Cilk™ 1.2 (Version 31) Reference Manual'

Robert D. Blumofe Matteo Frigo Michael Halbherr Christopher F. Joerg
Bradley C. Kuszmaul CharlesE. Leiserson Phil Lisiecki
Keith H. Randall Andy Shaw Yuli Zhou

February 24, 1995

LCilk istrademark of the M assachusetts | nstitute of Technology. The Cilk project hasbeen partially supported
by ARPA contracts N00014-94-1-0985 and N00014-92-J-1310. Computer time on the CM5 was provided by
the Scout project under ARPA contract MDA972-92-3-1032.

Contents

1

Introduction _

1.1 WhatisIncludedin Cilk'M&™ 12 (Versionp1)
1.2 On-going Work and PlansfortheFuture
1.3 TheOrganizationof ThisDocument
1.4 IntroductionChangelLog

Using Cilk: A Tutorial
21 ASmpleExample
22 RunningtheExample
23 CilkiInternals
24 Why Continuation-PassingStyle oo
25 MoreAdvanced Featureso
251 CdlsandTalCalso
252 AccumulatorsandSignals Lo
253 ExplicitPostingof Threads
254 ArraysasClosure Argumentso
255 Packing/Unpacking Closuresfor Migration
25.6 SendArgumentvariantso
25.7 Globa DataStructureso
2.6 Tutoriad ChangelLog

Local Guide

Cilk Language Reference Manual

41 BasicConCepts e
411 ClosUres e e
412 Continuations L
4.1.3 Thread Schedulingand Work Stealing

4.2 Program SIrUCture e

4.3 Keywords, Constantsand Operators

4.4 Thread Definitionand Declaration
441 Typesof Thread Arguments,
442 Body of Thread Definitions

45 ThreadCreation e
451 Thread Argumentso

o hs~DbdDN

~N o~

11
12
12
13
13
13
15
16
17
18
18
19

20

45.2 Annotationsfor Thread Scheduling 28

453 DirectandTallCalso 29
4.6 MigrationThreads 29
4.7 NotesonThread ArgumentPassing 31
48 BlockingThreads 31
49 RuntimeSystemlInterfaceo 31

49.1 EnteringtheScheduler Lo 31

49.2 Globa Variables 32

49.3 CommunicationPrimitiveso 32

494 DataStructurePrimitiveso Lo 33
410 C Code Generated by thePreprocessor 34

4.10.1 Closure Structure Definitions Lo 35

4.10.2 Prototypes 35

4.10.3 Function Definitions DerivedfromThreads 35
4.11 Language ReferenceManual ChangelLog 38
Specification of the Cilk Runtime System 40
51 Errata. e 40
52 Introduction L 40
53 DataTypesandConstantso 41
54 Procedures 43
55 Runtime SpecificationChangelLog 56
Cilk Implementor’s Guide 59
A.1 First step: get asequential versionof Cilkrunning 59
A.2 Second step: get awork-stealing schedulerrunning Lo L L 61
A.3 Stepthree: implement Post G osureNode 66
A4 Stepfour: addtimestatistics 69
Copyright and Disclaimers 74
Release Notes 75
C.1l Reeasel0Beta? e 75
C2 Releasel.lBetal 75
C3 Reeasel.2Betal 75
The Cilk Thread Preprocessor 77
Installation I nstructions 79
E.l HowtoobtanCilk 79
E2 Howtolnstall Cilk 79
E.3 Howtoruntheregressiontests 80

E.3.1 Strataregressiontest Lo 80

E.3.2 Cilkrun-timesystemregressiontest 80

E.3.3 RunningtheCilkexamples 80
E.4 MaillingLists e 80

F Reporting Bugs

G Development Methodology

H ThingsTo Do

Overall Change L og

81

82

83

Chapter 1

| ntroduction

This document describes Cilk™ 1.2 (Version 31), a C language extension and its supporting runtime
system intended for devel oping continuation-passing style multi-threaded programs on CM-5.

Cilk grew out of efforts in implementing a ssmple scheduling and execution model on top of
CM-5's active message layer, and in adapting it to the needs of real life application programs. Pre-
release versions of Cilk has been extensively used within the project SCOUT at MIT in developing and
porting to CM-5 several major applications, including ray-tracing, protein-folding, computer chess,
monte-carlo smulation of heat transfer and radiocity.

The current release is the consolidation of those efforts. However, much of this release should be
regarded as experimental in nature, as many issues are yet to be resolved both by further research and
experimentation. Therefore, the next release of Cilk islikely to be very different as the system grows
into maturity — the current version only marks the starting point towards that direction.

1.1 What islncluded in Cilk™ 1.2 (Version 31)

Release Cilk™ 1.2 (Version /31) includes the Cilk runtime system, the Cilk thread preprocessor
(cilkpp), a collection of example programs, and various supporting documents al combined into the
current volumn: atutorial for writing and running Cilk programs, the language reference manual, and
the specification of the runtime system interface.

The Cilk language provides an abstraction of threads in explicit continuation-passing style, which
is first preprocessed into ordinary C code, then compiled by gcc and linked with the Cilk runtime
system.

The Cilk runtime system provides the mechanisms for thread communication, synchronization,
scheduling as well as primitives callable within Cilk programs. The runtime scheduler implements a
generic scheduling policy based on work stealing, which the programmer can complement or completely
override via annotations provided in the Cilk language.

1.2 On-going Work and Plansfor the Future
For the current rel ease we have concentrated on providing for runtime dynamic scheduling, but haveleft

out another important aspect of parallel programming, namely that of globally shared data structures.
The reason for thisis mainly that more work is needed in providing a robust shared data abstraction.

4

However, since the implementation of a shared data abstraction is orthogonal to that of dynamic
scheduling, it can be added later without seriously affecting the current structure of the scheduling
mechanism.

In the meantime we are also pursuing severa closely related projects. Among these there is an
implementation of the Cilk runtime system to run on a cluster of work stations on top of TCP/IP, with
additional administration facilities necessary in a distributed computing environment. There is also
some work under way in porting the Cilk runtime system to SMP's. Finally, we are experimenting
with a simple shared data abstraction that provideslocal data objectswith global pointers.

We hope that the release of Cilk™ 1.2 will provide the stimulus and the tools for further work that
isrequired for the next release of a mature Cilk system, which will include the following features:

¢ A higher level language hiding the explicit continuation-passing style. This means, anong other
things, that that language will provide the abstraction of functions, and the language processor
will automatically generates continuation-passing style threads. The language processor may
even become fully integrated with the C front end.

e Animproved runtime system. Implementation of the scheduling mechanism will become more
robust and refined ...

e Some model of data structures in globally shared memory. It is likely to be more elaborate
if object are allowed to interleave on several processors, such as in the case of arrays, when
naming becomes a serious issue. However, the evolution of the shared data abstraction will be
completely driven by applications.

1.3 TheOrganization of This Document

Chapter 2 provides atutorial of how to use Cilk.

Chapter 3 tells you what you need to do to use Cilk on your local system.

Chapter 4 is alanguage reference manual for the Cilk™ 1.2 language.

Chapter 5 is a specification of the run-time system used by the Cilk™ 1.2 (Version 31) compiler.

The appendices include copyright information, man pages, installation instructions, bug reporting
instructions, ashort writeup of the Cilk team’s devel opment methodol ogy, and alist of thingsthat need
to be done to the manual.

In particular, Appendix E.4 tells you how to get onto the Cilk mailing lists.

1.4 Introduction Change Log

$Log: intro.tex,v $

%Revision 1.9 1994/11/06 02:19:28 randall

% Added Accumnul at eDoubl eWord, SendDoubl eArgument and Accunul at eDoubl e t o doc.
%

%Revision 1.8 1994/11/03 01:51:05 randall

% Updat ed everything to 1.2. Added changes in 1.2 to the change | og.

%

%Revision 1.7 1994/09/28 19:14:16 randall
%changed 1.0 -> 1.1

%

%Revision 1.6 1994/09/06 17:40:22 bradley
% Many smal | changes frommy things-to-do list.
%

%Revision 1.5 1994/09/02 01:31:38 zhou

% Changed tpp to cil kpp everywhere

%

% Revision 1.4 1994/08/29 16:42:19 zhou

% m nor corrections

%

% Revision 1.3 1994/08/26 18:01:44 bradley
% Add change | og secti ons.

%

Chapter 2
Using Cilk: A Tutorial

Cilk™ 1.2 isasimple C extension to enable the devel opment of multi-threaded programs on parallel
machines. Cilk programs run on top of the Cilk runtime system, which supports the scheduling,
communication, and synchronization of threads. On the Thinking MachinesCM-5, Cilk isimplemented

Cilk Pre—Processor
|
Cilk Runtime System

Strata (active messages)

|
CM-5

Figure 2.1: Overal structure of the Cilk package on the Thinking Machines' CM-5

on top of Strata, an active message library (see Figure 2.1), although Cilk is relatively machine
independent and can be ported to other message-passing or shared memory machines.

2.1 A Smple Example

Figure 2.2 shows a simple C program that computes the Fibonacci function. To demonstrate how Cilk
works, we will use as an examplethe Cilk version of the Fibonacci function shown in Figure 2.3. This
program is explained in detail in the following sections.

The program is divided into three sections by “ %4 . The first and the third sections contain normal
C code, whereasthe middle section (Lines 5—18) containsthread definitions. A thread definition starts
with the specifier t hr ead and has a parameter list and a body similar to a C function. In the program
two threads are defined (Lines 5 and 9).

In order to understand thread semantics, we first need to introduce closures. A closure is a data
structure that contains a thread pointer (a pointer to the code of the thread) and all arguments needed

int fib (int n)
{ if (n<2) return (n);
el se
{ int x, vy;
x = fib (n-1);
y = fib (n-2);
return (x+y);
}
}

void main (int argc, char *argv[])
{
int n, result;
if(argec !'=2) {
printf ("Usage: % n\n", argv[0]);
exit (1);
}
n = atoi(argv[1]);
result = fib (n);
printf ("Result: %l\n", result);

Figure 2.2: Fibonacci functionin C

[\

00 ~1 O Ot

10
11
12
13
14
15
16
17
18

19

20
21
22
23
24
25
26
27
28
29
30
31
32
33

#i ncl ude <stdlib. h>
#i ncl ude <stdi o. h>
#i ncl ude <cil k. h>

%

thread sum(cont k, int x, int vy)

{
}

thread fib (cont k, int n)

{

SendWor dAr gunment (k, x+y);

if (n<2) SendWordArgunent (k, n);

el se

{ cont x, vy;
spawn_next sum(k, ?x, ?y);
spawn fib (x, n-1);
spawn fib (y, n-2);

}

}

980

void main (int argc, char *argv[])
{

int n, result;

if(argec !'=2) {

printf ("Usage: % n\n", argv[0]);

exit (1);
J
Clklinit();
cilkactivesize = PartitionSize;
n =atoi(argv[1]);
result = RunSchedul er (Cl LKAUTO,
if (Self ==0) printf ("Result:
C I kExit(0);

fib, 1, n);
%\ n", result);

Figure 2.3: Fibonacci function in two threads

sum
fib k fib

n-1 n-2

(@) (b) (©

Y

Figure 2.4: Closures created in the fib thread

to run the thread. Closures are created via the spawn or spawn_next statements. For example, Line
15 creates the closure shown in Figure 2.4 (&), which captures the thread pointer fib and the available
arguments X and n — 1. Because al of the arguments are available to run the thread, this closure is
called aready closure. It isimmediately handed to the scheduler to be executed either locally or on a
remote processor.

Closures with some empty argument slots are called waiting closures. Line 14 creates such a
closure, as shown in Figure 2.4 (b). This closure is waiting for two of its arguments to be filled in.
The forms ?x and ?y allocate empty slots in the closure and at the same time initialize x and y as
continuations pointing to these empty slots. Continuations are pointersinto closure structures and are
used by the program to later fill in these empty slots. The statement

SendWor dAr gunent (k, n);

sends the number n to the empty argument slot referenced by continuation k. The argument dot is
filled in with this value, and if all argument values have arrived then the closure is ready and is given
to the scheduler.

Closures are the basic mechanism that enables the continuation-passing style of execution. In the
Fibonacci program, the thread fib (Line 9) has a argument of type cont (continuation), pointing to a
slot wherethereturn value should be sent. If n > 2, it createsthree closures: awaiting closure (Line 14)
with two empty slotsx and y, and two full closures (Lines 15 and 16), each one assigned to compute
a value to put in one of these two dots. The full closures are immediately given to the scheduler
which will execute them either locally or on another processor. These computations correspond to two
recursive calls to the Fibonacci function with arguments n — 1 and n — 2. These routines compute
their results and send them to the waiting closure. On receiving its arguments, the waiting closure
becomesready and it isgiven to the scheduler. The scheduler decides where and when this closure will
be executed. When executed, this closure will return the sum of its argumentsto the continuation k.

It is instructional at this point to compare the multi-threaded program to the typical C function
definition for Fibonacci such as the onein Figure 2.2. We note the following properties of athread in
continuation-passing style that make it different from the procedure-invocation style of the C code:

e Threadsdo not return values. Instead, continuations are explicitly passed among threads and the
threads send values to each other using these continuations.

e Threads are non-blocking. Instead of waiting for recursive calls to return their results as is the
case in the sequential program, the waiting part is lifted as a different thread (the sumthread).
The parent thread just spawns new threadsand continuesto the end, at which point it relinquishes
control to the scheduler.

10

Because threads are non-blocking, we say that they are split-phase implementationsof procedures.
Split-phase means that the spawning thread does not wait around to gather the results of its spawned
children itself. Instead, it creates a new thread (in Fibonacci, the sumthread) to gather the results for
it. Looking at it thisway, there is a natural grouping of threads into the abstract procedure invocations
that they implement. For instance, the fib thread and its associated sumthread group together to form
one invocation of the regular C fib procedure.

Because the scheduler can use information about which threads are part of the same split-phase
operation (i.e. which threads comprise one procedure invocation), two spawn primitives are provided.
The primitive spawn_next should be used when the spawned thread is part of the same procedure
invocation as the thread which spawned it. The primitive spawn should be used for the threads that
represent procedure calls from within the spawner’s procedure invocation (i.e., the children of the
spawner’s procedure invocation). A good rule of thumb isthat all closuresthat are created full should
be spawn threads, and all waiting closures(i.e., al closureswitha? inthem) arespawn_next threads.

To finish describing the fib program, the primitives on line 27 and line 32 initialize and stop the
Cilk system. The argument for Ci | KExi t is an exit error code that functionsin the same manner as
the exit error code for exi t () . Also, the primitive

RunSchedul er (C LKAUTO fib, 1, n);

provides the entry into the scheduler. Here one specifies the scheduling mode (Cl LK AUTO means
automatic thread migration via work-stealing, see section 5.4 for other modes), the first thread to run
(fib), the number of arguments supplied to fib (1) and the actual argument (n). The actual definition
of thefib thread specifies an additional first argument which is the continuation to which fib sends the
result of its computation to, and this continuation will be supplied by the scheduler.

2.2 Running the Example

There are three steps to running the Fibonacci program on your target machine. The source code
can be found under the name fib. p in the exanpl es directory of the Cilk distribution. First, copy
fib. p, Makefil e, and j ob into your working directory from the exanpl es directory. Make sure the
STRATA DI Rand Cl LK.DI R assignmentsin the Makefile point to each of their distribution directories,
respectively (see chapter 3 for the locations of these directories). Then type make fib_cnb_st and the
executable will be made for you. The _cnb extension is used to denote files that are used on the C\Vb,
and the _st extensionis for files with statistics gathering enabled. To run fib, just typej run j ob and
thefib_cnb_st executablewill be run on the C\Vb.
The Makefile includes the following steps:

1. Run the pre-processor (ci | kpp) onfib. p to generatefib. c, its C-code equivalent.
2. Compilefib. c using gcc.
3. Link the object file with one of the Cilk librariesin the distribution directory.

All of these tasks are performed automatically by the Makefile provided in the exanpl es directory.
The user is strongly encouraged to use this Makefile because it correctly sets compile-time flags and
linksin the correct librariesfor a proper executable.

11

Note: Certain libraries have been compiled with certain compile-time flags, and any user code linked
with these librariesMUST have been compiled with the same flags. Using the Makefile is an easy way
to ensure a correct match.

To run other examples in the exanpl es directory, just copy their . p files into your working
directory, make them, and edit the j ob file to uncomment the examples you want to run. Then type
j run j ob torunthem.

Note: Some of these instructions are specific to the CM5. Check chapter 3 for the local guide to
running this software.

2.3 Cilk Internals

The Cilk scheduler is a SPMD program that is run on all the processors. The scheduler manages a
gueue of full threads on each processor. For local execution, the scheduler tries to execute threads
which are farther down in the procedure activation tree. Thisheuristicis (we believe) good for keeping
Space usage at a minimum.

