
CilkTM 1.2 (Version �1) Reference Manual1
Robert D. Blumofe Matteo Frigo Michael Halbherr Christopher F. Joerg

Bradley C. Kuszmaul Charles E. Leiserson Phil Lisiecki
Keith H. Randall Andy Shaw Yuli Zhou

February 24, 1995

1Cilk is trademark of the Massachusetts Institute of Technology. The Cilk project has been partially supported
by ARPA contracts N00014-94-1-0985 and N00014-92-J-1310. Computer time on the CM5 was provided by
the Scout project under ARPA contract MDA972-92-J-1032.

Contents

1 Introduction 4
1.1 What is Included in CilkimesTM 1.2 (Version �1) : : : : : : : : : : : : : : : : : : 4
1.2 On-going Work and Plans for the Future : 4
1.3 The Organization of This Document : 5
1.4 Introduction Change Log : 5

2 Using Cilk: A Tutorial 7
2.1 A Simple Example : 7
2.2 Running the Example : 11
2.3 Cilk Internals : 12
2.4 Why Continuation-Passing Style : 12
2.5 More Advanced Features : 13

2.5.1 Calls and Tail Calls : 13
2.5.2 Accumulators and Signals : 13
2.5.3 Explicit Posting of Threads : 15
2.5.4 Arrays as Closure Arguments : 16
2.5.5 Packing/Unpacking Closures for Migration : : : : : : : : : : : : : : : : : 17
2.5.6 SendArgument variants : 18
2.5.7 Global Data Structures : 18

2.6 Tutorial Change Log : 19

3 Local Guide 20

4 Cilk Language Reference Manual 21
4.1 Basic Concepts : 21

4.1.1 Closures : 22
4.1.2 Continuations : 22
4.1.3 Thread Scheduling and Work Stealing : 23

4.2 Program Structure : 23
4.3 Keywords, Constants and Operators : 24
4.4 Thread Definition and Declaration : 24

4.4.1 Types of Thread Arguments : 25
4.4.2 Body of Thread Definitions : 25

4.5 Thread Creation : 26
4.5.1 Thread Arguments : 27

1

4.5.2 Annotations for Thread Scheduling : 28
4.5.3 Direct and Tail Calls : 29

4.6 Migration Threads : 29
4.7 Notes on Thread Argument Passing : 31
4.8 Blocking Threads : 31
4.9 Runtime System Interface : 31

4.9.1 Entering the Scheduler : 31
4.9.2 Global Variables : 32
4.9.3 Communication Primitives : 32
4.9.4 Data Structure Primitives : 33

4.10 C Code Generated by the Preprocessor : 34
4.10.1 Closure Structure Definitions : 35
4.10.2 Prototypes : 35
4.10.3 Function Definitions Derived from Threads : : : : : : : : : : : : : : : : : 35

4.11 Language Reference Manual Change Log : 38

5 Specification of the Cilk Runtime System 40
5.1 Errata : 40
5.2 Introduction : 40
5.3 Data Types and Constants : 41
5.4 Procedures : 43
5.5 Runtime Specification Change Log : 56

A Cilk Implementor’s Guide 59
A.1 First step: get a sequential version of Cilk running : : : : : : : : : : : : : : : : : : 59
A.2 Second step: get a work-stealing scheduler running : : : : : : : : : : : : : : : : : 61
A.3 Step three: implement PostClosureNode : 66
A.4 Step four: add time statistics : 69

B Copyright and Disclaimers 74

C Release Notes 75
C.1 Release 1.0 Beta2 : 75
C.2 Release 1.1 Beta1 : 75
C.3 Release 1.2 Beta 1 : 75

D The Cilk Thread Preprocessor 77

E Installation Instructions 79
E.1 How to obtain Cilk : 79
E.2 How to Install Cilk : 79
E.3 How to run the regression tests : 80

E.3.1 Strata regression test : 80
E.3.2 Cilk run-time system regression test : 80
E.3.3 Running the Cilk examples : 80

E.4 Mailing Lists : 80

2

F Reporting Bugs 81

G Development Methodology 82

H Things To Do 83

I Overall Change Log 84

3

Chapter 1

Introduction

This document describes CilkTM 1.2 (Version �1), a C language extension and its supporting runtime
system intended for developing continuation-passing style multi-threaded programs on CM-5.

Cilk grew out of efforts in implementing a simple scheduling and execution model on top of
CM-5’s active message layer, and in adapting it to the needs of real life application programs. Pre-
release versions of Cilk has been extensively used within the project SCOUT at MIT in developing and
porting to CM-5 several major applications, including ray-tracing, protein-folding, computer chess,
monte-carlo simulation of heat transfer and radiocity.

The current release is the consolidation of those efforts. However, much of this release should be
regarded as experimental in nature, as many issues are yet to be resolved both by further research and
experimentation. Therefore, the next release of Cilk is likely to be very different as the system grows
into maturity — the current version only marks the starting point towards that direction.

1.1 What is Included in CilkTM 1.2 (Version �1)

Release CilkTM 1.2 (Version �1) includes the Cilk runtime system, the Cilk thread preprocessor
(cilkpp), a collection of example programs, and various supporting documents all combined into the
current volumn: a tutorial for writing and running Cilk programs, the language reference manual, and
the specification of the runtime system interface.

The Cilk language provides an abstraction of threads in explicit continuation-passing style, which
is first preprocessed into ordinary C code, then compiled by gcc and linked with the Cilk runtime
system.

The Cilk runtime system provides the mechanisms for thread communication, synchronization,
scheduling as well as primitives callable within Cilk programs. The runtime scheduler implements a
generic scheduling policy based on work stealing,which the programmer can complement or completely
override via annotations provided in the Cilk language.

1.2 On-going Work and Plans for the Future

For the current release we have concentrated on providing for runtime dynamic scheduling, but have left
out another important aspect of parallel programming, namely that of globally shared data structures.
The reason for this is mainly that more work is needed in providing a robust shared data abstraction.

4

However, since the implementation of a shared data abstraction is orthogonal to that of dynamic
scheduling, it can be added later without seriously affecting the current structure of the scheduling
mechanism.

In the meantime we are also pursuing several closely related projects. Among these there is an
implementation of the Cilk runtime system to run on a cluster of work stations on top of TCP/IP, with
additional administration facilities necessary in a distributed computing environment. There is also
some work under way in porting the Cilk runtime system to SMP’s. Finally, we are experimenting
with a simple shared data abstraction that provides local data objects with global pointers.

We hope that the release of CilkTM 1.2 will provide the stimulus and the tools for further work that
is required for the next release of a mature Cilk system, which will include the following features:� A higher level language hiding the explicit continuation-passing style. This means, among other

things, that that language will provide the abstraction of functions, and the language processor
will automatically generates continuation-passing style threads. The language processor may
even become fully integrated with the C front end.� An improved runtime system. Implementation of the scheduling mechanism will become more
robust and refined ...� Some model of data structures in globally shared memory. It is likely to be more elaborate
if object are allowed to interleave on several processors, such as in the case of arrays, when
naming becomes a serious issue. However, the evolution of the shared data abstraction will be
completely driven by applications.

1.3 The Organization of This Document

Chapter 2 provides a tutorial of how to use Cilk.
Chapter 3 tells you what you need to do to use Cilk on your local system.
Chapter 4 is a language reference manual for the CilkTM 1.2 language.
Chapter 5 is a specification of the run-time system used by the CilkTM 1.2 (Version �1) compiler.
The appendices include copyright information, man pages, installation instructions, bug reporting

instructions, a short writeup of the Cilk team’s development methodology, and a list of things that need
to be done to the manual.

In particular, Appendix E.4 tells you how to get onto the Cilk mailing lists.

1.4 Introduction Change Log

$Log: intro.tex,v $
% Revision 1.9 1994/11/06 02:19:28 randall
% Added AccumulateDoubleWord, SendDoubleArgument and AccumulateDouble to doc.
%
% Revision 1.8 1994/11/03 01:51:05 randall
% Updated everything to 1.2. Added changes in 1.2 to the change log.
%

5

% Revision 1.7 1994/09/28 19:14:16 randall
% changed 1.0 -> 1.1
%
% Revision 1.6 1994/09/06 17:40:22 bradley
% Many small changes from my things-to-do list.
%
% Revision 1.5 1994/09/02 01:31:38 zhou
% Changed tpp to cilkpp everywhere
%
% Revision 1.4 1994/08/29 16:42:19 zhou
% minor corrections
%
% Revision 1.3 1994/08/26 18:01:44 bradley
% Add change log sections.
%

6

Chapter 2

Using Cilk: A Tutorial

CilkTM 1.2 is a simple C extension to enable the development of multi-threaded programs on parallel
machines. Cilk programs run on top of the Cilk runtime system, which supports the scheduling,
communication, and synchronization of threads. On the Thinking Machines CM-5,Cilk is implemented

Strata (active messages)

CM−5

Cilk Runtime System

Cilk Pre−Processor

Figure 2.1: Overall structure of the Cilk package on the Thinking Machines’ CM-5

on top of Strata, an active message library (see Figure 2.1), although Cilk is relatively machine
independent and can be ported to other message-passing or shared memory machines.

2.1 A Simple Example

Figure 2.2 shows a simple C program that computes the Fibonacci function. To demonstrate how Cilk
works, we will use as an example the Cilk version of the Fibonacci function shown in Figure 2.3. This
program is explained in detail in the following sections.

The program is divided into three sections by “%%”. The first and the third sections contain normal
C code, whereas the middle section (Lines 5–18) contains thread definitions. A thread definition starts
with the specifier thread and has a parameter list and a body similar to a C function. In the program
two threads are defined (Lines 5 and 9).

In order to understand thread semantics, we first need to introduce closures. A closure is a data
structure that contains a thread pointer (a pointer to the code of the thread) and all arguments needed

7

int fib (int n)f if (n<2) return (n);
elsef int x, y;

x = fib (n-1);
y = fib (n-2);
return (x+y);gg

void main (int argc, char *argv[])f
int n, result;
if(argc != 2) f

printf ("Usage: %s n\n", argv[0]);
exit (1);g

n = atoi(argv[1]);
result = fib (n);
printf ("Result: %d\n", result);g

Figure 2.2: Fibonacci function in C

8

1 #include <stdlib.h>2 #include <stdio.h>3 #include <cilk.h>4 %%5 thread sum (cont k, int x, int y)6 f7 SendWordArgument (k, x+y);8 g9 thread fib (cont k, int n)10 f11 if (n<2) SendWordArgument (k, n);12 else13 f cont x, y;14 spawn next sum (k, ?x, ?y);15 spawn fib (x, n-1);16 spawn fib (y, n-2);17 g18 g19 %%20 void main (int argc, char *argv[])21 f22 int n, result;23 if(argc != 2) f24 printf ("Usage: %s n\n", argv[0]);25 exit (1);26 g27 CilkInit();28 cilk active size = PartitionSize;29 n = atoi(argv[1]);30 result = RunScheduler (CILK AUTO, fib, 1, n);31 if (Self == 0) printf ("Result: %d\n", result);32 CilkExit(0);33 g
Figure 2.3: Fibonacci function in two threads

9

fib

n−1

x

sum

k fib

n−2

y

(a) (b) (c)

Figure 2.4: Closures created in the fib thread

to run the thread. Closures are created via the spawn or spawn next statements. For example, Line15 creates the closure shown in Figure 2.4 (a), which captures the thread pointer fib and the available
arguments x and n � 1. Because all of the arguments are available to run the thread, this closure is
called a ready closure. It is immediately handed to the scheduler to be executed either locally or on a
remote processor.

Closures with some empty argument slots are called waiting closures. Line 14 creates such a
closure, as shown in Figure 2.4 (b). This closure is waiting for two of its arguments to be filled in.
The forms ?x and ?y allocate empty slots in the closure and at the same time initialize x and y as
continuations pointing to these empty slots. Continuations are pointers into closure structures and are
used by the program to later fill in these empty slots. The statement

SendWordArgument (k, n);

sends the number n to the empty argument slot referenced by continuation k. The argument slot is
filled in with this value, and if all argument values have arrived then the closure is ready and is given
to the scheduler.

Closures are the basic mechanism that enables the continuation-passing style of execution. In the
Fibonacci program, the thread fib (Line 9) has a argument of type cont (continuation), pointing to a
slot where the return value should be sent. If n� 2, it creates three closures: a waiting closure (Line 14)
with two empty slots x and y, and two full closures (Lines 15 and 16), each one assigned to compute
a value to put in one of these two slots. The full closures are immediately given to the scheduler
which will execute them either locally or on another processor. These computations correspond to two
recursive calls to the Fibonacci function with arguments n � 1 and n � 2. These routines compute
their results and send them to the waiting closure. On receiving its arguments, the waiting closure
becomes ready and it is given to the scheduler. The scheduler decides where and when this closure will
be executed. When executed, this closure will return the sum of its arguments to the continuation k.

It is instructional at this point to compare the multi-threaded program to the typical C function
definition for Fibonacci such as the one in Figure 2.2. We note the following properties of a thread in
continuation-passing style that make it different from the procedure-invocation style of the C code:� Threads do not return values. Instead, continuations are explicitly passed among threads and the

threads send values to each other using these continuations.� Threads are non-blocking. Instead of waiting for recursive calls to return their results as is the
case in the sequential program, the waiting part is lifted as a different thread (the sum thread).
The parent thread just spawns new threads and continues to the end, at which point it relinquishes
control to the scheduler.

10

Because threads are non-blocking, we say that they are split-phase implementations of procedures.
Split-phase means that the spawning thread does not wait around to gather the results of its spawned
children itself. Instead, it creates a new thread (in Fibonacci, the sum thread) to gather the results for
it. Looking at it this way, there is a natural grouping of threads into the abstract procedure invocations
that they implement. For instance, the fib thread and its associated sum thread group together to form
one invocation of the regular C fib procedure.

Because the scheduler can use information about which threads are part of the same split-phase
operation (i.e. which threads comprise one procedure invocation), two spawn primitives are provided.
The primitive spawn next should be used when the spawned thread is part of the same procedure
invocation as the thread which spawned it. The primitive spawn should be used for the threads that
represent procedure calls from within the spawner’s procedure invocation (i.e., the children of the
spawner’s procedure invocation). A good rule of thumb is that all closures that are created full should
be spawn threads, and all waiting closures (i.e., all closures with a ? in them) are spawn next threads.

To finish describing the fib program, the primitives on line 27 and line 32 initialize and stop the
Cilk system. The argument for CilkExit is an exit error code that functions in the same manner as
the exit error code for exit(). Also, the primitive

RunScheduler (CILK AUTO, fib, 1, n);

provides the entry into the scheduler. Here one specifies the scheduling mode (CILK AUTO means
automatic thread migration via work-stealing, see section 5.4 for other modes), the first thread to run
(fib), the number of arguments supplied to fib (1) and the actual argument (n). The actual definition
of the fib thread specifies an additional first argument which is the continuation to which fib sends the
result of its computation to, and this continuation will be supplied by the scheduler.

2.2 Running the Example

There are three steps to running the Fibonacci program on your target machine. The source code
can be found under the name fib.p in the examples directory of the Cilk distribution. First, copy
fib.p, Makefile, and job into your working directory from the examples directory. Make sure the
STRATA DIR and CILK DIR assignments in the Makefile point to each of their distribution directories,
respectively (see chapter 3 for the locations of these directories). Then type make fib cm5 st and the
executable will be made for you. The cm5 extension is used to denote files that are used on the CM5,
and the st extension is for files with statistics gathering enabled. To run fib, just type jrun job and
the fib cm5 st executable will be run on the CM5.

The Makefile includes the following steps:

1. Run the pre-processor (cilkpp) on fib.p to generate fib.c, its C-code equivalent.

2. Compile fib.c using gcc.

3. Link the object file with one of the Cilk libraries in the distribution directory.

All of these tasks are performed automatically by the Makefile provided in the examples directory.
The user is strongly encouraged to use this Makefile because it correctly sets compile-time flags and
links in the correct libraries for a proper executable.

