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Abstract

Hardware transactional memory should support un-
bounded transactions: transactions of arbitrary size and
duration. We describe a hardware implementation of un-
bounded transactional memory, called UTM, which ex-
ploits the common case for performance without sacri-
ficing correctness on transactions whose footprint can be
nearly as large as virtual memory. We performed a cycle-
accurate simulation of a simplified architecture, called
LTM. LTM is based on UTM but is easier to implement,
because it does not change the memory subsystem outside
of the processor. LTM allows nearly unbounded transac-
tions, whose footprint is limited only by physical memory
size and whose duration by the length of a timeslice.

We assess UTM and LTM through microbenchmark-
ing and by automatically converting the SPECjvm98 Java
benchmarks and the Linux 2.4.19 kernel to use transac-
tions instead of locks. We use both cycle-accurate simu-
lation and instrumentation to understand benchmark be-
havior. Our studies show that the common case is small
transactions that commit, even when contention is high,
but that some applications contain very large transac-
tions. For example, although 99.9% of transactions in the
Linux study touch 54 cache lines or fewer, some transac-
tions touch over 8000 cache lines. Our studies also indi-
cate that hardware support is required, because some ap-
plications spend over half their time in critical regions.
Finally, they suggest that hardware support for transac-
tions can make Java programs run faster than when run
using locks and can increase the concurrency of the Linux
kernel by as much as a factor of 4 with no additional pro-
gramming work.

1. Introduction

Conventionally, atomicity in shared-memory multipro-
cessors is provided via mutual-exclusion locks (see, for
example, [37]). Although locks are easy to implement us-
ing test-and-set, compare-and-swap, or load-linked/store-

conditional instructions, they introduce a host of difficul-
ties. To avoid deadlock when locking multiple objects,
the locks must be acquired in a consistent linear order,
which makes programming with locks error-prone and
sometimes introduces significant overheads in managing
the lock acquisition protocol. Moreover, locking can intro-
duce other overheads, because a thread must always grab
a lock to gain exclusive access to a shared object, regard-
less of whether another thread is actually attempting to ac-
cess the same object.

An alternative to locking is nonblocking synchroniza-
tion [9, 16, 17, 22, 27], which provides mutual exclusion
without using locks. Systems implemented in nonblock-
ing fashion [9, 27] seem to perform better than those that
use locks, but conventional nonblocking programming is
not only more difficult than programming with locks, it
appears to be even more error-prone. A common solution
to this programming problem is to encapsulate the non-
blocking protocols in library primitives, but this strategy
limits the generality with which nonblocking program-
ming can be employed by ordinary programmers.

Transactional memory [14, 15, 20, 32, 33, 36] has been
proposed as a general and flexible way to allow programs
to read and modify disparate primary memory locations
atomically as a single operation, much as a database trans-
action can atomically modify many records on disk. The
basic idea of transactional memory rests on atomic trans-
actions [8,25], which offer a method for providing mutual
synchronization without the protocol intricacies of con-
ventional synchronization methods. A transaction can be
thought of as a sequence of loads and stores performed
as part of a program. Unlike in databases, we need not
concern ourselves with failures, and so we can arrange
that transactions either commit or abort. If a transaction
commits, then all of the loads and stores appear to have
run atomically with respect to other transactions, that is,
the transaction’s operations do not appear to have inter-
leaved with those of other transactions. If a transaction
aborts, then none of its stores take effect and the trans-



action may be restarted, using a backoff or priority mech-
anism to guarantee forward progress. From the program-
mer’s perspective, all that needs to be specified is where
a transaction begins and where it ends, and the transac-
tional support, whether in hardware or software, handles
all the complexities.

Hardware transactional memory (HTM) sup-
ports atomicity through architectural means, whereas
software transactional memory (STM) supports atom-
icity through languages, compilers, and libraries. Re-
searchers of both HTM and STM commonly express the
opinion that transactions need never touch many mem-
ory locations, and hence it is reasonable to put a (small)
bound on their size. For HTM implementations, they con-
clude that a small piece of additional hardware—typically
in the form of a fixed-size content-addressable mem-
ory and supporting logic—should suffice. For STM
implementations, some researchers argue addition-
ally that transactions occur infrequently, and hence the
software overhead would be dwarfed by the other pro-
cessing done by an application.

In contrast, this paper advances the following thesis:

Transactional memory should support transac-
tions of arbitrary size and duration. Such sup-
port should be provided with hardware assis-
tance, and it should be made visible to the soft-
ware through the machine’s instruction-set ar-
chitecture (ISA).

We define a transaction’s footprint to be the set of memory
locations accessed by the transaction. We say that a trans-
actional memory system is unbounded if the system can
handle transactions of arbitrary duration and with foot-
prints that are nearly as big as the virtual memory of the
system.

The primary goal of unbounded transactional mem-
ory is to make concurrent programming easier, hopefully
without incurring much overhead in its implementation.
We are interested in unbounded transactions because nei-
ther programmers nor compilers can easily cope when an
architecture imposes a hard limit on transaction size. An
implementation might be optimized for transactions be-
low a certain size, but must still operate correctly for larger
transactions. The size of transactional hardware should be
an implementation parameter, like cache size or memory
size, which can vary without affecting the portability of bi-
naries.

