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Message-Passing for the 21st Century: 
Integrating User-Level Networks with SMT 

Mike Parker, Al Davis, Wilson Hsieh 

School of Computing, University of Utah 

Abstract 
We describe a new architecture that improves message-passing performance, both for device 

I/0 and for interprocessor communication. Our architecture integrates an SMT processor with a user-
level network interface that can directly schedule threads on the processor. By allowing the network 
interface to directly initiate message handling code at user level, most of the OS-related overhead for 
handling interrupts and dispatching to user code is eliminated. By using an SMT processor, most of 
the latency of executing message handlers can be hidden. This paper presents measurements that 
show that the OS overheads for message-passing are significant, and briefly describes our architecture 
and the simulation environment that we are building to evaluate it. 

1 Introduction 

The same VLSI technology forces that are driving processor interconnect are also having an 
impact on I/0 architectures. As clock frequencies increase, high capacitance processor and I/0 buses 
cannot keep pace. These buses, on and off chip, are being replaced by point-to-point links. I/O interfaces 
are starting to look much more like message-passing networks, as is evidenced by recent standards 
such as InfiniBand[25] and Motorola's RapidI0[27]. Communication over these point-to-point I/O net-
works can be viewed as low-level message-passing, where queries are sent to devices and responses are 
received from devices. Since technology trends force the hardware to use point-to-point links, there is 
an interesting opportunity to expose communication directly to user-level software through a message-
passing interface. By looking at this opportunity from a systems point of view (from user-level software 
down to the hardware), we anticipate that we can dramatically reduce the costs for both processor-to-
processor and processor-to-I0 message-passing. 

Our architecture for addressing this problem consists of the following combination of ideas: 

• An SMT processor allows the overhead of message handlers to be effectively hidden. 

• A network interface that supports user-level access can be tightly coupled to the CPU to 
avoid the overhead and latency of slower I/O buses. In addition, the network interface can 
directly dispatch user-level threads on the SMT processor, which eliminates OS involve-
ment in the common case 

• A message cache buffers incoming messages so that they can be accessed quickly by the pro-
cessor, and acts as a staging area for outgoing messages. 

• A zero-copy message protocol allows messages to be delivered directly to user-space without 
copying. 

Not all of these ideas are new. For example, previous research has explored the use of user-level net-
work interfaces[3,9,11,13,18]. However, this specific combination of features is unique, in that it ex-
poses interrupts directly to user-level programs. The important aspect of our architecture lies in its 
support for user-level messaging (for th interprocessor communication and 1/0) in a general-purpose 
operating system with small modifications to an SMT processor. 

The combination of features in our architecture should reduce message handling overheads 
dramatically, without requiring gang-scheduling or forcing a change of the message notification model 
that is seen by the user-level software. The SMT processor, originally targeted to hide message latency, 
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makes it possible to overlap computation and communication without adding a secondary communica-
tion processor. The combination of a zero-copy protocol, a message cache, and user-level access to the 
network interface allows user code to communicate without the overhead of OS involvement or data 
copying. Finally, our integration of the network interface (NI) with the SMT allow the NI to communi-
cate message arrival events back to the target thread without most of the overhead an interrupt-style 
notification would incur. 

2 Message Notification Costs 

Figure 1 shows how a message send and receive may look from a single node point of view on 
a machine that uses a kernel-mode network interface and traditional interrupts for message arrival 
notification. Sends, receives, and notifications all make passes through operating system code. Since 
the operating system code is unlikely to reside in the cache, these system calls result in cache misses. 

Local Node Remote Node 
• End-to-End Latency 
:Overhead Overhead Overheactl 
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Figure 1: Anatomy of a message for a kernel-mode NI 

User-level interfaces[3,9,11,13,18] and zero-copy protocols[5,7] significantly reduce the over-
head of message sends and receives by eliminating operating system and copying overhead on the mes-
sage send and receive sides. Notifications still have significant opportunity for optimization, as they 
remain the performance and scalability bottleneck in general multi-user environments. Polling for no-
tifications consumes significant processor and memory resources, making them undesirable in a multi-
programmed system. Polling is especially poor for programs with irregular or unpredictable communi-
cation patterns. Interrupts in current architectures and operating systems are costly in terms of the 
number of processor cycles consumed to determine the cause of and handle the exception[121. This 
makes them less than optimal for message notifications. 

The components of an interrupt-style notification overhead include: 

• processor pipeline flushing (due to the interrupt) 

• serial instructions to get and save processor state 

• cache and TLB misses to bring in OS code and data to determine the cause of the interrupt 

• reading NI registers or data structures to determine which process should be notified 

• posting the notification to the process via a signal or other such mechanism 

• cache, 'TLB and context switch overhead to begin execution of the user-level notification (signal) 
handler 

• a trap to return from the user-level handler back to the OS 
• serial instructions to save processor state 

• cache and TLB overhead to bring in OS code and data 

• scheduler and context switch overhead to bring back in the original user process 

• post kernel cache and TLB overhead to bring back in the user process's instructions and data 
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Using a refined version of Schaelicke's interrupt measurement work[22], we measured the 
overhead of servicing a network interrupt for a minimum sized packet. Under Solaris 2.5.1 on a 147-
MHz Ultra 1, such an interrupt takes approximate 119 microseconds (17500 cycles) when user-level 
code is utilizing the entire L2 cache. The process of handling such an interrupt results in about 380 
kernel-induced L2-cache misses. (Fewer misses may be observed in practice if the user-level code is not 
utilizing the entire L2 cache.) Assuming that each cache miss takes an average of approximately 270 
ns to service[17], this accounts for about 103 microseconds or 87% of the interrupt processing time. The 
remaining 13% of the time is spent in flushing the pipeline after the interrupt and trap, carefully read-
ing and saving critical processor state, querying the NI for information about the interrupt, and exe-
cuting operating system code to determine how to deal with the interrupt. In addition to incurring the 
overhead of cache misses during an interrupt, the process that was running when the interrupt oc-
curred could see up to another 380 L2 cache misses once it is re-scheduled after the interrupt to refill 
the cache with its working set. 

L2-cache and TLB miss penalties unfortunately scale at memory speeds, as opposed to proces-
sor speeds. As a result, these overheads will become even more important as the memory gap widens. 
Optimizations to the OS and signalling system can reduce this overhead. However, reducing the num-
ber of cache misses and other overheads to get the OS penalty down below a few microseconds does not 
seem plausible. To make frequent notifications acceptable, the operating system's involvement must 
be significantly reduced or eliminated. 

3 Architecture 

Notifications only become the bottleneck when the rest of the message-passing system is ap-
propriately tuned. This section describes the system architecture, showing how it is optimized for effi-
cient messaging, describes how notifications are delivered to the user-level process without kernel 
involvement, and walks through the path a one-way message takes though this architecture. Figure 2 
shows a block-level view of the architecture. 