11

Note: Certain libraries have been compiled with certain compile-time flags, and any user code linked
with these libraries MUST have been compiled with the same flags. Using the Makefile is an easy way
to ensure a correct match.

To run other examples in the examples directory, just copy their .p files into your working
directory, make them, and edit the job file to uncomment the examples you want to run. Then type
jrun job to run them.

Note: Some of these instructions are specific to the CM5. Check chapter 3 for the local guide to
running this software.

2.3 Cilk Internals

The Cilk scheduler is a SPMD program that is run on all the processors. The scheduler manages a
queue of full threads on each processor. For local execution, the scheduler tries to execute threads
which are farther down in the procedure activation tree. This heuristic is (we believe) good for keeping
space usage at a minimum.

The scheduler also attempts to load-balance the machine using a work-stealing algorithm. When
work is stolen, the scheduler tries to migrate closures higher up in the procedure invocation tree. This
strategy is used because closures higher in the invocation tree usually represent larger pieces of work.

2.4 Why Continuation-Passing Style

Since threads are obviously more difficult to write than ordinary C functions extended with fork’s and
wait’s, one may well question what is to be gained by adopting threads in such explicit continuation-
passing style. In addition to programming style, people familiar with programming language imple-
mentation may object to the way function frames are broken up into closures for threads, which requires
more frequent copying of arguments.

The only answer to these questions lies in the simplicity of these threads and their execution model.
This very simplicity translates into a simple and clean implementation of Cilk. For example, the part
of the Cilk runtime system on the CM-5 to support the threads abstraction, including the scheduler
and other primitives, is only 2000 lines of C code. The Cilk syntax extension requires no more than
macro expansions, and the resulting C code is well structured and very readable (it is not, as might be
imagined, assembly code written in C).

Since Cilk threads are at a lower level than the functional abstraction, it would be possible and
beneficial to cast alternative implementations as either embelishment (such as a higher level language)
or optimizations (such as packing closures belonging to the same function invocation into a frame)
of the basic model, gaining convenience of expression and/or execution efficiency at the cost of more
complexity.

12

2.5 More Advanced Features

2.5.1 Calls and Tail Calls

Cilk provides several primitives that can be used in place of spawn that may improve your application’s
performance. The first of these is the call primitive. The call primitive simply does a normal,
C-style function call to the named thread. This is useful for speeding up your application because it
avoids the overhead of the scheduler. However, using this primitive too much may restrict the available
parallelism in your application. A safe rule of thumb is to only convert the last spawn in your thread
body into a call.

Because the thread you are calling is executed immediately, all arguments must be present (i.e., no
?x declarations).

A call primitive is easily substituted into the fib thread, as shown below:

thread fib (cont k, int n)f
if (n<2) SendWordArgument (k, n);
elsef cont x, y;

spawn next sum (k, ?x, ?y);
spawn fib (x, n-1);
call fib (y, n-2);gg

The second new primitive is the tail call primitive. This primitive is an optimized version of
the call primitive that can be used instead of the call primitive when the following three conditions
are satisfied. First, the thread being called must be the same as the thread the tail call appears in.
Second, the tail call primitive must be the last statement in the thread (this is because tail call
never returns to its caller). Finally, all local variables and arguments must be dead. In particular, you
can’t have pointers referencing any of the data in the C stack frame. This primitive is extremely fast
because it expands into one assignment for each argument and a jump to the beginning of the thread
code.

The code for fib satisfies all the requirements listed above and therefore the last spawn can also be
a tail call.

Finally, just as there are spawn and spawn next primitives, there are also call next and
tail call next primitives.

Note: There is one further distinction: Arrays are passed by reference when using the call and
tail call primitives (whereas arrays are passed by value when using the spawn primitives). This
is usually not a problem because only the last routine in a thread is one of these optimized spawns.
However, this distinction can lead to problems so use these primitives carefully.

2.5.2 Accumulators and Signals

Accumulators can be used to gather results from several threads into one argument slot. To use an
accumulator, you first create an accumulator slot using the following syntax:

13

spawn foo (?kfn:initg);
This code says that foo has one argument which is an accumulator slot. This slot will accumulate n
values with an initial value of init. This code also initializes k as a continuation pointer to this slot.
To accumulate values into this slot, we use the AccumulateWord primitive:

AccumulateWord (k, accum word add, val);

The AccumulateWord primitive accumulates val into the accumulator slot pointed to by k using, in
this case, the operator accum word add. Thus when foo is run, its argument will contain the sum of
all n values that were sent to it.

Here is an example of how to use accumulators in the Fibonacci program:

thread sum (cont k, int n)f
AccumulateWord(k, accum word add, n);g

thread fib (cont k, int n)f
if (n<2) AccumulateWord (k, accum word add, n);
elsef cont x;

spawn next sum (k, ?xf2:0g);
spawn fib (x, n-1);
tail call fib (x, n-2);gg

There are several accumulator operations defined for you. You can also define your own accumulator
operations if you wish. See section 5.4 for details.

Signals are just accumulators without any values. These are useful when you want to know when a
group of threads have completed. The syntax for creating a signal slot is the same as for an accumulator
slot except that there is no initial value:

spawn foo (?kfng);
Also, in the prototype for foo, the argument slot for the signal must be of type signal. To send a
signal to a continuation, just call

Signal (k);

Here is an example of how you might use signals to create a barrier in your code. The thread
spawner runs several task threads, and each of these signals the barrier thread when it is done its
work. The barrier thread will then send a value on to continuation k when all of the signals have
arrived.

14

thread barrier (cont k, signal)f
SendWordArgument(k, ...);g

thread task (cont s)f
... do some work ...
Signal(s);g

thread spawner (cont k)f cont s;
int i;
spawn next barrier (k, ?sf10g);
for(i = 0; i < 10; i++)

spawn task (s);g
2.5.3 Explicit Posting of Threads

It is often useful to be able to post certain threads on specific processors. For instance, if there is a data
structure that is statically laid out on your machine and you want to post threads to where the data they
will use resides, you will need to use this mechanism. Also, you can use this mechanism to explicitly
schedule your computation (this is done in conjunction with using CILK MANUAL mode, see section
5.4). The statement

spawn fib (k, n)@pn;

posts the thread fib (k, n) on the processor numbered pn. If the thread is ready to execute, it will
be posted there immediately, and if it is unfilled it will be posted there when it becomes filled. The
following code is an example of how to use this construct:

thread spawner (cont k, int P)f int i;
for(i = 0; i < P; i++)

spawn work (k)@i;g
The pre-defined variable Self can be used to force a closure to be executed locally.

spawn fib (k, n)@Self;

Note: the keyword local used in a thread definition will force any spawns of that thread to be executed
locally.

15

2.5.4 Arrays as Closure Arguments

In standard C, arrays must be passed by reference (i.e., by pointer). However, in order to facilitate
migrating threads, Cilk passes arrays by value (except in call and tail call primitives: see section
2.5.1). For example, the following line of code defines a thread that takes both a fixed size and a
variable size array as arguments:

thread foo (int a[10], int b[]);

The array a is a fixed-length array of length 10, and array b is a variable-length array whose size will
be determined when the closure for foo is created.

Note: Variable-length arrays are only allowed in the last argument slot.

When you want to spawn thread foo, there are several different ways to specify the values of the
arrays to be passed. The first method is to copy the array argument from another array. The form

spawn foo (x[..], y[2..8])

can be used to copy 10 elements of array x into the array a and 7 elements of the array y (from indices
2 to 8, inclusive) into the array b in the closure for foo. Note that fixed arrays do not need range
specifiers because the size is set in the thread declaration for foo.

The second method to initialize arrays is to initialize them as an array of slots that another thread
will fill in using SendArgument calls. This is done using the following syntax:

cont x,y;
int i;
spawn next foo (?x[..], ?y[7]);

for (i=0; i<10; i++)
spawn bar (IndexContinuation(x,i,sizeof(int)));

for (i=0; i<7; i++)
spawn bar (IndexContinuation(y,i,sizeof(int)));

Space for a and b are allocated just as before, but instead of getting pointers to these arrays and
filling them in immediately, we get continuations pointing to these arrays and we fill them in using
SendArgument calls (in this case, the SendArgument calls are hidden inside the thread bar). The
function IndexContinuation(x,i,sizeof(int)) gives the continuation for the ith element of
the array of ints pointed to by continuation x.

The last method to initialize arrays is to use initialization pointers. This is done as follows:

int *x,*y;
spawn foo (:x[..], :y[7])f

memcpy(x, xdata, 10*sizeof(int));
memcpy(y, ydata, 7*sizeof(int));g

The form :x[..] is used for fixed-size arrays and initializes x to point to the uninitialized array a in
the closure of foo. The form :y[7] is used for variable-size arrays and both allocates an array of size

16

7 for b in the closure for foo and initializes y to point to that array. The user then can fill in the arrays
as he or she pleases in the trailing statement to the spawn (any spawn primitive can have a trailing
statement, possibly compound, that is executed after the closure is created but before it is posted. This
statement is useful for initializing certain parts of the closure, in this case array values).

Note: initialization pointers are only valid inside the spawn’s trailing statement.

2.5.5 Packing/Unpacking Closures for Migration

In the examples you have seen so far, all arguments were passed by value in the closures. Closures of
this type are called flat closures because there are no pointers to heap objects or other structures. Flat
closures are easy to migrate because there are no dependencies on memory locations other than the
closure itself.

Non-flat closures, however, are more difficult to migrate because heap objects pointed to by the
closure need to be packed up and sent to the destination node along with the closure itself. Because this
pointer structure can be arbitrarily complicated, Cilk provides a mechanism for users to specify how
they want their closures to be packed for migration. For each thread you define, you may also define a
migration thread whose job it is to pack a non-flat closure into a flat closure for migration. Here is an
example of how to use a migration thread:

thread foo (int *array)f
... code for foo ...g

migration thread foo (int *array)f closure *cp;
make next closure foo unpack (array[..])f cp = $; g
free (array);
return (cp);g

thread foo unpack (int array[10])f int *new;
new = malloc (10*sizeof(int));
memcpy (new, array, 10*sizeof(int));
call next foo (new);g

Here, foo is our typical thread with a non-flat closure. In order to migrate thread foo, we need to
define two new threads. The first is the packing thread, defined using the keyword migration. The
prototype for this thread must be exactly the same as the prototype for the thread that is to be migrated.
When the scheduler decides to migrate a thread with a corresponding migration thread, the migration
thread is called with the arguments of the closure to be migrated and it is expected to return a flat
closure that will then be sent to the destination node. This flat closure should have as its thread pointer
the code for the unpacking thread to be run on the destination node.

17

In the example above, the migration thread for foomakes a closure for foo unpack, with the argu-
ment for foo unpack copied from the array argument from foo. The expression in brackets is used
to obtain a pointer to the newly allocated closure (in a trailing statement to spawn or make closure,
the special symbol $ refers to the closure just created). The migration thread then deallocates the
storage used by foo’s pointer structures and returns the flat closure.

On the destination node, the thread foo unpack allocates a new array new and copies the transferred
array into it, and then does a call next to the original foo thread. In this whole process, please note
the following items:� During migration, all primitives used are of the next variety. This is done to ensure that the

resulting migrated thread is at the same level as the original thread (see 5.4 for a discussion of
levels).� It is the responsibility of the unpack thread to make sure that the thread it unpacks is executed
before it is migrated again. An easy way to do this is to use the call next primitive to run it
right away. An alternative is to use the spawn next primitive with the @Self directive.� Using the @n directive after a spawn primitive overrides the migration mechanism and sends the
closure directly, even if it has a migration thread. Therefore, you must manually pack any thread
that you wish to explicitly post to a particular processor.

2.5.6 SendArgument variants

There are several different flavors of the SendArgument routine for sending different size arguments.
You have seen the SendWordArgument routine in previous examples. Here are the other routines for
passing arguments to continuations:

SendCharArgument (cont k, char c);
SendShortArgument (cont k, short s);
SendWordArgument (cont k, Word w);
SendDoubleWordArgument (cont k, DoubleWord d);
SendFloatArgument (cont k, float w);
SendDoubleArgument (cont k, double w);
SendArrayArgument (cont k, char *array, int length);

These routines send their argument to the continuation slot of the corresponding size pointed to by
the continuation k. For SendArrayArgument, the size of the destination slot is length bytes long.
SendArrayArgument is useful for sending both arrays and structures.

Caution: Continuations are not typed, so care must be used to send the right size argument to
continuations that point to a certain size slot. Thus, a continuation for a char slot should not be used in
a SendWordArgument call. Violating this rule will cause your program to crash. Note that we expect
to type continuations in the next version of Cilk.

2.5.7 Global Data Structures

Global pointers are provided for maintaining distributed data structures and other distributed applica-
tions. Global pointers consist of a processor number and a local (regular) pointer into that processor’s

18

memory. Global pointers are created using the MAKEGLOBPTR macro which takes a local pointer and
produces a global pointer. The processor number and local pointer of a global pointer can be obtained
using the PN and OFFSET macros. There is an example of using these macros in the Cilk examples
directory under the name tree.p.

2.6 Tutorial Change Log

$Log: tc-tut.tex,v $
% Revision 1.13 1994/11/06 02:19:49 randall
% Added AccumulateDoubleWord, SendDoubleArgument and AccumulateDouble to doc.
%
% Revision 1.12 1994/11/03 00:35:51 randall
% Added SendFloatArgument and AccumulateFloat to manual.
%
% Revision 1.11 1994/09/28 18:21:21 zhou
% Modify examples to version 1.1 syntax
%
% Revision 1.10 1994/09/06 17:40:30 bradley
% Many small changes from my things-to-do list.
%
% Revision 1.9 1994/09/02 19:22:36 randall
% StrataInit -> CilkInit, same for exit.
%
% Revision 1.8 1994/09/02 01:31:45 zhou
% Changed tpp to cilkpp everywhere
%
% Revision 1.7 1994/08/29 21:48:20 randall
% Put serial fib ahead of threaded fib in tutorial.
% Changed some local guide stuff and how to obtain Cilk stuff.
%
% Revision 1.6 1994/08/26 19:22:42 randall
% Added change log to the tutorial.
% Did some editing of the language reference.
%

19

Chapter 3

Local Guide

This local guide explains how to use CilkTM at MIT. If you are not at MIT, you probably need slightly
different instructions.

A copy of Cilk can be found in /a/randall/Cilk1.2/ on scout.lcs.mit.edu. There is an
exampleMakefile that you can use to build your own projects in /a/randall/Cilk1.2/examples/.

In order to get flex (a lexical analyzer) added to your path, type
‘source /usr/local/conf/sys-dots/std.cshrc’ on scout. You will need this for com-

piling cilkpp.

An on-line version of this manual can be found from CSG hosts as

file://localhost/home/prj/Cilk/unreleased/doc/manual/manual.html

To access /home/prj/ from a TOC machine, use /csg/prj/. For example,

file://localhost/csg/prj/Cilk/unreleased/doc/manual/manual.html

20

Chapter 4

Cilk Language Reference Manual

This chapter describes the CilkTM 1.2 language extension to C that enables multi-threaded programming
on parallel architectures. The extension provides an abstraction of threads in explicit continuation-
passing style, which is preprocessed to ordinary C code, then compiled to run on top of the Cilk runtime
system.

The Cilk runtime system implements a scheduler that by default uses work stealing for dynamic
load balancing in order to maximize computation locality. The programmer can also gain control over
scheduling via a system of annotations, both with or without work stealing in effect.

In the remainder of the section we shall first define the key underlying runtime concepts, then
proceed to describe the details of the language.