The scheduler also attempts to |oad-balance the machine using a work-stealing algorithm. When
work is stolen, the scheduler tries to migrate closures higher up in the procedure invocation tree. This
strategy is used because closures higher in the invocation tree usually represent larger pieces of work.

2.4 Why Continuation-Passing Style

Since threads are obviously more difficult to write than ordi nary C functions extended with f or k’'sand
wai t ’s, one may well question what isto be gained by adopting threadsin such explicit continuation-
passing style. In addition to programming style, people familiar with programming language imple-
mentation may object to the way function framesare broken up into closuresfor threads, which requires
more frequent copying of arguments.

The only answer to these questionsliesin the simplicity of these threads and their execution model.
This very smplicity trandates into a ssmple and clean implementation of Cilk. For example, the part
of the Cilk runtime system on the CM-5 to support the threads abstraction, including the scheduler
and other primitives, is only 2000 lines of C code. The Cilk syntax extension requires no more than
macro expansions, and the resulting C code iswell structured and very readable (it is not, as might be
imagined, assembly code writtenin C).

Since Cilk threads are at a lower level than the functional abstraction, it would be possible and
beneficial to cast alternativeimplementations as either embelishment (such as a higher level language)
or optimizations (such as packing closures belonging to the same function invocation into a frame)
of the basic model, gaining convenience of expression and/or execution efficiency at the cost of more
complexity.

12

25 MoreAdvanced Features

25.1 Callsand Tail Calls

Cilk provides severa primitivesthat can be used in place of spawn that may improveyour application’s
performance. The first of these is the cal | primitive. The cal | primitive simply does a normal,
C-style function call to the named thread. Thisis useful for speeding up your application because it
avoidsthe overhead of the scheduler. However, using this primitivetoo much may restrict the available
paralelism in your application. A safe rule of thumb is to only convert the last spawn in your thread
body intoacal | .

Because the thread you are calling is executed immediately, all arguments must be present (i.e., no
?X declarations).

A cal | primitiveiseasily substituted into the fib thread, as shown below:

thread fib (cont k, int n)

{
i f (n<2) SendWordArgunent (k, n);
el se
{ cont x, vy;
spawn_next sum (k, ?x, ?y);
spawn fib (x, n-1);
call fib (y, n-2);
}
}

The second new primitiveisthetai | _cal | primitive. This primitiveis an optimized version of
thecal | primitivethat can be used instead of the cal | primitive when the following three conditions
are satisfied. First, the thread being called must be the same as the thread the t ai | _cal | appearsin.
Second, thet ai | cal | primitive must be the last statement in the thread (thisis becauset ai | cal |
never returnsto its caller). Finally, all local variables and arguments must be dead. In particular, you
can’'t have pointers referencing any of the datain the C stack frame. This primitive is extremely fast
because it expands into one assignment for each argument and a jump to the beginning of the thread
code.

The codefor fib satisfies al the requirementslisted above and therefore the last spawn can aso be
atail call.

Finadly, just as there are spawn and spawn_next primitives, there are also cal | _.next and
tail call _next primitives.

Note: There is one further distinction: Arrays are passed by reference when using the cal | and
tail call primitives (whereas arrays are passed by value when using the spawn primitives). This
is usualy not a problem because only the last routine in a thread is one of these optimized spawns.
However, this distinction can lead to problems so use these primitives carefully.

2.5.2 Accumulatorsand Signals

Accumulators can be used to gather results from severa threads into one argument slot. To use an
accumulator, you first create an accumulator slot using the following syntax:

13

spawn foo (?k{n:init});

This code says that f 00 has one argument which is an accumulator lot. This slot will accumulate n
values with an initial value of i ni t. Thiscode aso initializesk as a continuation pointer to this dot.
To accumulate values into this slot, we use the Accunul at eWor d primitive:

Accumul at eWord (k, accumword.add, val);

The Accunul at eWor d primitive accumulatesval into the accumulator slot pointed to by k using, in
this case, the operator accumwor d_add. Thus when f 00 isrun, its argument will contain the sum of
all n valuesthat were sent to it.

Here is an example of how to use accumulatorsin the Fibonacci program:

thread sum(cont k, int n)

{
Accunul at eword(k, accumword.add, n);
}
thread fib (cont k, int n)
{
if (n<2) Accunul ateWord (k, accumword.add, n);
el se
{ cont x;
spawn_next sum(k, ?x{2:0});
spawn fib (x, n-1);
tail call fib (x, n-2);
¥
}

Thereare several accumulator operationsdefined for you. You can also defineyour own accumulator
operationsif you wish. See section 5.4 for details.

Signalsare just accumulatorswithout any values. These are useful when you want to know when a
group of threads have completed. The syntax for creatingasignal slot isthe same asfor an accumulator
slot except that thereis no initial value:

spawn foo (?k{n});

Also, in the prototype for f 00, the argument slot for the signal must be of type si gnal . To send a
signal to a continuation, just call

Signal (k);

Here is an example of how you might use signals to create a barrier in your code. The thread
spawner runs severa t ask threads, and each of these signalsthe bar ri er thread when it is doneiits
work. The barri er thread will then send a value on to continuation k when all of the signals have
arrived.

14

thread barrier (cont k, signal)

{
SendWor dAr gunent (k, ...);
}
thread task (cont s)
{
... do sone work ...
Signal (s);
}
t hread spawner (cont k)
{ cont s;
int i;
spawn_next barrier (k, ?s{10});
for(i =0; i <10; i++)
spawn task (s);
}

2.5.3 Explicit Posting of Threads

Itisoften useful to be ableto post certain threads on specific processors. For instance, if thereisadata
structure that is statically laid out on your machine and you want to post threads to where the datathey
will use resides, you will need to use this mechanism. Also, you can use this mechanism to explicitly
schedule your computation (thisis done in conjunction with using CILK_MANUAL mode, see section
5.4). The statement

spawn fib (k, n)@n;

posts the thread fib (k, n) on the processor numbered pn. If the thread is ready to execute, it will
be posted there immediately, and if it is unfilled it will be posted there when it becomes filled. The
following code is an example of how to use this construct:

t hread spawner (cont k, int P)
{ inti;
for(i =0; i <P; i++)
spawn work (k) @;
}

The pre-defined variable Sel f can be used to force a closure to be executed locally.

spawn fib (k, n) @el f;

Note: thekeyword| ocal usedinathread definitionwill force any spawnsof that thread to be executed
locally.

15

254 ArraysasClosure Arguments

In standard C, arrays must be passed by reference (i.e., by pointer). However, in order to facilitate
migrating threads, Cilk passes arrays by value (exceptincal | andtai |l cal | primitives: see section
2.5.1). For example, the following line of code defines a thread that takes both a fixed size and a
variable size array as arguments:

thread foo (int a[10], int b[]):;

The array a is afixed-length array of length 10, and array b is a variable-length array whose size will
be determined when the closure for f 00 is created.

Note: Variable-length arrays are only allowed in the last argument dlot.

When you want to spawn thread f 00, there are several different ways to specify the values of the
arraysto be passed. The first method isto copy the array argument from another array. The form

spawn foo (x[..], y[2..8])

can be used to copy 10 elementsof array x intothe array a and 7 elements of the array y (fromindices
2 to 8, inclusive) into the array b in the closure for f 00. Note that fixed arrays do not need range
specifiers because the size is set in the thread declaration for f 00.

The second method to initialize arraysis to initialize them as an array of slots that another thread
will fill inusing SendAr gunent calls. Thisis done using the following syntax:

cont X,y;
int i;
spawn_next foo (?x[..], ?y[7]);
for (i=0; i<10; i++4)
spawn bar (IndexContinuation(x,i,sizeof(int)));
for (i=0; i<7; i++)
spawn bar (I ndexContinuation(y,i,sizeof(int)));

Space for a and b are allocated just as before, but instead of getting pointers to these arrays and
filling them in immediately, we get continuations pointing to these arrays and we fill them in using
SendAr gunent calls (in this case, the SendAr gunent calls are hidden inside the thread bar). The
function | ndexCont i nuati on(x, i, si zeof (i nt)) gives the continuation for the i th element of
the array of i nt spointed to by continuation x.

The last method to initialize arraysisto useinitialization pointers. Thisis done as follows:

int *x,*y;

spawn foo (:x[..], :y[7])
{

memcpy(x, xdata, 10*sizeof(int));
mencpy(y, ydata, 7*sizeof(int));

}

Theform: x[..] isused for fixed-size arrays and initializes x to point to the uninitialized array a in
theclosure of f 00. Theform: y[7] isused for variable-size arrays and both allocates an array of size

16

7 for b inthe closurefor f 00 and initializesy to point to that array. The user then can fill in the arrays
as he or she pleases in the trailing statement to the spawn (any spawn primitive can have a trailing
statement, possibly compound, that is executed after the closureis created but beforeit is posted. This
statement is useful for initializing certain parts of the closure, in this case array values).

Note: initialization pointers are only valid inside the spawn’strailing statement.

2.5.5 Packing/Unpacking Closuresfor Migration

In the examples you have seen so far, al arguments were passed by value in the closures. Closures of
thistype are called flat closures because there are no pointers to heap objects or other structures. Flat
closures are easy to migrate because there are no dependencies on memory locations other than the
closureitself.

Non-flat closures, however, are more difficult to migrate because heap objects pointed to by the
closure need to be packed up and sent to the destination node along with the closureitself. Becausethis
pointer structure can be arbitrarily complicated, Cilk provides a mechanism for users to specify how
they want their closures to be packed for migration. For each thread you define, you may aso definea
migration thread whose job it is to pack anon-flat closure into aflat closure for migration. Hereis an
example of how to use amigration thread:

thread foo (int *array)

{
}

mgration thread foo (int *array)
{ closure *cp;
make next cl osure foo.unpack (array[..])
{ep=8 }
free (array);
return (cp);

code for foo ...

ki

t hread foo_unpack (int array[10])

{int *new
new = nal | oc (10*si zeof (int));
mencpy (new, array, 10*sizeof (int));
cal | next foo (new;

}

Here, f 00 is our typical thread with a non-flat closure. In order to migrate thread f 00, we need to
define two new threads. The first is the packing thread, defined using the keyword m grati on. The
prototype for thisthread must be exactly the same as the prototype for the thread that isto be migrated.
When the scheduler decides to migrate a thread with a corresponding migration thread, the migration
thread is called with the arguments of the closure to be migrated and it is expected to return a flat
closure that will then be sent to the destination node. Thisflat closure should have asits thread pointer
the code for the unpacking thread to be run on the destination node.

17

In the example above, the migration thread for f 00 makesaclosurefor f 00_unpack, with the argu-
ment for f oo_unpack copied from the ar r ay argument from f 00. The expression in bracketsis used
to obtain a pointer to the newly allocated closure (in atrailing statement to spawn or make_cl osur e,
the special symbol $ refers to the closure just created). The migration thread then deallocates the
storage used by f 00’s pointer structures and returns the flat closure.

Onthedestination node, thethread f 0o_unpack allocatesanew array newand copiesthetransferred
array into it, and then doesacal | _next totheoriginal f 0o thread. In thiswhole process, please note
the following items:

e During migration, all primitives used are of the _next variety. Thisis done to ensure that the
resulting migrated thread is at the same level as the original thread (see 5.4 for a discussion of
levels).

e Itistheresponsibility of the unpack thread to make sure that the thread it unpacks is executed
before it is migrated again. An easy way to do thisisto use the cal | _next primitiveto run it
right away. An alternativeisto use the spawn_next primitive with the @el f directive.

e Using the @ directive after aspawn primitive overrides the migration mechanism and sendsthe
closuredirectly, evenif it hasamigration thread. Therefore, you must manually pack any thread
that you wish to explicitly post to a particular processor.

2.5.6 SendArgument variants

There are severa different flavors of the SendAr gument routine for sending different size arguments.
You have seen the SendWor dAr gunment routine in previous examples. Here are the other routines for
passing arguments to continuations:

SendChar Argunent (cont k, char c);

SendShort Argunent (cont k, short s);
SendWor dAr gument (cont k, Word w);

SendDoubl eWor dAr gurment (cont k, Doubl eWord d);
SendFl oat Argunent (cont k, float w);

SendDoubl eAr gurment (cont k, double w);
SendArrayArgunent (cont k, char *array, int |ength);

These routines send their argument to the continuation slot of the corresponding size pointed to by
the continuation k. For SendAr r ayAr gument , the size of the destination slot is| engt h bytes long.
SendAr rayAr gunent isuseful for sending both arrays and structures.

Caution: Continuations are not typed, so care must be used to send the right size argument to
continuationsthat point to acertain size slot. Thus, acontinuationfor achar sot should not beusedin
aSendWor dAr gumrent call. Violating thisrule will cause your program to crash. Note that we expect
to type continuationsin the next version of Cilk.

25.7 Global Data Structures

Global pointers are provided for maintaining distributed data structures and other distributed applica-
tions. Global pointers consist of a processor number and alocal (regular) pointer into that processor’'s

18

memory. Global pointers are created using the MAKEGLOBPTR macro which takes a local pointer and
produces aglobal pointer. The processor number and local pointer of a global pointer can be obtained
using the PN and OFFSET macros. There is an example of using these macros in the Cilk examples
directory under the namet r ee. p.

2.6 Tutorial Change Log

$Log: tc-tut.tex,v $

% Revision 1.13 1994/11/06 02:19:49 randall

% Added Accumnul at eDoubl eWord, SendDoubl eArgument and Accunul at eDoubl e t o doc.
%

% Revision 1.12 1994/11/03 00:35:51 randall

% Added SendFl oat Argunent and Accumul at eFl oat to manual .
%

% Revision 1.11 1994/09/28 18:21:21 zhou

% Modi fy exanpl es to version 1.1 syntax

%

% Revision 1.10 1994/09/06 17:40:30 bradley

% Many smal | changes fromny things-to-do |ist.

%

% Revision 1.9 1994/09/02 19:22:36 randall
%Stratalnit -> Cilklnit, same for exit.

%

% Revision 1.8 1994/09/02 01:31:45 zhou

% Changed tpp to cil kpp everywhere

%

%Revision 1.7 1994/08/29 21:48:20 randall

% Put serial fib ahead of threaded fib in tutorial.

% Changed sonme | ocal guide stuff and howto obtain G|k stuff.
%

%Revision 1.6 1994/08/26 19:22:42 randall

% Added change log to the tutorial.

%D d some editing of the | anguage reference.

%

19

Chapter 3

L ocal Guide

Thislocal guide explains how to use Cilk™ at MIT. If you are not at MIT, you probably need slightly
different instructions.

A copy of Cilk canbefoundin/a/randal | /G | k1. 2/ onscout.lcs.mt.edu. Thereisan
exampleMakefil e that you can useto build your own projectsin/ a/ randal | / G | k1. 2/ exanpl es/ .

In order to get flex (alexical analyzer) added to your path, type

‘source /usr/local /conf/sys-dots/std.cshrc’ onscout. You will need this for com-

piling cilkpp.
An on-line version of this manual can be found from CSG hosts as
fil e://1 ocal host/hone/ prj/ G| k/ unrel eased/ doc/ manual / manual . ht m
To access/ hone/ prj/ fromaTOC machine, use/ csg/ prj/ . For example,

fil e/ /1 ocal host/csg/prj/C|k/unrel eased/ doc/ manual / manual . ht m

20

Chapter 4

Cilk Language Reference Manual

Thischapter describesthe Cilk™ 1.2 language extension to C that enables multi-threaded programming
on paralel architectures. The extension provides an abstraction of threads in explicit continuation-
passing style, whichispreprocessed to ordinary C code, then compiled to run on top of the Cilk runtime
system.

The Cilk runtime system implements a scheduler that by default uses work stealing for dynamic
load balancing in order to maximize computation locality. The programmer can also gain control over
scheduling via a system of annotations, both with or without work stealing in effect.

In the remainder of the section we shall first define the key underlying runtime concepts, then
proceed to describe the details of the language.

4.1 Basic Concepts

In Cilk, the basic unit of scheduling and executionisathread. Threadsare defined with asyntax similar
to C functions. For example, the following are two threads that computes the nth Fibonacci number:

thread sum(cont k, int x, inty)

{
}

SendWor dAr gunent (k, Xx+y);

thread fib (cont k, int n)

{
i f (n<2) SendWrdArgunent (k, n);
el se
{ cont x, v;
spawn_next sum (k, ?x, ?y);
spawn fib (x, n-1);
spawn fib (y, n-2);

}

Conceptually, threads form an abstraction that is more primitive than functions. As can be seen
from the above exampl e, the code that belongsnaturally to afunctionis split into more than onethreads.