Since “ease of programming” is largely subjective,
how does one make a case for architectural change, es-
pecially since no existing programs use the new program-
ming abstraction? This paper focuses on answering this
question. Section 2 describes UTM (“Unbounded Trans-

actional Memory”), a general and flexible architecture to
support unbounded transactions. Since the generality of
UTM comes at a cost, Section 3 describes LTM (“Large
Transactional Memory”), a simplified architecture that we
have implemented using the UVSIM [40] processor sim-
ulator. LTM handles nearly unbounded transactions with
much lower implementation cost. Section 4 describes sev-
eral microbenchmark and application studies that confirm
the assumptions made by UTM and LTM about common-
case behaviors of transactions, as well as documenting that
mechanisms to support unbounded transactional memory
have a minimal impact on processor performance. Sec-
tion 5 describes related research, and Section 6 provides
some concluding remarks.

2. The UTM architecture

This section describes a system called UTM that im-
plements unbounded transactional memory in hardware.
UTM allows transactions to grow (nearly) as large as vir-
tual memory. It also supports a semantics for nested trans-
actions, where interior transactions are subsumed into the
atomic region represented by the outer transaction. Un-
like previous schemes that tie a thread’s transactional state
to a particular processor and/or cache, UTM maintains
bookkeeping information for a transaction in a memory-
resident data structure, the transaction log. This enables
transactions to survive timeslice interrupts and process mi-
gration from one processor to another. We first present the
software interface to UTM, and then describe the imple-
mentation details.

New instructions
UTM adds two new instructions to a processor’s in-

struction set architecture:

XBEGIN pc: Begin a new transaction. The pc argument
to XBEGIN specifies the address of an abort handler
(e.g., using a PC-relative offset). If at any time dur-
ing the execution of a transaction the hardware deter-
mines that the transaction must fail, it immediately
rolls back the processor and memory state to what it
was when XBEGIN was executed, then jumps to pc to
execute the abort handler.

XEND: End the current transaction. If XEND completes,
then the transaction is committed, and all of its oper-
ations appear to be atomic with respect to any other
transaction.

Semantically, we can think of an XBEGIN instruction
as a conditional branch to the abort handler. The XBEGIN
for a transaction that fails has the behavior of a mispre-
dicted branch. Initially, the processor executes the XBEGIN



as a not-taken branch, falling through into the body of
the transaction. Eventually the processor realizes that the
transaction cannot commit, at which point it reverts all
processor and memory state back to the point of mispre-
diction and branches to the abort handler.

UTM supports the nesting of transactions by “subsum-
ing” the inner transaction. For example, within an “outer”
transaction, a subroutine may be called that contains an
“inner” transaction. UTM simply treats the inner transac-
tion as part of the atomic region defined by the outer one.
This strategy is correct, because it maintains the property
that the inner transaction executes atomically. Subsumed
nested transactions are implemented by using a counter to
keep track of nesting depth. If the nesting depth is posi-
tive, then XBEGIN and XEND simply increment and decre-
ment the counter, respectively, and perform no other trans-
actional bookkeeping.

Rolling back processor state

The branch mispredict mechanism in conventional su-
perscalar processors can roll back register state only for
the small window of recent instructions that have not grad-
uated from the reorder buffer. To circumvent the window-
size restriction and allow arbitrary rollback for unbounded
transactions, the processor must be modified to retain an
additional snapshot of the architectural register state. A
UTM processor saves the state of its architectural regis-
ters when it graduates an XBEGIN. The snapshot is retained
either until the transaction aborts, at which point the snap-
shot is restored into the architectural registers, or until the
matching XEND graduates indicating that the transaction
has committed.

UTM’s modifications to the processor core are illus-
trated in Figure 1. We assume a machine with a unified
physical register file, and so rather than saving the archi-
tectural registers themselves, UTM saves a snapshot of
the register-renaming table and ensures the corresponding
physical registers are not reused until the transaction com-
mits. The rename stage maintains an additional “saved”
bit for each physical register to indicate which registers
are part of the working architectural state, and takes a
snapshot as each branch or XBEGIN is decoded and re-
named. When an XBEGIN instruction graduates, activat-
ing the transaction, the associated “S bit” snapshot will
have bits set on exactly those registers holding the grad-
uated architectural state. Physical registers are normally
freed on graduation of a later instruction that overwrites
the same architectural register. If the S bit on the snap-
shot for the active transaction is set, the physical register is
added to a FIFO called a Register Reserved List instead of
the normal Register Free List. This prevents physical reg-
isters containing saved data from being overwritten during

a transaction. When the transaction’s XEND commits, the
active snapshot’s S bits are cleared and the Register Re-
served List is drained into the regular Register Free List.
In the event that the transaction aborts, the saved register-
renaming table is restored and the reorder buffer is rolled
back, as in an exception. After restoring the architectural
register state, the branch is taken to the abort handler. Even
though the processor can internally speculatively execute
ahead through multiple transactions, transactions only af-
fect the global memory system as instructions graduate,
and hence UTM requires only a single snapshot of the ar-
chitectural register state.

The current transaction abort handler address, nesting
depth, and register snapshot are part of the transactional
state. They are made visible to the operating system (as
additional processor control registers) to allow them to be
saved and restored on context switches.

Memory state

Previous HTM systems [15,20] represent a transaction
partly in the processor and partly in the cache, taking ad-
vantage of the coincidence between the cache-consistency
protocol and the underlying consistency requirements of
transactional memory. Unlike those systems, UTM trans-
actions are represented by a single xstate data structure
held in the memory of the system. The cache in UTM
is used to gain performance, but the correctness of UTM
does not depend on having a cache. In the following para-
graphs, we first describe the xstate and how the system
uses it assuming there is no caching. Then, we describe
how caching accelerates xstate operations.