4.1 Basic Concepts

In Cilk, the basic unit of scheduling and execution is a thread. Threads are defined with a syntax similar
to C functions. For example, the following are two threads that computes the nth Fibonacci number:

thread sum (cont k, int x, int y)
{

SendWordArgument (k, x+y);
}

thread fib (cont k, int n)
{

if (n<2) SendWordArgument (k, n);
else
{ cont x, y;

spawn_next sum (k, ?x, ?y);
spawn fib (x, n-1);
spawn fib (y, n-2);

}
}

Conceptually, threads form an abstraction that is more primitive than functions. As can be seen
from the above example, the code that belongs naturally to a function is split into more than one threads.

21

However, the notion of a function is still visible in Cilk. In the above example, spawn next is used
to create a thread that “continues” within the same function, while spawn is used to create a thread
corresponding to a function invocation.

At runtime, a thread is invoked from, and returns to the scheduler. Inter-thread communication uses
explicit continuation-passing style to send arguments and results. Intuitively, a thread groups together
a sequence of instructions without synchronization events (i.e., waiting for something to occur) in the
middle of its execution. This arrangement results in a very flexible and simple scheduling and execution
model.

4.1.1 Closures

Normally, a thread is created by making a closure. A closure is just a data structure that captures all
information needed to execute the thread. More specifically, the statement

spawn tp (arg1, : : :);
creates a closure containing the thread pointer tp and one slot for each argument (the actual implemen-
tation may need to keep additional information):

tparg1
...

To enable thread communication and synchronization, a closure can be created waiting for some
arguments to arrive in the future, thus it may contain empty argument slots. A closure is said to be full
if it has all of its arguments, otherwise it is waiting.

4.1.2 Continuations

A continuation1 is a global reference to an empty argument slot, to which an argument can be sent. For
example, the statement

spawn_next sum (k, ?x, ?y);

Creates a closure for sum, and initializes x and y as continuations pointing to the two empty slots:

sum
k

x!
y!

Usually, both x and y will be passed to new threads which will eventually send arguments via some
runtime primitive such as

SendWordArgument (x, arg);

that fills the slot referenced by x. The closure will be posted when it becomes full, and available for
execution via the scheduler.1Note that we are somewhat abusing the term “continuation” here, which normally means “the rest of the computation”.

22

Continuations can be created to reference argument slots of different types, and different argument
sending primitives must be used to match the size and the semantics of the argument. This will be
further described in section 4.9.3.

4.1.3 Thread Scheduling and Work Stealing

During the execution of a Cilk program, thread spawning forms a proper tree, with data-dependencies
among threads (i.e., those indicated by continuations) forming a DAG. In a correct program, the order
in which ready threads are executed should not change its result, but may have drastic effects on its
space and time efficiency. Therefore in order to write a good Cilk program it is necessary to understand
Cilk’s basic scheduling and execution model.

At runtime, the Cilk scheduler groups together closures corresponding to function invocations (i.e.,
the closure created by spawn and those created by subsequent spawn next’s). It orders these groups
by the time of the first spawn, and within each group the closures are ordered by the time when they
are posted. For local execution, the scheduler always tries to take the most recently posted closure in
the most recently invoked function.

A work stealing mechanism is implemented so that each processor sends a request to a randomly
chosen target processor when it runs out of its local pool of ready threads. The target processor,
upon receiving the request, will try to migrate the most recently posted closure belonging to the oldest
function invocation, or reply with a negative response to the requesting processor. In the latter case, the
requesting processor will have to repeat the work-stealing cycle for as long as its local pool of ready
threads is empty.

Work stealing has proven to be extremely effective in reducing the frequency of thread migrations
required by load balancing, at the same time creating computation locality which is critical for keeping
performance close to that of a sequential program.

For more complicated situations, Cilk also allows the programmer to specify where, and to some
extent when, a thread must be executed. This can be done either with or without work stealing in effect.
In this case the programmer will assume part or all of the responsibilities of load balancing, preserving
computation locality and limiting resource consumption.

4.2 Program Structure

A Cilk program consists of three sections separated by %%:

program: C code
%%thread1;
...
%%
C code

The program must be first preprocessed to ordinary C code, and then compiled and linked with the
runtime library.

Since the preprocessor copies both of the C code sections, the C syntax there will be whatever is

23

accepted by the C compiler being used2.
The thread definition and declarations in the middle section are expanded by the preprocessor,

which accepts a mostly C syntax with some differences. Some of the differences are due to Cilk
extensions, others are due to implementation constraints. In the following sections we shall describe
in detail only the Cilk specific part of the language. One should keep in mind, however, that any
limitations or changes to C syntax within the threads section do not apply to the C code sections.

4.3 Keywords, Constants and Operators

All C keywords used in Cilk thread definitions and declarations will appear in the constructs described
in later sections. In addition Cilk introduces the following keywords:

closure, cont, globptr, signal, type
handler, local, migration, thread
make closure, make next closure, spawn, spawn next,
call, call next, tail call, tail call next

Constants can be specified in the following format: all C character and string constants, integer
constants such as 12, 0711 (octal) and 0xFA (hexadecimal), and float constant such as 1.27 or .34.

The following operators can be used in the body of thread definitions (listed in increasing order of
precedence):

Operators Associativity
@ none
=, +=, -=, *=, /=, %=, &=, ˆ=, |=, <<=, >>= right to left
?, : right to left
|| left to right
&& left to right
|, ˆ left to right
& left to right
==, !=, <, <=, >, >= left to right
<<, >> left to right
+, - left to right
*, /, % left to right
!, ˜, ++, --, sizeof right to left
(), [], ., -> left to right

All operators except @ are inherited from C with their original meaning.

4.4 Thread Definition and Declaration

Similar to a C function definition, a thread definition has the form

thread: [attrib] thread tp (arg-decl1, : : :) body

where body is a compound C-like statement enclosed in braces. The body can also be the null statement2For CilkTM 1.2, gcc is needed as the runtime system and the preprocessor output rely on certain gcc extensions.

24

(;), in which case it is a thread declaration. A thread declaration or definition must precede its first
use, thus declarations are necessary in cases where threads are defined recursively, or where threads
defined in separate files are cross-referenced.

The optional attrib can be one of

local, handler, migration,

Their use will be described later in section 4.5.2 and 4.6.

4.4.1 Types of Thread Arguments

A thread argument declaration has the following syntax:

arg-decl: type var-ref
signal [var]

type: char j short j int j long
float j double
closure j cont j globptr Cilk specific
struct var
type var

var-ref: var-decl
*var-ref

var-decl: var
var[expr] fix-size array
var[] variable-size array

The declaration syntax here is mostly a proper subset of the C syntax, with some notable differences.
closure, cont, globptr and signal are types specific to Cilk.
Pointer and structure types follow the C convention.
Array types differ from the C convention. Due to C’s integration of arrays and pointers, a pointer is

always passed for an array argument. In Cilk an array is normally passed by value (see section 4.5.1).
In addition, var[expr] specifies a fixed-size array where expr is the constant size expression, and var[]
specifies a variable-size array whose size will be provided at thread creation time. A variable-size array
is only allowed as the last argument of a thread.

The form type var provides a back door to the C type definition mechanism, here var can be any
variable defined using typedef. The keyword type here is needed since Cilk does not understand
types defined outside the threads section, thus

foo *bar;

would be ambiguous as to whether it is a declaration or an expression used as a statement.

4.4.2 Body of Thread Definitions

Thread body has the form of a C compound statement:

body: f decl1 : : : stmt1 : : : g
Here the declarations follow the C convention, except with the same limited syntax as thread argument
declarations. However, simultaneous declarations such as

25

int i, *p;
cont x, y;

are allowed. Almost all of the C statement and expression syntax are allowed, and we list them
here for easy reference:

stmt: ; the empty statement
expr;
label: stmt
case expr: stmt
default: stmt
goto label;
break;
return [expr];
if (expr) stmt [else stmt]
switch (expr) stmt
for ([expr]; [expr]; [expr]) stmt
while (expr) stmt
do stmt while (expr);f decl1 : : : stmt1 : : : g

expr: cnst
expr[expr]
expr.var
expr->var
(type) expr
uop expr j expr uop See section 4.3 for the
expr bop expr list of operators
expr? expr: expr
expr (expr1, : : :)
sizeof (type)
(expr)

4.5 Thread Creation

In addition to ordinary C statements, the following Cilk statement is used to create a new thread by
making a closure:

spawn[next] tp (arg1, : : :) [@expr] stmt

here tp must be defined or declared as a thread with the correct number and types of arguments.
The keyword spawn should be used to create a thread that starts a new function invocation, whereas
spawn next should be used to create a thread that is logically “continuing” execution within the same
function. Their usage may affect the performance of the program, and especially that of work stealing
(see section 4.1.3).

If the optional @expr is present, the closure will be posted to the processor with number equal to
expr, otherwise it will be posted locally. If all arguments are available then posting is immediate.

26

The trailing stmt can be null (;) or any C statement. It is executed before the closure is posted,
useful for further initializing the closure. For this purpose, within the stmt the special symbol $ is
bound to a pointer to the newly created closure. It can be accessed, for example, as in

closure *cp;
...
spawn foo (...) { ...; cp = $; ... }

4.5.1 Thread Arguments

Much of the syntax sophistication in Cilk lies in different ways of specifying the arguments for thread
creation. Thread arguments differ from ordinary C function arguments:

arg : expr ordinary C expression
expr[..] array argument
expr[expr l..expru] variable-size array argument
?var inlet
?varfexpr j: expr i g accumulator inlet
?varfexpr j g signal inlet
?var[..] j ?var[expr] array of inlets
:var[..] j :var[expr] initialization pointer

A thread argument of the form

expr

is just a normal C expression.
An argument of either one of the following forms

?var
?varfexpr j: expr ig
?varfexpr j g

Allocates an empty slot in the closure, and initializes var to be a continuation pointing to that slot. In
all of the forms var must be declared to have the type cont. The size of the slot is determined from
the corresponding type declaration of the thread argument in the thread prototype.

The argument forms here differ in how many arguments are expected and in the way the argument
is deposited in the empty slot. More specifically:� ?var allocates a inlet slot that waits for exactly one argument to be sent.� ?varfexpr j: expr ig allocates an accumulator inlet slot, expecting expr j values and initializes

the slot to expr i. The closure is not considered full until all expr j arguments arrives. How
the arguments are to be accumulated is completely unspecified and depends on which runtime
primitives are used to send the arguments.� ?varfexpr j g specifies a signal inlet. The argument must be declared to have the type signal,
and the slot has size 0 (in effect, no slot will be allocated in the closure for a signal inlet). As in
the previous case, the closure will be waiting for an additional expr j signals.

27

Depending on the slot type, different Cilk runtime primitives need to be used for sending arguments,
as described further in section 4.9.3.

An array argument has one of the following forms

expr[..]
expr[expr l..expru]

and stores the array expr[size] in the closure. An argument of the first form must be declared to have
an array type of fixed-size size. An argument of the second form must have a variable-size array type,
and the array segment includes elements at both the lower and upper bounds (size is calculated asexpru � expr l + 1).

Both of the following argument forms

?var[..]
?var[expr]

allocate an array of inlets and initializes var as a continuation pointing to the beginning of the array.
The first argument form must have fixed-size array type, and the size is taken from the type declaration.
The second form must have variable-size array type. Several runtime primitives can be used to send
the array as a whole, in pieces or element-wise (see section 4.9.3).

Arguments of the following forms

:var[..]
:var[expr]

are called initialization pointers and must have corresponding array types (the first form must have
fixed-array type, with the size taken from the type declaration. The second form must have variable-size
array type). Either form allocates an array of the specified size in the closure, and sets var to be a
pointer to the beginning of the array. Unlike array arguments, the array allocated here is uninitialized.
It is the programmer’s responsibility to properly initialize the array using the pointer var. In addition,
var must be declared to match the array element type. Since full closures are automatically posted, the
initialization pointer should not be referenced outside of the trailing statement to the thread creation.

4.5.2 Annotations for Thread Scheduling

Under the default Cilk scheduling policy, the programmer does not specify either where or exactly
when a thread will be executed: it is up to the scheduler to execute the threads as they become ready
or migrate them upon work stealing requests.

The different versions of spawn and spawn next should be regarded as annotations providing
hint to the scheduler so that it can group together threads logically belonging to the same function
invocation for scheduling purposes (see section 4.1.3).

For more complicated situations, Cilk provides a more elaborate system of annotations by which
the programmer can post threads to specific processors, to make some threads not stealable, or to
execute certain threads at an higher priority.

The form

local thread tp (arg-decl1, : : :) body

defines a thread that stays local, i.e., it will not be migrated by work stealing. The statement

spawn[next] tp (arg1, : : :) @expr stmt

28

creates a closure which will be posted to the processor numbered expr. Upon arrival it becomes a local
closure on the destination processor. Consequently, the closure created by

spawn foo (...) @Self

will not be stolen (Self is a global variable defined in the runtime system, whose value is the local
processor’s number).

The form

handler thread tp (arg-decl1, : : :) body

defines a handler thread. A handler thread is similar in every respect to an ordinary thread except that
it has higher scheduling priority, i.e., once ready it is scheduled to execute before all the ordinary ready
threads.

A handler thread is not subject to migration under work stealing. Unless the @proc annotation is
specified, a handler thread becomes a local thread upon creation.

4.5.3 Direct and Tail Calls

In addition to spawning threads, the following direct and tail call forms can also be used:

call[next] tp (arg1, : : :);
tail call[next] tp (arg1, : : :);

call invokes the thread tp as a C function. tail call is more efficient, but is restricted in that tp
must be the very thread in whose body it appears3. Both the direct and tail calls avoid making a closure
and completely bypass the scheduler. The next suffix has the same effect as in spawn next, i.e. it
tells the runtime system that the thread should be considered as logically continuing within the same
function.

Since there is no closure involved, arguments in a direct or tail call form must only be C arguments
and must be specified in full. Array arguments can only be passed by reference to direct or tail called
threads. Since a normally scheduled thread keeps its closure until the end of execution, such array
references should remain valid within a direct or tail called thread.

4.6 Migration Threads

Cilk provides a mechanism by which threads may be migrated together with their local data structures
during work-stealing. Currently it is implemented as a user level protocol that requires the programmer
to specify three threads: the ordinary thread, an additional migration (packing) thread,and an unpacking
thread.

First, the following statement forms are equivalent to spawn/spawn next except the closure created
will not be automatically posted even if it is created full:

make[next] closure tp (arg1, : : :) stmt

Here again, make next closure is for creating a thread within the same function, make closure is
for creating a thread corresponding to a new functional invocation.3A tail call is implemented as a jump back to the entry of the function after resetting the arguments.

29

The migration thread has the special syntax

migration thread tp (arg-decl1, : : :) body

Here tp must already be defined as a ordinary thread with the same argument prototype. The idea is
that at migration time, this thread will be invoked to pack a new closure that is migrated instead. We
first explain the protocol using the following example.

Suppose that the thread foo will be passed a reference to a locally allocated data structure of some
type tp (object of type tp may further contain pointers, for example to form a linked list):

thread foo (cont k, tp *p) { ... }

As a result, foo cannot be migrated since p will point to garbage on another processor.
The solution is for the user to specify a migration thread to pack the data structure into a new

closure, which is migrated instead of the original closure, and to specify an unpack thread which will
be used to create a local copy of the data structure once the new closure has reached its destination:

migration thread foo (cont k, tp *p)
{

closure *cp;
char *a;

make_next_closure foo_unpack (k, :a[size]) {
copy_into (a, p);
cp = $;

}
return (cp);

}

The way the data structure is copied completely depends on the user supplied function copy into,
which for example can flatten a linked list into array a.

The new closure must be returned to the scheduler (recall from section 4.5 that $ is bound to the
pointer to the newly created closure), which posts it to the destination processor instead of the original
closure for foo.