21

However, the notion of afunction is still visiblein Cilk. In the above example, spawn_next is used
to create a thread that “continues’ within the same function, while spawn is used to create a thread
corresponding to afunction invocation.

At runtime, athread isinvoked from, and returnsto the scheduler. Inter-thread communication uses
explicit continuation-passing style to send arguments and results. Intuitively, a thread groups together
a sequence of instructions without synchronization events (i.e., waiting for something to occur) in the
middleof itsexecution. Thisarrangement resultsin avery flexibleand simple scheduling and execution
model.

411 Closures

Normally, athread is created by making a closure. A closureis just a data structure that captures all
information needed to execute the thread. More specifically, the statement

spawn tp (argy, ...);

creates a closure containing the thread pointer tp and one slot for each argument (the actual implemen-
tation may need to keep additional information):

tp

arg,

To enable thread communication and synchronization, a closure can be created waiting for some
argumentsto arrivein the future, thusit may contain empty argument slots. A closureis said to be full
if it has all of its arguments, otherwiseit is waiting.

4.1.2 Continuations

A continuation' isaglobal referenceto an empty argument slot, to which an argument can be sent. For
example, the statement

spawn_next sum (k, ?x, ?y);

Createsaclosurefor sum and initializesx and y as continuations pointing to the two empty dots:

sum
k

X —

y—>

Usually, both x and y will be passed to new threads which will eventually send arguments via some
runtime primitive such as

SendWor dAr gunent (x, arg) ;

that fills the slot referenced by x. The closure will be posted when it becomes full, and available for
execution viathe scheduler.

INote that we are somewhat abusing the term “continuation” here, which normally means “the rest of the computation”.

22

Continuations can be created to reference argument sots of different types, and different argument
sending primitives must be used to match the size and the semantics of the argument. This will be
further described in section 4.9.3.

4.1.3 Thread Scheduling and Work Stealing

During the execution of a Cilk program, thread spawning forms a proper tree, with data-dependencies
among threads (i.e., those indicated by continuations) forming a DAG. In a correct program, the order
in which ready threads are executed should not change its result, but may have drastic effects on its
space and time efficiency. Thereforein order to writeagood Cilk program it is necessary to understand
Cilk’s basic scheduling and execution model.

At runtime, the Cilk scheduler groupstogether closures corresponding to function invocations(i.e.,
the closure created by spawn and those created by subsequent spawn_next ’s). It orders these groups
by the time of the first spawn, and within each group the closures are ordered by the time when they
are posted. For local execution, the scheduler always tries to take the most recently posted closurein
the most recently invoked function.

A work stealing mechanism is implemented so that each processor sends a request to a randomly
chosen target processor when it runs out of its local pool of ready threads. The target processor,
upon receiving the request, will try to migrate the most recently posted closure belonging to the ol dest
function invocation, or reply with a negative response to the requesting processor. Inthelatter case, the
requesting processor will have to repeat the work-stealing cycle for as long as its local pool of ready
threads is empty.

Work stealing has proven to be extremely effective in reducing the frequency of thread migrations
required by load balancing, at the same time creating computation locality whichiscritical for keeping
performance close to that of a sequential program.

For more complicated situations, Cilk also alows the programmer to specify where, and to some
extent when, athread must be executed. Thiscan be done either with or without work stealing in effect.
In this case the programmer will assume part or al of the responsibilities of load balancing, preserving
computation locality and limiting resource consumption.

4.2 Program Structure

A Cilk program consists of three sections separated by %84
program: C code
%o
thread;

%0
C code
The program must be first preprocessed to ordinary C code, and then compiled and linked with the
runtime library.
Since the preprocessor copies both of the C code sections, the C syntax there will be whatever is

23

accepted by the C compiler being used?.

The thread definition and declarations in the middle section are expanded by the preprocessor,
which accepts a mostly C syntax with some differences. Some of the differences are due to Cilk
extensions, others are due to implementation constraints. In the following sections we shall describe
in detail only the Cilk specific part of the language. One should keep in mind, however, that any
limitations or changes to C syntax within the threads section do not apply to the C code sections.

4.3 Keywords, Constants and Operators

All C keywords used in Cilk thread definitions and declarationswill appear in the constructs described
in later sections. In addition Cilk introduces the following keywords:

cl osure,cont, gl obptr,signal,type

handl er,l ocal ,m gration,thread

make_cl osur e, make next cl osur e, spawn, spawn_next ,
call,call next,tail call,tail_call _next

Constants can be specified in the following format: all C character and string constants, integer
constantssuch as12, 0711 (octal) and Ox FA (hexadecimal), and float constant such as 1. 27 or . 34.

The following operators can be used in the body of thread definitions (listed in increasing order of
precedence):

Operators Associativity
@ none

=, +=,-5,%= [=, %, &, " =, | =, <<=, >>= right to left
?,: right to left
|| left to right
&& left to right
|,” left to right
& left to right
==,1=,<,<=,> >= left to right
<<, >> left to right
+, - left to right
* 1, % left to right
I,”, ++,--,sizeof right to left
().,[1,.,-> left to right

All operators except @are inherited from C with their original meaning.

4.4 Thread Definition and Declar ation

Similar to a C function definition, athread definition has the form
thread: [attrib] t hr ead tp (arg-decl,, ...) body

where body isacompound C-like statement enclosed in braces. The body can also bethe null statement

2For Cilk™ 1.2, gcc is needed as the runtime system and the preprocessor output rely on certain gcc extensions.

24

(;), inwhich case it is a thread declaration. A thread declaration or definition must precede its first
use, thus declarations are necessary in cases where threads are defined recursively, or where threads
defined in separate files are cross-referenced.

The optional attrib can be one of

| ocal ,handl er,m grati on,
Their use will be described later in section 4.5.2 and 4.6.

441 Typesof Thread Arguments

A thread argument declaration has the following syntax:

arg-decl: type var-ref
si gnal [var]
type: char |short |[int |long
float | doubl e
closure | cont | gl obptr Cilk specific
struct var
t ype var
var-ref: var-decl
* var-ref
var-decl: var
var[expr] fix-size array
var| | variable-size array
The declaration syntax hereis mostly a proper subset of the C syntax, with some notable differences.
cl osure,cont, gl obptr andsi gnal aretypes specific to Cilk.

Pointer and structure types follow the C convention.

Array typesdiffer from the C convention. Dueto C’'sintegration of arrays and pointers, apointer is
always passed for an array argument. In Cilk an array is normally passed by value (see section 4.5.1).
Inaddition, var[expr] specifiesafixed-sizearray where expr isthe constant size expression, and var| |
specifiesavariable-sizearray whose size will be provided at thread creationtime. A variable-sizearray
isonly allowed as the last argument of athread.

Theformt ype var provides a back door to the C type definition mechanism, here var can be any
variable defined using t ypedef . The keyword t ype here is needed since Cilk does not understand
types defined outside the threads section, thus

foo *bar:

would be ambiguous as to whether it is a declaration or an expression used as a statement.

4.4.2 Body of Thread Definitions

Thread body has the form of a C compound statement:
body: { decly ...stmty ...}

Here the declarationsfollow the C convention, except with the same limited syntax as thread argument
declarations. However, simultaneous declarations such as

25

int i, *p;
cont X, ;

are dlowed. Almost all of the C statement and expression syntax are allowed, and we list them
here for easy reference:

stmt: the empty statement
expr;
label: stmt
case expr: stmt
defaul t: stmt
got o label;
br eak;
return [expr];
i f (expr) stmt[el se stmt]
switch (expr) stmt
for ([expr]; [expr]; [expr]) stmt
whi | e (expr) stmt
do stmtwhi | e (expr);
{ decly ...stmty ...}

expr: cnst
expr[expr]
expr. var
expr- >var
(type) expr
uop expr | expr uop See section 4.3 for the
expr bop expr list of operators
expr? expr: expr
expr (expry,...)
si zeof (type)
(expr)

45 Thread Creation

In addition to ordinary C statements, the following Cilk statement is used to create a new thread by
making a closure:

spawn[_next1tp(arg,,...) [@xpr] stmt

here tp must be defined or declared as a thread with the correct number and types of arguments.
The keyword spawn should be used to create a thread that starts a new function invocation, whereas
spawn_next should be used to create athread that islogically “continuing” execution within the same
function. Their usage may affect the performance of the program, and especially that of work stealing
(see section 4.1.3).

If the optional @xpr is present, the closure will be posted to the processor with number equal to
expr, otherwise it will be posted locally. If all arguments are available then posting isimmediate.

26

The trailing stmt can be null (;) or any C statement. It is executed before the closure is posted,
useful for further initializing the closure. For this purpose, within the stmt the special symbol $ is
bound to a pointer to the newly created closure. It can be accessed, for example, asin

cl osure *cp;
spawn foo (...) { ...; cp=8; ...}

451 Thread Arguments

Much of the syntax sophisticationin Cilk liesin different ways of specifying the argumentsfor thread
creation. Thread arguments differ from ordinary C function arguments:

arg: expr ordinary C expression
expr| . .] array argument
expr[expr,. . expr,] variable-size array argument
?var inlet
?var{erpr;. expr; } accumulatorinlet
?var{expr; } signd inlet

?var[..] |?var[expr] array of inlets
var[..] |:var[expr] initiaization pointer
A thread argument of the form
expr

isjust anormal C expression.
An argument of either one of the following forms

?var

var{expr;. erpr;}

?var{expr; }
Allocates an empty dlot in the closure, and initializes var to be a continuation pointing to that slot. In
all of the forms var must be declared to have the type cont . The size of the dot is determined from
the corresponding type declaration of the thread argument i n the thread prototype.

The argument forms here differ in how many arguments are expected and in the way the argument

is deposited in the empty slot. More specifically:

e ?var allocatesainlet dot that waits for exactly one argument to be sent.

e ?var{expr;. expr;} alocatesan accumulator inlet slot, expecting ezpr; valuesand initializes
the dot to ezpr;. The closure is not considered full until al ezpr; arguments arrives. How
the arguments are to be accumulated is completely unspecified and depends on which runtime
primitives are used to send the arguments.

e ?var{expr; } specifiesasignal inlet. The argument must be declared to have the type si gnal ,
and the slot has size O (in effect, no sot will be alocated in the closure for asignal inlet). Asin
the previous case, the closure will be waiting for an additional ezpr; signals.

27

Depending on the slot type, different Cilk runtime primitives need to be used for sending arguments,
as described further in section 4.9.3.
An array argument has one of the following forms

expr| . .]
expr[expr,. . expr,]
and stores the array expr|[size] in the closure. An argument of the first form must be declared to have
an array type of fixed-size size. An argument of the second form must have a variable-size array type,
and the array segment includes elements at both the lower and upper bounds (size is calculated as
expr, — expr; + 1).
Both of the following argument forms

?var| . .]
?var| expr]
alocate an array of inlets and initializes var as a continuation pointing to the beginning of the array.
Thefirst argument form must have fixed-size array type, and the sizeistaken from the type declaration.
The second form must have variable-size array type. Severa runtime primitives can be used to send
the array asawhole, in pieces or element-wise (see section 4.9.3).
Arguments of the following forms

cvar| ..]

s var| expr]
are caled initialization pointers and must have corresponding array types (the first form must have
fixed-array type, with the sizetaken from thetype declarati on. The second form must havevariable-size
array type). Either form allocates an array of the specified size in the closure, and sets var to be a
pointer to the beginning of the array. Unlike array arguments, the array allocated here is uninitialized.
It isthe programmer’s responsibility to properly initiali ze the array using the pointer var. In addition,
var must be declared to match the array element type. Since full closures are automatically posted, the
initialization pointer should not be referenced outside of the trailing statement to the thread creation.

45.2 Annotationsfor Thread Scheduling

Under the default Cilk scheduling policy, the programmer does not specify either where or exactly
when a thread will be executed: it is up to the scheduler to execute the threads as they become ready
or migrate them upon work stealing requests.

The different versions of spawn and spawn_next should be regarded as annotations providing
hint to the scheduler so that it can group together threads logically belonging to the same function
invocation for scheduling purposes (see section 4.1.3).

For more complicated situations, Cilk provides a more elaborate system of annotations by which
the programmer can post threads to specific processors, to make some threads not stealable, or to
execute certain threads at an higher priority.

Theform

| ocal threadtp(arg-decl,,...) body
defines athread that stayslocal, i.e., it will not be migrated by work stealing. The statement
spawn[_next]tp (arg,,...) @xpr stmt

28

creates a closure which will be posted to the processor numbered expr. Upon arrival it becomesalocal
closure on the destination processor. Consequently, the closure created by

spawn foo (...) @elf

will not be stolen (Sel f isaglobal variable defined in the runtime system, whose valueisthe local
processor’s number).
Theform

handl er thread tp(arg-decl,, ...) body

defines a handler thread. A handler thread is similar in every respect to an ordinary thread except that
it has higher scheduling priority, i.e., onceready it is scheduled to execute before all the ordinary ready
threads.

A handler thread is not subject to migration under work stealing. Unless the @roc annotation is
specified, a handler thread becomes alocal thread upon creation.

45.3 Direct and Tail Calls

In addition to spawning threads, the following direct and tail call forms can aso be used:

cal I [.next]tp(argy,...);
tail call[next]tp(argy,...);

cal | invokes the thread tp as a C function. tai |l cal | is more efficient, but is restricted in that tp
must be the very thread in whose body it appears®. Both the direct and tail calls avoid making aclosure
and completely bypass the scheduler. The _next suffix has the same effect asin spawn_next, i.e. it
tells the runtime system that the thread should be considered as logically continuing within the same
function.

Sincethereisno closureinvolved, argumentsin adirect or tail call form must only be C arguments
and must be specified in full. Array arguments can only be passed by referenceto direct or tail called
threads. Since a normally scheduled thread keeps its closure until the end of execution, such array
references should remain valid within adirect or tail called thread.

4.6 Migration Threads

Cilk provides a mechanism by which threads may be migrated together with their local data structures
during work-stealing. Currently itisimplemented asauser level protocol that requiresthe programmer
to specify threethreads: the ordinary thread, an additional migration (packing) thread, and an unpacking
thread.

First, thefollowing statement formsare equivalent to spawn/spawn_next except the closurecreated
will not be automatically posted even if it is created full:

make[_next]cl osuretp(arg,,...) stmt

Here again, make_next _cl osur e isfor creating a thread within the same function, make_cl osur e is
for creating a thread corresponding to a new functional invocation.

3A tail call isimplemented as ajump back to the entry of the function after resetting the arguments.

29

The migration thread has the special syntax
mgration threadtp(arg-decl,,...) body

Here tp must already be defined as a ordinary thread with the same argument prototype. Theideais
that at migration time, this thread will be invoked to pack a new closure that is migrated instead. We
first explain the protocol using the following example.

Suppose that the thread f 00 will be passed areferenceto alocally allocated data structure of some
typet p (object of typet p may further contain pointers, for example to form alinked list):

thread foo (cont k, tp *p) { ... }

Asaresult, f 00 cannot be migrated since p will point to garbage on another processor.

The solution is for the user to specify a migration thread to pack the data structure into a new
closure, which is migrated instead of the original closure, and to specify an unpack thread which will
be used to create alocal copy of the data structure once the new closure has reached its destination:

mgration thread foo (cont k, tp *p)

{

cl osure *cp;
char *a;

make next closure foo_unpack (k, :a[size]) {
copy_into (a, p);
cp = $;

}

return (cp);

}

The way the data structure is copied completely depends on the user supplied function copy i nt o,
which for example can flatten alinked list into array a.

The new closure must be returned to the scheduler (recall from section 4.5 that $ is bound to the
pointer to the newly created closure), which postsit to the destination processor instead of the original
closurefor f 00.

In the migration thread, the new closure is made for the thread f 0o_unpack, which must do the
reverse of the migration thread:

thread foo_unpack (cont k, char a[..])

{

tp *p = reconstruct_from(a);
call _next foo (k, p);

}

The unpacking thread uses the user supplied functionr econst r uct _f r omto make alocal copy of
the original (or portions of) data structure, then directly callsf oo.

In order for thingsto work out correctly, the migration thread must be defined after both the original
thread and the unpacking thread (or their prototypes) are defined, and it must have the same prototype
as the original thread. The unpacking thread, however, is not related to the original thread, and it is
the programmer’s responsibility to provide the unpacking thread with the desired behavior. As afina
note, both the migration thread and the unpacking thread should use the _next variants of the required
primitives so that the resulting thread will execute at the same level as the original thread would have
executed.

30

4.7 Noteson Thread Argument Passing

Since closures may migrate, argumentsto a spawned thread are normally passed by value, i.e., copyied
into the closure. Migration handlers are generally needed when pointers are passed to spawned threads.