System 
Network 

SMT 
Core 

Li 

Cache 
.11E-10- 

L2 Cache Memory 
Bus 

Message 

Buffer 

Figure 2: Block-level diagram of our architecture 

3.1 Components of the Architecture 

Using an SMT processor allows communication-related threads to run parallel to computation-
based threads. Much of the overhead required to process sends, receives, and message arrival notifica-
tion can be hidden by overlapping these functions with computation. Previous work has dealt with 
overhead by providing external communication processors(14,21]. These extra processors add to the 
overall latency and complicate the message-passing mechanism due to the additional overhead of com-
munication between the computation and communication processor. The simultaneous nature of the 
SMT processor makes it possible to provide this overlap without requiring the use of an extra commu-
nications processor. 

The message buffer acts as both a staging area for outgoing messages as well as a cache for 
incoming messages [23]. Messages may be composed directly in the message buffer for user-program 
written (P10-style) transfers, or fetched from user memory for DMA-style transfers. Buffering outgo- 
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ing messages in the message buffer allows send data to be prefetched from memory and buffered before 
going out on the network. This buffering reduces the probability that the network will need to be 
stalled, tying up network resources, while waiting for outgoing message data to be supplied by the local 
memory subsystem. 

Incoming messages are placed in the message buffer. The message buffer acts as a cache for 
incoming message data. As a message arrives, the message buffer invalidates corresponding cache 
lines in the Li and L2 caches. Misses in the Li cache result in concurrent lookups in both the L2 cache 
and the message buffer. In this way, the message buffer is similar to a victim cache to the L2 cache. 
When there is a cache hit in the message buffer, data is supplied directly to the L2 cache. This cache 
has a triple effect. First, it reduces overhead at the memory interface by saving the data two trips 
across the memory bus. Second, it keeps the data near the CPU, where it can be provided quickly on 
demand, thus reducing the overall end-to-end latency. Third, having a separate message cache avoids 
polluting the cache hierarchy because the processor's working set is not evicted by incoming messages. 

A user-level accessible NI is used to reduce send and receive overhead. Having the network in-
terface on the same die, possible in the System on a Chip (SoC) era, opens up possibilities to more tight-
ly integrate it with the processor core, further reducing overhead and latency. Having the NI on die 
gives the processor access to it on a per cycle basis. This close coupling further reduces the overhead 
in getting information to and from the NI. Message sends and receives do not have to go out over slow 
and inefficient I/O buses. A zero-copy protocol[5,7] is used to eliminate copying overhead for received 
messages. The combination of user-level access to a closely coupled NI and the zero-copy protocol allow 
for efficient sends and receives. 

3.2 User-level Notifications 

Part of the inefficiency of interrupt processing is due to the legacy view that interrupts are ex-
pected to be infrequent. In a fine-grained message-passing environment that uses interrupts for noti-
fications, this is not the case. One of the contributions of this work is to provide a mechanism whereby 
the network interface can directly deliver notifications to a user-level process without the aid of the 
operating system. This is accomplished by allowing the NI to share some control over thread execution. 

Having the NI tightly coupled to the CPU makes it possible for the NI to share some control 
over process execution in much the same way as load-store units can control the pipeline as cache miss-
es are detected. This can be done by thinking of interrupts and notifications (Efferently. Notifications 
are a way of telling the user process that it needs to either wake up (in the case of polling) or stop what 
it is doing (in the case of an interrupt) and deal with a message arrival. One analogy to this would be 
cache misses in a modern superscalar processor. When a cache miss occurs, the memory reference in-
struction stalls. Other independent instructions may continue, but the instruction that caused the 
miss waits for the cache to fetch the relevant data. Once the data has been fetched, the cache returns 
it to the processor core, and the processor again places priority on the memory reference and dependent 
instructions. 

This basic idea can be extended to message arrival notifications. When a process reaches a 
point where it needs a message arrival notification, it can tell the hardware what specific process state 
to change (i.e., program counter or runability) when an arrival occurs. It can then continue processing 
until either the notification occurs, or it runs out of things to process. When the notification finally 
takes place, the hardware can redirect the user-level software to work on processing the message ar-
rival. 

To give the NI shared control over user processes, three mechanisms are available in our ar-
chitecture. 

• If a thread wishes to be notified when a message arrives, it can set a lock in a hardware syn-
chronization lock table[24]. The NI can clear the lock bit upon message arrival, which re-
leases the process to run again. If the associated thread is not currently in the CPU, the OS 
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receives the notification, and sets the appropriate hardware state to notify the thread the 
next time it is scheduled. 

• Just as an interrupt causes a current processor to asynchronously branch into a kernel level 
interrupt handler, the NI can cause a running user-level process to asynchronously branch 
to a notification handler. 

• Upon message arrival, the NI can schedule a new thread on the SMT with a previously setup 
context. This new thread starts in either an unused context on the SMT or it can evict a run-
ning thread, according to OS policy. If no contexts are available, the NI would notify the OS, 
so that it could create the context and schedule it to run at a later time. 

3.3 The Journey of a Message 

Figure 3 shows how a message may look in our architecture. 

End-to-End Latency 
Local Node 	 wi Remote Node 

User Code 

NI 

Wire and Switch 
	V 

Figure 3: Anatomy of a message in our architecture 

A user-level program that wants to send a message to a process on a remote processor first com-
poses the message to be sent. Message control information is written into the message buffer. It in-
cludes information on how the message is to be handled on the remote end (where it will be placed and 
whether to notify the receiving process), a small amount of user-defined meta-data, and an optional 
local pointer to message data. The user process then directs the NI to send the message. The NI begins 
to prefetch message data from local memory into the message buffer if required, fills in information 
such as routing information, and begins streaming the message onto the wire. On the receive side, the 
message is placed directly in the address space of the receiving process by the NI. While the message 
is arriving, the NI places the message into the message buffer. As it fills cache lines in the message 
buffer, it acquires ownership of those cache lines though the L2-cache interface and sets up appropriate 
cache tags in the message buffer. 

When an entire message arrives, the NI fills in a notification structure in the user process's 
memory space. It then determines which method should be used to notify the corresponding process of 
the message arrival. In the case of a blocked process waiting on a message arrival, the NI clears a lock 
bit in a synchronization table, which makes the corresponding thread runnable. The user-level process 
begins executing and handles the incoming message. In the case of an asynchronous branch or user-
level interrupt, the SMT switches to an alternate program counter and stack. User-level code is then 
responsible for saving any of its own state as necessary before handling the notification. Finally, in the 
case of a created thread, the NI gives the SMT core minimal context, including a program counter, 
stack pointer, and a pointer to the notification structure. The SMT core begins executing at the given 
program counter. 