In the migration thread, the new closure is made for the thread foo unpack, which must do the
reverse of the migration thread:

thread foo_unpack (cont k, char a[..])
{

tp *p = reconstruct_from (a);
call_next foo (k, p);

}

The unpacking thread uses the user supplied function reconstruct from to make a local copy of
the original (or portions of) data structure, then directly calls foo.

In order for things to work out correctly, the migration thread must be defined after both the original
thread and the unpacking thread (or their prototypes) are defined, and it must have the same prototype
as the original thread. The unpacking thread, however, is not related to the original thread, and it is
the programmer’s responsibility to provide the unpacking thread with the desired behavior. As a final
note, both the migration thread and the unpacking thread should use the next variants of the required
primitives so that the resulting thread will execute at the same level as the original thread would have
executed.

30

4.7 Notes on Thread Argument Passing

Since closures may migrate, arguments to a spawned thread are normally passed by value, i.e., copyied
into the closure. Migration handlers are generally needed when pointers are passed to spawned threads.

Cilk also allows threads to be called directly as C functions via the call and tail call forms.
An array argument to a direct or tail called thread must be passed by reference (see section 4.5.3). The
Cilk preprocessor generates C code that is consistent with this interpretation of array arguments, i.e., if
we have a thread declared as

thread foo (cont k, int a[10]) { ... }

and b[10] is an array, then b[10] will be copied into the closure when foo is spawned, but only
the pointer b will be passed to foo when it is called.

If an argument is a structure, then it is passed by value no matter whether the thread is spawned or
called. When a structure is large, one may wish that the extra copying during direct or tail calls can
be avoided. This can be achieved by specifying it as an array argument of 1 element. For example,
instead of defining

thread foo (cont k, struct bar x) { ... }

and having to pass its struct argument by value when foo is called, change the definition to

thread foo (cont k, struct bar xp[1]) { ... }

4.8 Blocking Threads

4.9 Runtime System Interface

The Cilk runtime system implements mechanisms for thread scheduling, communication and synchro-
nization. It also provides a library of runtime primitives for use by the programmer.

The Cilk runtime system has a completely independent interface, with naming conventions different
from the Cilk language. However, most of the interface is hidden by Cilk. This section only describes
the primitives visible to the programmer. For a complete reference to the runtime interface see chapter
5.

4.9.1 Entering the Scheduler

In order to execute threads, the following primitive must be invoked within the main control of a SPMD
program:

int RunScheduler (int mode, void tp(), int n, arg1, : : :);
Here tp is the first thread to run, n indicates how many arguments are supplied, and the remaining
arguments are passed on as arguments to tp. By convention, the runtime system automatically supplies
the first argument to tp, which must be a continuation, therefore n should be one less than the arity of
tp. For example, if one invokes

result = RunScheduler (CILK_AUTO, foo, 2, 1, 10);

31

then there should be a corresponding thread defined as

thread foo (cont k, int a, int b) { ... }

The runtime system automatically defines a last thread which passes a continuation to foo as its
first argument and awaits the result of the computation. Note that the argument sent to k will become
the result, thus it must have type int. In addition, sending the result argument is also used as
the completion signal of the multi-threaded execution, therefore it should not happen until all threads
(except the last one) have been executed.

The mode argument should be one of

CILK AUTO, CILK MANUAL,
CILK AUTO KEEP, CILK MANUAL KEEP.

In the CILK AUTO mode, the Cilk runtime system uses work stealing. In the CILK MANUALmode, work
stealing is turned off. In either mode the heap will be reset when RunScheduler returns. If one wishes
to keep the data structures allocated in the heap, which may be accessible either from the return value or
from some global variables set during the execution, then CILK AUTO KEEP and CILK MANUAL KEEP
should be specified instead.

4.9.2 Global Variables

The value of the following runtime system variable

extern int cilk active size;

must be set before entering the scheduler, which defines how many processors will participate in the
computation. Its default value is 0, meaning all processors available. A positive integer tells the
scheduler exactly how many processors to use.

The global variable

extern int Self;

is always set to the local processor’s number.

4.9.3 Communication Primitives

The following primitives are available for sending arguments to different types of inlets:

void SendCharArgument (ContinuationT k, char value);
void SendShortArgument (ContinuationT k, short value);
void SendWordArgument (ContinuationT k, Word value);
void SendDoubleWordArgument (ContinuationT k, DoubleWord value);
void SendFloatArgument (ContinuationT k, float value);
void SendDoubleArgument (ContinuationT k, double value);
void SendArrayArgument (ContinuationT k, char *array, int size);

In the last form, the size of the array is in units of bytes.
Note that the Cilk preprocessor does not check which primitive is used for sending a thread

argument, therefore it is the programmer’s responsibility to always use the primitive that matches the
type of the thread argument.

Note that within thread creation, for example

32

spawn foo (1, ?x[SIZE]);

it is only possible to capture a single continuation x pointing to the beginning of the array. However,
sometimes it may be desirable to send an array argument element-wise or in pieces. To this purpose
the primitive

IndexContinuation (ContinuationT k, int i, int size);

is provided. It returns a new continuation pointing to the ith element (counting from the reference point
of k), where each element has size bytes.

Primitives for sending arguments to accumulator inlets are currently restricted to Word,DoubleWord,
float, or double arguments:

void AccumulateWord (ContinuationT k, AccumWordOp op, int value);
void AccumulateDoubleWord (ContinuationT k, AccumDoubleWordOp op, long long value);
void AccumulateFloat (ContinuationT k, AccumFloatOp op, float value);
void AccumulateDouble (ContinuationT k, AccumDoubleOp op, double value);

The following accumulation operators are predefined:

accum word add, accum word mul,
accum word and, accum word or,
accum word min, accum word max,
accum doubleword add, accum doubleword mul,
accum doubleword and, accum doubleword or,
accum doubleword min, accum doubleword max,
accum float add, accum float mul,
accum float min, accum float max,
accum double add, accum double mul,
accum double min, accum double max

Additional accumulation operators can be defined by the user, see chapter 5 for details.
Finally, the primitive

void Signal (ContinuationT k);

can be used to send a signal.

4.9.4 Data Structure Primitives

Data primitives in Cilk are currently limited to local objects (useful together with migration threads)
and global pointers.

The primitives

void *alloc fstruct local (int size);
void free fstruct local (void * block);

allocates or releases a block of memory, where size is in units of Words. The storage allocated are taken
from the Cilk runtime heap, which will be reset after each run of the scheduler by default. Therefore
if one wishes to carry them over to the next run of the scheduler, the current RunScheduler must be
invoked with either CILK AUTO KEEP or CILK MANUAL KEEP mode.

33

An object of the type

globptr

is a global pointer which packs a local pointer together with a processor number. The processor number
and the local pointer can be retrieved using the following macros

PN(gptr)
OFFSET(gptr)

Currently there is no primitive that fetches or stores data using a global pointer4, therefore in order to
access data from a global pointer gptr one needs to post a thread to processor PN(gptr).

4.10 C Code Generated by the Preprocessor

This section briefly describes the structure of the C code generated from cilkpp, the thread preprocessor5.
Cilkpp’s output format consists of three sections, corresponding to the three sections in the source

program:

C code

/* ----- Begin Threads Section ----- */

Closure structure definitions
Prototypes
Function definitions derived from threads

/* ----- End Threads Section ----- */

C code

We shall use the following simple example program to illustrate the C code generated from cilkpp:

local thread sum (cont k, int x, int y);

thread fib (cont k, int n)
{

if (n<2) SendWordArgument (k, n);
else
{ cont x, y;

spawn_next sum (k, ?x, ?y);
spawn fib (x, n-1);
call fib (y, n-2);

}
}4these did not make into the initial release of CilkTM 1.2, but is likely to be added very soon.5When invoking cilkpp with the intention of reading the output, the -N switch should be used, which suppresses cpp

line directives that would otherwise be generated by default. The UNIX program indent can be used to set the C code in a
form that is easy to read.

34

4.10.1 Closure Structure Definitions

The structure definition of the closure for each thread is derived from its prototype. For example, the
thread

local thread sum (cont k, int x, int y);

Generates the following type definition for its closure

typedef struct {
ClosureT _header;
ContinuationT k;
int x;
int y;

} _sum_closure;

The first field of the structure contains additional information maintained by the runtime system,
and is common to all closures. The thread argument variable names are used for the members of the
structure. Note that new variable names generated by cilkpp are usually prefixed by _ to avoid potential
conflicts with user defined variables.

Every thread argument has a member with the same type in the closure structure. The only
exception is a signal argument, with is always left out. A variable-length argument such as int a[]
has a member declaration in the form of int a[0].

4.10.2 Prototypes

Cilkpp normally derives two functions from each thread. The first function is for general entry from the
scheduler, which takes as its only argument the pointer to the closure. The second function is for direct
entry from calls. The prototypes of all derived functions are declared before the function definitions.
For example, the following are two prototypes are generated for thread fib:

extern void fib (_fib_closure *_cp);
extern void fib_fast (ContinuationT k, int n);

Note that the direct entry function is named fib_fast and takes all thread arguments.
In case a thread foo has a migration thread, an additional prototype is also declared for the function

foo_pack, which is the general entry function derived from the migration thread:

ClosureT *foo_pack (_foo_closure *_cp);

Since the migration thread is only used to unpack the old closure, there is no direct entry function
generated. Note that foo_pack is expected to return a pointer to a closure.

4.10.3 Function Definitions Derived from Threads

The general entry function first fetches all arguments from the closure, and deallocates the closure at
the end (in fact, FreeClosure is inserted before every return statement). For example, below is the
one for the fib thread:

35

void fib (_fib_closure * _cp)
{

ContinuationT k = _cp->k;
int n = _cp->n;

...

FreeClosure ((ClosureT*) _cp);
}

The direct entry function differs from the general one only in that arguments are passed directly
instead of fetched from the closure, and that no closure is deallocated since none is involved:

void fib_fast (ContinuationT k, int n)
{

...
}

An array argument is not fetched from the closure, instead a pointer is initialized to point to the
array in the closure. For example, corresponding to the argument int a[SIZE], within the general
entry there will be a line:

int *a = _cp->a;

Array argument cannot be passed to direct entry functions.

Spawn

Spawning a thread is expanded into C code to allocate the closure, initialize the closure with supplied
arguments, capturing continuations for the missing arguments, and posting the closure if possible. For
example, the line

spawn_next sum (k, ?x, ?y);

becomes

_sum_cp_0 = (_sum_closure *)
NewClosure ((ThreadT)sum, 0 + sizeof(int) + sizeof (int),

sizeof (_sum_closure), 0);
_sum_cp_0->k = k;
x = MakeContinuation

((ClosureT *) _sum_cp_0, ARG_INDEX (_sum_cp_0, x));
y = MakeContinuation

((ClosureT *) _sum_cp_0, ARG_INDEX (_sum_cp_0, y));
SetClosureColor ((ClosureT *) _sum_cp_0, ClosureColorLocal);

after the cilkpp expansion. Note that� The size of the closure is the number of bytes of the closure structure, plus the actual size of an
additional variable-size array argument if any;

36

� The initial join count is calculated as the total bytes in all the missing arguments;� The last argument to NewClosure (childp) is 0 if the closure is created via spawn_next, 1 if
via spawn;� ARG_INDEX(cp, x) is the byte offset of member x from the end of the common closure header;� If a waiting closure is created, as in this example, the color of the closure is set according
to supplied annotations: ClosureColorNormal is the default, ClosureColorLocal if the
closure is declared local, etc. (see section 5.4 for definition of other colors).

If a closure is created with all the arguments, then the closure color will not be set, instead the
appropriate version of PostClosure*will be called after the code generated from the trailing statement
(if any).

Direct Call

A direct call is simply a call to the direct entry function. For example, the line

call fib (y, n-2);

Generates the following C statements:

TailCall ();
fib_fast (y, n-1);

Here the TailCall is issued to indicate calling a thread as the start of a new function invocation.
If call_next is used then it will not be generated.

Tail Call

For efficiency, a tail call is implemented as a jump to the beginning of the thread after resetting the
arguments. For example, If we replace the call statement in the fib thread to tail_call, then the
following code will be generated (we only show the general entry function, the same happens with the
direct entry function):

void fib(_fib_closure *_cp)
{

/* fetching arguments from the closure */
...

fib_direct_entry:
{

if (n<2) SendWordArgument (k, n);
else
{

...

/* below are the lines generated for the tail_call */
{

37

ContinuationT k_tmp = y;
int n_tmp = n - 1;

k = k_tmp;
n = n_tmp;
TailCall ();
goto fib_direct_entry;

}
}

}
FreeClosure ((ClosureT*) _cp);

}

Note that the label fib_direct_entry is inserted right after the code to fetch arguments from the
closure, but FreeClosure is not part of the tail call loop. At the place where the tail call occurs,
arguments are reassigned via temporaries to ensure correctness in case two arguments are swapped by
the tail call.

4.11 Language Reference Manual Change Log

$Log: lanref.tex,v $
% Revision 1.18 1995/01/03 21:16:54 randall
% changed color constants.
%
% Revision 1.17 1994/11/06 02:19:33 randall
% Added AccumulateDoubleWord, SendDoubleArgument and AccumulateDouble to doc.
%
% Revision 1.16 1994/11/03 21:26:10 zhou
% Better example to illustrate the use of migration threads.
%
% Revision 1.15 1994/11/03 01:51:09 randall
% Updated everything to 1.2. Added changes in 1.2 to the change log.
%
% Revision 1.14 1994/11/03 00:35:37 randall
% Added SendFloatArgument and AccumulateFloat to manual.
%
% Revision 1.13 1994/09/28 19:14:21 randall
% changed 1.0 -> 1.1
%
% Revision 1.12 1994/09/28 18:20:36 zhou
% Modify thread creation syntax, added a section on passing thread arguments
%
% Revision 1.11 1994/09/06 17:40:24 bradley
% Many small changes from my things-to-do list.
%

38

% Revision 1.10 1994/09/02 01:31:40 zhou
% Changed tpp to cilkpp everywhere
%
% Revision 1.9 1994/08/29 16:53:51 zhou
% fix some formatting problems
%
% Revision 1.8 1994/08/29 16:43:06 zhou
% add description of variables cilk_active_size and Self.
%
% Revision 1.7 1994/08/29 15:18:31 zhou
% Add label to chapter lanref
%
% Revision 1.6 1994/08/26 19:22:36 randall
% Added change log to the tutorial.
% Did some editing of the language reference.
%
% Revision 1.5 1994/08/26 15:22:25 zhou
% Some additions suggested by Keith
%
% Revision 1.4 1994/08/26 15:04:10 zhou
% Add section for data primitives
%
% Revision 1.3 1994/08/25 14:55:29 randall
% Made all of the undefined \ref{}s work.
%
% Revision 1.2 1994/08/24 15:23:15 bradley
% Added a changelog to langref.tex
% changed mac.tex to defs.tex.
%

39

Chapter 5

Specification of the Cilk Runtime System

5.1 Errata

Currently this document does not uniformly and accurately reflect the fact that we use the number of
bytes received to implement the join-count.

5.2 Introduction

The CilkTM 1.2 (Version �1) run-time-system provides an execution environment for continuation-
style threads written in the C programming language. The C code may be written directly by a human
or it may be generated by a threaded-C preprocessor such as cilkpp (see Chapter 4.) This document
specifies the run-time system. If you implement these functions then you should be able to run CilkTM

1.2 programs. If you generate correct calls to these functions, then your program will run on any
compliant CilkTM 1.2 run-time-system.

The abstract programming model provided by CilkTM 1.2 is a dataflowlike procedure call tree,
where each procedure consists of a collection of threads. The entire computation consists of a directed
acyclic graph (DAG) of threads. A thread is a piece of code, implemented as a C function. Each
thread runs only after all of its DAG predecessors have run. Each DAG predecessor of a thread can
communicate with it by sending it some arguments. The DAG does not exist all at once. A program
can build the DAG on the fly. Furthermore, the DAG is organized into levels according the procedure
call tree. The procedure call tree has little to do with the C functions used to implement the program.
Instead, C functions are used to implement threads. A procedure is collection of threads with some
dependencies among them. The procedures themselves are threaded together via procedure-calls.