Cilk also allows threads to be called directly as C functionsviathecal | andtail cal | forms.
An array argument to adirect or tail called thread must be passed by reference (see section 4.5.3). The
Cilk preprocessor generates C code that is consistent with thisinterpretation of array arguments, i.e., if
we have athread declared as

thread foo (cont k, int a[10]) { ... }

and b[10] isan array, then b[10] will be copied into the closure when f 00 is spawned, but only
the pointer b will be passed to f 00 wheniit iscalled.

If an argument is a structure, then it is passed by value no matter whether the thread is spawned or
called. When a structure is large, one may wish that the extra copying during direct or tail calls can
be avoided. This can be achieved by specifying it as an array argument of 1 element. For example,
instead of defining

thread foo (cont k, struct bar x) { ... }
and having to passitsst r uct argument by valuewhen f 0o is called, change the definition to

thread foo (cont k, struct bar xp[1]) { ... }

4.8 Blocking Threads

4.9 Runtime System Interface

The Cilk runtime system implements mechanismsfor thread scheduling, communication and synchro-
nization. It also providesalibrary of runtime primitivesfor use by the programmer.

The Cilk runtime system hasacompl etely independent interface, with naming conventionsdifferent
from the Cilk language. However, most of the interface is hidden by Cilk. This section only describes
the primitivesvisible to the programmer. For a complete ref erence to the runtime interface see chapter
5.

4.9.1 Enteringthe Scheduler
In order to execute threads, the foll owing primitive must be invoked within the main control of aSPMD
program:

int RunSchedul er (int mode voidtp(),intn,arg,,...);

Here tp is the first thread to run, n indicates how many arguments are supplied, and the remaining
arguments are passed on as argumentsto tp. By convention, the runtime system automatically supplies
the first argument to tp, which must be a continuation, therefore n should be one less than the arity of
tp. For example, if oneinvokes

result = RunSchedul er (C LK AUTO, foo, 2, 1, 10);

31

then there should be a corresponding thread defined as
thread foo (cont k, int a, int b) { ... }

The runtime system automatically defines a last thread which passes a continuation to f 00 as its
first argument and awaits the result of the computation. Note that the argument sent to k will become
the resul t, thus it must have type i nt. In addition, sending the result argument is also used as
the completion signal of the multi-threaded execution, therefore it should not happen until all threads
(except the last one) have been executed.

The mode argument should be one of

Cl LKLAUTO, CI LK-MANUAL,
Cl LKLAUTOKEEP, Cl LK.MANUAL _KEEP.

Inthe Cl LK AUTOmode, the Cilk runtime system useswork stealing. Inthe CI LK. MANUAL mode, work
stealingisturned off. In either mode the heap will be reset when RunSchedul er returns. If onewishes
to keep the data structures all ocated in the heap, which may be accessibleeither from the return value or
from some global variables set during the execution, then Cl LK AUTOKEEP and Cl LK.MANUAL _KEEP
should be specified instead.

49.2 Global Variables

The value of the following runtime system variable
externint cilk.activesize,;

must be set before entering the scheduler, which defines how many processors will participate in the
computation. Its default value is 0, meaning all processors available. A positive integer tells the
scheduler exactly how many processors to use.

The global variable

externint Self;

isaways set to the local processor’s number.

4.9.3 Communication Primitives

The following primitives are available for sending argumentsto different types of inlets:

voi d SendChar Argument (Conti nuationTk, char value);

voi d SendShort Argument (ContinuationTk, short value);

voi d SendWor dAr gurrent (Conti nuati onTk, Wr d value) ;

voi d SendDoubl eWor dAr gunent (Conti nuationTk, Doubl eVr d value) ;
voi d SendFl oat Argunment (Conti nuationTk, float value) ;

voi d SendDoubl eAr gunent (ContinuationTk, doubl e value) ;

voi d SendArrayArgument (ContinuationTk,char *array,int size);

In the last form, the size of the array isin units of bytes.

Note that the Cilk preprocessor does not check which primitive is used for sending a thread
argument, therefore it is the programmer’s responsibility to always use the primitive that matches the
type of the thread argument.

Note that within thread creation, for example

32

spawn foo (1, ?x[SlZE]);

itisonly possibleto captureasingle continuationx pointing to the beginning of the array. However,
sometimes it may be desirable to send an array argument element-wise or in pieces. To this purpose
the primitive

I ndexConti nuation (ContinuationTk,inti,intsize);

isprovided. It returnsanew continuation pointing to the ith element (counting from the reference point
of k), where each element has size bytes.

Primitivesfor sending argumentsto accumulator inletsare currently restricted to Wor d, Doubl eWor d,
float , or doubl e arguments:

voi d Accunul at eword (Conti nuationTk, AccumAdr dOp op, i nt value) ;

voi d Accunul at eDoubl eWord (Conti nuati onTk, AccunmDoubl eWsr dCGp op, | ong | ong value) ;
voi d Accunul at eFl oat (Conti nuationTk, Accunfl oat Op op, float value);

voi d Accumnul at eDoubl e (Conti nuati onTk, AccunDoubl eOp op, doubl e value) ;

The following accumul ation operators are predefined:

accumwor d_add, accumwor d_nul ,

accumwor d_and, accumwor d_or ,

accumwor d_m n, accumwor d_max,

accumdoubl ewor d_add, accumdoubl ewor d_nul ,
accumdoubl ewor d_and, accumdoubl ewor d_or,
accumdoubl ewor d_m n, accumdoubl ewor d_max,
accumfloat _add, accumfloat _nmul ,

accumfloat _m n, accumfloat _max,

accumdoubl e_add, accumdoubl e_mul ,
accumdoubl e_m n, accumdoubl e_max

Additional accumulation operators can be defined by the user, see chapter 5 for details.
Finally, the primitive
voi d Signal (ContinuationTKk);

can be used to send asignal.

494 Data Structure Primitives

Data primitivesin Cilk are currently limited to local objects (useful together with migration threads)
and global pointers.
The primitives
void *al l ocfstruct local (int size);
void freefstruct local (void * block);

allocatesor rel eases a block of memory, where sizeisin unitsof Wor ds. The storage allocated aretaken
from the Cilk runtime heap, which will be reset after each run of the scheduler by default. Therefore
if one wishesto carry them over to the next run of the scheduler, the current RunSchedul er must be
invoked with either Cl LK AUTOKEEP or Cl LK_-MANUAL _KEEP mode.

33

An object of the type
gl obptr

isaglobal pointer which packsalocal pointer together with aprocessor number. The processor number
and the local pointer can be retrieved using the following macros

PN(gptr)
OFFSET(gptr)

Currently there is no primitive that fetches or stores data using a global pointer?, therefore in order to
access datafrom a global pointer gptr one needs to post a thread to processor PN(gptr) .

4.10 C Code Generated by the Preprocessor

Thissection briefly describesthe structure of the C code generated from cilkpp, thethread preprocessor®.
Cilkpp's output format consists of three sections, corresponding to the three sectionsin the source
program:

C code
[* ----- Begi n Threads Section ----- *|

Closure structure definitions
Prototypes
Function definitions derived from threads

C code
We shall use the following simple example program to illustrate the C code generated from cilkpp:

local thread sum(cont k, int x, int y);

thread fib (cont k, int n)

{
i f (n<2) SendWordArgunent (k, n);
el se
{ cont x, v;
spawn_next sum (k, ?x, ?y);
spawn fib (x, n-1);
call fib (y, n-2);
}
}

4these did not make into the initial release of Cilk™ 1.2, but islikely to be added very soon.

SWhen invoking cilkpp with the intention of reading the output, the -N switch should be used, which suppresses cpp
line directives that would otherwise be generated by default. The UNIX program indent can be used to set the C codein a
formthat is easy to read.

4.10.1 Closure Structure Definitions

The structure definition of the closure for each thread is derived from its prototype. For example, the
thread

local thread sum(cont k, int x, int y);
Generates the following type definition for its closure

typedef struct {
O osureT _header;
Conti nuationT k;
int x;
inty;
} _sumcl osure;

The first field of the structure contains additional information maintained by the runtime system,
and is common to all closures. The thread argument variable names are used for the members of the
structure. Notethat new variable names generated by cilkpp are usually prefixed by _ to avoid potential
conflicts with user defined variables.

Every thread argument has a member with the same type in the closure structure. The only
exception is asignal argument, with is always left out. A variable-length argument such asi nt a[]
has amember declarationintheformof i nt a[0] .

4.10.2 Prototypes

Cilkpp normally derivestwo functionsfrom each thread. Thefirst functionisfor general entry from the
scheduler, which takes asits only argument the pointer to the closure. The second functionisfor direct
entry from calls. The prototypes of all derived functions are declared before the function definitions.
For example, the following are two prototypes are generated for thread fib:

extern void fib (_fib_closure *_cp);
extern void fib_fast (ContinuationT k, int n);

Note that the direct entry functionis named fib_f ast and takes all thread arguments.
In caseathread f 00 hasamigration thread, an additional prototypeisalso declared for the function
f 00_pack, which isthe general entry function derived from the migration thread:

C osureT *foo_pack (_foo_closure * _cp);

Since the migration thread is only used to unpack the old closure, there is no direct entry function
generated. Note that f 00_pack is expected to return a pointer to a closure.

4.10.3 Function Definitions Derived from Threads

The general entry function first fetches all arguments from the closure, and deall ocates the closure at
theend (infact, Fr eeCl osur e isinserted before every r et ur n statement). For example, below isthe
one for thefib thread:

35

voi d fib (_fib_closure * _cp)

{

ContinuationT k = _cp->k;

int n=_cp->n;

Freed osure ((C osureT*) _cp);
}

The direct entry function differs from the general one only in that arguments are passed directly
instead of fetched from the closure, and that no closure is deallocated since none is involved:

voi d fib_fast (ContinuationT k, int n)
{

}

An array argument is not fetched from the closure, instead a pointer is initialized to point to the
array in the closure. For example, corresponding to the argument i nt a[Sl ZE] , within the genera
entry therewill be aline:

int *a = _cp->a;

Array argument cannot be passed to direct entry functions.

Spawn

Spawning athread is expanded into C code to allocate the closure, initialize the closure with supplied
arguments, capturing continuations for the missing arguments, and posting the closure if possible. For
example, theline

spawn_next sum(k, ?x, ?y);
becomes

_sumcp 0 = (_sumclosure *)
NewCl osure ((ThreadT)sum O + sizeof(int) + sizeof (int),
si zeof (_sumclosure), 0);

_sumcp_0->k = k;
X = MakeConti nuati on

((AosureT *) sumcp 0, ARG INDEX (_sumcp 0, X));
y = MakeContinuati on

((AosureT *) sumcp 0, ARG INDEX (_sumcp 0, Vy));
Set 0 osureCol or ((Cl osureT *) _sumcp_0, O osureCol orLocal);

after the cilkpp expansion. Note that

e Thesize of the closure is the number of bytes of the closure structure, plus the actual size of an
additional variable-size array argument if any;

36

e Theinitial join count is calculated as the total bytesin all the missing arguments,

e Thelast argument to NewC osur e (childp) is O if the closure is created via spawn_next , 1 if
viaspawn;

e ARG | NDEX(cp, Xx) isthebyteoffset of member x from the end of the common closure header;

e If a waiting closure is created, as in this example, the color of the closure is set according
to supplied annotations. Cl osur eCol or Nor nal is the default, G osur eCol or Local if the
closureisdeclared | ocal , etc. (see section 5.4 for definition of other colors).

If aclosure is created with al the arguments, then the closure color will not be set, instead the
appropriateversion of Post G osur e* will becalled after the code generated from thetrailing statement
(if any).

Direct Call

A direct call issimply a call to the direct entry function. For example, the line
call fib (y, n-2);
Generates the following C statements:

TailCall ();
fib_fast (y, n-1);

HeretheTai | Cal | isissued to indicate calling a thread as the start of a new function invocation.
If cal | _next isusedthenit will not be generated.

Tail Call

For efficiency, atail call isimplemented as a jump to the beginning of the thread after resetting the
arguments. For example, If we replace the cal | statement in the fib threadto tai | _cal | , then the
following code will be generated (we only show the general entry function, the same happenswith the
direct entry function):

voi d fib(_fib_cl osure *_cp)

{

[* fetching arguments fromthe closure */

fib_direct _entry:

{
if (n<2) SendWordArgunent (k, n);
el se

{

I* below are the lines generated for the tail _call */

{

37

ContinuationT k_tmp =vy;
int ntnmp =n- 1;

k = k_tnp;
n = n_tnp;
Tail Call ();

goto fib_direct_entry;

}
}

Freed osure ((C osureT*) _cp);

}

Note that the label fib_di rect _ent ry isinserted right after the code to fetch arguments from the
closure, but FreeCl osur e is not part of the tail call loop. At the place where the tail call occurs,
arguments are reassigned via temporaries to ensure correctnessin case two arguments are swapped by
thetail call.

4.11 Language Reference Manual Change L og

$Log: lanref.tex,v $

% Revision 1.18 1995/01/03 21:16:54 randall

% changed col or constants.

%

% Revision 1.17 1994/11/06 02:19:33 randall

% Added Accumnul at eDoubl eWord, SendDoubl eAr gument and Accunul at eDoubl e t o doc.
%

%Revision 1.16 1994/11/03 21:26:10 zhou

%Better exanple toillustrate the use of mgration threads.

%

% Revision 1.15 1994/11/03 01:51:09 randall

% Updat ed everything to 1.2. Added changes in 1.2 to the change | og.
%

% Revision 1.14 1994/11/03 00:35:37 randall

% Added SendFl oat Argument and Accunul at eFl oat to manual .

%

% Revision 1.13 1994/09/28 19:14:21 randall

% changed 1.0 -> 1.1

%

% Revision 1.12 1994/09/28 18:20:36 zhou

% Modi fy thread creation syntax, added a section on passing thread argunents
%

% Revision 1.11 1994/09/06 17:40:24 bradley

% Many smal | changes fromny things-to-do |ist.

%

38

% Revision 1.10 1994/09/02 01:31:40 zhou
% Changed tpp to cil kpp everywhere

%

%Revision 1.9 1994/08/29 16:53:51 zhou

% fix some formatting problens

%

% Revision 1.8 1994/08/29 16:43:06 zhou

% add description of variables cilk_active_size and Sel f.
%

% Revision 1.7 1994/08/29 15:18:31 zhou

% Add | abel to chapter |anref

%

% Revision 1.6 1994/08/26 19:22:36 randall
% Added change log to the tutorial.

%D d some editing of the | anguage reference.
%

%Revision 1.5 1994/08/26 15:22:25 zhou

% Sone addi tions suggested by Keith

%

%Revision 1.4 1994/08/26 15:04:10 zhou

% Add section for data primtives

%

% Revision 1.3 1994/08/25 14:55:29 randall
% Made al | of the undefined \ref{}s work.

%

% Revision 1.2 1994/08/24 15:23:15 bradley
% Added a changel og to | angref.tex

% changed mac.tex to defs.tex.

%

39

Chapter 5

Specification of the Cilk Runtime System

5.1 Errata

Currently this document does not uniformly and accurately reflect the fact that we use the number of
bytes received to implement the join-count.

5.2 Introduction

The Cilk™ 1.2 (Version 1) run-time-system provides an execution environment for continuation-
style threads written in the C programming language. The C code may be written directly by a human
or it may be generated by a threaded-C preprocessor such as ci | kpp (see Chapter 4.) This document
specifies the run-time system. 1f you implement these functions then you should be able to run Cilk™
1.2 programs. |If you generate correct calls to these functions, then your program will run on any
compliant Cilk™ 1.2 run-time-system.

The abstract programming model provided by Cilk™ 1.2 is a dataflowlike procedure call tree,
where each procedure consists of a collection of threads. The entire computation consists of adirected
acyclic graph (DAG) of threads. A thread is a piece of code, implemented as a C function. Each
thread runs only after all of its DAG predecessors have run. Each DAG predecessor of a thread can
communicate with it by sending it some arguments. The DAG does not exist all at once. A program
can build the DAG on the fly. Furthermore, the DAG is organized into levels according the procedure
call tree. The procedure call tree has little to do with the C functions used to implement the program.
Instead, C functions are used to implement threads. A procedure is collection of threads with some
dependencies among them. The procedures themselves are threaded together via procedure-calls.

Rather than keeping track of the degree of each node in the DAG, our run-time system keeps track
of something else called the join-counter. The join-counter is a variable kept for each closure. As
each predecessor of a closure executes, the join-counter is decremented. Since the join counter can be
decremented by any positiveinteger, thejoin-counter does not specify thein-degree, but rather specifies
the amount of decrementation that must occur before athread runs.

Thelife cycle of athread consists of

e Create the thread. When athread is created, it is either created as a child thread (i.e, the thread
is spawned) or asibling thread.