In summary, we have presented an architecture that significantly reduces send, receive, and 
notification overhead. We have presented three separate user-level notification mechanisms, and have 
walked through the path a message takes in our architecture. The key features of the architecture are 
the following: SMT processors hide and tolerate message overhead and latency, send and receive over-
head is reduced by a user-level network interface combined with efficient protocols, and notifications 
can be delivered directly to user-level without the overhead of an operating system. 
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4 Related work 

Simultaneous Multithreading (SMT) architectures(8) have begun to see commercial atten-
tion.The SNIT processor is targeted to tolerate latency and hide overhead by allowing one thread to pro-
cess overhead or wait for a long latency operation while the execution of independent threads 
continues. SMT architectures promise the ability to simultaneously take advantage of both 1LP and 
thread-level parallelism within a single processor core. This architecture helps pave the way to more 
efficient communication and synchronization of threads. 

Dean Tullsen et al. [241 shows how extra lock and release hardware can be introduced to pro-
vide fine-grained synchronization for threads within the SMT processor. This efficient locking mecha-
nism allows one thread to block on a hardware semaphore and be released by another co-operating 
thread quite efficiently. One of the suggested notification primitives in this paper extends some of the 
control over this hardware locking table to external events, such as message arrival notifications from 
the NI. 

Several previous systems have advocated moving the NI closer to the CPU. Flash[14], Ava-
lanche[231, Alewife[11, Shrimp[31, and Tempest[21] all placed the NI directly on the system memory 
bus. Moving the NI to the system bus significantly reduces the cost of accessing the NI over accessing 
it on a less efficient I/0 bus. In addition to reducing overhead, placing the NI on the system bus allows 
these systems efficient access to coherency traffic, which several of these systems use to an additional 
advantage. The MIT J-Machine[6] and M-Machine[11] take it one step closer by bringing the NI direct-
ly onto the custom processor. Alewife, the J-Machine, and the M-Machine also have an interesting 
characteristic in common in that they all use a thread model or a thread-like model to deal with com-
munication. Alewife uses a modified SPARC processor in an unconventional way to implement these 
threads.The J-Machine and M-Machine both build a custom processor to get the desired thread behav-
ior. SMT processors now seem to be a natural way to achieve effective functionality of these machine 
with only minor modifications to CPU structure. 

In many ways the architecture in this paper is similar to the M-Machine. Both take advantage 
of thread capable processors to hide message overhead, and both have forms of automatically dispatch-
ing threads when a message arrives. Our architecture differs from the M-machine in the following 
ways. Messages are received directly into a users address space via hardware, eliminating the need for 
trusted message handlers. Incoming messages are placed into a message buffer, or message cache, to 
avoid pollution of the processor's cache hierarchy. As a part of our work, we are evaluating the useful-
ness of this message-passing architecture both in the context of parallel processing and in the context 
of network-based 10. Finally this architecture is built upon modifications of upcoming SMT architec-
tures. 

Avalanche[23] placed the network interface on the system bus, keeping it close to the proces-
sor. This allowed it to participate in coherency traffic, and thus maintain a local network cache. The 
local cache enables the Avalanche network interface to supply network data to the processor more 
quickly than main memory. In addition, it avoids the overhead of wasting system bus bandwidth to 
transfer message data across the system bus twice; once on the way to main memory on message ar-
rival, and once on the way back to the processor when the message is consumed. 

For Haralyn(5] Wilkes proposed sender-based protocols to reduce overhead. Having the sender 
manage its destination buffers implies that data can be easily and effectively received directly into the 
receiver's process space. Avalanche also used a sender-based messaging protocol (DDP)[7) to reduce 
overhead. Sender-based protocols allow simple and efficient hardware to place incoming messages di-
rectly into the receive process's address space. This avoids kernel involvement on receives. Unlike 
Hamlyn and DDP, the sender-based portion of the protocol in this work uses virtual addresses in com-
bination with an NI TLB to remove restrictions on receive buffers. 

Active Messages [10] embed a message handler in the header of a message. When a message 
arrives, the message handler is executed to handle the payload of the message. Though it is not specif-
ically a goal of this work, the architecture described here would support Active Messages rather well. 
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A thread waiting for a message could immediately jump to the handler code in the header without the 
penalty of an interrupt and without interfering with the currently running thread. If messages are re-
ceived directly into a message cache, then this handler code could potentially execute directly out of 
the message cache, also saving the cache overhead of bringing in conventional handler code. Illinois 
Fast Messages [20] is effectively a platform independent implementation of Active Messages. 

U-Net [9] reduces communication overhead and latency by virtualizing the network interface. 
The local process communicates with the network interface by placing and picking up message packets 
from per-process send and receive queues. U-Net suggests placing a TLB in the network interface to 
avoid the added restriction of fixed pinned pages. The architecture in this paper also gives the NI ac-
cess to a TLB to allow sends and receives to be handled in user-space. 

5 Conclusion 

SMT allows important computation to continue while interprocessor communication and I/O 
processing and communication overhead is handled in the background. Since message latency is sim-
ilar to memory latency, one way of viewing this work is using an architectural technique for hiding 
memory latency to hide message latency. Conversely, we can view our work as generating more paral-
lelism for SMT processors from I/O and parallel workloads. 

To evaluate this architecture, we are extending LRSIM[22] to accurately model an SMT pro-
cessor and adding a model of our network interface. LRSIM is based on RSIM[19], and has already 
been extended to include accurate I-cache, memory and I/0 architecture models. The simulator in-
cludes a fairly complete NetBSD based kernel that will be extended to handle the SMT processor (all 
kernel operations are fully simulated). The simulator runs unmodified Solaris binaries. For our eval-
uations, we will model a 2-5 GHz 4-8 thread SMT that can issue 8-16 instructions per cycle. L1 instruc-
tion and data caches will be 32KB to 128 1°3 each, and the L2 Cache will be 4-16IVIB. The system 
network bandwidth modeled will range from 4Gbls to 32Gb/s. Disk controllers, LAN interfaces (i.e., 
Ethernet), and other I/0 devices will hang off the system network. There are a few open issues in our 
design: 

• It remains unknown how much send side buffering will be optimal. Too little buffering could 
lead to too many bubbles in the network fabric. Too much could lead to increased message 
latency. For the purposes of this design, the amount of buffering will be user configurable. 

• The point at which DMA becomes more efficient than PIO needs to be characterized for this 
architecture. Though it has been characterized for previous systems, the break-even point 
on our architecture may be different as PIO can overlap computation on the SMT processor. 

• The relative performance of each of the notification mechanisms needs to be characterized. 

The results from the simulations will be compared with existing and proposed systems to as-
sess the benefits of our architecture. 
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Abstract 

Thread level parallelism (TLP) is a key technology to coming generation of high performance proces-
sors. Although it provides higher processing capability, the loss of compatibility with existing processors is a 
crucial issue. This research is motivated by the following two points: (1) TLP requires multithread program-
ming which is rather difficult for ordinary programmers, or complexed compilation technologies that can 
exploit multithread parallelism, and (2) existing binary codes should be executed efficiently on multithreaded 
processors. In this paper, we first propose a binary translation system, that translates existing binary codes 
to multithreaded ones and optimizes them dynamically during execution. The system inputs the original 
binary codes and translates them to internal RTL representation. It analyzes the structure of the program 
and applies multithreading to loop bodies in a thread pipelining manner. A pilot binary translator, that is 
a part of the proposed system, was built for the sake of preliminary evaluation. Evaluation results illustrate 
effectiveness of the system. 
Keywords: binary translation, thread level parallelism, multithreading, thread pipelining, run-time opti-
mization. 

