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�

Programmers of the Connection Machine CM-5 data net-
work can improve the performance of their data movement
code more than a factor of three by selectively using global
barriers, by limiting the rate at which messages are injected
into the network, and by managing the order in which they are
injected. Barriers eliminate target-processor congestion, and
allow the programmer to schedule communications globally.
Injection-reorderingimproves the statistical independenceof
the various packets in the network at any given time. Barriers
and tuned injection rates provide forms of flow control. Bar-
riers also provide a composition of performance property: if
you understand the performance of parallel computations

�

and � , then you understand the performance of “
�

; barrier;
� ”. Architectural support for global barriers, injection re-
ordering, and flow control may be worthwhile for achieving
good communications performance. Although our evidence
comes from the CM-5, we expect these techniques to apply
to most parallel machines.

1 Introduction
Suppose you need to perform a sequence of parallel cyclic

shifts. In parallel FORTRAN you might see code that looks
like this, where the columns of A and elements of B are
distributed among the P processors:

DIMEN A[P,P], B[P]
A[1] = CSHIFT(B,1)
A[2] = CSHIFT(B,2)
�����
A[P] = CSHIFT(B,P)

The notation “A[I] = CSHIFT(B,I)” means cyclic-
shift B by I and store it into row I of A.

One natural way to compile data-parallel code is to com-
pile each statement separately with global barriers between
the statements: both the source language and the compiled
code are a serial sequence of parallel operations. A simple
subscript analysis reveals that the barriers are not required
to ensure the semantic correctness of this program, since the
target rows are all independent.

�
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Question: What happens to the performance when the bar-
riers are removed?

Answer: Surprisingly, the computation gets slower, often
by a factor of three.

To understand this problem, we studied a few patterns in
a narrow environment:

	 We studied the cyclic-shift pattern described above, and
the resulting all-pairs communication pattern, in which
every processor sends a value to every other proces-
sor. The all-pairs pattern appears in sorting and some
scientific codes [Ede91]. We also studied random com-
munication patterns.

	 We studied the communication patterns in a data-
parallel or SPMD environment, in which the real op-
eration being performed by a collection of messages
is a bulk data movement. Given this assumption, we
examined the problem of sending a large collection of
messages as quickly as possible, rather than focusing
on the performance of any particular message.

	 We used block transfers built on top of 20-byte ac-
tive messages [vECGS92] on the CM-5 data net-
work [LAD+92].

We found several ways to ensure good performance for bulk
data movement. Barriers improve the performance of cyclic
shifts by a factor of 2 to 3. The order in which packets
are injected into the network is important. If a processor
has many packets to send to each of several processors, it is
better to interleave the packets to several destinations rather
than send large batches of packets to one target. Finally,
artificially limiting the injection rate to match the reception
rate can improve performance an additional 25% and greatly
reduces the variance in bandwidth for large transfers.

Although the scope of this study has been narrowed from
the wider problem of obtaining good performance on any
interprocessor communications system, we believe that our
conclusions apply to a fairly wide range of situations.

An important limitation in any network is the bisection
bandwidth. In general, given a data-parallel communication
operation, if you divide the processors of a machine into
two sets, and then measure the bandwidth, � , in bytes per
second, that the network could possibly provide across the
corresponding cut, and you measure the amount of data, 
 ,
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in bytes, that must be transferred between the sets, then it will
take at least 
�� � seconds to move the data. The bisection
bandwidth of a machine is one such cut. For any given cut,
� is a function only of the network, and 
 is a function only
of the communication pattern.

There are 2 � ways to cut � processors into two sets, which
makes finding the worst cut a potentially formidable oper-
ation. A max-flow min-cut algorithm can be used to solve
for the achievable bandwidth directly. Leiserson [Lei85]
showed that for fat-trees the problem is much easier: you
need only consider the cuts across a single major arm of the
fat-tree in order to find the tightest 
�� � bound (see Fig-
ure 1). In a � -node CM-5, which is a uniform 4-ary fat-tree,
there are less than 4

3 � major arms, and the bandwidth of an
arm depends only on the height of the arm. The bandwidths
for a 64-node CM-5 are shown in Figure 1. We found that the
most important cuts for the CM-5 are the links that connect
the processors to the network: the bandwidth of these links
are determined by software overhead and form the limiting
factor for most message patterns.