Rather than keeping track of the degree of each node in the DAG, our run-time system keeps track
of something else called the join-counter. The join-counter is a variable kept for each closure. As
each predecessor of a closure executes, the join-counter is decremented. Since the join counter can be
decremented by any positive integer, the join-counter does not specify the in-degree, but rather specifies
the amount of decrementation that must occur before a thread runs.

The life cycle of a thread consists of� Create the thread. When a thread is created, it is either created as a child thread (i.e, the thread
is spawned) or a sibling thread.

40

� Modify the thread. After the thread is created and before it has been posted, it can be modified
in various ways.� Send values to the thread. As the predecessors of a thread execute, they send values to the thread,
and decrement its join counter by appropriate values. Not every thread has values sent to it (in
particular, a thread whose join-count is intially zero skips this step.)� Post the thread. If the join-count of the thread is initially zero, then the thread is posted explicitly
by the program. If the join-count of the thread is positive, then when enough values have been
sent to the thread, the thread is posted automatically by the scheduler. A thread cannot be
executed until it is posted. The closure can be moved to another processor only after it has been
posted. A closure can be annotated (“colored”) in various special ways, so that, for example, it
will run on a specific processor.� Execute the thread. After the thread has been posted, the thread can be run by the scheduler. The
scheduler has some leeway about when it will actually run a thread, and it treats child threads
differently from sibling threads (preferring to run a child before its parent, and to finish one child
before starting another, although in the search for parallelism these rules may be relaxed.)� Deallocate the storage for the thread. Note that is the responsibility of the thread code to deallocate
its own closure before it returns. The runtime system does not automatically deallocate closures
that have completed.

For certain threads, this lifecycle can be shortened. In particular for a thread that, as its last step, starts
the execution of another thread (with in-degree of one), there is no need to invoke the scheduler. The
C function can simply start executing the code for the next thread.

For certain programs we can guarantee space and time bounds, but we don’t require the user to
write such programs. Some of the requirements may be enforced by the scheduler. In particular,
the scheduler is permitted to run a subtree without allowing other subtrees to make progress. Thus a
non-strict program may deadlock. The current scheduler does not deadlock for such programs, but this
specification allows us to write a scheduler that would deadlock. We expect to experiment with other
schedulers in the future. In particular, we may eventually specify a scheduler that allows non-strict
programs to run.

5.3 Data Types and Constants

CilkTM 1.2 employs three data types, visible to the user, to represent these computations.� A closure is the data structure used to represent a vertex in the DAG of the program. A closure is
represented by a contiguous block of memory, starting with some header information maintained
by the implementation, followed by space for the arguments. The header is of type closureT,
which is a structure typedef. The structure contains an field named args which is an array of
characters of length 0, the address of which is the beginning of the space to be used for the
arguments. The args field of any closure is maximally aligned to avoid alignment errors (Thus
on the SPARC, args is aligned to 64-bit word boundaries).� A continuation is the data structure used to represent an incoming edge to a vertex of the DAG.

41

� A thread is the code which is run when a vertex of the DAG has been enabled.

Closures come in several colors, and have an extra integer associated with them, the closure-info. The
colors are as follows:

ClosureColorNormal: A closure that can be stolen.1
ClosureColorLocal: A closure that must be executed on the same processor on which it was

created.2
ClosureColorPostNode: A closure that must be executed on a particular named processor. The

processor is specified by the closure-info.

ClosureColorMigrationThread: A migration closure is the same as a ClosureColorNormal
closure, except that it uses the closure-info field to specify how to move the closure to another
processor. The closure-info field contains a pointer (cast into an int) to a C function, called the
packing routine. The packing routine takes the closure as its only argument, and returns another
closure. The argument closure may contain, for example, pointers into the heap. The returned
closure must be flat (i.e., all the required data must be represented by value in the block of
memory allocated to the closure. The returned closure’s thread typically points to an unpacking
routine to be executed at the remote processor (e.g., to convert the flat representation back into
a data structure on the heap.) The packing routine should use FreeClosure() to deallocate its
argument. The unpacking routine typically posts its new closure, using the original thread, and
should color the new closure ClosureColorLocal in order to guarantee that the closure will
not be moved again before it is actually executed. Thus we have

ClosureT *packer(ClosureT *closure);

Rationale: Yuli observed that we might want migration threads that are posted on specific nodes.
Bradley thinks that if the user wants to post a thread on a specific node, then the user should
make the closure flat to start with, rather than writing a migration thread to pack up a structure.
The packing is valuable because it is done only when something is moved. If you know that the
work will move, then just do the packing immediately.

ClosureColorHandlerThread: A closure that should be executed as soon as possible on a par-
ticular processor. In particular, once all the predecessors have run, we prefer to execute a
ClosureColorHandlerThread closure before executing any non-ClosureColorHandlerThread
closures. The closure-info specifies on which processor the closure must be executed.

We use some type qualifiers borrowed from Strata:

GLOBAL means that the declared type has global or extern scope.

ATOMIC means that a function does not poll the networks.

INLINE means that there is an inlineable version of the procedure.1The ClosureColorNormal color used to be called STEAL.2The ClosureColorLocal color used to be called NO STEAL.

42

5.4 Procedures

GLOBAL ATOMIC INLINE ClosureT *
NewClosure (ThreadT thread, int join_count, int size, int child_p);

effect: Create a new closure.� Thejoin count specifies the initial join-count of the new closure. The value ofjoin count
must be nonnegative. Note that even if join count is zero, the closure is not posted into
a ready queue.� The size specifies the size of the closure block, measured in bytes. If you want to
reserve space for n bytes of arguments, then call NewClosure() with the size set to
sizeof(ClosureT)+ n. The value of size must be no less than sizeof(ClosureT).� The child p specifies whether the new thread belongs to this level (child p==0) or to
the next deeper level in the call tree (child p==1). The value of child p must be zero or
one.

The beginning of the block of memory used to store the size bytes of arguments is available as
a field args in the returned closure.

note: After creating the closure, but before posting the closure, you may set the closure color, the
closure info (for certain colors), and fill in some of the argument memory of the closure.

note: Typically the join-count is initialized to size-sizeof(closureT), although sometimes the
join-count is larger. In particular, when using accumulators and signals, the join-count should
be increased according to number of accumulators and signals that are expected. See the
accumulation and signalling functions described below.

43

GLOBAL ATOMIC INLINE void
InitClosure (ThreadT thread, int join_count, ClosureT *cp, int child_p);

effect: Create a closure by reusing a block of memory previously obtained from a call toNewClosure().
(Compare to NewClosure(), which creates a closure on a block of memory that the system
newly allocates.) The thread specifies which thread will be run when the thread is posted and
scheduled to execute. The join count specifies the initial value of the join counter (just as for
NewClosure()). The child p specifies whether this is a sibling or spawned thread. The size
of the closure is the same as the size of the original closure (and so, for example, do not try to
modify the closure header to manipulate the size of the closure.)

InitClosure() allows the user to avoid the overhead of doing

FreeClosure(cp);
cp = NewClosure(...);

if both closures are the same size.

requires: The block must have been obtained by a previous call the NewClosure().

rationale: The user could conceivably want to provide arbitrary memory for this closure. However,
that would require reinitializing parts of the header that might not need reinitializaiton, and
besides the system might want to put all the closures in a special area of memory, or index them
by small integers.

GLOBAL ATOMIC INLINE void
FreeClosure (ClosureT *closure);

effect: Deallocates storage for this closure. All thread code should deallocate its closure before
returning, unless it reuses the closure storage (with InitClosure().)

requires: The closure must not be used in the future. This means, among other things, that the
following must be true:

1. No memory loads or stores will, in the future, be made into the block of memory repre-
senting the closure (i.e., you should be finished using the closure fields);

2. No existing continuation pointing to this closure will be used in a SendArgument call in
the future.

3. The closure is not currently posted anywhere. (That is, either the closure’s join-count never
went to zero, or else the thread associated with the closure has been run.)

44

GLOBAL ATOMIC INLINE void
TailCall (void);

effect: Notifies the run-time system that the C function has started executing another thread, and that
the new thread is a child of the old thread. (There is no need to tell the scheduler that anything
has happened if the new thread is a sibling of the old thread. The C function can simply start
executing the new thread.)

GLOBAL ATOMIC INLINE void
SetClosureColor (ClosureT *closure, ClosureColorT color);

effect: Sets the color of the closure. The color of the closure determines how that closure will be
posted when its join-count reaches zero. Setting the color to ClosureColorX tells the scheduler
to post the closure with the PostClosureX routine (see below).

requires: The closure must not have been posted yet.

GLOBAL ATOMIC INLINE void
SetClosureInfo (ClosureT *closure, int info);

effect: Sets the closure-info of the closure. (Recall that closures of color ClosureColorPostNode
and ClosureColorHandlerThread both use the closure-info to specify which processor the
thread must be executed on. Closures of color ClosureColorMigrationThread use the
closure-info to specify the packing routine. The closure-info is ignored for all other colors.)

requires: The closure must not have been posted yet.

GLOBAL ATOMIC INLINE void
SetClosureThread (ClosureT *closure, ThreadT *tp);

effect: Sets the thread (i.e., the C procedure) that will be run when the closure is posted.

requires: The closure must not have been posted yet.

GLOBAL ATOMIC INLINE void
SetClosureJoin (ClosureT *closure, int join);

effect: Sets the join counter of the closure. If you set the join counter to zero, you will need to manually
post the closure.

requires: The closure must not have been posted yet, nor must the join counter have been manipulated
by calls to a Send-Argument routine.

45

GLOBAL ATOMIC INLINE ContinuationT
MakeContinuation (ClosureT *closure, int index);

effect: Makes a continuation for the given argument index in the given closure. Index is an offset in
bytes from the beginning of the argument list.

usage note: We suggest the following strategy for making it easy to name the arguments, handle
alignment issues, and otherwise manage the block of memory that holds arguments. Cast the
value returned from NewClosure() to a structure pointer, for example:

typedef struct {
ClosureT c;
int x;
char y;
double z;

} CT007;
...
{ CT007 cl = (CT007*)NewClosure(&th, 2, sizeof(CT007), 0);
ContinuationT c1

= MakeContinuation(&cl->c,
((char*)&cl->x)-((char*)cl->args));

ContinuationT c2
= MakeContinuation(&cl->c,

((char*)&cl->z)-((char*)cl->args));
cl->y = ’b’;

...

GLOBAL ATOMIC INLINE ContinuationT
IndexContinuation (ContinuationT k, Word index, Word size);

effect: Make a new continuation from an old continuation and an offset (where the offset is specified
as index into an array of elements, each of size size). If k was created with offset i in a closure,
then IndexContinuation(k,j,s) has offset i+ j � s in the same closure. That is,

IndexContinuation(MakeContinuation(c,i),j,s)�def MakeContinuation(c,i+j*s).

46

GLOBAL ATOMIC INLINE void
PostClosure (ClosureT *closure);

effect: Posts the specified closure. If you know the color of the closure, then higher performance can
be obtained by calling the appropriate specialized posting routine described below.

requires: The color (and the info, if used by that color), must be set.

note: The scheduler may use PostClosure() to post a closure when its join count goes to zero.

GLOBAL ATOMIC INLINE void
PostClosureNormal (ClosureT *closure);

effect: Sets the color of closure to be ClosureColorNormal and posts it.

GLOBAL ATOMIC INLINE void
PostClosureLocal (ClosureT *closure);

effect: Sets the color of closure to ClosureColorLocal and posts it.

GLOBAL ATOMIC INLINE void
PostClosureNode (ClosureT *closure, int pn);

effect: Posts aClosureColorPostNode closure,and guarantees that the closure will executed only on
the processor specified by pn. This is done by setting the closure’s color to ClosureColorPostNode
and the closure’s info field to pn.

GLOBAL ATOMIC INLINE void
PostClosureHandler (ClosureT *closure, int pn);

effect: Sets the color of closure to ClosureColorHandlerThread and posts it so that it will run
on processor pn. (This is done by setting the closure’s info field to pn.)

GLOBAL ATOMIC INLINE void
PostClosureMigration (ClosureT *cp, MigrationT mt);

effect: Sets the color of closure to ClosureColorMigrationThread and posts it. The closure’s
info field is set to be the mt.

issue: Need to define MigrationT.

47

GLOBAL INLINE void
SendCharArgument (ContinuationT continuation, char value);

effect: Send an 8-bit value to a continuation (decrementing the join counter of the closure, and posting
the closure if the join-count becomes zero.)

GLOBAL INLINE void
SendShortArgument (ContinuationT continuation, short value);

effect: Send a 16-bit value to a continuation (decrementing the join counter of the closure by 2, and
posting the closure if the join-count becomes zero.)

requires: The continuation must have been created with a 16-bit aligned index. (I.e., the index
used for MakeContinuationmust have been zero modulo 2.)

GLOBAL INLINE void
SendWordArgument (ContinuationT continuation, Word value);

effect: Send a 32-bit value to a continuation (decrementing the join counter of the closure by 4, and
posting the closure if the join-count becomes zero.)

requires: The continuation must have been created with a 32-bit aligned index. (I.e., the index
used for MakeContinuationmust have been zero modulo 4.)

GLOBAL INLINE void
SendDoubleWordArgument (ContinuationT continuation, DoubleWord value);

effect: Send a 64-bit value to a continuation (decrementing the join counter of the closure by 8, and
posting the closure if the join-count becomes zero.)

requires: The continuation must have been created with a 64-bit aligned index. (I.e., the index
used for MakeContinuationmust have been zero modulo 8.)

GLOBAL INLINE void
SendFloatArgument (ContinuationT continuation, float value);

effect: Send a 32-bit floating-point value to a continuation (decrementing the join counter of the
closure by 4, and posting the closure if the join-count becomes zero.)

requires: The continuation must have been created with a 32-bit aligned index. (I.e., the index
used for MakeContinuationmust have been zero modulo 4.)

48

GLOBAL INLINE void
SendDoubleArgument (ContinuationT continuation, double value);

effect: Send a 64-bit floating-point value to a continuation (decrementing the join counter of the
closure by 8, and posting the closure if the join-count becomes zero.)

requires: The continuation must have been created with a 64-bit aligned index. (I.e., the index
used for MakeContinuationmust have been zero modulo 8.)

GLOBAL INLINE void
SendArrayArgument (ContinuationT continuation, char *array, int length);

effect: Send a block of memory to a continuation (decrementing the join counter of the closure by
length, and posting the closure if the join-count becomes zero.) If the length is zero, the
pointer array is not dereferenced. The SendArrayArgument() function can be used to send
both structures and arrays.

performance: This routine is most efficient when both thearray and theindexused forMakeContinuation
are aligned similarly with respect to 32-bit word boundaries (I.e., they are congruent modulo 4).

requires: The value of length must not be larger than the remaining join count.

GLOBAL INLINE void
Signal (ContinuationT k);

effect: This routine sends a signal to a closure. A signal is a just like any other Send-Argument routine,
except no data is sent. The join-count is decremented (by 4?), and if it becomes zero, the closure
is posted.

issue: Should the join count decremented by 4 or by 1?

49

GLOBAL INLINE void
AccumulateWord (ContinuationT k, AccumWordOp op, int delta);

effect: The closure memory element specified by the continuation k is modified according to op and
delta. That is, if a points to the address referenced by the continuation k, then this routine
calls

(*op)(delta,a);

The closure’s join count is decremented (by 4?), and if it becomes zero, the closure is posted.