1 Introduction 

Thread level parallelism (TLP) is one of the most promising key issue to high-performance processor architecture 
in the next generation. Present state-of-the-art technologies, such as superscalar, out-of-order, speculative 
execution, and value prediction, are successful in keeping continuous compatibility with conventional processor's 
instruction set architecture (ISA). And even in different architectures, i.e., VLIW (very long instruction word), 
a sort of binary translation technology is adapted so that the processor looks like conventional ISA from users 
view. 

On the other hand, TLP essentially requires multithreaded machine codes to exploit full ability of the 
architecture. Because of the discontinuity of binary code compatibility, we can find the following two problems. 

First, who (what) can produce multithreaded codes? Most programmers are not so skilled to make their 
application fully multithreaded. To this problem, further compiler technologies are required for automatic 
multithreading of an original application program in the near future. Second one is rather practical, i.e., we 
should abandon plenty of existing (single-thread) binary codes if their source codes are not available. The 
single-thread binary codes could run on multithreaded processors, although, they can receive no performance 
gain from TLP. Thus these two problems prevent TLP from being widely accepted. As a realistic solution to the 
problems, we focus our approach on the efficient reuse of existing binary codes on a multithreaded architecture 
that exploits rich TLP. 

In this paper, we propose a binary translation and run-time optimization system.[14, 15] We first introduce 
binary translation technology that translates existing single-thread code to multithreaded ones. Source binary 
codes are analyzed, decomposed into threads, and then mapped onto the target architecture. 

We then introduce dynamic (run-time) optimization of the translated codes. Because of lack of source code 
information, static analysis has some limitations: e.g., distinction of instruction words and data is not clear, 
and the target addresses of indirect jumps remain unknown. 
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The rest of this paper is organized as follows. We first discuss design principles to realize our ideas in 
Section 2, where we make some basic assumptions and discuss system requirements. Then we propose a binary 
translation and optimization system in Section 3, where basic components and their functions are discussed. 
Section 4 describes static optimizer in detail and Section 5 shows the preliminary evaluation. Section 6 presents 
related works which aim at binary translation or optimization. This section clarifies the standpoint of the 
proposed system and thus its unique features. Finally, we conclude this paper in Section 7. 

2 Design Principles 

2.1 Multithreading by the Thread Pipelining Model 

In order to run a single-thread binary code efficiently on a multithreaded processor, logical structure embedded 
within the source binary code is extracted and the program is restructured to a set of threads. For the following 
discussion, we make an assumption on the target multithreaded architecture. 

Needless to say, single-thread code follows a sequential programming manner. Although the ideal objective 
is to exploit all possible parallelism inherent in the program, it is not realistic for binary code inputs. We have 
started discussion with a simple idea: we payed our attention to loop structures. 

The idea is very natural. A programmer tends to follow a sequential program (thread) depicted in a one-
dimensional space. In such situations, a parallel structure is expressed as a loop. In other words, a loop structure 
contains inherent parallelism. Thus, it is appropriate that each iteration in the loop is converted to a thread. In 
many cases, a loop structure contains many iterations, and thus enables us to exploit the maximum parallelism. 

Thread pipelining model[li best fits to our purpose described above. Figure 1 shows partial structure of 
the multithreaded processor based on the model. Each thread generated by binary translation is mapped to 
a thread execution unit in order. Communication unit and Memory Buffer handle inter-thread control and 
dependencies. respectively. 

Basically, each iteration corresponds to a thread, and threads are executed in a pipeline manner. Figure 
2 illustrates the thread pipelining[1]. Each thread consists of four stages: Continuation, Target Store Address 
Generation (TSAG), Computation, and Writeback. 

The Continuation stage introduces loop variables and necessary data so as to be used in the thread. After 
the Continuation stage completes, the succeeding thread is invoked. The TSAG stage checks dependencies of 
shared data between threads. Addresses of shared data are notified to Memory Buffer, which detects access 
dependencies between threads by monitoring addresses. The Computation stage does the peculiar calculation 
assigned to the thread. After completing the Computation stage, a thread terminates its life in the Writeback 
stage. The Writeback stage cannot be started until the preceding threads' Writeback stages are completed. 

2.2 Single- to Multi-thread Binary Translation 

As described above, we have introduced a thread pipelining concept to our system. This pipelining is a fun-
damental requirement in the proposed system. It is totally different from existing translation systems in that 
it converts single-thread code to multithreaded one whereas others translate to single-thread. In other words, 
ordinal translators don't change program structure, although, our system should arrange the analyzed program 
structure to achieve the best fit to the thread pipelining model. 

Source binary code is first analyzed with its logical structure, and the structure is re-organized following the 
thread pipeline manner. Then, target machine code is generated. During analysis of program structure (i.e., 
control- and data-flow) and re-configuration phase, abstract representation is required. We have introduced RTL 
(register transfer level) representation, which is used internally in the translator. Actual translation procedure 
is displayed in Section 3. 

2.3 	Necessity of Run-time Optimization 

In principle, binary translator converts a loop structure to a set of threads. This requires accurate analysis 
of program structure, however, the translator could not find full information because of lack of source code 
information. For example, indirect branch hides the target address of iteration. So, some loop structures may 
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remain unfound even when the analysis phase is completed. These loop structures cannot be converted to 
multithreaded code, and they do not appear until the translated codes run. 

Thus, to exploit full parallelism of the program, it is necessary that behavior of the program is monitored and 
that 'hot' portion is translated to multithreaded code. This methodology is a kind of run-time optimization. 
Like the binary translation introduced in the previous section, run-time optimization requires re-structuring 
of the program (i.e., converting single-thread code to multithreaded one) where other run-time optimization 
techniques do not essentially affect program structure. 

3 The Binary Translation and Optimization System 

3.1 Systems Logical Structure 

As discussed above, in order to execute existing binary codes on next-generation multi-threaded processor, 
the system requires following two phases: (i) binary translation and static optimization and (ii) run-time 
optimization. Figure 3 illustrates the configuration of the proposed system. 

In Figure 3, STO (Static Translation and Optimizer) executes the phase (i) and DTO (Dynamic Translation 
and Optimizer) performs (ii). The figure includes Multithreaded Processor, whose basic architecture is described 
in Section 2.1 and Figure 1. The processor's basic ISA is not limited to some specific architecture since the 
original binary codes may be translated according to the target architecture by STO and DTO. 