Sections 2 and 3 provide background on the CM-5, Sec-
tion 4 examines how barriers can improve communication
performance, and Section 5 explores the importance of in-
terleaving packets to multiple destinations. Section 6 exam-
ines the effect of matching the injection and reception rates.
Section 7 discusses the implications of our results for com-
munications software and hardware, and concludes with a
discussion of our results and related theoretical work.

2 CM-5 Background
This section provides some background on the CM-5 data

network and examines the fundamental limitations of the ma-
chine, including network-processor bandwidth and network
capacity.

The CM-5 data network is a 4-ary fat-tree as shown in
Figure 1. Each edge is actually two independent links, left
and right, but for bulk data movement we always use both
simultaneously. Of the various network cuts, at least two
matter in practice: the links connecting the processors and
the cuts through the root.

Processor overhead limits the bandwidth of the processor-
network links, not the network hardware. For these links,
the hardware can support up to 40 megabytes per second in
each direction. Assuming the 33-megahertz clock found in
most CM-5 implementations, and 20-byte packets with 16
bytes of payload (also standard for the CM-5), the sending
overhead out of the cache is at least 37 cycles, for a maximum

payload bandwidth of � 16 � 10 � 6 � � 33 � 106 �
37 � 14 	 3 megabytes

per second.
The real limit is the cost of receiving packets, which

currently requires about 60 cycles for realistic packets with
polling and hundreds of cycles using interrupts. Because
of the prohibitive cost of interrupts, all of our experiments
use polling; we will discuss the implications of this decision
in our conclusions. At 60 cycles per 16-byte packet, the

payload bandwidth is limited to 8.8 megabytes per second.
Kwan, Totty, and Reed [KTR93] measured the actual one-
way bandwidth at 8.3 megabytes per second using Thinking
Machines’ message-passing library.

However, these numbers only cover the case in which
a processor is sending or receiving. When a processor is
both sending and receiving, the bidirectional bandwidth is
somewhere between the two cases. Although the network
handles both directions in parallel, the processor can not. The
overhead to send and receive a packet is about 90 cycles,
saving 7 cycles due to shared code. This translates to an
upper bound of 5.9 megabytes per second in each direction
for a total of 11.8 megabytes per second. The largest value
measured by Kwan et al. was 10.4 megabytes per second.

The capacity of the network, which is the number of pack-
ets that can be injected without the receiver removing any,
limits the ability of the processors to work independently.
For example, if the network can hold ten packets, then a pro-
cessor can only inject ten packets before the network backs
up, and then it must wait for the receiver to accept pack-
ets. For the CM-5, we measured the network capacity for a
variety of partition sizes:

Nodes Total Packets Packets/Node
8 79.0 9.88

16 158 9.89
32 342 10.7
64 691 10.8

128 1441 11.3

Thus, for any substantial data movement, the senders and
receivers must be coordinated. Furthermore, since only the
wire time can be hidden and the network capacity is only ten
packets, there is little profit in trying to overlap computation
and communication on the CM-5.

Nearly all communication on the CM-5 is implemented
with active messages. Active messages were developed by
von Eicken et al. [vECGS92], whose Berkeley CMAM pack-
age provided substantially better performance than contem-
porary versions of CMMD, Thinking Machines Corpora-
tion’s communication library. CMMD 3.0 incorporated the
active-message ideas, and in fact, most of CMMD is now
implemented via active messages. Like CMAM, CMMD
provides support for barriers and block transfers.1

The Strata communications library [BB94], developed
at MIT, is an alternative to CMAM and CMMD that pro-
vides improved performance, improved support for timing
and debugging, precise control over polling, and split-phase
control-network operations.2 Strata incorporates the tech-
niques described in this paper.

1The CMMD performance numbers presented in this paper were mea-
sured under CMMD 3.1-Final with CMOST 7.2-Final.

2Strata is available from ftp.lcs.mit.edu via anonymous ftp, di-
rectory /pub/supertech/strata.
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Figure 1: A 64-node CM-5 data-network fat-tree showing all of the major arms and their bandwidths (in each direction). One
needs to cut only a single major arm to find the worst bisection for a given message pattern.

3 Timing on the CM-5
We use two forms of timing depending on the expected

length of the event. For short events, less than a millisecond
or so, we use the 32-bit cycle counter. For longer events, we
use the 64-bit timers provided by the operating system.