The xstate is illustrated in Figure 2. The xstate contains
a transaction log for each active transaction in the sys-
tem. A transaction log is allocated by the operating sys-
tem for each thread, and two processor control registers
hold the base and bounds of the currently active thread’s
log. Each log consists of a commit record and a vector
of log entries. The commit record maintains the trans-
action’s status: PENDING, COMMITTED, or ABORTED. Each
log entry corresponds to a block of memory that has been
read or written by the transaction. The entry provides a
pointer to the block and the old (backup) value for the
block so that memory can be restored in case the transac-
tion aborts. Each log entry also contains a pointer to the
commit record and pointers that form a linked list of all
entries in all transaction logs that refer to the same block.

The final part of the xstate consists of a log pointer and
one RW bit for each block in memory (and on disk, when
paging). If the RW bit is R, any transactions that have ac-
cessed the block did so with a load; otherwise, if it is W,
the block may have been the target of a transaction’s store.
When a processor running a transaction reads or writes a



block, the block’s log pointer is made to point to a trans-
action log entry for that block. Further, if the access is a
write, the RW bit for the block is set to W. Whenever an-
other processor references a block that is already part of
a pending transaction, the system consults the RW bit and
log pointer to determine the correct action, for example,
to use the old value, to use the new value, or to abort the
transaction.

When a processor makes an update as part of a transac-
tion, the new value is stored in memory and the old value
is stored in an entry in the transaction log. In principle,
there is one log entry for every load or store performed by
the transaction. If the memory allocated to the log is not
large enough, the transaction aborts and the operating sys-
tem allocates a larger transaction log and retries the trans-
action. When operating on the same block more than once
in a transaction, the system can avoid writing multiple en-
tries into the transaction log by checking the log pointer to
see whether a log entry for the block already exists as part
of the running transaction.

By following the log pointer to the log entry, then fol-
lowing the log entry pointer to the commit record, one can
determine the transaction status (pending, committed, or
aborted) of each block. To commit a transaction, the sys-
tem simply changes the commit record from PENDING to
COMMITTED. At this point, a reference to the block pro-
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Figure 1: UTM processor modifications. The S bit vector tracks
the active physical registers. For each rename table snapshot,
there is an associated S bit vector snapshot. The Register Re-
served List holds the otherwise free physical registers until the
transaction commits. The LPR field is the next physical register
to free (the last physical register referenced by the destination ar-
chitectural register).

duces the new value stored in memory, albeit after some
delay in chasing pointers to discover that the transaction
has been committed. To avoid this delay, as well as to free
the transaction log for reuse, the system must clean up af-
ter committing. It does so by iterating through the log en-
tries, clearing the log pointer for each block mentioned,
thereby finalizing the contents of the block. Future refer-
ences to that block will continue to produce the new value
stored in memory, but without the delay of chasing point-
ers. To abort a transaction, the system changes the commit
record from PENDING to ABORTED. To clean up, it iterates
through the entries, storing the old value back to memory
and then clearing the log pointer. We chose to store the old
value of a block in the transaction log and the new value
in memory, rather than the reverse, to optimize the case
when a transaction commits. No data copying is needed to
clean up after a commit, only after an abort.

When two or more pending transactions have accessed
a block and at least one of the accesses is a store, the trans-
actions conflict. Conflicts are detected during operations
on memory. When a transaction performs a load, the sys-
tem checks that either the log pointer refers to an entry in
the current transaction log, or else that the RW bit is R (ad-
ditionally creating an entry in the current log for the block
if needed). When a transaction performs a store, the sys-
tem checks that no other transaction is referenced by the
log pointer (i.e., that the log pointer is cleared or that the
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linked list of log entries corresponding to this block are
all contained in the current transaction log). If the con-
flict check fails, then some of the conflicting transactions
are aborted. To guarantee forward progress, UTM writes
a timestamp into the transaction log the first time a trans-
action is attempted. Then, when choosing which transac-
tions to abort, older transactions take priority. As an alter-
native, a backoff scheme [28] could also be used.

When a writing transaction wins a conflict, there may
be multiple reading transactions that must be aborted.
These transactions are found efficiently by following the
block’s log pointer to an entry and traversing the linked list
found there, which enumerates all entries for that block in
all transaction logs.

Caching

Although UTM can support transactions of unbounded
size using the xstate data structure, multiple memory ac-
cesses for each operation may be required. Caching is
needed to achieve acceptable performance. In the com-
mon case of a transaction that fits in cache, UTM, like
the earlier proposed HTM systems [15, 20], monitors the
cache-coherence traffic for the transaction’s cache lines to
determine if another processor is performing a conflict-
ing operation. For example, when a transaction writes to
a memory location, the cache protocol obtains exclusive
ownership on the whole cache block. New values can be
stored in cache with old values left in memory. As long as
nothing revokes the ownership of any block, the transac-
tion can succeed. Since the contents of the transaction log
are undefined after the transaction commits or aborts, in
many cases the system does not even need to write back
a transaction log. Thus, for a small transaction that com-
mits without intervention from another transaction, no ad-
ditional interprocessor communication is required beyond
the coherence traffic for the nontransactional case. When
the transaction is too big to fit in cache or interactions with
other transactions are indicated by the cache protocol, the
xstate for the transaction overflows into the ordinary mem-
ory hierarchy. Thus, the UTM system does not actually
need to create a log entry or update the log pointer for a
cached block unless it is evicted. After a transaction com-
mits or aborts, the log entries of unspilled cached blocks
can be discarded and the log pointer of each such block
can be marked clean to avoid writeback traffic for the log
pointer, which is no longer needed. Most of the overhead
is borne in the uncommon case, allowing the common case
to run fast.