STO inputs the sequence of the source binary codes and translates them to the target binary code. If the 
program requires dynamic linked libraries (DLLs), STO prepares the necessary libraries and links. Resulting 
executable binary image is put into the main memory and the processor executes the executable. 

During the processor executes the translated binary code, the behavior of program is monitored. We intro-
duce profiling techniques for monitoring. We assume that the processor has additional mechanisms that reduce 
profiling overheads. 

DTO uses the profiling information and observes actual behavior of the application program. When detecting 
a buried 'hot' loop, it begins binary translation and optimization. It substitutes the single-thread 'hot' part by 
the translated multithreaded code, and thus accelerates total execution. 

3.2 Static Translation and Optimization (STO) 

As shown in Figure 3, STO inputs the source binary code and translates it to multithreaded code. Once STO 
reads the source binary code, the code is translated into an internal representation. The representation is, in 
principle, abstracted in a machine independent RTL (register transfer level) form. The internal representation 
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enables STO to do powerful optimization as taken in ordinal compilers/optimizers. In the proposed system, 
STO generates threads in the internal representation level. 

Basically, STO works before the program runs. Its mission is to prepare translated binary code for the 
multithreaded processor before the program is started, however, it could not complete the translation. The 
reason is that no clear distinction is made between instruction code and data and that run-time information 
is buried. For example, an indirect jump operation hides its branch target address and thus prevents further 
analysis. Another example is the self-modifying code that determines its own execution code at run-time, so 
STO cannot know exactly what is to be done in the program. The remaining translation should be done at 
run-time and DTO handles it. 

During analysis of input binary code, STO acquires useful information: code analysis information, control-
and data-flow information. DTO does full use of these information. This reduces overheads in run-time opti-
mization. STO inserts profiling codes so that DTO can collect proper information at low cost. 

3.3 Dynamic Translation and Optimization (DTO) 

DTO's major objective is run-time optimization (Figure 3). Unlike STO, DTO runs concurrently with the 
execution of application. It is invoked at proper intervals during application execution. DTO collects profiling 
information and monitors the program behavior. After detecting a hot-path, DTO arranges global scheduling, 
eliminates redundant codes, and applies possible optimization methods[2]. Then. DTO substitutes the original 
code to the optimized one. 

Profiling codes are not removed by the DTO optimization. This means that profiling continues until the 
application is terminated. So DTO can apply further optimization incrementally and it can follow the change 
of program behavior. The DTO approach is similar to profile-guided compilation[3]. Since DTO can collect 
more detailed information, it should achieve deeper optimizations. 

Source binary codes may contain self-modifying codes. STO cannot handle such codes since actual codes 
are determined at run-time. Thus, DTO should provide similar functions that STO does: i.e., the series of 
binary translation and optimization processes. Actually, input of source binary code, translation to internal 
representation, and control- and data-flow analysis should be processed by DTO. 
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4 Binary Translation Method 

We have built an experimental binary translation software in order to estimate the effectiveness of the proposed 
system. The pilot translation system is to be a part of STO in the proposed system. This section introduces 
binary translation methods employed in the pilot system. 

4.1 Basic Algorithm 

As introduced in the previous section, the binary translator inputs binary codes and outputs multithreaded one. 
The translator performs the following steps: 

(1) inputs source binary code and translates to internal representation, 
(2) determines basic blocks, analyzes control-flow, and detects loop structure, 
(3) analyzes data-flow, detects loop variables and inter-loop dependencies, 
(4) converts loop structure to multithread codes in a thread pipelining fashion, and 
(5) generates target machine code from internal representation. 

The translator reads the source binary code. It begins code analysis from the starting address specified in the 
binary code. Input code is translated into the internal representation in order. 

The internal representation categorizes instructions into six groups: alu operation, inter-register transfer, 
jump, branch, load/store, and other operations. Each instruction category has its unique operand expression. 
Figure 4 shows a part of instruction stream converted into the internal representation. The internal represen-
tation forms a list structure. Once the input binary codes are read and translated into the representation, 
succeeding processes, (2) to (5), are performed on the representation. 

In the step (2), the translator determines basic blocks and analyzes control flow. It seeks back-edges, i.e., 
backward jumps/branches, in the internal representation. A back-edge is an important hint to mine a loop 
structure. The translator trys to find a path from the target address of a back-edge to the back-edge itself. If 
the path exists, it constitutes a loop structure. 

In the step (3), the translator analyzes data-flow in the loop structure. It presumes loop variables used in 
the loop. The present pilot system finds the loop variables by increment of integer variables. The translator 
can analyze multiplexed loops. 

The translator modifies the internal representation according to the result of multithreading operation (in 
the step (4)). Step (5) generates the target machine codes from the internal representation. 

Next, we will explain step (4), the key part of the translator, in more detail. 
In order to exploit sufficient parallelism by multithreading, we have found the following two requirements: 

(i) an interval of thread invocation should be shortened, and (ii) the synchronization time in resolving depen-
dency should be reduced. 

To solve (i), the Continuation stage prepares loop variables used in the succeeding thread. The values of 
loop variables are computed in the preceding thread. A newly created thread can start the execution of its loop 
body. 

To reduce synchronization overheads due to inter-thread dependency (ii), the translator tries to move 'load' 
and 'store' instructions of shared data backward and forward in the Computation stage, respectively. 

After the Continuation stage, addresses of inter-thread dependent data are registered in Memory Buffer in 
the TSAG stage. Execution of the consecutive TSAG stages cannot be overlapped since the stage determines 
shared data. Thus, at the entrance of the stage, the processor waits for completion signal from its preceding 
thread, and at the exit of the TSAG stage it sends completion signal to its succeeding thread. These inter-thread 
communications are handled by Communication Unit, shown in Figure 1. 

Most calculations in the original loop body are executed in the Computation stage. Inter-thread dependencies 
are registered at the TSAG stage and Memory Buffer monitors all memory accesses. It handles inter-thread 
synchronization in a producer-consumer manner. 

The Writeback stage writes calculation results onto memory. Since the resulting data should be stored in 
the semantic order, the stage cannot be overlapped between threads. Thus at the start-point of the stage, the 
processor should wait for a termination signal from its predecessor. After completion of this stage, the thread 
terminates. 
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4.2 Translation Example 

Figure 5 illustrates a simple example of translation. The instruction stream, listed in the left side, is a part 
of the source binary code (disassembled for display use). In our pilot translator, only a hot-path (i.e., loop) is 
translated to multithreaded code as described in Section 4. The right side list shows the translated output of 
the hot-path. 

To avoid complexity in evaluation processes, the original ISA is extended by adding several thread control 
instructions so that the codes can be run on the target multithreaded architecture. 

A thread pipeline begins with bstr instruction. In the Continuation stage, the thread calculates the loop 
variable used in its succeeding thread from its own variable (address ($fp+16) in Figure 5), stores the result 
by sttsw instruction, and then generates the succeeding thread by lfrk. Note that a loop variable is accessed 
via ($sp-8) in this example. 