The cycle counter is extremely accurate: using inline pro-
cedures the overhead can be subtracted out to yield timings
that are accurate to the cycle. However, the cycle counter
counts everything including interrupts and other processes.
For example, if our process is time-sliced during an event,
then we count all of the cycles that elapse until we are
switched back in and the event completes. However, the
probability of getting switched out during a one-millisecond
event is about 1 in 100, since the time-slice interval is one-
tenth of a second. A more common problem is the timer
interrupts, which occur every 60 �

�
of a second.3 Thus, to

get reliable measurements, we usually perform a timing at
least three consecutive times and take the median. Using the
median effectively eliminates errors due to time slicing and
timer interrupts.

The operating-system timers have their own advantages
and disadvantages. The operating-system timers stop run-
ning when your process stops running, so they can be used
even across time-slice interrupts. However, the operating-
system timers are accessed using system calls, which cost
hundreds of cycles and thus limit the accuracy. The
operating-system timers also experience a time-dilation
when the data network is full of messages.

To demonstrate the time-dilation of the operating-system
timers, we ran the following experiment. We timed a
floating-point loop with the network empty, filled up the
network, and timed the same loop with the network full.
The only difference between the “empty” time and the “full”
time is the presence of undelivered messages sitting in the
network. The floating-point code is identical, no messages
are sent or received during the timing, there are no loads or
stores, and the code is a tight loop to minimize cache effects.
Figure 2 shows the results for 18 samples taken across a
wide range of overall system loads. Not only does filling
up the network increase the measured time to execute the

3The timer interrupts take about 250 microseconds to complete, which
means that a CM-5 (of any size) spends about 250

16666
� 1 � 5% of its cycles

handling timer interrupts.

Network Status Average 95% CI
Empty 4.56 seconds

�
0 	 0020

Full 5.52 seconds
�

0 	 24

Figure 2: The effect of a full network on timings made with
the operating-system timers: the timers inflate timings 21%
when the network is full.

floating-point loop by an average of 21%, but it substantially
increases the variation in measured time as well, as shown
by the wider 95% confidence intervals.

This implies that timings that occur while the network
is full are dilated an average of 21%. The dilation is load
dependent, but we were unable to get a reliable correlation
between the dilation and the average system load. Fortu-
nately, the timings appear to be consistent given a particular
mix of CM-5 jobs, and the inflation appears to change slowly
with time. To obtain reliable data, we ran the set of all ex-
periments twelve times, measuring all of the experimental
configurations once, and then measuring them all again, and
so on, so that slow changes to the environment will tend to
affect all of the experiments equally. Algorithms that keep
the network full appear to achieve lower performance than
algorithms that keep the network empty. We address the
time-dilation issue in the context of each experiment.

We believe that the dilation is caused by context-
switching. At each time-slice, the operating system emp-
ties the network, using the all-fall-down mechanism, so that
messages in the network that belong to one process do not
affect the next process. When the process is switched back
in, its messages are reinjected before the process continues.
The cost of context switching appears to depend on the num-
ber of packets in the network, and some or all of this cost is
charged to the user and thus affects the timings. Our mea-
surements have not been adjusted for time-dilation, since it
appears that algorithms that keep the network full really do
run slower. Our experiments with bulk data movement in-
dicate that algorithms that keep the network full suffer more
from network congestion than from time-dilation.4

4The use of dedicated mode does not eliminate the dilation, although it
does provide a more stable measurement environment.
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4 Using Barriers Can Improve Performance

This section shows that adding barriers to a communi-
cations operation can actually increase performance, and
presents some evidence to explain the benefit. To our knowl-
edge this effect was first noticed by Steve Heller of Thinking
Machines Corporation; Culler et al. mention the effect in a
later paper [CKP+93].

We ran the cyclic-shift experiment as follows. On a 64-
node CM-5, each processor sends a total of 1.28 megabytes
using block-transfer primitives. Each processor, � , sends a
block of data to processor ����� 1 � mod 64, then sends a block
to ����� 2 � mod 64, and so forth. We vary the block size, � .
For example, when � is 0.02 megabytes, each processor
sends exactly one block to each processor; and when � is
0.01 megabytes, each processor cycles around twice, on each
round sending one block to each processor. Figure 3 shows
the performance of this cyclic-shift pattern as we vary � for
both Strata and CMMD 3.1, with and without barriers.