40

e Modify the thread. After the thread is created and before it has been posted, it can be modified
in various ways.

e Send valuesto thethread. Asthe predecessorsof athread execute, they send valuesto the thread,
and decrement its join counter by appropriate values. Not every thread has values sent to it (in
particular, a thread whose join-count isintially zero skips this step.)

e Post thethread. If thejoin-count of thethreadisinitially zero, then the thread is posted explicitly
by the program. If the join-count of the thread is positive, then when enough values have been
sent to the thread, the thread is posted automatically by the scheduler. A thread cannot be
executed until it is posted. The closure can be moved to another processor only after it has been
posted. A closure can be annotated (“ colored”) in various special ways, so that, for example, it
will run on a specific processor.

o Executethethread. After the thread has been posted, the thread can be run by the scheduler. The
scheduler has some leeway about when it will actually run athread, and it treats child threads
differently from sibling threads (preferring to run achild beforeits parent, and to finish one child
before starting another, although in the search for parallelism these rules may be relaxed.)

¢ Dedllocatethestoragefor thethread. Notethat istheresponsibility of thethread codeto deall ocate
itsown closure beforeit returns. The runtime system does not automatically deall ocate closures
that have completed.

For certain threads, thislifecycle can be shortened. In particular for athread that, asitslast step, starts
the execution of another thread (with in-degree of one), there is no need to invoke the scheduler. The
C function can simply start executing the code for the next thread.

For certain programs we can guarantee space and time bounds, but we don’'t require the user to
write such programs. Some of the requirements may be enforced by the scheduler. In particular,
the scheduler is permitted to run a subtree without allowing other subtrees to make progress. Thus a
non-strict program may deadlock. The current scheduler does not deadlock for such programs, but this
specification allows us to write a scheduler that would deadl ock. We expect to experiment with other
schedulers in the future. In particular, we may eventually specify a scheduler that allows non-strict
programs to run.

5.3 Data Typesand Constants

Cilk™ 1.2 employsthree data types, visible to the user, to represent these computations.

e A closureisthe datastructure used to represent avertex in the DAG of the program. A closureis
represented by a contiguousblock of memory, starting with some header information maintained
by the implementation, followed by space for the arguments. The header is of type cl osur eT,
which is a structure typedef. The structure contains an field named ar gs which is an array of
characters of length O, the address of which is the beginning of the space to be used for the
arguments. The ar gs field of any closure is maximally aligned to avoid alignment errors (Thus
on the SPARC, ar gs is aligned to 64-bit word boundaries).

e A continuation isthe data structure used to represent an incoming edge to a vertex of the DAG.

41

e A thread isthe code which is run when a vertex of the DAG has been enabled.

Closures comein several colors, and have an extrainteger associated with them, the closure-info. The
colorsare asfollows:

d osur eCol or Nor mal : A closure that can be stolen.!

C osureCol orLocal : A closure that must be executed on the same processor on which it was
created.”

C osur eCol or Post Node: A closure that must be executed on a particular named processor. The
processor is specified by the closure-info.

C osureCol or M grati onThread: A migration closure is the same as a T osur eCol or Nor mal
closure, except that it uses the closure-info field to specify how to move the closure to another
processor. The closure-info field contains apointer (cast intoani nt) to aC function, called the
packing routine. The packing routine takes the closure asits only argument, and returns another
closure. The argument closure may contain, for example, pointers into the heap. The returned
closure must be flat (i.e., al the required data must be represented by value in the block of
memory allocated to the closure. The returned closure’sthread typically points to an unpacking
routine to be executed at the remote processor (e.g., to convert the flat representation back into
adata structure on the heap.) The packing routine should use Fr eeCl osur e() to deallocateits
argument. The unpacking routine typically postsits new closure, using the original thread, and
should color the new closure Cl osur eCol or Local in order to guarantee that the closure will
not be moved again beforeit is actually executed. Thus we have

C osureT *packer (C osureT *cl osure);

Rationale: Yuli observed that we might want migration threadsthat are posted on specific nodes.
Bradley thinks that if the user wants to post a thread on a specific node, then the user should
make the closure flat to start with, rather than writing a migration thread to pack up a structure.
The packing is valuable because it is done only when something is moved. If you know that the
work will move, then just do the packing immediately.

C osur eCol or Handl er Thread: A closure that should be executed as soon as possible on a par-
ticular processor. In particular, once al the predecessors have run, we prefer to execute a
C osur eCol or Handl er Thr ead closurebeforeexecuting any non-Cl osur eCol or Handl er Thr ead
closures. The closure-info specifies on which processor the closure must be executed.

We use some type qualifiers borrowed from Strata:
GLOBAL meansthat the declared type has global or ext er n scope.
ATOMIC meansthat afunction does not poll the networks.

INLINE meansthat thereis an inlineable version of the procedure.

'The d osur eCol or Nor mal color used to be called STEAL.
2Thed osur eCol or Local color used to be called NO.STEAL.

42

5.4 Procedures

GLOBAL ATOM C I NLI NE O osureT *
NewCl osure (ThreadT thread, int join_count, int size, int child p);

effect: Create anew closure.

e Thej oi n_count specifiestheinitial join-count of thenew closure. Thevalueofj oi n_count
must be nonnegative. Note that even if j oi n_count iszero, the closure is not posted into

aready queue.

e The si ze specifies the size of the closure block, measured in bytes. If you want to
reserve space for n bytes of arguments, then call NewCl osur e() with the size set to
si zeof (C osureT) + n. Thevaueof si ze must be no lessthan si zeof (Cl osureT).

e Thechi | d_p specifies whether the new thread belongs to this level (chi | d_p==0) or to
the next deeper level inthe call tree (chi | d_p==1). Thevaueof chi | d_p must be zero or
one.

The beginning of the block of memory used to store the si ze bytes of argumentsis available as
afield ar gs inthe returned closure.

note: After creating the closure, but before posting the closure, you may set the closure color, the
closure info (for certain colors), and fill in some of the argument memory of the closure.

note: Typically the join-count is initialized to si ze- si zeof (¢l osur eT), athough sometimes the
join-count is larger. In particular, when using accumulators and signals, the join-count should
be increased according to number of accumulators and signals that are expected. See the
accumul ation and signalling functions described bel ow.

43

GLOBAL ATOM C I NLI NE voi d
InitCl osure (ThreadT thread, int join_count, ClosureT *cp, int child p);

effect: Createaclosureby reusingablock of memory previously obtainedfromacall toNewd osure() .
(Compare to NewCl osur e(), which creates a closure on a block of memory that the system
newly allocates.) Thet hr ead specifies which thread will be run when the thread is posted and
scheduled to execute. Thej oi n_count specifiestheinitia value of the join counter (just asfor
NewCl osure()). Thechi | d_p specifieswhether thisis asibling or spawned thread. The size
of the closure is the same as the size of the original closure (and so, for example, do not try to
modify the closure header to manipulate the size of the closure.)

I ni tC osure() alowsthe user to avoid the overhead of doing

FreeCl osure(cp);
cp = NewCl osure(...);

if both closures are the same size.
requires: The block must have been obtained by a previous call the NewCl osur e() .

rationale: The user could conceivably want to provide arbitrary memory for this closure. However,
that would require reinitializing parts of the header that might not need reinitializaiton, and
besides the system might want to put all the closuresin a special area of memory, or index them
by small integers.

GLOBAL ATOM C I NLI NE voi d
FreeC osure (ClosureT *closure);

effect: Deallocates storage for this closure. All thread code should deallocate its closure before
returning, unlessit reuses the closure storage (with I ni t Cl osure().)

requires. The closure must not be used in the future. This means, among other things, that the
following must be true:

1. No memory loads or stores will, in the future, be made into the block of memory repre-
senting the closure (i.e., you should be finished using the closure fields);

2. No existing continuation pointing to this closure will be used in a SendArgument call in
the future.

3. Theclosureisnot currently posted anywhere. (That is, either the closure' sjoin-count never
went to zero, or el se the thread associated with the closure has been run.)

GLOBAL ATOM C I NLI NE voi d
TailCall (void);

effect: Notifies the run-time system that the C function has started executing another thread, and that
the new thread is a child of the old thread. (Thereis no need to tell the scheduler that anything
has happened if the new thread is a sibling of the old thread. The C function can simply start
executing the new thread.)

GLOBAL ATOM C I NLI NE voi d
Set O osureCol or (ClosureT *closure, CosureColorT color);

effect: Sets the color of the closure. The color of the closure determines how that closure will be
posted when itsjoin-count reaches zero. Settingthecolorto Cl osur eCol or Xtellsthe scheduler
to post the closure with the Post Cl osur eX routine (see below).

requires. The closure must not have been posted yet.

GLOBAL ATOM C | NLI NE voi d
SetC osurelnfo (CosureT *closure, int info);

effect: Setsthe closure-info of the closure. (Recall that closures of color Cl osur eCol or Post Node
and Cl osur eCol or Handl er Thr ead both use the closure-info to specify which processor the
thread must be executed on. Closures of color C osur eCol or M grati onThr ead use the
closure-info to specify the packing routine. The closure-infoisignored for al other colors.)

requires. The closure must not have been posted yet.

GLOBAL ATOM C I NLI NE voi d
Set Gl osureThread (Cl osureT *cl osure, ThreadT *tp);

effect: Setsthethread (i.e., the C procedure) that will be run when the closure is posted.

requires. The closure must not have been posted yet.

GLOBAL ATOM C I NLI NE voi d
Set G osuredoin (CosureT *closure, int join);

effect: Setsthejoin counter of theclosure. If you set thejoin counter to zero, you will need to manually
post the closure.

requires. The closure must not have been posted yet, nor must the join counter have been manipulated
by callsto a Send-Argument routine.

45

GLOBAL ATOM C I NLI NE Conti nuationT
MakeContinuation (C osureT *closure, int index);

effect: Makes a continuation for the given argument index in the given closure. Index is an offset in
bytes from the beginning of the argument list.

usage note: We suggest the following strategy for making it easy to name the arguments, handle
alignment issues, and otherwise manage the block of memory that holds arguments. Cast the
value returned from NewCl osur e() to astructure pointer, for example:

t ypedef struct {
C osureT c;
int x;
char vy;
doubl e z;

} CT007;

{ CT007 cl = (CTO07*)NewCl osure(&th, 2, sizeof (CT007), 0);
ContinuationT cl
= MakeCont i nuat i on(&cl - >c,
((char*)&cl ->x)-((char*)cl->args));
Conti nuationT c2
= MakeCont i nuat i on(&cl - >c,
((char*)é&cl ->z)-((char*)cl->args));
cl->y ='b';

GLOBAL ATOM C I NLI NE Conti nuationT
I ndexContinuation (ContinuationT k, Wrd index, Wrd size);

effect: Make a new continuation from an old continuation and an offset (where the offset is specified
asindex into an array of elements, each of sizesi ze). If k wascreated with offseti inaclosure,
then | ndexCont i nuation(k, |, s) hasoffseti + j - sinthesameclosure. Thatis,

I ndexCont i nuat i on(MakeConti nuation(c,i),j,s) =qgegf MakeContinuation(c,i+*s).

46

GLOBAL ATOM C I NLI NE voi d
Post Cl osure (ClosureT *closure);

effect: Posts the specified closure. If you know the color of the closure, then higher performance can
be obtained by calling the appropriate specialized posting routine described bel ow.

requires. The color (and theinfo, if used by that color), must be set.

note: The scheduler may use Post Cl osur e() to post a closure when itsjoin count goes to zero.

GLOBAL ATOM C I NLI NE voi d
Post Cl osureNormal (ClosureT *closure);

effect: Setsthecolor of cl osur e to be C osur eCol or Nor nal and postsit.

GLOBAL ATOM C I NLI NE voi d
Post Cl osureLocal (C osureT *closure);

effect: Setsthecolor of cl osur e to Cl osur eCol or Local and postsit.

GLOBAL ATOM C | NLI NE voi d
Post Cl osureNode (Cl osureT *cl osure, int pn);

effect: PostsaCl osur eCol or Post Node closure, and guaranteesthat the closurewill executed only on
theprocessor specified by pn. Thisisdoneby settingtheclosure’scolortoC osur eCol or Post Node
and the closure’sinfo field to pn.

GLOBAL ATOM C I NLI NE voi d
Post Cl osureHandl er (Cl osureT *closure, int pn);

effect: Setsthe color of cl osur e to C osur eCol or Handl er Thr ead and posts it so that it will run
on processor pn. (Thisisdone by setting the closure'sinfo field to pn.)

GLOBAL ATOM C I NLI NE voi d
Post Cl osureM gration (Cl osureT *cp, MgrationT nt);

effect: Setsthe color of ¢l osure to Cl osureCol or M grati onThr ead and postsit. The closure's
infofieldisset to bethent .

issue: Needto defineM grati onT.

47

GLOBAL I NLI NE voi d
SendChar Argunment (ContinuationT continuation, char value);

effect: Send an 8-hit value to a continuation (decrementing the join counter of the closure, and posting
the closure if the join-count becomes zero.)

GLOBAL | NLI' NE voi d
SendShort Argunent (ContinuationT continuation, short value);

effect: Send a 16-bit value to a continuation (decrementing the join counter of the closure by 2, and
posting the closure if the join-count becomes zero.)

requires. Theconti nuati on must have been created with a 16-bit aligned i ndex. (I.e., thei ndex
used for MakeCont i nuat i on must have been zero modulo 2.)

GLOBAL I NLI NE voi d
SendWor dAr gument (ContinuationT continuation, Word val ue);

effect: Send a 32-bit value to a continuation (decrementing the join counter of the closure by 4, and
posting the closure if the join-count becomes zero.)

requires. Theconti nuati on must have been created with a 32-bit aligned i ndex. (l.e., thei ndex
used for MakeCont i nuat i on must have been zero modulo 4.)

GLOBAL | NLI'NE voi d
SendDoubl eWor dArgument (- Conti nuationT continuation, Doubl eWrd val ue);

effect: Send a 64-bit value to a continuation (decrementing the join counter of the closure by 8, and
posting the closure if the join-count becomes zero.)

requires. Theconti nuati on must have been created with a 64-bit aligned i ndex. (I.e., thei ndex
used for MakeCont i nuat i on must have been zero modulo 8.)

GLOBAL | NLINE voi d
SendFl oat Argunent (ContinuationT continuation, float val ue);

effect: Send a 32-bit floating-point value to a continuation (decrementing the join counter of the
closure by 4, and posting the closure if the join-count becomes zero.)

requires. Theconti nuati on must have been created with a 32-bit aligned i ndex. (l.e., thei ndex
used for MakeCont i nuat i on must have been zero modulo 4.)

48

GLOBAL I NLI NE voi d
SendDoubl eAr gument (- ContinuationT continuation, double val ue);

effect: Send a 64-bit floating-point value to a continuation (decrementing the join counter of the
closure by 8, and posting the closure if the join-count becomes zero.)

requires. Theconti nuati on must have been created with a 64-bit aligned i ndex. (l.e., thei ndex
used for MakeCont i nuat i on must have been zero modulo 8.)

GLOBAL | NLI'NE voi d
SendArrayArgunent (ContinuationT continuation, char *array, int length);

effect: Send a block of memory to a continuation (decrementing the join counter of the closure by
| engt h, and posting the closure if the join-count becomes zero.) If the |l engt h is zero, the
pointer ar r ay is not dereferenced. The SendAr r ayAr gunment () function can be used to send
both structures and arrays.

performance: Thisroutineismost efficient whenboththear r ay andthei ndex usedfor MakeCont i nuat i on
are aligned similarly with respect to 32-bit word boundaries (I.e., they are congruent modulo 4).

requires. Thevalueof | engt h must not be larger than the remaining join count.

GLOBAL | NLI NE voi d
Signal (ContinuationT k);

effect: Thisroutinesendsasignal toaclosure. A signal isajust likeany other Send-Argument routine,
except no datais sent. Thejoin-count isdecremented (by 4?), and if it becomes zero, the closure
is posted.

issue: Should the join count decremented by 4 or by 1?

49

GLOBAL | NLINE voi d
Accunul at eword (ContinuationT k, AccumArdQp op, int delta);

effect: The closure memory element specified by the continuation k is modified according to op and
delta. Thatis, if a points to the address referenced by the continuation k, then this routine
cals

(*op)(delta,a);
The closure'sjoin count is decremented (by 4?), and if it becomes zero, the closure is posted.

The Cilk system provides the following predefined functions.

accumwor d_add: (addition)
accumwor d_nul : (multiplication)
accumwor d_and: (bitwiselogical ‘and’)
accumwor d_or : (bitwiselogical ‘or’)
accumwor d_max: (signed maximum)
accumwor d_m n: (signed minimum)

For example, accumwor d_add could have been defined as

voi d accum word_add (int v, int *a)

{
(a) += v;

}

The user can also define and use his or her own accumul ation operations.

requires. The continuation k must have been created with an index that is sufficiently aligned that the
function op can accessit without causing trouble. The system-defined operations require 32-bit
alignment.

note: AccumWordOp is defined as:
typedef void (*AccumAordQp) (int, int*);

issue: Should the join count decremented by 4 or by 1?