The in-cache representation of transactional state and
the xstate data structure stored in memory need not match.
The system can optimize the on-processor representation
as long as, at the cache interface, the view of the xstate

is properly maintained. For convenience, the transaction
block size can match the cache line size.

System issues

The goal of UTM is to support transactions that can run
for an indefinite length of time (surviving time slice inter-
rupts), can migrate from one processor to another along
with the rest of a process’s state, and can have footprints
bigger than the physical memory. Several system issues
must be solved for UTM to achieve that goal. The main
technique that we propose is to treat the xstate as a system-
wide data structure that uses global virtual addresses.

Treating the xstate as data structure directly solves part
of the problem. For a transaction to run for an indefinite
length of time, it must be able to survive a time-slice in-
terrupt. By adding the log pointer to the processor state
and storing everything else in a data structure, it is easy to
suspend a transaction and run another thread with its own
transaction. Similarly, transactions can be migrated from
one processor to another. The log pointer is simply part of
the thread or process state provided by the operating sys-
tem.

UTM can support transactions that are even larger than
physical memory. The only limitation is how much vir-
tual memory is available to store both old and new val-
ues. To page the xstate out of main memory, the UTM
data structures might employ global virtual addresses for
their pointers. Global virtual addresses are system-wide
unique addresses that remain valid even if the referenced
pages are paged out to disk and reloaded in another lo-
cation. Typically, systems that provide global virtual ad-
dresses provide an additional level of address translation,
compared to ordinary virtual memory systems. Hardware
first translates a process’s virtual address into a global vir-
tual address. The global virtual address is then translated
into a physical address. Multics [2] provided user-level
global virtual addressing using segment-offset pairs as the
addresses. The HP Precision Architecture [23] supports
global virtual addresses in a 64-bit RISC processor.

The log pointer and state bits for each user memory
block, while typically not visible to a user-level program-
mer, are themselves stored in addressable physical mem-
ory to allow the operating system to page this informa-
tion to disk. The location of the memory holding the log
pointer information for a given user data page is kept in
the page table and cached in the TLB.

During execution of a single load or store instruction,
the processor can potentially touch a large number of dis-
parate memory locations in the xstate, any of which may
be paged out to disk. To ensure forward progress, either
the system must allow load or store instructions to be
restarted in the middle of the xstate traversal, or, if only



precise interrupts are allowed, the operating system must
ensure that all pages required by an xstate traversal can be
resident simultaneously to allow the load or store to com-
plete without page faults.

UTM assumes that each transaction is a serial instruc-
tion stream beginning with an XBEGIN instruction, end-
ing with a XEND instruction, and containing only register,
memory, and branch instructions in between. A fault oc-
curs if an I/O instruction is executed during a transaction.

3. The LTM implementation

UTM is an idealized design for HTM that requires sig-
nificant changes to both the processor and the memory
subsystem of a current computer architecture. By scaling
back on the degree of “unboundedness,” however, a com-
promise between programmability and practicality can be
achieved. This section presents such an architectural com-
promise, called LTM, for which we have implemented a
detailed cycle-level simulation using UVSIM [40].

LTM’s design is easier to implement than UTM, be-
cause it does not support transactions of virtual-memory
size. Instead, LTM avoids the intricacies of virtual mem-
ory by limiting the footprint of a transaction to (nearly)
the size of physical memory. In addition, the duration of a
transaction must be less than a time slice and transactions
cannot migrate between processors. With these restric-
tions, LTM can be implemented by only modifying the
cache and processor core and without making changes to
the main memory, the cache-coherence protocols, or even
the contents of the cache-coherence messages. Unlike a
UTM processor, an LTM processor can be pin-compatible
with a conventional processor. The design presented here
is based on the SGI Origin 3000 shared-memory multi-
processor, with memory distributed among the processor
nodes and cache coherency maintained using a directory-
based write-invalidate protocol.

The UTM and LTM schemes share many ideas. Like
UTM, LTM maintains data about pending transactions in
the cache and detects conflicts using the cache-coherency
protocol in much the same way as previous HTM propos-
als [18, 20]. LTM also employs an architectural state-save
mechanism in hardware. Unlike UTM, LTM does not treat
the transaction as a data structure. Instead, it binds a trans-
action to a particular cache. Transactional data overflows
from the cache into a hash table in main memory, which
allows LTM to handle transactions too big to fit in the
cache without the full implementation complexity of the
xstate data structure.

LTM has similar semantics to UTM, and the format
and behavior of the XBEGIN and XEND instructions are the
same. The information that UTM keeps in the transaction
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log is kept partly in the processor, partly in the cache, and
partly in an area of physical memory allocated by the op-
erating system.

LTM requires only a few small modifications to the
cache, as shown in Figure 3. For small transactions, the
cache is used to store the speculative transactional state.
For large transactions, transactional state is spilled into
an overflow data structure in main memory. An additional
bit (T) is added per cache line to indicate if the data has
been accessed as part of a pending transaction. When a
transactional-memory request hits a cache line, the T bit
is set. An additional bit (O) is added per cache set to indi-
cate if it has overflowed. When a transactional cache line
is evicted from the cache for capacity reasons, the O bit is
set.

In LTM, the main memory always contains the orig-
inal state of any data being modified transactionally, and
all speculative transactional state is stored in the cache and
overflow hash table. A transaction is committed by sim-
ply clearing all the T bits in cache and writing all over-
flowed data back to memory. Conflicts are detected using
the cache-coherency protocol. When an incoming cache
intervention hits a transactional cache line, the running
transaction is aborted by simply clearing all the T bits and
invalidating all modified transactional cache lines.