The versions with barriers use a barrier between cyclic
shifts; i.e., each processor sends � bytes, waits for the barrier,
and switches to the next destination. The CMMD version
with barriers must use Strata’s barrier procedure. Unlike
Strata’s barrier, the CMMD barrier does not poll: combining
it with block transfer leads to deadlock. You could use
CMMD’s barrier if the system was using interrupts instead of
polling, but the loss due to interrupt overhead is prohibitively
expensive.

Except for very small blocks, the versions with barriers
perform much better. At 64-byte blocks (only 4 packets) the
difference is small, but by 128 bytes per block, the difference
is roughly a factor of two. For larger blocks, which are the
common case, the difference is about a factor of 2.5. The
substantial drop in bandwidth without the barriers is coun-
terintuitive. Removing the barriers reduces the overhead and
provides the data network with more opportunities to route
packets. The increased opportunity, however, translates to
decreased performance.

Some sort of interference occurs when packets from dif-
ferent batches interact. We were able to measure an in-
teraction that we call target collisions. A target collision
occurs when two packets arrive at the same processor at
nearly the same time. Since packet reception is the bot-
tleneck, target collisions can quickly back up the network.
For large batches, target collisions could conceivably slow
things down quite a bit; if for some reason, two processors
each started sending a batch to the same processor at the
same time, then the destination processor would be over-
loaded, the network would back up, and the performance
would drop substantially.

To observe target collisions, we measured, at each instant
in time, the number of packets in the network that are destined
for a given processor. We did this by recording the time
that each packet was injected into the network and the time
that the target received the packet. We were able to use

the globally synchronous cycle counter to obtain consistent
times.

Figure 4 shows evidence of target collisions for one typ-
ical case: cyclic shifts with no barriers and a block size of
100 packets (1600 bytes). The plot shows for each proces-
sor, at each point in time, the number of messages destined
for that processor. There are several interesting patterns in
this data. At the far left there are some patterns that appear
as a “warped checkerboard” pattern around 200,000 cycles.
These patterns reflect the propagation of delays: a single
packet was delayed, which caused the destination processor
to receive packets from two different senders, which delays
the injection of packets and thus exacerbates the problem. In
short order, processors alternate between being overloaded
(gray) and idle (white). By 400,000 cycles, some proces-
sors have as many as 17 packets queued up. The processors
above the heavily loaded processors are nearly always idle
and thus appear white. These processors are idle because
several senders are blocked sending to their predecessor in
the shift. The white regions thus change to black in about
100,000 cycles as the group of senders transition together.
These black and white regions thus form “lines” that rise
at an angle of about 20 degrees from horizontal; we have
explicitly marked one of these lines.

Consecutive transfers incur collisions that do not occur
when the transfers are isolated with barriers. Hot spots start
due to random variation, and then persist systematically, get-
ting worse and worse. The barriers increase the performance
by eliminating target collisions.

We have explained, at least partly, the large differences
between the experiments with barriers and the experiments
without barriers. Now let us examine the other interesting
features of Figure 3.

For the barrier-free codes, we expect the performance to
drop monotonically as the block size increases, but for the
largest block sizes, the performance increases unexpectedly.
This is because for large block sizes, we end up doing very
few cyclic shifts. For example, for a block size of 40,000
bytes, there are only 1280 �

40 � � 32 different cyclic shifts. With
so few transitions from one round to the next, the system
never gets a chance to get as far out of sync, and the number
of target collisions remains low. To demonstrate that large
blocks suffer as much as medium-sized blocks, we tried
running the Strata version without barriers for 100 shifts
instead of 32, transferring about 3 times as much data:

Transfers MB/sec 95% CI
32 2.22

�
0 	 122

100 1.67
�

0 	 0404

The new data point, 1.67 megabytes per second, fits right
on the asymptote implied by the first half of the “Strata
without Barriers” curve. Thus, without barriers, as the block
size increases, the performance approaches 1.67 megabytes
per second for Strata; the asymptote for CMMD is 1.43
megabytes per second.

4



10 100 1000 10000 40000
Block Size (Bytes)

0

1

2

3

4

5
E

ff
ec

ti
ve

 B
an

dw
id

th
 (

M
B

/s
ec

/n
od

e)

Strata with Optimized Barriers
Strata with Barriers
CMMD with (Strata) Barriers
Strata without Barriers
CMMD without Barriers

Figure 3: The effect of barriers between block transfers on the cyclic-shift pattern. The lines mark the average bandwidth; the
error bars indicate 95% confidence intervals.