The Cilk system provides the following predefined functions.

accum word add: (addition)

accum word mul: (multiplication)

accum word and: (bitwise logical ‘and’)

accum word or: (bitwise logical ‘or’)

accum word max: (signed maximum)

accum word min: (signed minimum)

For example, accum word add could have been defined as

void accum_word_add (int v, int *a)
{
(*a) += v;

}

The user can also define and use his or her own accumulation operations.

requires: The continuation k must have been created with an index that is sufficiently aligned that the
function op can access it without causing trouble. The system-defined operations require 32-bit
alignment.

note: AccumWordOp is defined as:

typedef void (*AccumWordOp)(int, int*);

issue: Should the join count decremented by 4 or by 1?

50

GLOBAL INLINE void
AccumulateDoubleWord (ContinuationT k, AccumDoubleWordOp op, long long delta);

effect: The closure memory element specified by the continuation k is modified according to op and
delta. That is, if a points to the address referenced by the continuation k, then this routine
calls

(*op)(delta,a);

The closure’s join count is decremented (by 8), and if it becomes zero, the closure is posted.

The Cilk system provides the following predefined functions.

accum doubleword add: (addition)

accum doubleword mul: (multiplication)

accum doubleword and: (bitwise logical ‘and’)

accum doubleword or: (bitwise logical ‘or’)

accum doubleword max: (signed maximum)

accum doubleword min: (signed minimum)

requires: The continuation k must have been created with an index that is sufficiently aligned that the
function op can access it without causing trouble. The system-defined operations require 64-bit
alignment.

note: AccumDoubleWordOp is defined as:

typedef void (*AccumDoubleWordOp)(long long, long long*);

51

GLOBAL INLINE void
AccumulateFloat (ContinuationT k, AccumFloatOp op, float delta);

effect: The closure memory element specified by the continuation k is modified according to op and
delta. That is, if a points to the address referenced by the continuation k, then this routine
calls

(*op)(delta,a);

The closure’s join count is decremented (by 4), and if it becomes zero, the closure is posted.

The Cilk system provides the following predefined functions.

accum float add: (addition)

accum float mul: (multiplication)

accum float max: (maximum)

accum float min: (minimum)

requires: The continuation k must have been created with an index that is sufficiently aligned that the
function op can access it without causing trouble. The system-defined operations require 32-bit
alignment.

note: AccumFloatOp is defined as:

typedef void (*AccumFloatOp)(float, float*);

52

GLOBAL INLINE void
AccumulateDouble (ContinuationT k, AccumDoubleOp op, double delta);

effect: The closure memory element specified by the continuation k is modified according to op and
delta. That is, if a points to the address referenced by the continuation k, then this routine
calls

(*op)(delta,a);

The closure’s join count is decremented (by 8), and if it becomes zero, the closure is posted.

The Cilk system provides the following predefined functions.

accum double add: (addition)

accum double mul: (multiplication)

accum double max: (maximum)

accum double min: (minimum)

requires: The continuation k must have been created with an index that is sufficiently aligned that the
function op can access it without causing trouble. The system-defined operations require 64-bit
alignment.

note: AccumDoubleOp is defined as:

typedef void (*AccumDoubleOp)(double, double*);

53

GLOBAL int
RunScheduler (int mode, ThreadT root_thread, int num_args, ...);

effect: Starts up the scheduler and runs the thread root thread with num args words of arguments.
Note that num args (and the argument list) does NOT include the continuation which must be the
first argument of root thread. This continuation will be provided by RunScheduler. Note that
this is a data-parallel operation so all processors involved must call it. (All arguments except mode
are ignored on processors where Self 6= 0). Work-stealing is enabled if mode is CILK AUTO
or CILK AUTO KEEP, and the heap is kept around upon return if mode is CILK AUTO KEEP or
CILK MANUAL KEEP.

requires: The value of mode must belong to the enumeration type

enum run_mode { CILK_AUTO, CILK_MANUAL, CILK_AUTO_KEEP, CILK_MANUAL_KEEP };

All processors must call RunScheduler() at about the same time.

The value of cilk active size must be valid.

issue: I need to define Self.

issue: Bradley believes that the specification of this routine needs to be rewritten. For example, what
do we mean by “about the same time”?

GLOBAL void
CilkInit(void);

meaning: Initializes the communication library that Cilk uses.

GLOBAL void
CilkExit(int exitcode);

meaning: Ends the Cilk program. If Exitcode is zero, this is a normal exit and the processor that calls
it will wait for the others to finish. If exitcode is non-zero, it is an error exit. (all processors
will exit if any processor calls CilkExitwith a non-zero argument.) This should be called after
RunScheduler returns.

extern int cilk_active_size;

meaning: The cilk active size specifies how many processors the user actually wants to use. The
user can set this variable before calling RunScheduler(). The value must be a nonnegative
value no greater than the number of actual processors. A zero value is used to specify as
many processors as are actually available. A positive number specifies a particular number of
processors to use.

The user may want to specify just a few processors in order to obtain data about the performance
of his or her application as the number of processors is varied.

54

default: This variable defaults to zero.

extern void (*cilk_user_function)();
extern int n_threads_per_user_function;

meaning: The function cilk user function will be called periodically on each node by the sched-
uler so that the user may perform some periodic tasks. This function will be called more often if
the value of n threads per user function is smaller. Both of these global variables must be
set before the call to RunScheduler. They may have different values on different processors.
Use NULL for the cilk user function in order to disable this feature.

default: cilk user function defaults to NULL and n threads per user function defaults to20.

requires: These variables must not be modified by the user while the scheduler is running.

extern int migration_dest_node;

meaning: This variable holds the processor number of the destination processor for a migration thread.
It is only valid inside migration handlers.

issue: This is used in the chess code for aborts. Is it useful as a general mechanism? Should we expose
it?

55

5.5 Runtime Specification Change Log

$Log: runtime-spec.tex,v $
% Revision 1.12 1995/01/03 21:17:01 randall
% changed color constants.
%
% Revision 1.11 1994/11/06 02:19:43 randall
% Added AccumulateDoubleWord, SendDoubleArgument and AccumulateDouble to doc.
%
% Revision 1.10 1994/11/03 00:35:46 randall
% Added SendFloatArgument and AccumulateFloat to manual.
%
% Revision 1.9 1994/09/06 17:40:28 bradley
% Many small changes from my things-to-do list.
%
% Revision 1.8 1994/09/02 19:22:31 randall
% StrataInit -> CilkInit, same for exit.
%
% Revision 1.7 1994/09/02 01:31:43 zhou
% Changed tpp to cilkpp everywhere
%
% Revision 1.6 1994/08/26 19:16:30 bradley
% Most of the join-counter specification now talks about counting bytes.
%
% Revision 1.5 1994/08/26 18:01:46 bradley
% Add change log sections.
%

56

Bibliography

[BB94] Eric A. Brewer and Robert D. Blumofe. Strata: A multi-layer communica-
tions library. Technical report, MIT Laboratory for Computer Science, January
1994. To appear. Available from ftp.lcs.mit.edu via anonymous ftp, in directory
/pub/supertech/strata.

[BL93] Robert D. Blumofe and Charles E. Leiserson. Space-efficient scheduling of multithreaded
computations. In Proceedings of the Twenty-Fifth Annual ACM Symposium on the Theory
of Computing (STOC ’93), pages 362–371, San Diego, California, May 1993.

[Blu92] Robert D. Blumofe. Managing storage for multithreaded computations. Master’s thesis,
Massachusetts Institute of Technology, Department of Electrical Engineering and Com-
puter Science, September 1992. Also available as MIT Laboratory for Computer Science
Technical Report MIT/LCS/TR-552.

[BP94] Robert D. Blumofe and David S. Park. Scheduling large-scale parallel computations
on networks of workstations. In Proceedings of the Third International Symposium on
High-Performance Distributed Computing (HPDC ’94), pages 96–105, San Francisco,
California, August 1994.

[HZJ94a] Michael Halbherr, Yuli Zhou, and Chris F. Joerg. MIMD-style parallel programming based
on continuation-passing threads. Computation Structures Group Memo 355, Massachusetts
Institute of Technology, Laboratory for Computer Science, 545 Technology Square, Cam-
bridge, MA 02139, April 1994. A shorter version will appear in Proc. of 2nd Int. Workshop
on Massive Parallelism: Hardware, Software and Applications. Capri, Italy, Oct. 1994.

[HZJ94b] Michael Halbherr, Yuli Zhou, and Chris F. Joerg. MIMD-style parallel programming based
on continuation-passing threads. In Proc. of 2nd Int. Workshop on Massive Parallelism:
Hardware, Software and Applications., Capri, Italy, October 1994. To appear.

[Kus94] Bradley C. Kuszmaul. Synchronized MIMD Computing. PhD thesis, Massachusetts In-
stitute of Technology, Department of Electrical Engineering and Computer Science, May
1994.

[LAD+92] Charles E. Leiserson, Zahi S. Abuhamdeh, David C. Douglas, Carl R. Feynman, Ma-
hesh N. Ganmukhi, Jeffrey V. Hill, W. Daniel Hillis, Bradley C. Kuszmaul, Margaret A. St.
Pierre, David S. Wells, Monica C. Wong, Shaw-Wen Yang, and Robert Zak. The network
architecture of the Connection Machine CM-5. In Symposium on Parallel Algorithms and
Architectures (SPAA ’92), pages 272–285, San Diego, California, June 1992.

57

[PJGT] Vijay S. Pande, Chris Joerg, Alexander Yu. Grosberg, and Toyoichi Tanaka. Enumeration
of the hamiltonian walks on a cubic sublattice. To appear in Journal of Physcs A.

58

Appendix A

Cilk Implementor’s Guide

CilkTM 1.2 is the first Cilk release written to facilitate porting to different kinds of sequential and
parallel machines. The code is accepted by any standard ANSI C compiler (we recommend gcc). In
order to port Cilk easily, there are four steps you must accomplish; each step is an incremental change
over the previous ones. The first step is to make Cilk run on one processor; the second one is to build a
work-stealing version of Cilk; in the third step PostClosureNode is implemented, and finally you’ll
add time measurements in the last step. The porting process is mainly a clever definition of macros, as
you shall see.

A.1 First step: get a sequential version of Cilk running

Your first task is to get Cilk running on your architecture without any of the work stealing and parallel
code. This is very simple, since Cilk is written in ANSI C and requires no particular support from the
underlying operating system or compiler: however some gcc extensions are supported in order to have
better performances. First, decide a name for your architecture (e.g. CM5, or PARAGON) and edit the
file rts/conf.h. This file contains some options you are expected to define in this first step.

Create a block of definitions just before the section marked Statistics & Debugging similar
to the prototype included in the file. There are some options you might want in order to get a different
behavior or better performance:

IS PARALLEL Leave this option off for the moment. Enabling this option causes work stealing code
to be compiled, and this requires your intervention. Wait until step 2 to turn this on.

HAVE LONG LONG Turn this on if your compiler supports very long integers (64 bits); also define
LONG_LONG to be the C type of these integers (probably long long). gcc supports this type.

CILK PRINTF This is a printf-like function Cilk uses for its diagnostic messages, statistics and such.
#define CILK_PRINTF printf is probably good if your printf doesn’t clobber the network
with messages. Otherwise you should write your own function.

CONTINUATION HACK Turn this option on if you have the LONG_LONG type and want to pack contin-
uations to fit into this type. Otherwise, leave this option off. This option will allow the compiler
to register-allocate continuations.

59

HAVE INLINE Turn this option on if your compiler supports inline functions and you want to use
them. There is a speedup for using this option, at expense of increased code size.

CILK FAST RNG Cilk uses an internal random number generator when IS_PARALLEL==1. There are
two versions of this generator: a fast version and a portable one. The former assumes you
have 64 bits unsigned long long, while the latter is more portable (but still assumes 32 bit
unsigned long).

CILK POST NODE Leave this off until step 3.

CILK ARCH H Define this to be the name of the architecture-specific header file.

There are some more options you can define. It’s advisable to have CILK_SELFTEST==1 (this en-
ables lots of consistency checks, valuable for debugging), and CILK_TRACE equal to some small integer
(1 or 2); incrementing it gives more and more diagnostic messages, providing clues for debugging.
Leave the timing-related options disabled for now.

Now you must create two files, rts/arch-your_arch.c and rts/arch-your_arch.h. In the
.h file put something like

#define CILK_LONG_ALIGNMENT 4
#define CILK_SHORT_ALIGNMENT 2
#define CILK_LONG_LONG_ALIGNMENT 8
#define CILK_FLOAT_ALIGNMENT 4
#define CILK_DOUBLE_ALIGNMENT 8

The goal of these macros is to provide means of allocating variables without violating architectural
requirements for alignment of variables. The definitions given should be good for most processors in
use today. If you haven’t got LONG_LONG, you don’t need to define the corresponding alignment.

Also insert something like

#define CRITICAL_SECTION_BEGIN()
#define CRITICAL_SECTION_END()

These macros will not be used until later stages, but should be defined now in order to avoid compilation
errors. You can start by making a copy of rts/arch-sunos4.h to have all these definitions in the
right place.

Take the time to define the macro Cilk_FlushStdout(): this should make sure that all diagnostic
messages are actually output, and internal buffers of CILK_PRINTF are emptied. Probably

#define Cilk_FlushStdout() fflush(stdout)

would suffice.
Then you must edit rts/arch-your_arch.c to be something like

#include <cilk.h>

int Self;

void Cilk_ArchSpecificInit()

60

{
Cilk_PartitionSize = /* put here a function to retrieve the

* number of processors Cilk is running on */
Self = /* put here a function to retrieve the processor number of

* the local processor. */
}

void Cilk_ArchSpecificExit(int status)
{

/* put here architecture-dependent exit code */
exit(status);

}

Again, rts/arch-sunos4.c is a good example to start with. If your machine has only one
processor, just let Cilk_PartitionSize=1 and Self=0.

Now edit the Makefile to provide suitable flags to the C compiler. These flags should be added
as YOUR_ARCHITECTUREFLAGS after the UNIXFLAGS definition. You should be sure to define your
architecture’s flag to be 1 (i.e., include the flag -DYOUR_ARCHITECTURE=1 in your flag list). Also, you
must add libraries for your machine to the libraries list. A good way to do this is to replace cm5with
your architecture in the libraries rule and in the following three libCilk rules. This replacement
will allow you to build libraries for your architecture as well as a standard Unix architecture. You must
also change some of the rules in the building executables and building binaries to reflect
your architecture’s linking and compilation rules. Be sure to use YOUR_ARCHITECTUREFLAGS in the
building binaries section. Finally, you should also make the same changes to the Makefile in the
examples directory.

Now compile everything and go to the examples directory. You should be able to compile and
run all files. Try fib 0 25, whose expected result is 75025, and queens 0 8 (92 is the correct result).
If you have gcc you should be able to compile and run rts/testall.p.

A.2 Second step: get a work-stealing scheduler running

If you machine is sequential, go to step 4. Otherwise enjoy: unlike the first stage, this stage requires
some ingenuity and creativity . You will need to write code yourself, rather than simply cutting and
pasting existing code. You’ll demonstrate your ability to write compact, elegant and efficient code for
the Cilk Runtime System!

First of all, turn on the option IS_PARALLEL in conf.h. Having done that, everything that can go
wrong will go wrong, so you’d better increase the tracing level a bit.

Implement Remote Procedure Calls. Cilk is built over an abstraction of “Remote Procedure Calls”.
If the Cilk’s Runtime System needs to communicate something to another processor, it invokes a
C function (called a handler in Cilk’s terminology) with the appropriate arguments. You’ll need to
figure out how to accomplish this effect on your system. We will provide some examples later; in the
meantime please be patient until you learn more about handlers used by Cilk.

