count of edges starting at vertex u and 
ending at vertex v.  The matrix construction stores a count at 
each entry because a (u,v) edge may be generated during 
kernel 0 more than once.  Because of collisions, A should 
have fewer than M non-zero entries, but all the entries in A 
should sum to M.  Many rows and columns of A may be 
empty.  Many entries along the diagonal of A are also 
expected.  Because of the deterministic nature of the 
PageRank algorithm, none of these factors should 
significantly impact the run-time of the benchmark. 

The second step in kernel 2 is to compute the in-degree of 
each vertex (i.e., the sum of entries in each column) 

 
din = sum(A,1) 

 
The third step is to zero-out the columns with the most 

entries (i.e., eliminating the super-node) and zero-out the 
columns with only one entry (i.e., eliminating the leaves) 
 

A(:,din == max(din)) = 0 
A(:,din == 1) = 0 

 
The fourth step is to compute the out-degree of each 

vertex (i.e., number of entries in each row) and divide each 
non-zero entry by its out-degree. 

 
dout = sum(A,2) 
i = dout > 0 
A(i,:) = A(i,:) ./ dout(i) 

 
The entire process to perform all of these steps is timed, 

and its performance is reported in terms of edges prepared 
per second (i.e., M divided by the run time).  In a parallel 
implementation, a common decomposition would be to have 
each processor hold a set of rows, since this would 
correspond to how the files have been sorted in kernel 1.  In 
such a decomposition, the in-degree info will need to be 
aggregated and the selected vertices for elimination 

broadcast.  This part of this kernel can characterize the 
relevant network communication capabilities of a big-data 
system.  However, it is possible to construct scenarios in 
which different steps of kernel 2 could be dominant: reading 
in the edges (IO limited), constructing the sparse adjacency 
matrix (memory limited), or computing the in-degree 
(network limited). 

It should be noted that in building the adjacency matrix 
there may be nodes on the graph with no out edges.  Various 
authors [Boldi, et. al. 2007, Langville and Meyer 2004, 
Govan et. al. 2008] have proposed adjustments to the 
adjacency matrix to compensate for the appearance of these 
dangling nodes.  However, these initial Kernel 2 
specifications have not adjusted for these for these vertices 
because it is likely to have limited impact on the run time of 
the benchmark.  Future versions of this Kernel may adjust 
for these vertices. 

D. Kernel 3: PageRank 

Kernel 3 performs 20 iterations of the PageRank 
algorithm on the normalized adjacency matrix of the graph 
provided by kernel 2.  In a real application, PageRank 
would be run until the result passes a convergence test such 
as the normed sum of the differences between iterations.  As 
PageRank has become more used as a benchmark, this data 
dependent element of the algorithm is been replaced by 
running PageRank for a fixed number of iterations [Ewen et 
al 2012, Gonzalez et al 2014, Kyrola et al 2012, Shun & 
Blelloch 2013, McSherry et al 2015].  Running PageRank 
with a set number of iterations yields more consistent timing 
results that are less dependent on the specifics of the data 
generator. 

The PageRank algorithm is initialized by setting the N-
element row vector r to normalized random values 

 
r = rand(1,N) 
r = r ./ norm(r,1) 

 
An N-element damping vector a is constructed by 
 
 a = ones(1,N) .* (1-c) ./ N 
 
where c = 0.85 is the damping factor associated with the 
PageRank algorithm (see Appendix). Using the iterative 
formulation of PageRank, each iteration of the algorithm 
performs the following update to the vector r 
 

r = ((c .* r) *A) + (a .* sum(r,2)) 

which can be simplifed to 

r = ((c .* r) *A) + ((1-c) .* sum(r,2)) 

The appendix discusses this formula in somewhat more 
detail. 