In the TSAG stage, dependent address of ($fp+48) is registered to Memory Buffer by altsd instruction. 
For proper synchronization among neighboring threads, wtsagd and tsagd instructions are used. 

We can find a load instruction that fetches data from ($fp+48). When the instruction is executed, Memory 
Buffer detects the memory access and execution stalls until the preceding thread updates the data. 

In the Writeback stage, estr instruction writes calculated data into memory and the thread terminates. 

5 Preliminary Evaluation 

5.1 Experimental Translation System 

To evaluate the basic idea of binary translation to multithreaded codes and their optimization, we have built 
a pilot translation system. Figure 6 shows the block diagram. The objective of the system is to evaluate the 
STO functions which was described in Section 3.2. MultiThread Code Generator in Figure 6 follows all the 
translation steps (1) to (5) described in Section 4.1. 

In Figure 6, MultiThread Code Generator translates source binary code to multithreaded one. Hot-path 
is manually guided to the translator for evaluation purpose. Resulting partial binary code is merged into the 
original (single-thread) binary code by Binary Patcher. Binary Patcher removes hot-spot codes from the 
--iginal binary code, and inserts translated multithreaded code. Thus the hot-path is executed in the thread-
pipelining manner and the rest of the program is executed in a single thread. At this timing, necessary run-time 
libraries are linked. Then, the prepared multithreaded binary code is executed in a simulator. 

6 



source binary code tranalated code 

11L0: 

31,21 

ILl: 

1w 
lw 

bee 

IA 
evt.d.w 
reov.d 
jal 
1.d 
add.d 
s.d 
lw 
addu 
move 
sw 

112,16(1fp) 
$3,20(0p) 
$2,32,113 
$2,30,11L2 
$1.1 
$f0,164$(p) 
MAIM 
11(12,11f0 
sin 
$f2.48(3fp) 
1110,1111.6f0 
11(0,48(11(p) 
13,1641(p) 
62,33,1 
$3.112 
$3,18411(p) 
111.0 

/. Continuation Stage */ 
batr 
lw 	62,16(31p) 
sw 	32,-3(1isp) 
lw 	32,-13(3.p) 
addi 	12,12,1 
add i 	$3,$fp.16 
'vital,/ 	13,22 

Sw 	112,-(143.p) 
lw 	33,20(3(p) 

$2.12,113 
bee 	12,110,111.3 

$ST-END 
$L3: 	Itrk 

TSAG Stage •/ 
wtsagd 
addiu 	$2,1fp,48 
altad 	32 
taagd 

f• Computation Stage */ 
1.. 	lif0,-8(11•p) 
evt.d.w 	2f0,11(0 
rtiov.d 	$112,3f0 
jal 	sin 
1.d 	$(2.48(Sfp) 
add.d 	11(0.11(2,100 
s.d 	$f0,48(11(p) 
addiu 	$3.11cp,48 
addiu 	114,11fp,48 
lw 	112.0(13) 
•ttsw 	14,112 

Singt•Thread binary coda 

MultiThread Code Generator 

MultiThread partisi assembly code 

1 

WUThread partial binary code 	) 

Binary Pateher 

MultiThread binsry cods 	) 

MuftiThread Pm:miser 

Writeback Stage •I 
$ST-ENatr 

Figure 6: Block Diagram of the Pilot 
Figure 5: A Simple Example of Binary Translation 	System 

5.2 Evaluation Environment 

We have assumed that the target multithreaded processor follows the architecture of SIMCA[4]. SIMCA is a 
simulator based on thread pipelining model and matches to our evaluation purpose. 

Original binary codes are compiled by gcc cross compiler for SIMCA. The compiler's version is 2.7.2.3 and 
"-02" option is applied. Application programs are (a) integral calculation in a 'sin' trigonometric function 
using a trapezoidal equation and (b) inner product calculation. 

Performance was measured as execution cycles of the hot-path by using the SLMCA simulator. Original 
binary code was executed on SIMCA and the number of execution cycles of the hot-path was measured. Similar 
evaluation was done for the translated code. By comparing the number of execution cycles, speed-up ratio was 
calculated. 

In this preliminary evaluation, the number of thread units were assumed to be 4, 8, and 16. Furthermore, 
the loop-unrolling technique was applied to each application program; the measured unrolling factors were 4, 
8, and 16 and no unrolling was measured for comparison purpose. 

5.3 Evaluation Results 

Figures 7 and 8 illustrate evaluation results for integral and inner product calculation applications, respectively. 
In the integral calculation (Figure 7), the system gains performance linearly to the number of thread units. 

Unrolling factor does not affect the performance except `no unroll' case. 
In the inner product calculation (Figure 8), we can find that speed-up ratio is limited by unrolling factor. 

In `no unroll' case, speed-up ratio is around 0.9 in spite of the number of thread units. We can find the similar 
phenomenon in the 'unroll 4' case. In the 'unroll 8' case, speed-up is achieved when 8 thread units are used. 
However, the performance saturates in the 16 thread units case. We can recognize linear speed-up in the 'unroll 
16' case. 

The integral calculation contains many operations enough to hide thread pipelining overheads. This leads 
near-linear speed-up according to the number of thread units. 

On the other hand, the inner product calculation contains less operations than the integral calculation. Thus 
thread pipelining overheads could not be hidden unless sufficient loop-unrolling is applied. 

These results reveal that efficiency in thread pipelining heavily depends on the grain size of calculation. 
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6 Related Works 

In general, the major objective of binary translation is to execute existing binary codes based on different ISA. 
FX!32[5] of Compaq is a translation subsystem in Windows NT for Alpha processor, that enables x86 win32 

codes to run on Alpha platforms. It emulates x86 instructions and does binary translation into Alpha ISA 
codes. During idle time, The binary translation is executed with profiling results from the preceding emulation. 
Once the code is translated, the resulting native code is executed and earns high performance. 

DAISY[6] of IBM translates well-used ISA codes, such as PowerPC and x86, so that programs run on the 
original VLIW processor. The system exploits instruction level parallelism (ILP). It does no emulation. 

Transmeta's Crusoe[7] has similar mechanism to DAISY. Crusoe is based on VLIW and it has unique ISA. 
The processor runs CMS (Code Morphing Software) and the software dynamically translates x86 instructions to 
its internal ones. Different from DAISY, CMS translates only hot-spot codes and takes incremental optimization 
concurrently with program execution. 

These systems listed above are for translation purpose into different ISA. Following systems aims at opti-
mization. 

Dynamo[81 of Hewlett-Packard translates PA-RISC binaries to PA-RISC codes for optimization purpose. 
Dynamo translates concurrently with emulation of PA-RISC instructions. From profiling results of emulation, 
it can find hot-spots and translates into optimized codes. The resulting codes are cached, thus, once the hot-spot 
is translated, the optimized codes are executed for acceleration. 