The overflow hash table in uncached main memory is
maintained by hardware, but its location and size are set
up by the operating system. If a request from the proces-
sor or a cache intervention misses on the resident tags of
an overflowed set, the overflow hash table is searched for
the requested line. If the requested cache line is found, it
is swapped with a line in the cache set and handled like a
hit. If the line is not found, it is handled like a miss. While
handling overflows, all incoming cache interventions are
stalled using a NACK-based network protocol.

The LTM overflow data structure uses the low-order



bits of the address as the hash index and uses linear prob-
ing to resolve conflicts. When the overflow data structure
is full, the hardware signals an exception so that the op-
erating system can increase the size of the hash table and
retry the transaction.

LTM was designed to be a first step towards a truly
unbounded transactional memory system such as UTM.
LTM has most of the advantages of UTM while being
much easier to implement: one student was able to im-
plement LTM in a detailed simulator in one semester
and obtain results that provide insight into the behavior
of unbounded transactions. LTM is interesting its own
right, perhaps providing a more practical implementation
of quasi-unbounded transactional memory that suffices
for real-world concerns. For its part, the idealized UTM
scheme stakes out the extreme of unbounded transactional
support, providing a good measuring stick against which
LTM and other potential compromises can be evaluated.

4. Evaluation

In this section, we evaluate the efficacy of our mech-
anisms for unbounded transactional memory. Using both
cycle-accurate simulation and trace analysis of application
programs, including the SPECjvm98 Java benchmarks
and the Linux 2.4.19 kernel, we conclude that the com-
mon case is indeed small transactions that commit, even
when contention is high, but that some applications con-
tain very large transactions. Hardware support is needed,
because some applications spend over half their time in
critical regions. Moreover, the data suggest that transac-
tions increase concurrency compared with locking.

Transactional applications

Because no large-scale applications currently exist that
use transactional memory, we developed translation tools
to convert C and Java programs that use locks into trans-
actional programs. Using this methodology we converted
the Linux 2.4.19 kernel, written in C and running un-
der User-Mode Linux [4], and the SPECjvm98 bench-
marks [35], written in Java, to use transactions. Although
this methodology produces applications that retain some
of the vestiges of locking (such as protocols to avoid dead-
lock), it provides conservative numerical results for es-
timating whether the assumptions of the UTM architec-
ture are valid. Moreover, it allowed us to measure a full
operating system and real Java programs. We also devel-
oped some synthetic microbenchmarks, one of which is
reported here. Other results are presented in [24].

We compiled the SPECjvm98 benchmark suite with
FLEX, our state-of-the-art Java compiler infrastruc-
ture [1] using version 0.06 of the GNU Classpath [6]

Java standard libraries and the “PreciseC” FLEX back-
end. FLEX translates standard Java synchronized
blocks into atomic blocks [5, 11]. Although the seman-
tics of the program change slightly with this transforma-
tion, the effect tends to be consistent with the program-
mer’s original intent [5]. We transformed standard Java
monitor synchronization into transactions, and nested
locks were transformed into nested subsumed transac-
tions. Although the SPECjvm98 benchmarks are largely
single-threaded, since they use the thread-safe Java stan-
dard libraries, they contain synchronized code. We gather
information about these transformed synchronized re-
gions from single-threaded executions of the benchmarks.
Some SPECjvm98 benchmarks were omitted from our in-
vestigations. The 227 mtrt and 205 raytrace bench-
marks were omitted from the execution-driven experi-
ments due to thread-system incompatibilities with the
simulator infrastructure. The 228 jack parser gener-
ator was omitted from the trace-driven study, because
the instrumented version tickled a bug in the Irix as-
sembler that we could not fix. The methodology of the
trace-driven study also excluded the 227 mtrt bench-
mark, but as 227 mtrt is identical to 205 raytrace
except for a command-line argument specifying the num-
ber of threads, we expect 227 mtrt to have transaction
properties similar to 205 raytrace.

We evaluated the Linux 2.4.19 kernel using User-Mode
Linux [4], which runs Linux as a set of processes on a host
operating system. We configured User-Mode Linux to use
two processes to emulate two processors, and ran it on a
2-processor SMP host machine. Since the locks in Linux
are properly nested and are never held across context
switches or input/output, we could easily “transactify” the
kernel by using transactions instead of locks. Our source-
to-source translator simply replaced all locks with trans-
actions, subsuming nested transactions whenever nested
locks were encountered. We began our traces after initial
system boot and setup. We studied two workloads: a par-
allel make that compiles the kernel, and dbench running
three clients [38].

Our execution-driven experiments used UVSIM [40], a
multiprocessor simulator based on RSIM [30]. The cycle-
accurate processor model is based on a MIPS R10K 4-
issue out-of-order superscalar processor [39], extended
with 96 physical registers and the additional register and
cache support for LTM. We model a 2GHz CPU, 32KB 4-
way associative instruction and data L1 caches with 64-
byte cache lines, a 1MB 4-way unified L2 cache with
128-byte cache lines, and a 400Mb/s DDR2 SDRAM
memory system. The system has a distributed directory-
based cache coherence protocol based on the SGI Ori-
gin, with a 10 cycle-per-hop interprocessor network la-
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Figure 4: Counter performance on UVSIM.

tency [24]. To run on UVSIM, the microbenchmarks and
the SPECjvm98 benchmarks were compiled into MIPS
Irix binaries with instruction extensions for transactions.