The performance of Strata with barriers drops slightly for
very large transfers. This is due to cache effects: each sender
sends the same block over and over. For all but the largest
blocks, the entire block fits in the cache. The performance of
CMMD with barriers does not appear to drop with the large
blocks; in actuality it does drop but the effects are masked
by the high variance of CMAML_scopy. The differences in
performance and variance between Strata and CMMD are
quite substantial; they are due to bandwidth matching and
are discussed in Section 6.

The versions with barriers perform worse for small blocks
simply because of the overhead of the barrier, which is sig-
nificant for very small transfers. The “Optimized Barriers”
curve shows an optimized version that uses fewer barriers for
small transfers. The idea is to use a barrier every � transfers
for small blocks, where � times the block size is relatively
large, so that the barrier overhead is insignificant. The actual
� used for blocks of size � is � �

� 512��� . The choice of
512 is relatively unimportant; it limits barriers to about 1
for every 512 bytes transferred. Small limits add unneeded
overhead, while large limits allow too many transitions be-
tween barriers and risk congestion. (At � ��� , there are no
barriers at all.)

Another important feature of Figure 3 is that the barrier-
free versions have a hump for 16-byte to 400-byte block
sizes. The increase from 16 to 32 bytes is due to better
amortization of the fixed startup overhead of a block transfer.

The real issue is why medium-sized blocks perform better
than large blocks. This is because the number of packets sent
in a row to one destination is relatively low; the packet count
ranges from 2 to 8 for blocks of 32 to 128 bytes. With such
low packet counts, the processor switches targets before the
network can back up (the network can hold about ten packets
per node). Between receiving and switching targets, the time
for a transition allows the network to catch up, thus largely
preventing the “sender groups” that form with longer block
transfers. The next section examines this effect in more
detail.

Finally, we have seen some cases in which using barri-
ers more frequently than just between rounds can improve
performance. This occurs because barriers act as a form of
global flow control, limiting the injection rate of processors
that get ahead. Related to this, Section 6 shows that artifi-
cially limiting the injection rate can improve performance;
we do not yet understand exactly what is the additional ben-
efit of extra barriers over limiting the injection rate directly.

5 Packets Should Be Reordered
After the selective use of synchronization, the most im-

portant technique for maximizing bandwidth is to random-
ize or interleave the packets. The previous section showed
that large increases in bandwidth could be achieved by us-
ing barriers to prevent interference between adjacent rounds.
However, when a round is not a permutation, collisions oc-
cur within the round and the benefit of synchronization is
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Figure 4: The total number of packets in the network headed to any given processor at any given time. Time is measured in
33-megahertz clock cycles.

minimal. In this section, we show that in the cases where
collisions may occur within a round but the distribution of
targets is still uniform, reordering packets is the key to per-
formance.

Figure 5 shows the effective bandwidth versus the size of
the block sent to each target. The “Strata Block Transfer with
Random Targets” version picks each new target randomly
from a uniform distribution. Thus, within a round we expect
target collisions and barriers do not help. The key is that
for small blocks the collisions do not matter because they
are short lived. For large blocks the hot spots persist for a
long time and thus back up the network, reaching the same
asymptote as the cyclic-shift pattern without barriers, which
also has a uniform distribution.

The key conclusion from this is that when the distribution
is unknown, small batch sizes avoid prolonged hot spots. For
example, if a node has ten buffers that require 100 packets
each, it is much better to switch buffers on every injection
(batch size of one), than to send the buffers in order (batch
size of 100).

To explore this hypothesis, we built an asynchronous
block-transfer interface. Each call to the asynchronous
block-transfer procedure sends a small part of the transfer

and queues up the rest for later. After the application has
initiated several transfers, it calls a second procedure that
sends all of the queued messages. The second procedure
sends two packets from each queued transfer, and contin-
ues round-robin until all of the transfers are complete. To
avoid systematic congestion, the order of the interleaving is a
pseudo-random permutation of the pending transfers. Thus,
each processor sends in a fixed order, but different processors
use different orders.