Morph[9] of Harvard University does profiling under the cooperation with operating system, and it optimizes 
executed codes off-line using the results of profiling. 

Deco[1O] of Harvard University does run-time optimization and binary translation. Deco can re-translate 
optimized codes according to change of the program's behavior. 

BOA[11] of IBM focuses EPIC-style approach, that aims at high clock frequency by simplified hardware, 
abandoned out-of-order superscalar mechanisms like PowerPC. BOA optimizes instruction scheduling for such 
architecture by using binary translation technology. Where DAISY translates only once, BOA continuously 
monitors the behavior of execution paths and does run-time optimization. 

Java's HotSpotVM[12] collects profile information during interpretive execution. When it detects a hot-
spot, the hot codes are translated into native codes. The VM uses the translated binaries so that it accelerates 
performance. 

UQBT[13] is a framework of retargetable binary translation. The system's unique point is that, theoretically, 
it enables any ISA codes translated into any other ISA. Currently it supports SPARC, x86, and Java bytecode. 

All systems shown above assume single-thread code and none aims at performance enhancement by multi-
threading. 
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7 Concluding Remarks 

In this paper, we proposed a binary translation and optimization system that enables existing binary codes 
to run on the future multithreaded processors. We first discussed about the basic assumption on the target 
architecture and the essential requirements for single-thread binary codes to be translated to multithreaded 
codes. 

The proposed system roughly consists of static translator and optimizer (STO) and dynamic translator and 
optimizer (DTO). STO initially translates an input binary code to the multithreaded one. DTO handles the 
dynamic behavior of the translated program and optimizes according to profiling results at run-time. 

A pilot binary translator was built for the sake of preliminary evaluation. Programs used for evaluation are 
integral calculation in a sin trigonometric function using a trapezoidal equation and inner product calculation. 
The results show overheads in thread pipelining and, if each thread has sufficient calculation, the overhead can 
be negligible and the speed-up, linear to the number of thread units, is achieved. 

At the present time, DTO is not completed. We will continue to develop the proposed system and show 
effectiveness in practical programs such as SPEC benchmarks. 
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Abstract 
We study the dynamic stream of slices that lead to branches that foil 

an existing branch predictor and to loads that miss and measure 

whether these slices exhibit locality (i.e. repetition). We argue that 

this regularity can be used to dynamically extract slices for an oper-

ation-based predictor that speculatively pre-computes a load 

address or branch target (i.e. an outcome) rather than directly pre-

dicting the outcome based upon the history of outcomes. We study 

programs from the SPEC2000 suite and find they exhibit good slice-

locality for these problem loads and branches. Moreover we study 

the performance of an idealized operation-based predictor (it can 

execute slices instantaneously). We find that it interacts favorably 

with an existing sophisticated outcome-based branch predictor and 

that slice-locality provides good insight into the fraction of all 

branch mispredictions it can potentially eliminate. Similar observa-

tions hold for operation-based prefetching of loads that miss. On 

average slice locality for branches and loads was found to be above 

64% and 76% respectively when recording the 4 most recent unique 

slices per branch or load over a window of 64 committed instruc-

tions, and close to 61% and 73% for branches and loads respec-

tively when we look at slices over a window of up to 128 committed 

instructions. The idealized operation predictor was found to correct 

approximately 68% of branch mispredictions or prefetch about 67% 

of loads that miss respectively (slices detected over a window of 64 

instructions). At the same time, on average, the branch operation 

predictor mispredicts less than 0.6% of all branches that are cor-

rectly predicted by an existing branch predictor 

1 Introduction 
Recently, the prospect of generalized operation-prediction has 

been raised as a way of boosting accuracy over existing outcome-

based predictors. In operation prediction we guess a sequence of 
operations, or a computation slice that can be used to pre-compute a 
performance critical outcome (e.g., load address or branch target). 
This is in contrast to outcome-based predictors that directly predict 
outcomes exploiting regularities in the outcome stream. Since oper-
ation prediction does not require any regularity in the outcome 
stream, it has the potential of predicting outcomes that foil existing 
outcome-based predictors (in section 2, we provide an example that 
illustrates the potential of operation prediction). 

Several recent proposals have shown that slice-based precompu-

lotion (the mechanism operation-prediction uses for predicting out-
comes) can be used to successfully pre fetch memory data, and may 
potentially be used to pre-compute hard to predict branches  

[4,9,15,16,10,11,12,171. In this work, we study program behavior to 
understand why operation-prediction works or may work for pre-
dicting otherwise hard to predict program events. 

We build on the experience with outcome-history-based dynamic 
prediction and study whether typical programs exhibit the behavior 
necessary for operation history-based prediction to be successful. 
We explain that, in a way that parallels outcome-based prediction, 
operation predictors can be built to exploit regularities in the opera-
tion (i.e., computation) stream. For example, previous work has 
shown that sufficient locality, or repetition exists in the value stream 
of many programs. This program characteristic is what facilitates 
outcome-based value prediction. In this work we study a set of pro-
grams from the SPEC2000 suite to determine whether sufficient 
repetition exists in the slices used to calculate performance critical 
outcomes that otherwise foil existing outcome-based predictors. 
This program characteristic is necessary (but not sufficient as we 
explain in section 2) if history-based operation prediction is to be 
successful. We restrict our attention to mispredicted branches and to 
loads that miss and study how much repetition, or locality exists in 
the operation streams that lead to them. To the best of our knowl-
edge, no previous work on the dynamic locality characteristics of 
such slices exist. With few exceptions and as we explain in section 
4, related proposals approach slice pre-execution as an alternate 
execution model, where the compiler orchestrates slice generation 
and pre-execution. While compiler directed slice pre-execution is 
an interesting and viable option, dynamic slice detection and execu-
tion can have its own advantages (e.g., binary compatibility). 
Accordingly, we believe it is an important alternative that deserves 
attention. 

Our study provides the foundation necessary for understanding 
whether programs exhibit some of the behavior necessary for opera-
tion prediction. Moreover, our results provide insight on what kind 
of operation predictors we should be considering if we arc to 
achieve a desired accuracy and coverage. For example, our study 
shows how successful a last-operation predictor can potentially be 
or whether pattern-based operation predictors may be necessary. A 
last-operation prediction would simply record the slice used to cal-
culate a branch or load and use it the next time around to pre-calcu-
late the branch or the load address. Such a predictor can be 
successful only if slices tend to repeat multiple times. Alternatively, 
a pattern-based operation predictor can exploit patterns in slice 
occurrence, e.g., slice SI appears always after slice S2, and so on. 
While more complex, a pattern-based operation predictor could 
offer better accuracy and coverage over a last-operation one. How- 
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ever. in this work we restrict our attention to analyzing the potential 
of operation prediction. Specifically, the predictors we studied pre-
compute their slices instantaneously. An actual predictor would 
require some time to execute through the predicted slice, hence it 
may not be able to pre-execute the slice early enough for prediction 
purposes. Further work is necessary to determine whether this is 
possible. Yet, in previous work we have shown that a simple predic-
tor for loads that miss can successfully pre-execute loads that miss 
often for a set of pointer-intensive applications [9]. 