Microbenchmark on LTM
The microbenchmark Counter was designed to pro-

vide insight into the behavior of locks and LTM under
high contention. It shows that small transactions are likely
to commit even when contention is high. The microbench-
mark has one shared variable which each processor incre-
ments repeatedly in a critical section. Thus, each trans-
action is only a few instructions long. If an access to the
variable fails, the abort handler simply retries immediately
without backing off. In the locking version, each proces-
sor obtains a global spin-lock using a load-linked/store-
conditional (LLSC) sequence.

Both the locking and transactional versions of Counter
were run on UVSIM with LTM, and the results are shown
in Figure 4. The locking version scales poorly, because
the LLSC causes many cache interventions even when the
lock cannot be obtained. On the other hand, the transac-
tional version scales much better, despite having no back-
off. When a transaction obtains a cache line, it is likely
to be able to execute a few more instructions before re-
ceiving an intervention, since the network latency is high.
Therefore, small transactions can start and commit (and
perhaps even start and commit subsequent transactions)
before the cache line is taken away. Similar behavior is ex-
pected from UTM, because small transactions effectively
use the cache the same way. This benchmark indicates that
small transactions that commit is indeed the common case,
even under high contention. Moreover, it confirms other
researchers’ findings [10, 31, 32] that transactions can ex-
ecute with lower overhead than locks.

SPECjvm98 on LTM
We ran the Java benchmarks on LTM, and the results

are shown in Figure 5. For these measurements, we used
our modified Java compiler to compile three versions of
the SPECjvm98 benchmark suite to run under our UVSIM
implementation of LTM. We compiled a Base version that
uses no synchronization, a Locks version that uses spin-

Benchmark Base Locks Trans Time in Time in
application time time time trans overflow

(cycles) (% of Base time) (% of Trans time)
200 check 8.1M 124% 101% 32.5% 0.0085%
201 compress 608.3M 103% 106% 3.9% 3.9%
202 jess 75.0M 141% 108% 59.4% 0.0072%
209 db 11.8M 142% 105% 54.0% 0%
213 javac 30.7M 170% 114% 84.2% 10%
222 mpegaudio 99.0M 100% 100% 0.8% 0%
228 jack 261.4M 175% 104% 32.1% 0.0056%

Figure 5: SPECjvm98 performance on a 1-processor UVSIM
simulation. The “Time in trans” and “Time in overflow” are the
times spent actually running a transaction and handling over-
flows, respectively. The input size is -s1. For our tests, each
UVSIM processor is configured with a 1MB 4-way set-associative
L2 cache using 128-byte cache lines.

locks for synchronization, and a Trans version that uses
LTM transactions for synchronization. To measure over-
heads, we ran these versions of the SPECjvm98 bench-
mark suite on one processor of UVSIM.

As shown in the figure, the overhead of adding trans-
actions to the base code is typically under 10%. Locking
adds much more overhead, and the impact on performance
is more variable. One reason that the locking versions of
some applications (e.g., javac) are so much slower than
the transactional verions is that the subsumption of nested
transactions enables multiple lock operations on the var-
ious objects involved in a critical region to be replaced
with a single outer transaction. Many of the benchmarks
spend much of their time in transactions, which indicates
a need for hardware support for transactional memory, at
least for these kinds of legacy benchmarks. The bench-
marks also indicate that the LTM hardware spends little
time handling overflows, but large transactions that cause
overflow do occur.

These results also predict that the UTM architecture
should also have minimal overhead, since the UTM data
structure behaves much like the LTM hash table. For a
miss in the cache, LTM requires one additional memory
access to index the hash table (when there is no hash-table
conflict). Similarly, UTM requires one memory access in
addition to retrieving the requested cache line. UTM may
require an additional memory access, however, to retrieve
the transactional record entry. Since UTM requires at most
one more memory access than LTM when there is over-
flow, and overflow is not common, the performance of
UTM should be similar to that of LTM.

Trace-driven studies

We also instrumented the SPECjvm98 benchmarks and
the Linux 2.4.19 kernel to produce a trace of the mem-
ory references and transactional operations. For the Linux
kernel we used a source-to-source translator for C pro-



grams [29] to instrument every load and store, and we
modified the kernel headers to instrument the locks. For
the SPECjvm98 benchmarks, we modified a Java com-
piler [1] to instrument load, store, and synchronization op-
erations. In both cases, we ran the instrumented program
to get a trace and then ran the trace through a simulator
we developed to measure the transaction properties. The
simulation used a 1MB 4-way set-associative cache with
64-byte cache lines.

Figure 6 shows the the results of our trace analysis
of the Linux 2.4.19 kernel and SPECjvm98 benchmarks.
For both kernel workloads, make linux and dbench, the
“Xops %” column shows that over 40% of all the ker-
nel’s memory operations take place in transactions, which
means that a software transactional memory would be too
slow. Many of the SPECjvm98 benchmarks exhibit simi-
lar numbers. The “Oversized xaction,” “Biggest xaction,”
and “Overflow %” columns show that some applications
contain transactions whose footprints would overflow any
reasonably-sized cache. But these big transactions don’t
cost much, as can be seen in a variety of ways—for
example, “Cache miss %” is typically far greater than
“Xmiss %.”

The Java benchmarks have disparate numbers and sizes
of transactions. One extreme is the 213 javac Java com-
piler benchmark, which contains a small number of ex-
tremely large transactions, one of which has a footprint
of over a million cache lines. Closer examination reveals
that the method Javac.compile(), which implements
the entire compilation process, is marked as synchro-
nized: the programmer has explicitly requested that the
entire compilation occur atomically. Although one could
argue that the Java compiler should be rewritten if con-
currency is desired, even difficult cases, such as the Java
compiler, should at least work correctly. The variability
again demonstrates that bounded transactions are insuf-
ficient when automatic tools transform lock-based proto-
cols into transactions.