The performance of this technique appears in Figure 5 as
the two “Strata Asynchronous Block Transfer” lines. For
random targets, interleaving the packets increases the band-
width by a factor of about 1.8 for large blocks (more than
400 bytes) and performs about the same for small transfers.
When used for the all-pairs cyclic-shift pattern, interleaving
the packets increases the performance by a factor of 2.1 for
large transfers, and by about 15% for small blocks. The
cyclic-shift pattern performs better because the distribution
is more uniform than random targets. The version with bar-
riers still performs substantially better, but it requires global
scheduling: each round must be a permutation. Thus, packet
interleaving should be used when the exact distribution of
targets is unknown. In general, the difference between the
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Figure 5: The effect of interleaving. The two asynchronous block transfer versions use packet interleaving to achieve about
twice as much bandwidth as the corresponding normal block transfers. The version with barriers still performs much better,
but it applies only when the communication can be structured as a sequence of permutations. The asynchronous block-transfer
interface avoids this requirement.

asynchronous transfers and the version with barriers is due
to the overhead for interleaving.

The dip at 128-byte transfers occurs because there is no
congestion for smaller messages, and because the substantial
overhead of the interface is amortized for larger messages.

Packet interleaving allows the system to avoid “head-of-
line” blocking, which occurs when packets are unnecessarily
blocked because the packet at the head of the queue is wait-
ing for resources that those behind it do not need. Karol et
al. showed that head-of-line blocking can limit throughput
severely in ATM networks [Kar87]. Although Strata tries
to send two packets from each message at a time, if it fails
it simply moves on to the next message. This has no ef-
fect on the CM-5, however, because the network interface
contains a FIFO queue internally, which allows head-of-line
blocking regardless of the injection order. Thus, we expect
interleaving to be a bigger win on machines that combine
deterministic routing with a topology that has multiple out-
put directions, such as a mesh or torus. In general, all levels
of the system should avoid head-of-line blocking.

The benefit of interleaving has important consequences
for message-passing libraries. In particular, any interface
in which the the library sends one buffer at a time is fun-
damentally broken. Such an interface prevents interleaving.
Unfortunately, the one-buffer-at-a-time interface is standard
for message-passing systems. To maximize performance, a
library must allow the application to provide many buffers

simultaneously. The Strata interface seems quite robust, al-
though it works best with at least four transfers at a time.

6 Bandwidth Matching
Given that the receive overhead limits the effective band-

width, there is no point is injecting packets any faster than
the receive rate. In this section, we show that artificially
limiting the injection rate improves throughput and reduces
the variance in effective bandwidth of bulk data movement.

Given that every node is both sending and receiving, the
ideal situation occurs when every node alternates between
injection and reception. Furthermore, we would like the
network to contain as few packets as possible, yet still ensure
that each node a has a packet ready to be received.

Because we use polling, we can limit reception to at most
one per send, unless the send fails in which we must poll to
prevent deadlock. Unfortunately, this achieves only about
2 megabytes per second because the network becomes very
congested. Thus, CMMD and Strata always choose recep-
tion over injection: they poll until the network is empty.

Although this strategy performs much better than limited
polling, it is fundamentally unfair: nodes that get a little
behind may never catch up until others finish sending. The
key problem is that nodes that are sending and have no pend-
ing arrivals inject packets faster than the receiver can pull
them out. Furthermore, because overloaded targets are not
sending, other nodes are likely to have no pending arrivals,
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Figure 6: The effect of bandwidth matching on permutations separated by barriers. The error bars show 95% confidence
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waits in the case that no packet arrived.

which exacerbates the problem.

Our solution is to delay injection artificially in the case
that there are no pending arrivals. This ensures that the re-
ceiver pulls out packets faster than they arrive and eventually
empties the network. Thus, an overloaded receiver quickly
catches up and resumes sending. Because we are artificially
limiting the injection rate based on the expected throughput,
we call this technique bandwidth matching.

Figure 6 shows the impact of bandwidth matching on the
cyclic-shift pattern with barriers. Without any delay, Strata
actually performs worse than CMMD. This occurs exactly
because Strata has lower overhead and thus a correspond-
ingly higher injection rate than CMAML_scopy. Increas-
ing the delay to 28 cycles ensures that the injection rate is
slightly slower than the reception rate: the sending overhead
becomes 37 � 28 � 65 cycles, while the receiving overhead
remains at 62 cycles.