50

GLOBAL | NLINE voi d
Accunul at eDoubl eWord (Conti nuationT k, AccunDoubl eWordQp op, long long delta);

effect: The closure memory element specified by the continuation k is modified according to op and
delta. Thatis, if a points to the address referenced by the continuation k, then this routine
cals

(*op)(delta,a);

The closure'sjoin count is decremented (by 8), and if it becomes zero, the closure is posted.
The Cilk system provides the following predefined functions.

accumdoubl ewor d_add: (addition)
accumdoubl ewor d nul : (multiplication)
accumdoubl ewor d and: (bitwiselogical ‘and’)
accumdoubl ewor d or: (bitwiselogical ‘or’)
accumdoubl ewor d_ max: (signed maximum)
accumdoubl ewor d mi n: (signed minimum)
requires. The continuation k must have been created with an index that is sufficiently aligned that the

function op can accessit without causing trouble. The system-defined operations require 64-bit
alignment.

note: AccumbDoubleWordOp is defined as:

t ypedef void (*AccunmDoubl eWor dOp) (1 ong | ong, |ong | ong*);

51

GLOBAL I NLINE voi d
Accunul at eFl oat (ContinuationT k, Accunfl oat Op op, float delta);

effect: The closure memory element specified by the continuation k is modified according to op and

delta. Thatis, if a points to the address referenced by the continuation k, then this routine
cals

(*op)(delta,a);
The closure'sjoin count is decremented (by 4), and if it becomes zero, the closure is posted.

The Cilk system provides the following predefined functions.

accumfloat ;add: (addition)
accumfloat mul : (multiplication)
accumfloat max: (maximum)
accumfloat _m n: (minimum)

requires. The continuation k must have been created with an index that is sufficiently aligned that the
function op can accessit without causing trouble. The system-defined operations require 32-bit
alignment.

note: AccumFloatOp is defined as:

t ypedef void (*AccunFl oat Op) (float, float*);

52

GLOBAL | NLINE voi d
Accunul at eDoubl e (ContinuationT k, AccumDoubl eOp op, double delta);

effect: The closure memory element specified by the continuation k is modified according to op and

delta. Thatis, if a points to the address referenced by the continuation k, then this routine
cals

(*op)(delta,a);
The closure'sjoin count is decremented (by 8), and if it becomes zero, the closure is posted.

The Cilk system provides the following predefined functions.

accumdoubl e add: (addition)
accumdoubl e_mul : (multiplication)
accumdoubl e_max: (maximum)
accumdoubl e_m n: (minimum)

requires. The continuation k must have been created with an index that is sufficiently aligned that the
function op can accessit without causing trouble. The system-defined operations require 64-bit
alignment.

note: AccumbDoubleOp is defined as:

t ypedef voi d (*AccunmDoubl eOp) (doubl e, doubl e*);

53

GLOBAL i nt
RunSchedul er (int node, ThreadT root _thread, int numargs, ...);

effect: Startsup the scheduler and runsthethread r oot _t hr ead with numar gs words of arguments.
Notethat numar gs (and the argument list) doesNOT includethe continuation which must bethe
first argument of r oot _t hr ead. This continuation will be provided by RunScheduler. Note that
thisisadata-parallel operationsoall processorsinvolved must cal it. (All argumentsexcept node
are ignored on processors where Sel f # 0). Work-stealing is enabled if mode is Cl LK AUTO
or Cl LK AUTOKEEP, and the heap is kept around upon return if mode is Cl LK AUTOKEEP or
Cl LK.MANUAL KEEP.

requires. Thevalue of nbde must belong to the enumeration type
enumrun_node { Cl LK_AUTO, CI LK _MANUAL, Cl LK AUTO KEEP, Cl LK _MANUAL_KEEP };

All processors must call RunSchedul er () at about the sametime.
Thevalueof ci | kactivesi ze must bevalid.

issue: | need to define Sel f.

issue: Bradley believesthat the specification of this routine needs to be rewritten. For example, what
do we mean by “about the same time” ?

G.OBAL voi d
Glklnit(void);

meaning: Initializesthe communication library that Cilk uses.

GLOBAL voi d
ClkExit(int exitcode);

meaning: Endsthe Cilk program. If Exi t code iszero, thisisanormal exit and the processor that calls
it will wait for the othersto finish. If exi t code isnon-zero, it is an error exit. (all processors
will exitif any processor callsCi | KExi t with anon-zero argument.) This should be called after
RunSchedul er returns.

externint cilk active _size;

meaning: Theci | k_acti ve_si ze specifieshow many processorsthe user actually wantsto use. The
user can set this variable before calling RunSchedul er (). The value must be a nonnegative
value no greater than the number of actual processors. A zero value is used to specify as
many processors as are actually available. A positive number specifies a particular number of
processors to use.

The user may want to specify just afew processorsin order to obtain data about the performance
of hisor her application as the number of processorsis varied.

54

default: Thisvariable defaults to zero.

extern void (*cilk_user_function)();
extern int n_threads_per _user_function;

meaning: Thefunctionci | k_user functi on will be called periodically on each node by the sched-
uler so that the user may perform some periodic tasks. Thisfunction will be called more often if
thevalueof n_t hr eads per _user funct i onissmaller. Both of these global variablesmust be
set before the call to RunSchedul er. They may have different values on different processors.
Use NULL for the cilk_user_function in order to disable thisfeature.

default: cil k_user function defaultsto NULL and n_t hr eads_per _user functi on defaults to
20.

requires: These variables must not be modified by the user while the scheduler is running.

externint mgration_dest node;

meaning: Thisvariableholdsthe processor number of the destination processor for amigration thread.
Itisonly valid inside migration handlers.

issue: Thisisusedinthechesscodefor aborts. Isit useful asagenera mechanism? Should we expose
it?

55

5.5 Runtime Specification Change L og

$Log: runtine-spec.tex,v $

% Revision 1.12 1995/01/03 21:17:01 randall

% changed col or constants.

%

%Revision 1.11 1994/11/06 02:19:43 randall

% Added Accumnul at eDoubl eWord, SendDoubl eArgument and Accunul at eDoubl e t o doc.
%

% Revision 1.10 1994/11/03 00:35:46 randall

% Added SendFl oat Argunent and Accumul at eFl oat to manual .
%

%Revision 1.9 1994/09/06 17:40:28 bradley

% Many smal | changes fromny things-to-do |ist.

%

%Revision 1.8 1994/09/02 19:22:31 randall
%Stratalnit -> Cilklnit, same for exit.

%

%Revision 1.7 1994/09/02 01:31:43 zhou

% Changed tpp to cil kpp everywhere

%

%Revision 1.6 1994/08/26 19:16:30 bradley

% Most of the join-counter specificati on nowtal ks about counting bytes.
%

%Revision 1.5 1994/08/26 18:01:46 bradley

% Add change | og secti ons.

%

56

Bibliography

[BBY4]

[BLO3]

[Blu92]

[BPY4]

[HZJ944]

[HZJ94b]

[Kus94]

[LAD*92]

Eric A. Brewer and Robert D. Blumofe. Strataa A multi-layer communica-
tions library. Technical report, MIT Laboratory for Computer Science, January
1994. To appear. Available from ftp. | cs. m t. edu via anonymous ftp, in directory
/ pub/ supertech/ strata.

Robert D. Blumofe and Charles E. Leiserson. Space-efficient scheduling of multithreaded
computations. In Proceedings of the Twenty-Fifth Annual ACM Symposium on the Theory
of Computing (STOC ’93), pages 362—371, San Diego, California, May 1993.

Robert D. Blumofe. Managing storage for multithreaded computations. Master’s thesis,
Massachusetts Institute of Technology, Department of Electrical Engineering and Com-
puter Science, September 1992. Also available as MIT Laboratory for Computer Science
Technical Report MIT/LCS/TR-552.

Robert D. Blumofe and David S. Park. Scheduling large-scale parallel computations
on networks of workstations. In Proceedings of the Third International Symposium on
High-Performance Distributed Computing (HPDC '94), pages 96-105, San Francisco,
Cdlifornia, August 1994.

Michael Halbherr, Yuli Zhou, and ChrisF. Joerg. MIMD-style parallel programming based
on continuati on-passi ng threads. Computation Structures Group Memo 355, M assachusetts
Institute of Technology, Laboratory for Computer Science, 545 Technology Square, Cam-
bridge, MA 02139, April 1994. A shorter version will appear in Proc. of 2nd Int. Workshop
on Massive Parallelism: Hardware, Software and Applications. Capri, Italy, Oct. 1994.

Michael Halbherr, Yuli Zhou, and ChrisF. Joerg. MIMD-style parallel programming based
on continuation-passing threads. In Proc. of 2nd Int. Workshop on Massive Parallelism:
Hardware, Software and Applications., Capri, Italy, October 1994. To appear.

Bradley C. Kuszmaul. Synchronized MIMD Computing. PhD thesis, Massachusetts In-
stitute of Technology, Department of Electrical Engineering and Computer Science, May
1994.

Charles E. Leiserson, Zahi S. Abuhamdeh, David C. Douglas, Carl R. Feynman, Ma
hesh N. Ganmukhi, Jeffrey V. Hill, W. Daniel Hillis, Bradley C. Kuszmaul, Margaret A. St.
Pierre, David S. Wells, Monica C. Wong, Shaw-Wen Yang, and Robert Zak. The network
architecture of the Connection Machine CM-5. In Symposiumon Parallel Algorithmsand
Architectures (SPAA* 92), pages 272-285, San Diego, California, June 1992.

57

[PIGT] Vijay S. Pande, Chris Joerg, Alexander Yu. Grosberg, and Toyoichi Tanaka. Enumeration
of the hamiltonian walks on a cubic sublattice. To appear in Journal of Physcs A.

58

Appendix A

Cilk Implementor’s Guide

Cilk™ 1.2 is the first Cilk release written to facilitate porting to different kinds of sequential and
parallel machines. The codeis accepted by any standard ANSI C compiler (we recommend gcc). In
order to port Cilk easily, there are four steps you must accomplish; each step is an incremental change
over the previous ones. Thefirst step isto make Cilk run on one processor; the second oneisto build a
work-stealing version of Cilk; in the third step Post Cl osur eNode isimplemented, and finally you'll
add time measurementsin the last step. The porting processis mainly a clever definition of macros, as
you shall see.

A.l First step: get a sequential version of Cilk running

Your first task isto get Cilk running on your architecture without any of the work stealing and parallel
code. Thisisvery simple, since Cilk iswritten in ANSI C and requires no particular support from the
underlying operating system or compiler: however some gcc extensionsare supported in order to have
better performances. First, decide a name for your architecture (e.g. C\Vb, or PARAGON) and edit the
filert s/ conf . h. Thisfile contains some options you are expected to definein thisfirst step.

Create a block of definitions just before the section marked St ati stics & Debuggi ng similar
to the prototype included in thefile. There are some options you might want in order to get a different
behavior or better performance:

| SSPARALLEL Leave thisoption off for the moment. Enabling this option causes work stealing code
to be compiled, and this requires your intervention. Wait until step 2 to turn this on.

HAVE_LONG.LONG Turn this on if your compiler supports very long integers (64 bits); also define
LONG_LONGto be the C type of these integers (probably | ong | ong). gcc supports thistype.

Cl LK.PRI NTF Thisisapri nt f -likefunction Cilk usesfor itsdiagnostic messages, statisticsand such.
#define Cl LK_PRI NTF printf isprobably good if your pri ntf doesn’t clobber the network
with messages. Otherwise you should write your own function.

CONTI NUATI ON\HACK' Turn this option on if you have the LONG_LONGtype and want to pack contin-
uationsto fit into thistype. Otherwise, leave this option off. Thisoption will allow the compiler
to register-all ocate continuations.

59

HAVEI NLI NE Turn this option on if your compiler supports i nl i ne functions and you want to use
them. Thereis a speedup for using this option, at expense of increased code size.

Cl LK.FAST_RNG Cilk uses an internal random number generator when | S_PARALLEL==1. There are
two versions of this generator: a fast version and a portable one. The former assumes you
have 64 bitsunsi gned | ong | ong, while the latter is more portable (but still assumes 32 bit
unsi gned | ong).

Cl LK.POST_NODE Leavethisoff until step 3.
Cl LKLARCHH Define thisto be the name of the architecture-specific header file.

There are some more options you can define. 1t's advisableto have Cl LK_SELFTEST==1 (thisen-
ableslotsof consistency checks, valuablefor debugging), and Cl LK_TRACE equal to some small integer
(1 or 2); incrementing it gives more and more diagnostic messages, providing clues for debugging.
L eave the timing-rel ated options disabled for now.

Now you must create two files, rt s/ ar ch-your _arch. candrts/arch-your_arch. h. Inthe
. h file put something like

#define C LK_LONG ALI GNVENT 4
#define C LK_SHORT ALI GNVENT 2
#define CI LK_LONG LONG ALI GNVENT 8
#define C LK_FLOAT ALI GNVENT 4
#define CI LK_DOUBLE_AL| GNVENT 8

The goal of these macros is to provide means of alocating variables without violating architectural

requirements for alignment of variables. The definitions given should be good for most processorsin

use today. If you haven't got LONG_LONG, you don’'t need to define the corresponding alignment.
Also insert something like

#define CRI TI CAL_SECTI ON_BEG N()
#define CRI TI CAL_SECTI ON_END()

These macroswill not be used until later stages, but should be defined now in order to avoid compilation
errors. You can start by making a copy of rt s/ arch- sunos4. h to have al these definitions in the
right place.

TakethetimetodefinethemacroCi | k_Fl ushSt dout () : thisshould make surethat al diagnostic
messages are actually output, and internal buffers of Cl LK_PRI NTF are emptied. Probably

#define Ci | k_Fl ushSt dout () fflush(stdout)

would suffice.
Then you must editrt s/ ar ch- your _ar ch. ¢ to be something like

#i ncl ude <cil k. h>
int Self;
voi d G | k_ArchSpecificlnit()

60

Clk PartitionSize =/* put here a functionto retrieve the
* nunber of processors Clk is running on */
Self =/* put here a functionto retrieve the processor nunber of
* the | ocal processor. */

}

voi d G| k_ArchSpeci ficExit (i nt status)

{
/* put here architecture-dependent exit code */
exit(status);

}

Again, rts/arch-sunos4. c is a good example to start with. If your machine has only one
processor, just let Ci | k_PartitionSi ze=1and Sel f =0.

Now edit the Makefil e to provide suitable flags to the C compiler. These flags should be added
as YOUR_ARCHI TECTUREFLAGS after the UNI XFLAGS definition. You should be sure to define your
architecture’sflagtobe1 (i.e, includetheflag - DYOUR_ARCHI TECTURE=1 inyour flag list). Also, you
must add librariesfor your machinetothel i brari eslist. A goodway todothisistoreplacecnd with
your architectureinthel i br ari es rule and in the following three | i bGi | k rules. This replacement
will allow you to build librariesfor your architectureas well asastandard Unix architecture. You must
also change some of the rulesin the bui | di ng execut abl es and bui | di ng bi nari es to reflect
your architecture’s linking and compilation rules. Be sure to use YOUR_ARCHI TECTUREFLAGS in the
bui | di ng bi nari es section. Finaly, you should also make the same changesto the Makefil e inthe
examplesdirectory.

Now compile everything and go to the exanpl es directory. You should be able to compile and
runal files. Try fib 0 25, whose expected result is 75025, and queens 0 8 (92 isthe correct result).
If you have gcc you should be ableto compileandrunrts/testall . p.

A.2 Second step: get awork-stealing scheduler running

If you machineis sequential, go to step 4. Otherwise enjoy: unlike the first stage, this stage requires
some ingenuity and creativity . You will need to write code yourself, rather than simply cutting and
pasting existing code. You'll demonstrate your ability to write compact, elegant and efficient code for
the Cilk Runtime System!

First of al, turn on the option | S_PARALLEL in conf . h. Having done that, everything that can go
wrong will go wrong, so you'd better increase the tracing level abit.

Implement RemoteProcedureCalls. Cilk isbuilt over an abstraction of “Remote Procedure Calls”.
If the Cilk’s Runtime System needs to communicate something to another processor, it invokes a
C function (called a handler in Cilk’s terminology) with the appropriate arguments. You’'ll need to
figure out how to accomplish this effect on your system. We will provide some exampleslater; in the
meantime please be patient until you learn more about handlers used by Cilk.