 

	

It should be mentioned that in order to assure a full 
stochastic construction, the additional term for the dangling 
nodes in the iterative formulation should be included.  
Several procedures have been proposed [Eiron McCurley 
and Tomlin, 2004].  Ipsen and Selee [Ipsen and Selee, 2007] 
have shown the inclusion of dangling nodes in the 
PageRank calculation does not materially impact the 
solution for the PageRank vector.  Because this paper is 
focused on a proposed Kernel 3 for benchmarking rather 
than specifically finding the PageRank vector r, the 
additional term for the dangling nodes in the iterative 
formulation has been omitted. 

The entire process to perform all of these steps is timed 
and the performance is reported in terms of edges processed 
per second (i.e., 20M divided by the run time).  In a parallel 
implementation, a common decomposition would be to have 
each processor hold a set of rows, since this corresponds to 
how the files are sorted in kernel 1.  In such a 
decomposition, each processor would compute its own 
value of r that would be summed across all processors and 
broadcast back to every processor.  This is likely to be a 
time consuming part of this step and is likely to be limited 
by network communication. 

The results of the above calculation can be checked by 
comparing r with the first eigenvector of 

 
c.*A.' + (1 - c)/N 

 
For small enough problems where the above dense matrix 
fits into memory, the first eigenvector can be computed via 
the Matlab command 
 
 [r1 ~] = eigs(c.*A.' + (1 - c)/N,1) 
 
Normalizing both r and r1 by the sums of their absolute 
values, these quantities should be equivalent and satisfy 
 
 r./norm(r,1) = r1./norm(r1,1) 
 

IV . SERIAL IMPLEMENTATIONS AND RESULTS 
Each kernel discussed in the previous section is well 

defined mathematically and can be implemented in any 
programming environment.  To test this proposed PageRank 
Pipeline benchmark, serial codes have been developed in 
several different languages.  These include versions written 
in C++, Python, Python with Pandas, Matlab, Octave, and 
Julia.  

Table I shows the source lines of code needed to 
implement the serial version of the benchmark in each of the 
various languages.   The C++ implementation is the largest.  
The other implementations are approximately comparable in 
size.   

 
 

TABLE I.  SOURCE LINES OF CODE 

Language Source Lines of Code 

C++ 494 

Python 162 

Python w/Pandas 162 

Matlab 102 

Octave 102 

Julia 162 

 

Each implementation was run and timed over a variety of 
problem sizes corresponding to scale factors that ranged 
from 16 to 22 (see Table II).  Scale 22 results in a problem 
with maximum of 4M vertices, 67M edges, and an 
approximate memory footprint of 1.6GB (assuming 16 bytes 
per edge). 

TABLE II.  BENCHMARK RUN SIZES.  

Scale Max Vertices Max Edges ~Memory 

16 65K 1M 25MB 

17 131K 2M 50MB 

18 262K 4M 100MB 

19 524K 8M 201MB 

20 1M 16M 402MB 

21 2M 33M 805MB 

22 4M 67M 1.6GB 

 

All of the serial versions of the benchmarks were run on 
the same hardware architecture and storage environment.  
The computer platform used was an Intel Xeon E5-2650 (2 
GHz) with 64 Gbytes of memory.  Each node had 16 cores 
with hyper threading available.  The cluster has both 
InfiniBand and 10 GigE interconnects.  However, because 
these are all written as serial codes run using a single thread, 
the network hardware and interconnections were not a major 
factor impacting the results.  The storage system attached to 
the compute platform used for the read/write/store 
operations is a Lustre file system. 

The measurements for Kernel 0 are shown in Figured 4. 
This measurement provides some insight into the 
performance of the code for writing data to non-volatile 
storage.  Although for problems of this, caching in 



 

	

unavoidable. 

 

Figure 4.  Kernel 0 measurements for each language listed showing 
edges/sec versus number of edges run on a common hardware 
platform and file system. 

Figure 5 measures Kernel 1.  As was discussed in Section 
3, if the start and end vertices are sufficiently small, they 
can fit into memory and an in-memory algorithm can be 
used.  For these measurements, the scale factor of 22 is 
sufficiently large so as to limit any L3 cache advantage but 
some impacts on Kernel 1 advantages can still be impacted 
by the storage cache.  