Cilk requires you to specify how to implement four types of handlers:

61

DECLARE_SENDARG_HANDLER(Cilk_SendWordArgumentHandler, long)
{

SENDARG_HANDLER_BEGIN(long);
*((long *) ((char *) cp + index)) = value;

cp->join -= sizeof(long);
assert(cp->join >= 0);

if (!cp->join)
PostClosure_nomsg(cp);

SENDARG_HANDLER_END();
}

Figure A.1: An example of handler from the Cilk code

SENDARG handlers : used to communicate arguments to a remote closure.

ACCUM handlers : used to accumulate arguments in a remote closure. The various associative opera-
tions you can use to accumulate have been described earlier in this manual.

SIGNAL handlers : used to implement theSignaloperation. These are degenerate SENDARGhandlers,
because they don’t carry any value. Currently, there is only one handler of this type.

GENERIC handlers : used for various purposes. These handlers are functions of one long argument.

Moreover, the first two types have also an extended variant, since we imagine that very long C
types, in our case double and long long, may require different treatment on some machines.

So, how do handlers work? Let’s look at a specific example from the code, as in Figure A.1.
A handler of type SENDARG needs three arguments: a value whose type is specified by the user, a
variable cp of type ClosureT * and an integer index. Moreover the handler is invoked by the macro
expansion

INVOKE_SENDARG_HANDLER(pn, Cilk_SendWordArgumentHandler, long,
value, cp, index);

Your goal is to implement four macros for each type of handler, plus one macro or function
Cilk_POLL(), which cooperate to make things work. The basic idea is that macros of type DECLARE
provide the function prototype of the handler; BEGIN macros declare additional arguments and read
them from the network; END macros reverse any action done by the BEGIN macros; and finally
INVOKE takes care of executing the handler on a remote processor passing the appropriate parameters.
Cilk_POLL has a special meaning: if RPCs are implemented without using interrupts, this function
must check for incoming requests and satisfy them. Otherwise if an incoming request suspends the
program, Cilk_POLL is a no-operation. As you may guess, Cilk_POLL is called at appropriate points
of the Cilk Runtime System.

For clarity, let’s now look at some specific examples. Let’s suppose your machine has synchronous
message passing, i.e. you have three primitives send, receive and test to send, receive and test the

62

Handler’s type Arguments Remarks
SENDARG type value; type is an argument

ClosureT *cp; to DECLARE and
int index; INVOKE macros.

SENDARG_X type value; type is double
ClosureT *cp; or LONG_LONG (if
int index; defined)

ACCUM deltatype delta; deltatype and optype
optype op; are arguments to
ClosureT *cp; DECLARE and
int index; INVOKE macros.

ACCUM_X deltatype delta; deltatype is double
optype op; or LONG_LONG (if
ClosureT *cp; defined)
int index;

SIGNAL ClosureT *cp;
GENERIC int arg; arg is a parameter

of the DECLARE and
BEGIN macros

Table A.1: Arguments to remote handlers, by handler’s type

presence of messages. An example of implementation for this case is shown in Figure A.2. We use
a protocol where a handler invocation packs the handler arguments in a suitable C structure, where
the first field is common to all such structures and is a pointer to the handler. Note that since this
implementation can send any C type, the extended handlers can be defined in terms of the basic ones.

An interesting variation on this theme is the Intel Paragon, which has the concept of a message
type. This is a 32-bit field which can be used to keep the pointer to the handler.

Now suppose that you have asynchronous message passing, i.e. when a message arrives it interrupts
the program and an appropriate user-defined function is called. The previous scheme still is a valid
implementation, except for the following:� Cilk_POLL() is now void, and the old Cilk_POLL becomes the user-defined function called at

interrupt time.� You should define the macros CRITICAL_SECTION_BEGIN() andCRITICAL_SECTION_END()
to respectively disable reception of further messages and restore the state preceding the last
CRITICAL_SECTION_BEGIN(). Warning: the exact placement of these routines has not been
tested because we have currently tested Cilk only on polling architectures.

If your machine has remote procedure calls, you can use them. The existing implementation for
the CM5 uses RPCs, so you might want to take a look at the existing code.

To conclude the section about handlers, Tables A.1 and A.2 summarize all handler-related macros
you should implement.

63

/* this must be added to arch-your_arch.c */

static long buf[10]; /* maximum length of a message. This buffer should be
* larger if you want to use it also for work
* stealing, see below.
*/

void Cilk_POLL(void)
{

while (test()) {
/* receive the message into buf */
receive(buf);

/* can’t understand what’s going on? This is equivalent
* to:
*
* void (*fp)(long *) = (appropriate cast) buf[0];
* (*fp)(buf);
*/
(*(void (*)(long *))buf[0])(buf);

}
} /* that’s all the dispatcher */

/* the rest is part of arch-your_arch.h */
extern void Cilk_POLL(void);

#define DECLARE_SENDARG_HANDLER(name, type) \
void name(long *lp)

#define SENDARG_HANDLER_BEGIN(type) \
struct { long dummy; type value; ClosureT *cp; int index; } *sp = lp; \
type value = sp->value; \
ClosureT *cp = sp->cp; \
int index = sp->index;

#define SENDARG_HANDLER_END()

#define INVOKE_SENDARG_HANDLER(pn, whichhandler, type, value, cp, index) \
{

struct { void (*fp)(long *); type a; ClosureT *b; int c; } _s; \
_s.fp = whichhandler; \
_s.a = value; \
_s.b = cp; \
_s.c = index; \
send(pn, &_s, sizeof(_s)); \

}

Figure A.2: An example of SENDARG macros for a synchronous-messages architecture
. 64

#define DECLARE_SENDARG_HANDLER(name, type)
#define INVOKE_SENDARG_HANDLER(pn, whichhandler, type, value, cp, index)
#define SENDARG_HANDLER_BEGIN(type)
#define SENDARG_HANDLER_END()

#define DECLARE_SENDARG_XHANDLER(name, type)
#define INVOKE_SENDARG_XHANDLER(pn, whichhandler, type, value, cp, index)
#define SENDARG_XHANDLER_BEGIN(type)
#define SENDARG_XHANDLER_END()

#define DECLARE_ACCUM_HANDLER(name, deltatype, optype)
#define INVOKE_ACCUM_HANDLER(pn, whichhandler, op, type, delta, cp, index)
#define ACCUM_HANDLER_BEGIN(deltatype, optype)
#define ACCUM_HANDLER_END()

#define DECLARE_ACCUM_XHANDLER(name, deltatype, optype)
#define INVOKE_ACCUM_XHANDLER(pn, whichhandler, op, type, delta, cp, index)
#define ACCUM_XHANDLER_BEGIN(deltatype, optype)
#define ACCUM_XHANDLER_END()

#define DECLARE_SIGNAL_HANDLER(name)
#define INVOKE_SIGNAL_HANDLER(pn, whichhandler, cp)
#define SIGNAL_HANDLER_BEGIN()
#define SIGNAL_HANDLER_END()

#define GENERIC_HANDLER(name, arg)
#define GENERIC_HANDLER_BEGIN()
#define GENERIC_HANDLER_END()
#define INVOKE_GENERIC_HANDLER(pn, whichhandler, arg)

Table A.2: List of handler-related macros

65

Now provide barriers. In Cilk’s jargon, a barrier is a synchronization point: the goal of a barrier
is to make sure that a processor can cross the barrier only when all processors have reached it. You
must define a function (or macro) void Cilk_Barrier(void) to do exactly this job: this function is
probably already implemented in one of you system libraries. No special properties are required from
a barrier: it doesn’t need to poll for incoming messages or allow interrupts to occur (it can do these
things if it wishes). We’d like to hear from you if you find any difficulty in implementing barriers (i.e.
if your system doesn’t already provide such functionality): we can design a general mechanism for
making barriers using RPCs if they are not easily implementable.

We recognize that writing all the required macros is rather boring and error-prone. There is a
special file rts/test-handlers.c which tests all handlers and barriers. It’s wise to run it at this
point and look at the output. If anything goes wrong it’s better to increase the tracing level to 1 and
look at the more detailed output.

Now implement work-stealing. You need to implement the work-stealing protocol, which is very
simple: when there is no ready closure on some processor (the thief), the scheduler calls steal(),
which in turn sets the global variable steal_request_pending to 1, and invokes the handler
steal_request_handler on some random processor (the victim). steal_request_handler
calls get_stealable_closure() which returns cp, a pointer to a closure. There are now two
cases: if cp is NULL, there is no stealable closure, and the handler steal_failure_handler must
be invoked in the thief processor. Otherwise the closure pointed to by cp is to be sent to the thief,
invoking steal_success_handler.

The Figures A.3 and A.4 show a sketch of an implementation; for your convenience the same code
is in the file rts/cilk.c, which you should modify at this point. Some random comments to the
proposed code:� HANDLER is not a macro or keyword. It’s simply a clue that you must construct a handler

accepting some arguments in the same way you that defined the macros above.� Cilk does not require (but allows) the complete closure to be sent over the network : the first
CLOSURE_NONXMITTED_WORDSwords aren’t transmitted, and the first transmitted field is given
by the macro CLOSURE_FIRST_XMITTED_FIELD.� If you build a single message containing the closure, make sure you allocate a large buffer on
the receiving side (MAX_CLOSURE_SIZE longs is large enough). In this case you’ll probably
gain in performance by sending the whole closure instead of copying parts of it into a buffer and
sending the parts separately.

Now try the same examples of step 1 and observe the speedup. Remark: tree.p isn’t going to
work until the next step is complete.

A.3 Step three: implement PostClosureNode

In this step you are going to implement the protocol which allows the user to specify which processor
a given thread is to be run on. There are actually two different protocols, depending on whether the
thread to be remotely posted is a ordinary thread or an high-priority one (called handler thread in the

66

static void HANDLER(steal_failure_handler)
{

steal_request_pending = 0;
}

static void HANDLER(steal_success_handler, int size)
{

ClosureT *cp, *incoming_cp;

cp = (ClosureT *) alloc_block(size + CLOSURE_NONXMITTED_WORDS);

/*
* put here code to let incoming_cp point to the incoming closure;
* maybe let incoming_cp point to a static buffer and read
* the data from the network into that buffer, you figure it out.
*/

/* copy the incoming closure into Cilk buffers */
memcpy((char *) &CLOSURE_FIRST_XMITTED_FIELD(*cp),

(char *) &CLOSURE_FIRST_XMITTED_FIELD(*(ClosureT *) incoming_cp),
size * sizeof(long));

/* some bookkeeping, don’t forget it */
steal_request_pending = 0;
Cilk_AdoptClosure(cp);
PostClosureLocal(cp);
WHEN_CILK_STATS(Cilk_num_migrated_threads++);

}

Figure A.3: Skeleton of work-stealing code, part 1/2

67

static void HANDLER(steal_request_handler, int pn)
{

ClosureT *cp = get_stealable_closure(pn);
int size;

if (cp == NULL) {
/* put code here to invoke steal_failure_handler on pn */

} else {
size = cp->size - CLOSURE_NONXMITTED_WORDS;
/*
* put code here to invoke steal_success_handler on pn,
* in such a way that it can access the variable ‘size’ and
* read ’size’ longs starting from the address
* CLOSURE_FIRST_XMITTED_FIELD(*cp)
*/
/* some bookkeeping, don’t forget it */
FreeClosure(cp);

}
}

static void steal(void)
{

int victim;

if (steal_request_pending)
return;

/* Chose a random target other than Self */
victim = Cilk_Random() % cilk_active_size;
if (victim == Self)

return;

steal_request_pending = 1;

/*
* put here code to invoke steal_request_handler on victim,
* passing Self as argument
*/

}

Figure A.4: Skeleton of work-stealing code, part 2/2

68

current release1). The two protocols are very similar, since only the final action is different; hence
we’ll describe only the protocol for ordinary threads, remarking the differences when needed.

The protocol begins with the user’s program invoking the function PostClosureNode() (resp.
PostClosureHandler() for the second protocol). This function in turn builds an appropriate
packet containing the closure and sends it to destination processor, invoking post_rqsthndlr (resp.
posthandler_rqsthndlr). post_rqsthndlr adopts the closure and posts it locally (resp. en-
queues it in the high-priority queue).

As you can see, the protocol is very simple, but there are machines (such as the CM5) on which it
wouldn’t work, or wouldn’t be very efficient, and a more elaborate protocol is needed. The problem
is that the source processor is sending to the destination a large, unexpected packet: this packet could
fill buffers or deadlock the network, resulting in an error. Even if this protocol works, it might be more
efficient, if the architecture supports it, to deliver the closure directly to its final destination, instead of
filling up some intermediate buffer and copying it. Therefore we’ll describe the protocol used by the
CM5, in case you need to implement something similar on your architecture.

Protocol for the CM5. PostClosureNode() invokes post_rqsthndlr on the destination pro-
cessor, without sending it the actual closure, but communicating I) a pointer to it, cp (note that this
pointer is meaningless on the destination processor); II) the size of the closure; III) the source proces-
sor identifier. post_rqsthndlr (on the destination processor) allocates space to hold the incoming
closure, and tells the communication library to store incoming data in that space. Then it invokes
post_reply_handler on the source processor, giving it back cp. Now, contrary to what you might
expect, post_reply_handlerdoes not send the closure pointed to by cp immediately to the destina-
tion processor. Rather, it posts a thread on the local high-priority queue. This thread (post_thread)
will be run later by the scheduler and will send the closure to destination. At the end of the transmis-
sion, post_final_handler is invoked on the destination processor to adopt the closure and post it.
The reason of the delayed transmission of the closure is very CM5-specific: since the CM5 does not
guarantee that the C stack can grow enough to allow all messages to be received from the network. On
your machine you might want to send the closure immediately.

Figures A.5 and A.6 contain a skeleton of the code you must write to implement the simpler
protocol.

testall is the right program to run now, if you have LONG_LONG (sorry for this, a more portable
testall.p will be released in the next version). And again, all examples should run fine: try
tree 0 14, and expect 214 = 16384 leaves.

A.4 Step four: add time statistics

This step isn’t really needed for full functionality of Cilk; however having these kinds of statistics is a
good thing anyway, and you should dedicate some time to make them work, once and forever.

Cilk supports two kind of time measurements: a coarse-grained timing of the total execution and a
fine-grained measurement of the execution time of each thread, which is used to determine the critical
path and the work done by every processor.1This name is unfortunate, because an high-level user-visible feature has the same name as a low-level implementing
detail. We’ll probably remove the naming conflict in a future release.

69

void PostClosureNode(ClosureT *cp, int pn)
{

assert(pn >= 0);
assert(pn < cilk_active_size);

CRITICAL_SECTION_BEGIN();
if (pn == Self)

PostClosureLocal(cp);
else {

cp->info = pn;
/*
* put here the code to send the closure to pn
* and invoke post_rqsthdlr(cp->size). Don’t forget to increase
* the size of the buffer used by Cilk_POLL() if you are
* using that routine to receive PostClosure messages.
*/

}
CRITICAL_SECTION_END();

}

void PostClosureHandler(ClosureT *cp, int pn)
{

assert(pn >= 0);
assert(pn < cilk_active_size);

CRITICAL_SECTION_BEGIN();

if (pn == Self)
Cilk_enqueue_handler(cp);

else {
cp->info = pn;
/*
* put here the code to send the closure to pn
* and invoke post_rqsthdlr(cp->size). Don’t forget to increase
* the size of the buffer used by Cilk_POLL() if you are
* using that routine to receive PostClosure messages.
*/

}
CRITICAL_SECTION_END();

}

Figure A.5: Skeleton of PostClosureNode and PostClosureHandler

70

static void HANDLER post_rqsthndlr(int size)
{

ClosureT *newcp;

newcp = (ClosureT *) Cilk_alloc_block(size);
/*
* put here the code to read the incoming closure into
* newcp.
*/
Cilk_AdoptClosure(newcp);
PostClosureLocal(newcp);

}

static void HANDLER posthandler_rqsthndlr(int size)
{

ClosureT *newcp;

newcp = (ClosureT *) Cilk_alloc_block(size);
/*
* put here the code to read the incoming closure into
* newcp.
*/
Cilk_AdoptClosure(newcp);
enqueue_handler(newcp);

}

Figure A.6: Skeleton of handlers for PostClosureNode and PostClosureHandler

71

Total execution time. In order to have a measurement of the execution time, you are required to
edit rts/conf.h, enable the option CILK_ELAPSED_TIME and define two functions or macros in the
architecture-specific files:

void Cilk TimerStart(void) This function should start a machine-dependent timer (or record
the current time somewhere).

double Cilk TimerStop(void) This function returns the time (in seconds) elapsed since the last
call to Cilk_TimerStart().