The added delay not only increases the performance by
about 25%, it also reduces the standard deviation by about a
factor of 50. The drop in variance occurs because the system
is self-synchronizing: any node that gets behind quickly
catches up and resumes sending.

The poll-once version takes this a step farther. Given
that everyone is sending at nearly the same rate, it is now
sufficient to pull out only one packet, since it is unlikely
that there will be two packets pending. Polling when there

is no arrival wastes 7 cycles. This accounts for about a
7% improvement in throughput. The actual improvement
is closer to 10%. The additional gain is due to the fact
that all nodes run in lock step, which ensures that all nodes
finish at nearly the same time. Unlike the case without
bandwidth matching, the network remains uncongested even
though less polling occurs. Optimum performance requires
both bandwidth matching and limited polling. Note that
Strata sustains more bandwidth for all-pairs than Kwan et al.
saw for individual messages, 10.66 versus 10.4 megabytes
per second [KTR93]. The net improvement over CMMD
without barriers is about 390%.

Although limited polling can improve performance, it
is not very robust. When other cuts such as the bisection
bandwidth become bottlenecks, limited polling causes con-
gestion. We expect that limited polling is appropriate exactly
when the variance of the arrival rate is low; if the arrival rate
is bursty (due to congestion), the receiver should expect to
pull out more than one packet between sends. In practice,
this means that patterns such as 2D-stencil that do not stress
the bisection bandwidth can exploit limited polling, while
random or unknown patterns should poll until there are no
pending packets.

Introducing delay for short transfers actually hurts per-
formance, as shown by the superior performance of the “No
Delay” version for small transfers. In this case, the startup
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overhead introduces plenty of delay by itself; any additional
delay simply reduces the bandwidth. Thus, future versions
of Strata will adjust the delay depending on the length of the
transfer. This form of adaptive delay should also remove the
performance dip that appeared in the asynchronous block-
transfer curves. For the limited polling case, it was beneficial
to increase the delay slightly to 35 cycles to ensure that the
bisection bandwidth did not affect the arrival rate.

This technique is essentially a static form of flow control.
Traditional flow control via end-to-end acknowledgements
would be more robust. However, it is very expensive, since
each acknowledgement requires overhead at both ends. A
relatively cheap solution for many situations is to use bar-
riers as all-pairs end-to-end flow control. In some early
experiments we found that frequent barriers improved per-
formance; some of this effect occurred because barriers limit
the injection rate, for which bandwidth matching is more ef-
fective. We expect that frequent barriers are a more robust
form of flow control because they are a closed-loop system.
However, despite its lack of feedback, bandwidth matching
is quite stable due to its self-synchronizing behavior. Finally,
there has also been some theoretical evidence that introduc-
ing delays might improve performance [FRU92, GL89].

7 Implications for Hardware and Software
With naive message-passing software and processor-

network interfaces, a parallel computer may achieve only a
fraction of the communications performance of the underly-
ing network. Our experiments indicate that there are several
mechanisms and techniques that can be used at various levels
in the system to ensure high performance.

We found three underlying mechanisms that can improve
performance. Barriers can be used to quickly determine
when all processors are finished sending, or when all are
finished receiving. The order in which packets are injected
into the network can be managed; we studied interleaving
and randomized injection orders. The rate at which packets
are injected into the network by the sender can be tuned to
match the rate at which the target can receive messages.

We found several reasons why these mechanisms work.
They can help avoid target collisions, in which several pro-
cessosr are sending to one receiver at the same time. They
can help to smooth out, over time, the bandwidth demands
across various bisection cuts of the network; the mechanisms
can help the programmer ensure that the packets in the net-
work at any given time have independent, evenly distributed,
destinations. These mechanisms also provide various forms
of flow control, which improves the efficiency of the net-
work. For example, barriers act as global all-pairs flow
control, guaranteeing that no processor gets too far ahead at
the expense of another processor.

The following rules-of-thumb can help programmers de-
cide when and how to use each of these mechanisms.

	 If possible, recast the communication operation into a

series of permutations. Separate the permutations by
barriers, and use a bandwidth-matched transfer rou-
tine, such as is provided by Strata, to implement each
permutation. We found that this strategy can improve
performance by up to 390%.

	 If bandwidth matching is impractical, because, for ex-
ample, the real bottleneck is some internal cut of the
network, then using periodic barriers inside each per-
mutation may help. We have seen cases where barriers
within a permutation improve performance.