Cilk requires you to specify how to implement four types of handlers:

61

DECLARE _SENDARG HANDLER(Gi | k_SendWr dAr gurment Handl er, | ong)

{
SENDARG_HANDLER _BEG N(| ong) ;

*((long *) ((char *) cp + index)) = val ue;

cp->join -= sizeof (I ong);
assert(cp->join >=0);

if (!cp->join)
Post O osure_nonsg(cp);
SENDARG _HANDLER ENIX() ;

Figure A.1: An example of handler from the Cilk code

SENDARGhandlers : used to communicate arguments to a remote closure.

ACCUMhandlers : used to accumulate argumentsin a remote closure. The various associative opera
tions you can use to accumulate have been described earlier in this manual.

SI GNAL handlers : usedtoimplementtheSi gnal operation. Theseare degenerate SENDARGhandlers,
because they don’'t carry any value. Currently, thereis only one handler of thistype.

CENERI Chandlers : used for various purposes. These handlers are functions of onel ong argument.

Moreover, the first two types have also an extended variant, since we imagine that very long C
types, in our case doubl e and | ong | ong, may require different treatment on some machines.

So, how do handlers work? Let's look at a specific example from the code, as in Figure A.1.
A handler of type SENDARG needs three arguments. a val ue whose type is specified by the user, a
variablecp of typeC osur eT * and aninteger i ndex. Moreover the handler isinvoked by the macro
expansion

| NVOKE_SENDARG HANDLER(pn, Ci | k_SendWor dAr gurrent Handl er, | ong,
val ue, cp, index);

Your goal is to implement four macros for each type of handler, plus one macro or function
G| k_POLL(),which cooperate to make thingswork. The basic ideais that macros of type DECLARE
provide the function prototype of the handler; BEG N macros declare additional arguments and read
them from the network; END macros reverse any action done by the BEG N macros, and finally
| NVOKE takes care of executing the handler on a remote processor passing the appropriate parameters.
Ci | k_POLL has a special meaning: if RPCs are implemented without using interrupts, this function
must check for incoming requests and satisfy them. Otherwise if an incoming request suspends the
program, G | k_POLL isano-operation. Asyou may guess, Ci | k_POLL iscalled at appropriate points
of the Cilk Runtime System.

For clarity, let’snow ook at some specific examples. Let’s suppose your machine has synchronous
message passing, i.e. you have three primitives send, receive and test to send, receive and test the

62

Handler'stype | Arguments Remarks
SENDARG type val ue; t ype isan argument
C osureT *cp; to DECLARE and
I nt index; | NVOKE macros.
SENDARG X type val ue; typeisdoubl e
C osureT *cp; or LONG_LONG(if
int index; defined)
ACCUM del tatype delta; | deltatype andoptype
opt ype op; are argumentsto
Cl osureT *cp; DECLARE and
int index; | NVOKE macros.
ACCUM X deltatype delta; | deltatypeisdoubl e
optype op; or LONG_LONG(if
C osureT *cp; defined)
I nt index;
SI GNAL C osureT *cp;
CGENERI C int arg; ar g isaparameter
of the DECLARE and
BEG N macros

Table A.1: Arguments to remote handlers, by handler’stype

presence of messages. An example of implementation for this case is shown in Figure A.2. We use
a protocol where a handler invocation packs the handler arguments in a suitable C structure, where
the first field is common to all such structures and is a pointer to the handler. Note that since this
implementation can send any C type, the extended handlers can be defined in terms of the basic ones.

An interesting variation on this theme is the Intel Paragon, which has the concept of a message
type. Thisisa 32-bit field which can be used to keep the pointer to the handler.

Now suppose that you have asynchronous message passing, i.e. when amessage arrivesit interrupts
the program and an appropriate user-defined function is called. The previous scheme still is a valid
implementation, except for the following:

e C Ik _POLL() isnow void, and theold Ci | k_POLL becomesthe user-defined function called at
interrupt time.

¢ You should definethemacrosCRI TI CAL_SECTI ON_BEGQ N() and CRI TI CAL_SECTI ON_END()
to respectively disable reception of further messages and restore the state preceding the last
CRI TI CAL_SECTI ON_BEG N() . Warning: the exact placement of these routines has not been
tested because we have currently tested Cilk only on polling architectures.

If your machine has remote procedure calls, you can use them. The existing implementation for
the CM5 uses RPCs, so you might want to take alook at the existing code.

To conclude the section about handlers, Tables A.1 and A.2 summarize all handler-related macros
you should implement.

63

[* this must be added to arch-your_arch.c */

static long buf[10]; /* maxi numlength of a nessage. This buffer should be
* larger if you want to use it also for work
* stealing, see below
*/

void G| k_POLL(voi d)
{
while (test()) {
/* receive the message into buf */
recei ve(buf);

/* can’t understand what’s going on? This is equival ent
* to:
*
* void (*fp)(long *) = (appropriate cast) buf[0Q];
* (*fp) (buf);
*/
(*(void (*)(long *))buf[0]) (buf);
}
} /* that's all the dispatcher */

[* the rest is part of arch-your_arch.h */
extern void G Ik _POLL(void);

#define DECLARE_SENDARG HANDLER(nane, type) \
voi d nane(long *I p)

#define SENDARG_HANDLER BEG N(type) \
struct { long dumy; type value; CosureT *cp; int index; } *sp =1Ip; \
type val ue = sp->val ue; \
QO osureT *cp = sp->cp; \
int index = sp->index;

#define SENDARG HANDLER ENDY()

#define | NVOKE_SENDARG HANDLER(pn, whi chhandl er, type, value, cp, index) \

{
struct { void (*fp)(long *); type a; CosureT *b; int ¢; } _s; \
_s.fp = whichhandler; \

_s.a = val ue; \
_S.b =cp; \
_S.C = index; \

send(pn, & s, sizeof(_s)); \

Figure A.2: An example of SENDARG macros for a synchronous-messages architecture
64

#define
#define
#define
#define

#define
#define
#define
#define

#define
#define
#define
#define

#define
#define
#define
#define

#define
#define
#define
#define

#define
#define
#define
#define

DECLARE_SENDARG _HANDLER(nane, type)

| NVOKE_SENDARG HANDLER(pn, whi chhandl er, type, val ue, cp, index)
SENDARG_HANDLER BEG N(t ype)

SENDARG_HANDLER_ENIY)

DECLARE_SENDARG XHANDLER(nane, type)

| NVOKE_SENDARG XHANDLER(pn, whi chhandl er, type, val ue, cp, index)
SENDARG_XHANDLER_BEG N(t ype)

SENDARG_XHANDLER END()

DECLARE_ACCUM HANDLER(nane, deltatype, optype)

| NVOKE_ACCUM HANDLER(pn, whi chhandl er, op, type, delta, cp, index)
ACCUM HANDLER BEG N(del t atype, optype)

ACCUM HANDLER_END()

DECLARE_ACCUM XHANDLER(name, del t atype, optype)

| NVOKE_ACCUM XHANDLER(pn, whi chhandl er, op, type, delta, cp, index)
ACCUM XHANDLER BEGQ N(del t at ype, optype)

ACCUM _XHANDLER _ENI()

DECLARE_SI GNAL_HANDLER(nane)

| NVOKE_SI GNAL_HANDLER(pn, whi chhandl er, cp)
SI GNAL_HANDLER BEQ N()

S| GNAL_HANDLER _END()

CGENERI C_HANDLER(nane, arg)
CGENERI C_HANDLER BEG N()

GENERI C_HANDLER_ENIX)
| N\VOKE_GENERI C_ HANDLER(pn, whi chhandl er, arg)

Table A.2: List of handler-related macros

65

Now provide barriers. In Cilk’sjargon, a barrier is a synchronization point: the goal of a barrier
is to make sure that a processor can cross the barrier only when all processors have reached it. You
must define afunction (or macro) voi d G | k_Barri er (voi d) todo exactly thisjob: thisfunctionis
probably already implemented in one of you system libraries. No special properties are required from
abarrier: it doesn’'t need to poll for incoming messages or allow interrupts to occur (it can do these
thingsif it wishes). We'd like to hear from you if you find any difficulty in implementing barriers (i.e.
if your system doesn’t already provide such functionality): we can design a general mechanism for
making barriers using RPCs if they are not easily implementable.

We recognize that writing all the required macros is rather boring and error-prone. There is a
specid filert s/ test-handl ers. ¢ which tests all handlers and barriers. It's wise to run it at this
point and look at the output. If anything goes wrong it’s better to increase the tracing level to 1 and
look at the more detailed output.

Now implement work-stealing. You need to implement the work-stealing protocol, which is very
simple: when there is no ready closure on some processor (the thief), the scheduler calls st eal (),
which in turn sets the global variable st eal _request pendi ng to 1, and invokes the handler
st eal _request _handl er on some random processor (the victim). steal _request_handl er
cals get _steal abl e_cl osure() which returns cp, a pointer to a closure. There are now two
cases. if cp isNULL, thereis no stealable closure, and the handler st eal _fai |l ure_handl er must
be invoked in the thief processor. Otherwise the closure pointed to by cp is to be sent to the thief,
invoking st eal _success_handl er.

The Figures A.3 and A.4 show a sketch of an implementation; for your convenience the same code
isinthefilerts/ cil k. c, which you should modify at this point. Some random comments to the
proposed code:

e HANDLER is not a macro or keyword. It's smply a clue that you must construct a handler
accepting some argumentsin the same way you that defined the macros above.

e Cilk does not require (but allows) the complete closure to be sent over the network : the first
CLOSURE_NONXM TTED WORDS words aren’t transmitted, and the first transmitted field is given
by the macro CLOSURE_FI RST_XM TTED_FI ELD.

e If you build a single message containing the closure, make sure you allocate a large buffer on
the receiving side (MAX_CLOSURE_SI ZE longs is large enough). In this case you'll probably
gainin performance by sending the whole closure instead of copying parts of it into a buffer and
sending the parts separately.

Now try the same examples of step 1 and observe the speedup. Remark: tree. p isn't going to
work until the next step is complete.

A.3 Step three: implement Post Cl osur eNode

In this step you are going to implement the protocol which all ows the user to specify which processor
agiven thread is to be run on. There are actually two different protocols, depending on whether the
thread to be remotely posted is a ordinary thread or an high-priority one (called handler thread in the

66

static void HANDLER(steal failure_handl er)

{
steal request _pending = O;
}
static void HANDLER(steal _success_handl er, int size)
{
C osureT *cp, *incom ng_cp;
cp = (CosureT *) alloc_bl ock(size + CLOSURE_NONXM TTED WORDS) ;
/*
* put here code to let inconming_cp point to the inconing closure;
* maybe let incoming cp point to a static buffer and read
* the data fromthe network into that buffer, you figure it out.
*/
I'* copy the inconing closure into Glk buffers */
mencpy((char *) &CLOSURE_FI RST_XM TTED FI ELD(*cp),
(char *) &CLOSURE FI RST_XM TTED FI ELD(*(C osureT *) incom ng_cp),
size * sizeof(long));
/' * some bookkeeping, don’t forget it */
steal _request _pending = O;
Gl k_Adopt G osure(cp);
Post O osur eLocal (cp);
WHEN CI LK _STATS(Ci | k_num m grated_threads++);
}

Figure A.3: Skeleton of work-stealing code, part 1/2

67

static void HANDLER(steal _request _handl er, int pn)

{
C osureT *cp = get _steal abl e_cl osure(pn);
int size;
if (cp == NULL) {
/* put code here to invoke steal failure_handler on pn */
} else {
Si ze = cp->si ze - CLCSURE_NONXM TTED WORDS;
/*
* put code here to invoke steal success_handl er on pn,
* in such a way that it can access the variable ‘size’ and
* read 'size' longs starting fromthe address
* CLOSURE_FI RST_XM TTED_FI ELD(*cp)
*/
/* some bookkeeping, don’t forget it */
Freed osure(cp);
}
}
static void steal (void)
{
int victim
if (steal request_pending)
return;
/* Chose a randomtarget other than Self */
victim= Gl k_Random() %cilk_active_si ze;
if (victim== Self)
return;
steal request_pending = 1;
/*
* put here code to invoke steal request_handler on victim
* passing Self as argunent
*/
}

Figure A.4: Skeleton of work-stealing code, part 2/2

68

current release!). The two protocols are very similar, since only the final action is different; hence
we'll describe only the protocol for ordinary threads, remarking the differences when needed.

The protocol begins with the user’s program invoking the function Post Cl osur eNode() (resp.
Post Cl osur eHandl er () for the second protocol). This function in turn builds an appropriate
packet containing the closure and sends it to destination processor, invoking post _r gst hndl r (resp.
post handl er _rqsthndlr). post _rqsthndl r adopts the closure and posts it locally (resp. en-
queuesit in the high-priority queue).

Asyou can see, the protocol is very simple, but there are machines (such as the CM5) on which it
wouldn’t work, or wouldn’t be very efficient, and a more elaborate protocol is needed. The problem
isthat the source processor is sending to the destination a large, unexpected packet: this packet could
fill buffers or deadlock the network, resulting in an error. Even if this protocol works, it might be more
efficient, if the architecture supportsit, to deliver the closure directly to its final destination, instead of
filling up some intermediate buffer and copying it. Therefore we'll describe the protocol used by the
CMS5, in case you need to implement something similar on your architecture.

Protocol for the CM5. Post Cl osur eNode() invokes post _rgst hndl r on the destination pro-
cessor, without sending it the actual closure, but communicating I) a pointer to it, cp (note that this
pointer is meaningless on the destination processor); I1) the size of the closure; 111) the source proces-
sor identifier. post _rqgst hndl r (on the destination processor) allocates space to hold the incoming
closure, and tells the communication library to store incoming data in that space. Then it invokes
post _reply_handl er on the source processor, giving it back cp. Now, contrary to what you might
expect, post _reply_handl er doesnot send the closure pointed to by cp immediately to the destina-
tion processor. Rather, it posts a thread on the local high-priority queue. Thisthread (post _t hr ead)
will be run later by the scheduler and will send the closure to destination. At the end of the transmis-
sion, post _final _handl er isinvoked on the destination processor to adopt the closure and post it.
The reason of the delayed transmission of the closure is very CM5-specific: since the CM5 does not
guarantee that the C stack can grow enough to allow all messagesto be received from the network. On
your machine you might want to send the closure immediately.

Figures A.5 and A.6 contain a skeleton of the code you must write to implement the simpler
protocol.

t estal | istheright program to run now, if you have LONG_LONG (sorry for this, a more portable
testal | . p will be released in the next version). And again, al examples should run fine: try
tree 0 14, and expect 2'4 = 16384 leaves.

A.4 Step four: add time statistics

Thisstepisn't realy needed for full functionality of Cilk; however having these kinds of statisticsisa
good thing anyway, and you should dedicate some time to make them work, once and forever.

Cilk supportstwo kind of time measurements: a coarse-grained timing of the total executionand a
fine-grained measurement of the execution time of each thread, which is used to determine the critical
path and the work done by every processor.

1This name is unfortunate, because an high-level user-visible feature has the same name as a low-level implementing
detail. We'll probably remove the naming conflict in afuture release.

69

voi d Post Cl osureNode(Cl osureT *cp, int pn)

{

}

assert(pn >= 0);
assert(pn < cilk_active_size);

CRI TI CAL_SECTI ON_BEGQ N() ;

if (pn == Self)
Post O osur eLocal (cp);

el se {
cp->info = pn;
/-k
* put here the code to send the closure to pn
* and invoke post _rqsthdlr(cp->size). Don't forget to increase
* the size of the buffer used by Cilk POLL() if you are
* using that routine to receive PostC osure messages.
*/

}

CRI TI CAL_SECTI ON_ENI() ;

voi d Post C osureHandl er (O osureT *cp, int pn)

{

assert(pn >= 0);
assert(pn < cilk_active_size);

CRI TI CAL_SECTI ON_BEG N();

if (pn == Self)
G 1 k_enqueue_handl er (cp);

el se {
cp->info = pn;
/*
* put here the code to send the closure to pn
* and invoke post _rqsthdlr(cp->size). Don't forget to increase
* the size of the buffer used by Cilk POLL() if you are
* using that routine to receive PostC osure messages.
*/

}

CRI TI CAL_SECTI ON_ENI() ;

Figure A.5: Skeleton of Post Cl osur eNode and Post Cl osur eHandl er

70

static void HANDLER post _rqgsthndlr(int size)
{

C osureT *newcp;

newcp = (CosureT *) G lk_alloc_block(size);

/*

* put here the code to read the incomng closure into
* newcp.

*/

C | k_Adopt O osur e(newcp) ;

Post O osur eLocal (newcp) ;

}

static voi d HANDLER post handl er _rqsthndl r(int size)
{

C osureT *newcp;

newcp = (CosureT *) G lk_alloc_block(size);

/*

* put here the code to read the incomng closure into
* newcp.