Critical-path and work. Make sure that you have a very accurate clock on your machine (with a
resolution of one �s or more) and make sure that reading it won’t cost too much time (this operation is
going to be executed millions of times). If the only way to read the clock is to issue a system call you
are out of luck.

If your system satisfies these requirements,enable the optionCILK_TIMING in the filerts/conf.h.
Establish a time unit (for example a �s, or a CPU cycle) that is suited to your architecture. Cilk can
handle whatever unit you choose, since it represents time as multiples of this unit, called a cycle in
Cilk’s jargon. Cilk’s time is stored into a unsigned long: make sure that the execution time of a
thread doesn’t overflow the counter (100ms is a reasonable maximum time for a thread).

Now you you must provide the following macros or functions:

unsigned long Cilk CycleCount(void): This function returns the current time, in cycles.

unsigned long Cilk ElapsedCycles(unsigned long t): This function returns the number of
cycles elapsed since time t.

unsigned long Cilk PackCycles(unsigned long n): This function is used to collect the crit-
ical path timings, and its goal is twofold: I) to change the time scale so that the critical path time
can still be held by an unsigned long without overflow (in practice it performs a division of
n by some power of 2), and II) to adjust n to prevent errors. There is a problem on the CM5
(and possibly in other architectures), in that the system clock measures real-time; however the
machine is timeshared, and a thread can be interrupted by the operating system. In this case the
cycle counter measurse the execution time for a thread plus the time quantum in which another
process has been executed. We therefore adopt the heuristic that a thread is considered broken if
that thread ran for more than 50ms, and if a thread is broken, we give it a zero execution time.

unsigned long Cilk AdjustCycles(unsigned long n): This macro must adjust n to prevent
errors, but not change the time scale.

double Cilk UnpackCycles(unsigned long n): Performs the opposite action, i.e. converts
from packed cycles to cycles. The result is a double, since it could overflow a long.

Cilk CyclesToSeconds(n): This macro (it should be a macro for technical reasons, since the type
of n varies) converts from cycles into seconds. In practice it divides n by the number of cycles
per second. The result must be cast to double.

72

A good testing program for this step is testhandlers.c: if you compile the program with
CILK_TIMING=1 it will invoke all the handlers and report the round-trip time measurements for all of
them. As a comparison, the round-trip for sending a long value and get the answer is � 35�s on the
CM-5.

73

Appendix B

Copyright and Disclaimers

Permission to use, copy and modify this program for research purposes without fee is hereby granted,
provided that this copyright and permission notice appear on all copies and supporting documentation,
and the name of M.I.T. not be used in advertising or publicity pertaining to distribution of the program
without specific prior permission. M.I.T. makes no representations about the suitability of this software
for any purpose. It is provided “as is” without express or implied warranty.

74

Appendix C

Release Notes

C.1 Release 1.0 Beta2

The first public release.

C.2 Release 1.1 Beta1

Syntax changes over version 1.0 beta2. The statement form that spawns a thread is changed from

spawn (foo, args ...) stmt

to

spawn foo (args ...) stmt

The same changes apply to all cousins of spawn, i.e., spawn next, call, call next, tail call,
tail call next, make closure and make next closure. (See the changed example programs.)

C.3 Release 1.2 Beta 1� Fixed a bug where closures created with a zero-size accumulator were not being correctly posted.� Added DoubleWord accumulators:

AccumulateDoubleWord (cont k, AccumDoubleWordOp op, long long delta);
accum_doubleword_add (doubleword value, doubleword *accum);
accum_doubleword_mul (doubleword value, doubleword *accum);
accum_doubleword_and (doubleword value, doubleword *accum);
accum_doubleword_or (doubleword value, doubleword *accum);
accum_doubleword_max (doubleword value, doubleword *accum);
accum_doubleword_min (doubleword value, doubleword *accum);� Added float and double types to primitive communication operations. In particular, the
following routines were added:

75

SendFloatArgument (cont k, float value);
SendDoubleArgument (cont k, double value);
AccumulateFloat (cont k, AccumFloatOp op, float delta);
AccumulateDouble (cont k, AccumDoubleOp op, double delta);
accum_float_add (float value, float *accum);
accum_float_mul (float value, float *accum);
accum_float_max (float value, float *accum);
accum_float_min (float value, float *accum);
accum_double_add (double value, double *accum);
accum_double_mul (double value, double *accum);
accum_double_max (double value, double *accum);
accum_double_min (double value, double *accum);

76

Appendix D

The Cilk Thread Preprocessor

NAME
cilkpp — The CilkTM 1.2 language preprocessor

SYNOPSIS
cilkpp [-hvN] [-o outfile] infile

DESCRIPTION
cilkpp is the thread preprocessor for the CilkTM 1.2 language as defined in CilkTM 1.2 Language
Reference Manual. It reads from an input Cilk program file, which by convention has the
extension .p, and generates ordinary C code in the output file. The output file is named c.out
unless explicitly specified. The generated C file must be compiled using gcc and linked with the
Cilk runtime library.

The following options are available:

-v If the -v option is given, cilkpp just display a message showing the current version number
and creation date.

-h If the -h option is given, cilkpp display a brief help message.

-N The -N option instructs cilkpp to suppress the generation of cpp #line directives. cilkpp
inserts these directives into the generated C code by default, which enables C compiler
diagnostic messages to be related to the Cilk source program.

With the -N option, line breaks are inserted into the generated C code so that it is human
readable after being set by the UNIX indent program.

-o outfile The -o option instructs cilkpp to write the generated C code in outfile

SEE ALSO
Chapter 4 of the CilkTM 1.2 (Version �1) Reference Manual.
MIMD Style Parallel Programming with Continuation-Passing Threads by M. Halbherr, Y. Zhou
and C. Joerg.

BUGS
gcc is required to compile the C code output by cilkpp, as some of it are gcc extensions.

77

The line numbers are accurate only for one terminal symbol within each production in the
grammar, therefore line numbers for some symbols such as ’)’, ’g’ or ’else’ may be slightly
off.

Since different pieces of the C code generated by cilkpp may be derived from the same source,
some errors in the source may get reported more than once from the C compiler.

78

Appendix E

Installation Instructions

Currently, these installation procedures only apply to the CM5. Hopefully, they will not need much
modification for installing on other systems.

E.1 How to obtain Cilk

Cilk can be obtained by ftping the file Cilk1.2.tar.Z from
theory.lcs.mit.edu:/pub/ftp/pub/cilk/Cilk1.2.tar.Z
Cilk should be installed on the compile-server for the CM5.

E.2 How to Install Cilk

After copying Cilk1.2.tar.Z into a directory on your system, do the following things:� type ‘uncompress Cilk1.2.tar.Z’. This will create a file named Cilk1.2.tar.� type ‘tar -xf Cilk1.2.tar’. This will create a directory named Cilk1.2/ and put all of
the Cilk software into this directory. You may want to remove the Cilk1.2.tar file after this
is done.� type ‘cd Cilk1.2’ followed by ‘source INSTALL’. This will install all of the Cilk software
including the pre-processor, the run-time library, and the Strata communication library. Note
that there are a few unaviodable compiler warnings when building Cilk, and these are listed in
the README in the top directory.

Note: In order to compile the pre-processor, you need to have a tool called flex, the GNU version of
the lex utility. Not all systems will have this software installed. The current distribution of flex can be
found in any one of the GNU archive sites, for example prep.ai.mit.edu (in directory pub/gnu).
You will also need bison, the GNU version of Yacc, as it is needed in building flex.

If you cannot get flex, an executable for the pre-processor for a sparc is provided. If you want to
use this executable instead of building the pre-processor cilkpp, just comment out the three lines in
the INSTALL script before running it:

79

pushd cilkpp
make cilkpp
popd

E.3 How to run the regression tests

E.3.1 Strata regression test

Move to the Cilk1.2/strata directory and type ‘jrun do-test’. This should run the strata
regression test and tell you something about the raw performance of the CM5 you are using.

E.3.2 Cilk run-time system regression test

Move to the Cilk1.2/rts directory and type ‘make testall cm5’ to build the regression test
program (this may take several minutes). Then edit the file job and uncomment the call to the
regression test program (the line that says ‘testall cm5 0’). Finally, type ‘jrun job’ to run the
regression test. The regression test program will print ‘OK : ...’ for correctly functioning primitives
and print ‘BAD: ...’ for malfunctioning primitives. It may also hang if a primitive is seriously broken.
The program may also print ‘???: ...’ if it is unable to determine whether a particular primitive is
working or not.

E.3.3 Running the Cilk examples

Move to the Cilk1.2/examplesdirectory and type ‘make fib cm5 st’. This will make an executable
for fib for the CM5 with statistics gathering enabled. Then edit the file job and uncomment the call
to the fib cm5 st program (the line that says ‘fib cm5 st 0 30’). Finally, type ‘jrun job’ to run the
fib example. For the other examples (queens, tree, adq), simply repeat the above procedure with
their name replacing fib.

E.4 Mailing Lists

If you use Cilk, you may wish to be on the cilk-users mailing list. To join the cilk-users mailing list,
send mail to

cilk-users-request@theory.lcs.mit.edu

To send mail directly to the cilk-users mailing list, use

cilk-users@theory.lcs.mit.edu

80

Appendix F

Reporting Bugs

Please report bugs in the Cilk system by electronic mail (email) to

bug-cilk@theory.lcs.mit.edu

Or by hardcopy to

Cilk Bugs
c/o Bradley C. Kuszmaul
NE43-228
MIT Laboratory for Computer Science
545 Technology Square
Cambridge, MA 02139

81

Appendix G

Development Methodology

This appendix is written for the Cilk development team.
If you find a bug, and fix it, then make a regression test that demonstrates� the absence of the bug in the new code, and� the presence of the bug in old code.

82

Appendix H

Things To Do� Add sample applications to the tutorial.� Mention phish in the introduction.� Add references. (Currently the references just has a list of papers, but nothing in the text of the
manual refers to any of the papers. This was accomplished with \nocite{*}, but should have
been done the right way.

83

Appendix I

Overall Change Log

Release 1.0 � 1 had two bugs in it: The cilkpp preprocesor failed to put curly braces in certain places;
and when repeated calls to RunScheduler were made in AUTO or MAUNUAL mode, the run-time
system would occasionally allocate the same block of memory for two different purposes.

Release 1.0 beta2 seems to fix those bugs.

$Log: manual.tex,v $
% Revision 1.45 1995/02/06 15:07:12 athena
% Added the implementor’s guide.
%
% Revision 1.44 1994/11/06 02:19:39 randall
% Added AccumulateDoubleWord, SendDoubleArgument and AccumulateDouble to doc.
%
% Revision 1.43 1994/11/03 01:51:15 randall
% Updated everything to 1.2. Added changes in 1.2 to the change log.
%
% Revision 1.42 1994/10/24 23:55:50 randall
% Updated ftp location of Cilk.
%
% Revision 1.41 1994/10/14 18:35:08 randall
% ARPA contract number update.
%
% Revision 1.40 1994/10/12 20:54:01 randall
% Updated title page footnote.
%
% Revision 1.39 1994/09/28 19:14:26 randall
% changed 1.0 -> 1.1
%
% Revision 1.38 1994/09/28 18:57:40 bradley
% Fix up credits.
%
% Revision 1.37 1994/09/28 18:21:53 zhou
% Add release notes as an appendix

84

%
% Revision 1.36 1994/09/23 03:17:22 bradley
% Add halbherr to author list.
%
% Revision 1.35 1994/09/08 22:33:31 bradley
% Add information about the bugs in 1.0 beta-1.
%
% Revision 1.34 1994/09/08 19:30:52 bradley
% Edit the disclaimer.
%
% Revision 1.33 1994/09/08 19:25:21 bradley
% gratuitous change
%
% Revision 1.32 1994/09/08 19:23:25 bradley
% Add trademark protection and up-to-date legal disclaimers.
%
% Revision 1.31 1994/09/07 17:26:17 bradley
% Update author list and remove annoying cvs "Id" from titlepage.
%
% Revision 1.30 1994/09/06 17:48:55 bradley
% Add references.
%
% Revision 1.29 1994/09/06 17:40:26 bradley
% Many small changes from my things-to-do list.
%
% Revision 1.28 1994/09/06 17:19:11 bradley
% Change silk to cilk
%
% Revision 1.27 1994/09/02 19:28:30 zhou
% Add instruction on how to obtain flex.
%
% Revision 1.26 1994/09/02 19:22:27 randall
% StrataInit -> CilkInit, same for exit.
%
% Revision 1.25 1994/09/02 18:24:21 randall
% Cilk->Cilk1.0, added ref for flex location.
%
% Revision 1.24 1994/09/02 01:30:51 zhou
% Changed tpp chapter to cilkpp
%
% Revision 1.23 1994/08/31 18:08:09 randall
% Added some to local guide, put note about flex into installation instructions.
%
% Revision 1.22 1994/08/30 20:44:16 zhou
% Add tpp manpage as an appendix

85

%
% Revision 1.21 1994/08/30 18:54:19 randall
% added some installation notes.
%
% Revision 1.20 1994/08/30 18:29:12 randall
% Updated Cilk.tar.Z location(s)
%
% Revision 1.19 1994/08/30 13:47:55 bradley
% Put the mailing list names in tt font.
%
% Revision 1.18 1994/08/30 13:47:19 bradley
% Change the some filenames in the documentation.
%
% Revision 1.17 1994/08/29 21:48:13 randall
% Put serial fib ahead of threaded fib in tutorial.
% Changed some local guide stuff and how to obtain Cilk stuff.
%
% Revision 1.16 1994/08/29 21:10:16 randall
% Updated installation instructions. Added disclaimer & copyright.
%
% Revision 1.15 1994/08/29 15:18:59 zhou
% Added a section to explain tpp output.
%
% Revision 1.14 1994/08/26 18:17:06 randall
% Added table of contents. Added some installation instructions.
%
% Revision 1.13 1994/08/26 18:00:23 bradley
% added mailing list info.
%
% Revision 1.12 1994/08/26 15:41:49 bradley
% Filled in the bug information.
%
% Revision 1.11 1994/08/26 15:04:13 zhou
% Add section for data primitives
%
% Revision 1.10 1994/08/25 18:01:11 bradley
% Fixed author list, and added a few changes.
%
% Revision 1.9 1994/08/25 17:34:47 randall
% Finished some sections in tutorial, added some information to the
% local guide to tell where Cilk software is located.
%
% Revision 1.8 1994/08/25 14:55:33 randall
% Made all of the undefined \ref{}s work.
%

86

% Revision 1.7 1994/08/24 20:34:54 randall
% Made tc-tut compile into manual.
%
% Revision 1.6 1994/08/24 15:23:17 bradley
% Added a changelog to langref.tex
% changed mac.tex to defs.tex.
%
% Revision 1.5 1994/08/24 15:11:28 zhou
% added lanref + mac.
%
% Revision 1.4 1994/08/22 16:38:48 bradley
% Added local guide.
%
% Revision 1.3 1994/08/22 16:29:07 bradley
% An initial version of the manual with some stuff in it.
%
% Revision 1.2 1994/08/22 16:18:42 bradley
% Almost the first version.
%

87