	 If you know nothing about the communication pattern,
you should try to arrange the communication into a bulk
data transfer, and then use an interleaved or randomized
injection order, as provided by Strata’s asynchronous
block-transfer mechanism. Even in this case, periodic
barriers within the transfers may improve performance.

	 It is important to keep the network empty. It is almost
always better to make progress on receiving than on
sending. The one exception occurs when the variance of
the arrival rate is near zero (due to bandwidth matching),
in which case any additional polling wastes cycles.

	 If your computation operation consists of two opera-
tions each of which has good performance separately,
then keep them separate with a barrier. It is difficult to
overlap communication and computation on the CM-5
because the processor must manipulate every packet,
and the low capacity and message latency of the CM-5
network reduce the potential gain from such overlap.
However, large block transfers interact poorly with the
cache; we have seen cases where limited interleaving
of the communication and computation can improve
communications performance by about 5%.

Our results indicate that it may be a good idea to place
some of our mechanisms into the network and the processor-
network interface. A parallel computer should provide a rich
collection of global flow-control mechanisms. Almost any
form of flow control is better than none; we do not yet fully
understand when to apply each of the various flow-control
mechanisms. It may be helpful to have hardware support
to determine more about dynamic network congestion, in
addition to the CM-5’s mechanism that indicates the presence
of an arrival.

A parallel computer should support fast predictable barri-
ers. The cost of a barrier should be competitive with the cost
of sending a message. The behavior of barriers should be
independent of the primary traffic injected into the data net-
work. The CM-5 provides such barriers by using a hardware
global-synchronization network; multiple priorities or logi-
cal networks could also be used. It may be beneficial for the
system to perform a periodic barrier automatically to keep
processors synchronized during communications operations.
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The receiver must be at least as fast at the sender. Al-
lowing user-level access to the network interface is the most
important step in this direction. However, hardware support
to speed up the receiving of messages even by a few cycles
would help improve the programability of the CM-5.

The network, the processor-network interface, and its
software should provide mechanisms to manage the order
in which packets are injected into the network. A direct-
memory-access (DMA) engine for sending and receiving
packets, such as those proposed for MIT’s *T [PBGB93]
and Stanford’s FLASH [KOM+94] machines, can make it
easier to overlap communication and computation, but our
experiments indicate that such engines may require fairly
sophisticated packet-ordering and flow-control policies to
achieve good performance. Similarly, very large packets
are probably a bad choice because they have the effect of
preventing packet reordering. The entire system must avoid
head-of-line blocking.

We believe that our results apply to a wide range of par-
allel computers because the effects we observed are funda-
mental. Bandwidth considerations, scheduling issues, flow
control, and composition properties will appear in any high-
performance communications network. In particular, the rate
at which a receiver can remove messages from the network
may be the fundamental limiting issue in any network that
has sufficient bandwidth to ensure that internal congestion is
not the dominant issue.

Our experiments provide empirical evidence that some of
the strategies used by theorists to prove theorems also make
sense in real parallel systems. Theorists have argued that
slowing things down can speed things up or provide pre-
dictable behavior [GL89]; we found that both barriers and
bandwidth matching, which at some level slow down the sys-
tem, actually speed things up. The use of barriers prevents
processors that have gotten a little bit ahead from widening
their lead. Parallel computing is not a marathon in which
the first processor that finishes wins; it is a race against the
clock in which we care about the finishing time of the slow-
est processor. Bandwidth matching is analogous to freeway
on-ramp meters, which reduce the variance of the arrival rate
to keep traffic flowing smoothly. Other examples of slowing
things down to keep them working well include Ethernet’s
adaptive backoff [MB76], and the telephone system’s ap-
proach to dealing with busy calls by forcing the caller to
redial rather than wait in a queue [Kle76, p.103].

Not only are there sound theoretical arguments for ran-
domized injection order [GL89], but we found significant
practical application of reordering, even when we started
with what we thought was a reasonable injection order.

Theorists have argued that measuring the load across cuts
of a network is a good way to model performance and to
design algorithms [LM88]; we have seen a few situations
where we could apply such reasoning to make common pat-
terns such as all-pairs run faster.

The MIT Strata library already incorporates these tech-
niques for the CM-5. In the future, this research may lead
to the development of mechanisms that routinely provide
predictable, high-performance communication.
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