We studied the make linux and dbench kernel bench-
marks more closely to understand how the size of cache
affects the overflow of transactional state in UTM and
LTM. Figure 7 graphs the results, confirming that there are
again some very large transactions, but that most transac-
tions are small. For these benchmarks, almost all the trans-
actions need less than about 100 cache lines, and in fact,
99.9% need fewer than 54 cache lines.

The UVSIM simulations for Counter and the
SPECjvm98 benchmarks indicate that switching from
locks to transactions enhances concurrency. To study this
phenomenon more deeply, we instrumented the Linux
benchmarks to measure lock contention, the probability
that a particular lock is held at any time during the lock-
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ing execution, and cache contention, the probability that
a particular cache line is held in the write state by a trans-
action during the transactional execution. The idea is
that, under locking, there is some “hottest” lock that pre-
vents the kernel from running on more than a certain num-
ber of processors. Similarly, under transactions, there
is a “hottest” cache line, because the transaction mech-
anism implicitly locks cache lines. If locks are the
only limits to concurrency, we can use the hottest lo-
cation to provide an upper bound to the concurrency
of an application. For example, if a particular lock is
held 5% of the time by each processor, then the appli-
cation can not use more than 20 processors before the
lock becomes a bottleneck. This measure of concur-
rency provides insight into the available concurrency
of the locking and transactional versions of the ker-
nel.

For make linux, the hottest lock (the kernel lock) was
held about 4 times longer than the hottest cache line, cor-
roborating the findings of our cycle-accurate simulation
and the literature that transactions increase concurrency.
Reducing the dependence on the kernel lock has been
the focus of years of effort by the kernel developers, but
progress has been slow. Inspection of the code that manip-
ulates the hottest cache line reveals that it contains coun-
ters for the page allocator, and that minor data restructur-
ing using transactional memory would yield a 25% im-
provement in concurrency. This optimization is not easily
available to the kernel programmers, however, because it
would be hard to obey the locking protocol which dictates
the order in which locks must be acquired. Thus, the pri-
mary claim of transactional memory—that it makes con-
current programming easier—appears to be valid both be-
cause of greater concurrency compared with locks and the
ease with which concurrency can be enhanced.

Summary
Our Linux and Java studies strongly suggest that the



Program Input Total cache Xactions Oversized Xops Xmiss Overflow Biggest
size memory ops miss % xactions % % % xaction

make linux 315,776,028 0.56% 6,964,277 3368 41.0% 0.017% 8144
dbench 100,928,220 0.43% 1,863,426 88 49.5% 0.001% 7047
201 compress 1 229,332,212 0.10% 524 0 0.0% 0 0 54

100 2,981,777,890 0.10% 2,272 0 0.0% 0 0 52
202 jess 1 1,972,479 3.13% 82,103 0 43.3% 0 0 428

100 405,153,255 2.71% 4,892,829 0 9.1% 0 0 1,064
205 raytrace 1 14,535,905 1.83% 1,125 1 49.6% 0.648% 0.0889% 110,579

100 420,005,763 1.65% 4,177 1 1.7% 0.022% 0.0239% 110,509
209 db 1 393,455 2.01% 14,191 0 45.8% 0 0 187

100 848,082,597 10.14% 45,222,742 288 23.0% 0.350% 0.0005% 67,569
213 javac 1 1,605,330 1.88% 460 1 89.5% 0.517% 0.2087% 24,559

100 472,416,129 1.78% 668 4 99.9% 1.652% 0.5988% 1,275,590
222 mpegaudio 1 26,551,440 0.03% 1,049 0 0.1% 0 0 53

100 2,620,818,214 0.00% 2,992 0 0.0% 0 0 54

Figure 6: Experimental results for transactifying the Linux kernel and Java. For Java we show results for runs with 1% and 100% of
the full input size. For the percentages, we write “0” for numbers that are exactly zero, and a “zero” percentage, such as “0.0%,” for
small nonzero values. The columns are as follows: Total memory ops is the total number of loads and stores executed. For Linux,
we measured the kernel’s memory operations. For Java, we measured the application’s memory operations, not including operations
performed by native methods and gc. Cache miss % is the fraction of memory operations that caused cache misses. Xactions is the
total number of transactions. Oversized xactions is the total number of transactions that did not fit entirely within the cache. Xops %
is the fraction of memory operations that were in transactions. Xmiss % is the fraction of transactional loads and stores that did not fit
into the cache, and hence invoked the overflow mechanism. Overflow % is the fraction of the cache sets that overflowed. We measured
this at the end of each transaction, and averaged it over all the transactions. This gives a rough measure of the likelihood that a cache
intervention request from another processor would need to look at the overflow buffer. Biggest xaction is the largest number of distinct
cache lines that any transaction touched. A fully associative bounded-hardware transaction scheme would need a cache of at least this
size.

assumptions behind the UTM and LTM architectures are
correct: transactions are frequent and require hardware
support, most transactions fit in the cache, and a few large
transactions must be handled by exceptional mechanisms
supporting unbounded transaction sizes. The concurrency
results suggest that automatic translation of locks to trans-
actions is viable and desirable for legacy code. In addition,
it appears that transactional memory is not limited to spe-
cialized parallel applications, but can be exploited by or-
dinary Java and C programs. Indeed, our studies show that
transactional memory can be exploited by operating sys-
tems, perhaps the most frequently run multithreaded pro-
grams.