 

Figure 5.  Benchmark results for Kernel 1 showing the 
performance for reading files generated in Kernel 0, sorting them 
by the start vertex and re-writing the sorted data back to non-
volatile storage. 

Kernel 2 measurements are shown in Figure 6.  These 
benchmark tests indicate the impact of I/O, and memory 
limitations through a combination of reading data, 
construction of the sparse adjacency matrix and 
computations to determine the in-degree. 

 

Figure 6.  Benchmark results for Kernel 2 showing combined 
impacts from I/O and memory limitations. 

Figure 7 measures the calculation of the actual PageRank 
algorithm.  It should be noted that for this serial 
implementation, there is a minimal dispersion among the 
performance measurements in Kernel 3 for each of the 
languages.  This is not be surprising because of the fact that 
there is no parallel implementation in these tests and 
therefor there is little network communication.  It is 
expected that measurements of Kernel 3 in a parallel 
implementation will show a wider dispersion in 
performance between the languages. 

 

Figure 7.  Kernel 3 measurements reflecting the actual PageRank 
calculations for scales between 16 and 22. 

V. SUMMARY AND NEXT STEPS  
The proposed PageRank Pipeline benchmark employs 

supercomputing benchmarking methodologies to create a 
scalable benchmark that is reflective of many real-world big 
data processing systems.  The PageRank pipeline 
benchmark leverages existing prior scalable benchmarks 
(Graph500, Sort, and PageRank) to create a holistic 
benchmark with multiple integrated kernels that can be run 
together or independently.   
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Initial measurements using serial code developed in 
several difference languages have been presented here using 
a common hardware platform and a Lustre file system.  
Future work will include re-running these benchmarks using 
local storage. 

The key next step is to obtain community feedback on the 
proposed benchmark and make improvements based on that 
feedback.  Possible points of feedback include: Should a 
more deterministic generator be used in kernel 0 to facilitate 
validation of all kernels? Should the end vertices in kernel 1 
also be sorted? Should a diagonal entry be added to empty 
rows/columns to allow the PageRank algorithm to 
converge?  Are the values of the adjacency matrix required 
to be floating point values? What outputs should be 
recorded to validate correctness? 

The computations are also simple enough that 
performance predictions can be made based on simple 
hardware models.  Additional studies are currently 
underway that will provide a more detailed analysis of each 
of the kernels with respect to standard models of parallel 
computation and communication.  The results from these 
models can be used to predict the performance on current 
and proposed systems. 

Finally, after receiving community input and analyzing 
the performance models, it would be appropriate to produce 
an executable specification (i.e., Matlab, Python) and  
reference implementations in various environments (i.e., 
C/MPI, Java/Hadoop, Python/Spark).  Furthermore, 
implementations using the GraphBLAS standard would 
allow enable comparison of the GraphBLAS capabilities 
with other technologies. 
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APPENDIX 

The goal of PageRank is rank vertices in a graph based on 
how likely a random walker of the graph will be at any 
particular vertex.  The strength of PageRank is that the core 
random walker concept is very flexible and can be used to 
incorporate a wide range of contextual information.  A 
variety of specific algorithms have been developed based on 
this concept [Gliech 2015] with names such as strongly 
preferential PageRank, weekly preferential PageRank, and 
sink PageRank.  For this benchmark, one of the simpler 
PageRank algorithms is used.   The simplest model says that 
a random walker will walk to another vertex with equal 
probability.  Such a model can be represented by the 
following iterative calculation 
 

r = r *  ./ N 

where  is a NxN matrix of all ones.  The above equation 
will converge to a value of 

 
sum(r,2) ./ N 

A more sophisticated model increases the probability of 
randomly walking to a connected vertex and is described by 
the iterative equation 
 

r = ((c .* r) * A) + ((1-c) .* r *  ./ N) 

where A is the normalized adjacency matrix of the graph 
constructed as the output of Kernel 2 and c is the weighting 
factor that balances between walking to a neighbor vertex 
versus a random vertex.  The above equation simplifies to 
 

r = ((c .* r) * A) + ((1-c) .* sum(r,2) ./ N) 
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