*/

C | k_Adopt O osur e(newcp) ;

enqueue_handl er (newcp) ;

Figure A.6: Skeleton of handlersfor Post Cl osur eNode and Post Cl osur eHandl er

71

Total execution time. In order to have a measurement of the execution time, you are required to
editrts/ conf. h, enablethe option Cl LK_ELAPSED TI ME and define two functions or macrosin the
architecture-specificfiles:

void G| k_TinmerStart(void) This function should start a machine-dependent timer (or record
the current time somewhere).

doubl e Ci I k_Ti mer St op(voi d) This function returns the time (in seconds) elapsed since the last
caltoC Ik _TimerStart().

Critical-path and work. Make sure that you have a very accurate clock on your machine (with a
resolution of one xs or more) and make sure that reading it won't cost too much time (this operationis
going to be executed millions of times). If the only way to read the clock is to issue a system call you
are out of luck.

If your system sati sfiesthese requirements, enabletheoption Cl LK_TI M NGinthefiler t s/ conf . h.
Establish a time unit (for example a iis, or a CPU cycle) that is suited to your architecture. Cilk can
handle whatever unit you choose, since it represents time as multiples of this unit, called a cycle in
Cilk’'sjargon. Cilk’stime is stored into a unsi gned | ong: make sure that the execution time of a
thread doesn’'t overflow the counter (100 ms is a reasonable maximum time for a thread).

Now you you must provide the following macros or functions:

unsi gned | ong Ci | k_Cycl eCount (voi d): Thisfunction returnsthe current time, in cycles.

unsi gned | ong Ci | k_El apsedCycl es(unsi gned | ong t): Thisfunctionreturnsthe number of
cycleselapsed sincetimet .

unsi gned | ong Ci | k_PackCycl es(unsi gned | ong n): Thisfunctionisused to collect the crit-
ical path timings, and itsgoal istwofold: 1) to change the time scale so that the critical path time
can still be held by an unsi gned | ong without overflow (in practice it performs a division of
n by some power of 2), and Il) to adjust n to prevent errors. There is a problem on the CM5
(and possibly in other architectures), in that the system clock measures real-time; however the
machineis timeshared, and a thread can be interrupted by the operating system. In this case the
cycle counter measurse the execution time for a thread plus the time quantum in which another
process has been executed. We therefore adopt the heuristic that athread is considered broken if
that thread ran for more than 50 ms, and if athread is broken, we give it a zero execution time.

unsi gned | ong G | k_Adj ust Cycl es(unsi gned | ong n): This macro must adjust n to prevent
errors, but not change the time scale.

doubl e G I k_UnpackCycl es(unsi gned | ong n): Performs the opposite action, i.e. converts
from packed cyclesto cycles. Theresultisadoubl e, sinceit could overflow al ong.

G | k_Cycl esToSeconds(n): Thismacro (it should be a macro for technical reasons, since the type
of n varies) converts from cyclesinto seconds. In practiceit dividesn by the number of cycles
per second. The result must be cast to doubl e.

72

A good testing program for this step is t est handl ers. ¢: if you compile the program with
Cl LK_TI M NG=1 it will invoke all the handlers and report the round-trip time measurementsfor all of
them. As acomparison, the round-trip for sending along value and get the answer is =~ 35 us on the
CM-5.

73

Appendix B

Copyright and Disclaimers

Permission to use, copy and modify this program for research purposes without feeis hereby granted,
provided that this copyright and permission notice appear on all copies and supporting documentation,
and the name of M.1.T. not be used in advertising or publicity pertaining to distribution of the program
without specific prior permission. M.I.T. makes no representati ons about the suitability of this software
for any purpose. It isprovided “asis’ without express or implied warranty.

74

Appendix C

Release Notes

C.1 Reéeease1l.0Beta2

Thefirst public release.

C.2 Rdeasel.1Betal

Syntax changes over version 1.0 beta2. The statement form that spawns athread is changed from
spawn (foo, args ...) stnt
to
spawn foo (args ...) stnt

The same changesapply to all cousinsof spawn, i.e., spawn_next,cal | ,cal | _next,tail call,
tail cal | _next,make_cl osur e and nake_next _cl osur e. (See the changed example programs.)

C.3 Rdeasel.2Betal

¢ Fixed abugwhere closures created with a zero-size accumul ator were not being correctly posted.

o Added DoubleWord accumulators:

Accunul at eDoubl eWord (cont k, AccunDoubl eWordQp op, long long delta);
accum doubl eword_add (doubl eword val ue, doubl eword *accunj;

accum doubl ewor d_mul (doubl eword val ue, doubl eword *accun;

accum doubl eword_and (doubl eword val ue, doubl eword *accunj;

accum doubl eword_or (doubl eword val ue, doubl eword *accunj;

accum doubl ewor d_max (doubl eword val ue, doubl eword *accunj;

accum doubl eword_ni n (doubl eword val ue, doubl eword *accun;

e Added float and doubl e types to primitive communication operations. In particular, the
following routines were added:

75

SendFl oat Argunent (cont k, float val ue);

SendDoubl eArgunent (cont k, double val ue);

Accunul at eFl oat (cont k, AccunFl oatCp op, float delta);
Accunul at eDoubl e (cont k, AccunDoubl eQp op, double delta);
accum float _add (float val ue, float *accun;

accum float _nul (float val ue, float *accunm;

accum float _max (float val ue, float *accunm;

accum float _min (float val ue, float *accunm;

accum doubl e_add (doubl e val ue, double *accunj;

accum doubl e_mul (doubl e val ue, double *accunm;

accum doubl e_max (doubl e val ue, double *accunj;

accum doubl e_m n (doubl e val ue, double *accun;

76

Appendix D
The Cilk Thread Preprocessor

NAME

cilkpp— The Cilk™ 1.2 language preprocessor
SYNOPSIS

cilkpp [-hvN] [-o outfile] infile
DESCRIPTION

cilkpp isthe thread preprocessor for the Cilk™ 1.2 language as defined in Cilk™ 1.2 Language
Reference Manual. It reads from an input Cilk program file, which by convention has the
extension .p, and generates ordinary C code in the output file. The output file is named c.out
unless explicitly specified. The generated C file must be compiled using gcc and linked with the
Cilk runtime library.

The following options are available:

-v If the -v option is given, cilkpp just display a message showing the current version number
and creation date.
-h 1f the -h option is given, cilkpp display a brief help message.

-N The -N option instructs cilkpp to suppress the generation of cpp #l i ne directives. cilkpp
inserts these directives into the generated C code by default, which enables C compiler
diagnostic messages to be related to the Cilk source program.

With the -N option, line breaks are inserted into the generated C code so that it is human
readabl e after being set by the UNIX indent program.

-o outfile The -o option instructs cilkpp to write the generated C code in outfile

SEE ALSO
Chapter 4 of the Cilk™ 1.2 (Version 31) Reference Manual.
MIMD Style Parallel Programming with Continuation-Passing Threads by M. Halbherr, Y. Zhou
and C. Joerg.

BUGS
gcc isrequired to compile the C code output by cilkpp, as some of it are gcc extensions,

77

The line numbers are accurate only for one termina symbol within each production in the

grammar, therefore line numbers for some symbolssuch as’)’, '}’ or 'el se’ may be sightly
off.

Since different pieces of the C code generated by cilkpp may be derived from the same source,
some errors in the source may get reported more than once from the C compiler.

78

Appendix E

| nstallation I nstructions

Currently, these installation procedures only apply to the CM5. Hopefully, they will not need much
modification for installing on other systems.

E.1 Howtoobtain Cilk

Cilk canbeobtained by f t pingthefile G | k1. 2. tar. Zfrom
theory.lcs. mt.edu:/pub/ftp/pub/cilk/Clkl. 2. tar.Z
Cilk should be installed on the compile-server for the CM5.

E.2 Howtolnstall Cilk

After copying Ci | k1. 2. t ar. Zinto adirectory on your system, do the following things:
e type‘unconpress Cilkl.2.tar.Z.Thiswill createafilenamed Ci | k1. 2. tar.

o type‘tar -xf Cilkl.2.tar’. Thiswill create adirectory named G | k1. 2/ and put al of
the Cilk software into this directory. You may want to remove the G | k1. 2. t ar file after this
isdone.

e type‘cd Gl kl. 2 followed by ‘source | NSTALL'. Thiswill install all of the Cilk software
including the pre-processor, the run-time library, and the Strata communication library. Note
that there are a few unaviodable compiler warnings when building Cilk, and these are listed in
the README in the top directory.

Note: In order to compile the pre-processor, you need to have atool called flex, the GNU version of
thel ex utility. Not all systemswill havethis softwareinstalled. The current distribution of flex can be
found in any one of the GNU archive sites, for example prep. ai . m t. edu (in directory pub/ gnu).
You will aso need bi son, the GNU version of Yacc, asit isneeded in building flex.

If you cannot get flex, an executable for the pre-processor for a sparc is provided. If you want to
use this executable instead of building the pre-processor ci | kpp, just comment out the three linesin
the | NSTALL script before running it:

79

pushd ci |l kpp
make cil kpp

popd

E.3 Howtoruntheregresson tests

E.3.1 Strataregression test

Move to the G | k1. 2/ strat a directory and type ‘jrun do-test’. This should run the strata
regression test and tell you something about the raw performance of the CM5 you are using.

E.3.2 Cilk run-time system regression test

Move to the G | k1. 2/rts directory and type ‘make testal | cnb’ to build the regression test
program (this may take several minutes). Then edit the file j ob and uncomment the call to the
regression test program (the line that says ‘t estal | .cnb 0’). Finally, type ‘j run j ob’ to run the
regression test. Theregression test programwill print*OK : ... " for correctly functioning primitives
andprint‘BAD: ...’ formafunctioningprimitives. It may also hangif aprimitiveisseriously broken.
The program may also print *???: ...’ if itisunableto determine whether a particular primitive is
working or not.

E.3.3 Runningthe Cilk examples

MovetotheCi | k1. 2/ exanpl es directory andtype‘make fib_cnb_st’. Thiswill makean executable
for fib for the CM5 with statistics gathering enabled. Then edit the file j ob and uncomment the call
tothefib_cnb_st program (thelinethat says‘fib_cnb_st 0 30’). Finally, type‘j run j ob’ torunthe
fib example. For the other examples (queens, tr ee, adq), simply repeat the above procedure with
their name replacing fib.

E.4 Mailing Lists

If you use Cilk, you may wish to be on the cilk-users mailing list. To join the cilk-users mailing list,
send mail to

cil k-users-request @heory.lcs.mt.edu
To send mail directly to the cilk-users mailing list, use

cilk-users@heory.lcs.mt.edu

80

Appendix F

Reporting Bugs

Please report bugsin the Cilk system by electronic mail (email) to
bug-cil k@heory.lcs.mt.edu
Or by hardcopy to

Cilk Bugs

c/o Bradley C. Kuszmaul

NE43-228

MIT Laboratory for Computer Science
545 Technology Square

Cambridge, MA 02139

81

Appendix G
Development M ethodology

This appendix is written for the Cilk devel opment team.
If you find a bug, and fix it, then make aregression test that demonstrates

¢ the absence of the bug in the new code, and

e the presence of the bug in old code.

82

Appendix H
ThingsTo Do

¢ Add sample applicationsto the tutorial.

e Mention phishin the introduction.
e Add references. (Currently the referencesjust has alist of papers, but nothing in the text of the

manual refersto any of the papers. Thiswas accomplished with\ noci t e{*}, but should have
been done the right way.

83

Appendix |
Overall Change L og

Release 1.0 5 1 had two bugsin it: The cilkpp preprocesor failed to put curly bracesin certain places,
and when repeated calls to RunScheduler were made in AUTO or MAUNUAL mode, the run-time
system would occasionally allocate the same block of memory for two different purposes.

Release 1.0 beta2 seems to fix those bugs.

$Log: manual .tex,v $

% Revi sion 1.45 1995/02/06 15:07:12 athena
% Added the inpl ementor’s guide.

%

% Revision 1.44 1994/11/06 02:19:39 randall
% Added Accumnul at eDoubl eWord, SendDoubl eArgument and Accunul at eDoubl e t o doc.
%

% Revi sion 1.43 1994/11/03 01:51:15 randall
% Updat ed everything to 1.2. Added changes in 1.2 to the change | og.
%

% Revision 1.42 1994/10/24 23:55:50 randall
% Updated ftp location of Cilk.

%

% Revision 1.41 1994/10/14 18:35:08 randall
% ARPA contract nunber update.

%

% Revi sion 1.40 1994/10/12 20:54:01 randall
% Updated title page footnote.

%

% Revision 1.39 1994/09/28 19:14:26 randall
%changed 1.0 -> 1.1

%

% Revi sion 1.38 1994/09/28 18:57:40 bradley
%Fix up credits.

%

% Revision 1.37 1994/09/28 18:21:53 zhou

% Add rel ease notes as an appendi x

%

% Revision 1.36 1994/09/23 03:17:22 bradley
% Add hal bherr to author |ist.

%

% Revision 1.35 1994/09/08 22:33:31 bradley
% Add i nformation about the bugs in 1.0 beta-1.
%

% Revision 1.34 1994/09/08 19:30:52 bradley
%Edit the disclainer.

%

% Revi sion 1.33 1994/09/08 19:25:21 bradley
% gr at ui t ous change

%

% Revision 1.32 1994/09/08 19:23:25 bradley
% Add trademark protection and up-to-date | egal disclainers.
%

% Revi sion 1.31 1994/09/07 17:26:17 bradley
% Updat e author |ist and renove annoying cvs "Id" fromtitlepage.
%

% Revision 1.30 1994/09/06 17:48:55 bradley
% Add ref erences.

%

% Revision 1.29 1994/09/06 17:40:26 bradley
% Many smal | changes fromny things-to-do |ist.
%

% Revision 1.28 1994/09/06 17:19:11 bradley
% Change silk to cilk

%

% Revi sion 1.27 1994/09/02 19:28:30 zhou

% Add i nstruction on howto obtain flex.

%

% Revision 1.26 1994/09/02 19:22:27 randall
%Stratalnit -> Cilklnit, same for exit.

%

% Revision 1.25 1994/09/02 18:24:21 randall
%Cilk->Cilkl. 0, added ref for flex | ocation.

%

% Revi sion 1.24 1994/09/02 01:30:51 zhou

% Changed t pp chapter to cilkpp

%

% Revi sion 1.23 1994/08/31 18:08:09 randall
% Added some to | ocal guide, put note about flex into installationinstructions.
%

% Revision 1.22 1994/08/ 30 20:44:16 zhou

% Add t pp manpage as an appendi x

85

%

% Revision 1.21 1994/08/30 18:54:19 randall

% added sone installation notes.

%

% Revision 1.20 1994/08/30 18:29:12 randall

% Updated Cilk.tar.Z | ocation(s)

%

% Revision 1.19 1994/08/30 13:47:55 bradley

%Put the mailing list names in tt font.

%

% Revision 1.18 1994/08/30 13:47:19 bradley

% Change t he sone fil enames in the documentati on.

%

% Revision 1.17 1994/08/29 21:48:13 randall

% Put serial fib ahead of threaded fib in tutorial.

% Changed sonme | ocal guide stuff and howto obtain G|k stuff.
%

% Revision 1.16 1994/08/29 21:10:16 randall

% Updated installation instructions. Added disclainer & copyright.
%

% Revision 1.15 1994/08/29 15:18:59 zhou

% Added a section to explain tpp output.

%

% Revision 1.14 1994/08/26 18:17:06 randall

% Added tabl e of contents. Added sone installationinstructions.
%

% Revision 1.13 1994/08/26 18:00:23 bradley

% added mailing list info.

%

% Revision 1.12 1994/08/26 15:41:49 bradley
%Filledin the bug information.

%

% Revision 1.11 1994/08/26 15:04:13 zhou

% Add section for data primtives

%

% Revision 1.10 1994/08/25 18:01:11 bradley

% Fi xed aut hor |ist, and added a few changes.

%

% Revision 1.9 1994/08/25 17:34:47 randall

% Fi ni shed sone sections in tutorial, added some informationto the
%1 ocal guideto tell where Glk software i s |ocated.
%

% Revision 1.8 1994/08/25 14:55:33 randall

% Made al | of the undefined \ref{}s work.

%

86

% Revision 1.7 1994/08/24 20:34:54 randall
% Made tc-tut conpile into nanual.

%

%Revision 1.6 1994/08/24 15:23:17 bradley
% Added a changel og to | angref.tex

% changed mac.tex to defs.tex.

%

%Revision 1.5 1994/08/24 15:11:28 zhou

% added | anref + mac.

%

% Revision 1.4 1994/08/22 16:38:48 bradley
% Added | ocal gui de.

%

% Revision 1.3 1994/08/22 16:29:07 bradley
%An initial version of the manual with sone stuff init.
%

%Revision 1.2 1994/08/22 16:18:42 bradley
% Al nost t he first version.

%

87