5. Related Work

This section describes related research in the literature.
Transactions are described in the database con-

text by Gray [7], and [8] contains a thorough treat-
ment of database issues. HTM was first proposed by
Knight [20], and Herlihy and Moss coined the term
“transactional memory” and proposed HTM in the con-
text of lock-free data structures [15, 18]. The BBN
Pluribus [34, Ch. 23] provided transactions, with an archi-
tectural limit on the size of a transaction. Experience with
Pluribus showed that the headaches of programming cor-

rectly with such limits can be at least as challenging as
using locks. The Oklahoma Update is another varia-
tion on transactional operations with an architectural limit
on the number of values in a transaction [36].

Transactional memory is sometimes described as an
extension of Load-Linked/Store-Conditional [19] and
other atomic instruction sequences. In fact, some CISC
machines, such as the VAX, had complex atomic in-
structions such as enqueue and dequeue [3]. Lamport
proposed lock-free data structures [22], and Herlihy pro-
posed wait-free programming [12, 13].

Of particular relevance to our work are Speculative
Lock Elision (SLE) [31] and Transactional Lock Re-
moval (TLR) [32], which speculatively identify locks and
use the cache to give the appearance of atomicity. SLE
and TLR handle mutual exclusion through a standard pro-
grammer interface (locks), dynamically translating locks
into transactional regions. Our research thrust differs from
theirs in that we hope to free programmers from the pro-
tocol complexities of locking, not just optimize existing
practice. Despite the difference in outlook, however, our
quantitative results from Section 4 confirm their finding
that transactional hardware can be more efficient than
locks.

Martinez and Torrellas proposed Speculative Syn-
chronization [26], which allows some threads to exe-



cute atomic regions of code speculatively, using locks,
while guaranteeing forward progress by maintain-
ing a nonspeculative thread. These techniques gain many
of the performance advantages of transactional mem-
ory, but they still require new code to obey a locking pro-
tocol to avoid deadlock. We believe programmers would
enthusiastically abandon the locking paradigm if a trans-
actional memory implementation of atomic regions was
available and had good performance.

The recent work on Transactional memory Coherence
and Consistency (TCC) [10] is also relevant to our work.
TCC uses a broadcast bus to implement the transaction
protocols, performing all the writes of a particular trans-
action in one atomic bus operation. This strategy limits
scalability, whereas both UTM and LTM can employ scal-
able cache-consistency protocols to implement transac-
tions. One important conclusion is the same for both TCC
and our work: most transactions are small, but some are
very large. TCC supports large transactions by locking the
broadcast bus and stalling all other processors when any
processor buffer overflows, whereas UTM and LTM al-
low overlapped execution of multiple large transactions
with local overflow buffers. TCC is similar to LTM in that
transactions are bound to processor state and cannot ex-
tend across page faults, timer interrupts, or thread migra-
tions.

Many researchers have pursued software transactional
memory (STM) [11,14,33]. Some constrain the program-
mer and make transactions difficult to use by, for example,
requiring all object memory touched by a transaction to ei-
ther be known in advance [33] or explicitly “opened” dur-
ing the transaction [14]. Harris and Fraser built a software
transaction system on a flat word-oriented transactional
memory abstraction [11], roughly similar to simulating
Herlihy’s original hardware transactional memory pro-
posal in software. Their data structure bears some resem-
blance to the in-memory data kept by our UTM scheme.
Unfortunately, software transactional memory appears to
be too slow to support legacy code automatically.

Herlihy and Moss [15] suggested that small transac-
tions might be handled in cache with overflows handled by
software. These software overflows must interact with the
transactional hardware in the same way that the hardware
interacts with itself, however. This approach may work,
but designing a safe software interface to the consistency
protocol on which hardware transactions depends seems
to be a difficult open problem for current architectures.

6. Conclusion

This paper has made a case that transactional memory
systems should support unbounded transactions in hard-

ware. UTM represents a radical, but fully scalable point in
the design space, whereas LTM represents a buildable al-
ternative that achieves many of the same advantages. Un-
doubtedly, other engineering tradeoffs could be made. In
addition, many more fundamental questions remain about
how to design and use transactional memory.

Our designs have prohibited the use of I/O operations
during a transaction. Is there a way for transactional mem-
ory to support mutual exclusion while performing I/O?
Certain inherently serial I/O operations seem to require the
use of mutual exclusion. Newer devices tend to provide
“multithreaded” interfaces which allow bundling of non-
modal commands whose execution can be initiated with a
single atomic I/O operation. It may be that our hardware
memory commit mechanism can be made atomic with the
I/O commit to allow integration of transactions and I/O.

UTM and LTM sequence transactions within each
thread, but provide no mechanism to impose a particular
ordering of transactions across threads. It is unclear if ad-
ditional support is desirable or whether barriers and other
conventional inter-thread ordering techniques built us-
ing transactional primitives suffice.

Another open question is whether an HTM system can
implement a more optimistic concurrency control [21], in-
stead of implementing a pessimistic concurrency control
system as we have presented here. Various optimistic con-
currency protocols are now widely deployed in database
systems, suggesting that the benefits from the protocols’
increased concurrency often outweigh their implementa-
tion complexity.

Unbounded transactions potentially represent a big step
toward making parallel computing practical and ubiq-
uitous. They promise to simplify or eliminate many of
the problems with coordination and synchronization that
programmers now face when dealing with concurrency.
Transactions should make it far easier for all program-
mers, not just those who are specialists in today’s ar-
cane practices of parallel computing, to write correct high-
performance multithreaded programs. We hope that un-
bounded transactional memory may eventually become,
like cache or virtual memory, an expected subsystem of
any computer architecture.
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