Our results indicate that performance critical slices exhibit high 
locality, more so for loads that miss. In particular, we find that aver-
age slice locality for branches and loads is above 64% and 76% 
when we record up the 4 most recent slices per branch or load 
respectively over a window of 64 committed instructions and close 
to 61% and 73% for branches and loads respectively when we look 
at slices over a window of up to 128 committed instructions. Our 
idealized operation predictor can correctly predict about 68% of 
mispredicted branches and accurately prefetch 67% of loads that 
miss (slices detected over a window of 64 instructions). At the same 
time, on the average the branch operation predictor mispredicts less 
than 1% of all branches that are correctly predicted by an existing 
branch predictor. Overall, we find that coverage (e.g., the fraction of 
branches that get a correct prediction from the operation predictor 
hut an incorrect prediction from the existing outcome-based predic-
tor) is highly correlated to the locality exhibited by the correspond-
ing slices. 

The rest of this paper is organized as follows. Section 2 reviews 
operation prediction, how it relates to outcome-based prediction, 
and the various choices existing when dynamically extracting 
slices. Section 3 presents our locality and accuracy results. In Sec-
tion 4, we discuss related work explaining how operation prediction 
relates to other recently proposed slice-based execution models. 
Finally, Section 5 summarizes our findings and offers concluding 
remarks. 

2 Operation Prediction Basics 
In this section we review operation prediction, explain how it 

relates to existing outcome-based predictors, and discuss what 
requirements exist for operation prediction to be successful. In sec-
tion 2.1, we discuss some of the choices that exist in dynamically 
extracting slices and explain the choices made for the purposes of 
our study. 

Consider the example cede fragment of figure 1(a). It is an infi-
nite while loop containing a switch statement. What particular tar-
get the switch statement will follow depends on the value read from 
the uni-dimensional buffer. First, consider how an outcome-based 
predictor will attempt to predict the branch that implements the 
switch statement. Such a predictor will observe the outcome stream 
of this branch (and possibly of other branches also). That is, it will 
observe the various targets taken by the switch statement during 
successive iterations of the while loop. It will try to associate each 
target occurrence with an appropriate target history, that is a 
sequence of past targets that preceded the one in question. The hope 
is that next time the same target history appears, the same target will 
follow. For example. such a predictor may observe that when the 
targets for "A" and "B-  appear, then with high probability the target 
for "C" appears. This predictor may then guess "C" every time "A" 
and "B" appear in sequence. Essentially, the outcome-based predic- 

tor builds a tabular, approximate representation of the program's 
function by observing the values (outcomes) it generates. Outcome-
based prediction is successful if the outcome-stream exhibits suffi-
cient repetition, a property commonly referred to as locality. In our 
example code, repetition will exist only to the extent that the data 
stored in the buffer array follows some repeatable pattern. Opera-
tion prediction offers the potential of predicting outcomes that do 
not necessarily follow a repeatable pattern. Rather than trying to 
guess the program's function based on the values it produces, it 
directly observes the computation stream, attempting to exploit any 
regularities found there. Returning to our switch statement example, 
let us now take a closer look at what happens during execution time. 
Figure 1(b) shows how the switch statement is implemented in 
pseudo-MIPS machine code. When the code of part (a) executes, 
the computation stream will contain repeated appearances of the 
computation slice shown in part (b). While the target computed by 
each slice may be different, we can observe that the actual slice 
remains constant. Operation prediction builds on this observation 
and attempts to dynamically identify such slices and use them to 
pre-compute outcomes that otherwise foil outcome-based predic-
tors. As we explain in section 4, operation prediction has existed in 
restricted form for years. For example, stride-based prcfetchers or 
value predictors are examples of specialized operation prediction 
where the actual slice or class of slices is built in the predictor 
design. 

In this work we are concerned with generalized operation predic-
tion where the slices are dynamically extracted and predicted. Fol-
lowing a generalization of the model proposed by Moshovos et al., 

[91, an operation predictor for our example would identify the "jr" 
(instruction 7) as a problematic control flow instruction, or as a tar-

get instruction. At commit time, it will extract the computation slice 
that lead to the particular instance of the target instruction as shown 
in part (b). This slice, will contain only the instructions that contrib-
uted to the calculation of the actual target. Note that these instruc-
tions are not necessarily adjacent in the dynamic instruction trace (a 
mechanism for extracting such slices has been proposed [9]). This 
slice will be stored in a slice cache where it will be identified by the 
lead instruction (i.e., the oldest one, instruction I in our example). 
Next time the lead instruction appears in the decode stage, the slice 
will be executed as a separate scout thread. Provided that the scout 
thread completes before the appropriate instance of the target 
instruction appears, the processor may use its result to predict the 
target. The aforementioned steps for operation prediction parallel 
those for outcome-based prediction. In operation prediction the unit 
of prediction is a slice while in outcome-based prediction it is an 
outcome. Accordingly, detecting a slice and storing it in the slice 
cache is equivalent to observing an outcome and recording it in a 
prediction table. Executing a scout thread is equivalent to probing 
the prediction table. 

The operation predictor described uses history-based prediction 
concepts. Such a predictor observes the slices of otherwise unpre-
dictable results. If these slices tend to follow a repeatable pattern 
then it may be possible to use the past history of appearances to 
accurately predict the slices of future instances and hence pre-com-
pute otherwise unpredictable outcomes. The same principle under-
lies many existing outcome-based predictors instead of exploiting 
regularity in the slice stream we instead exploit regularity in the 
outcome stream (e.g., values, addresses and branch directions). For 
history-based operation prediction to be successful it is necessary to 
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while (true) 
lead 	1: addu rbuffer rouffer !ter i 

switch (*buffer++) 
2:  lb rchor. C(rbuffer) 

case "A-: 3:  sll rChor,  rchor, 2  iter i+ / 

case "Z": 
4:  lui rtoble, Table31 .16  
5:  addu rtoble rtoole,  rchor 

) 6:  tw rtorget,  Table15 .0(rtoole) 
target 	7: jr rtorget 

(a) 
	

(b) 

Figure I: A switch statement whose target behavior depends on the data stored within the buffer 
array. (6) The computation slice that calculates the target during run-time. 
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have sufficient regularity in the computation, or slice stream of the 
instruction we want to predict. Moreover, the slices so identified 
must be able to execute and complete before the main thread needs 
the prediction itself. In this work we focus mainly on the first 
requirement. In particular, we study the slice locality characteristics 
of some SPEC2000 programs focusing on branches that are mispre-
dieted by an outcome-based branch predictor and on loads that 
miss. 

Before we present our results it is necessary to re-iterate why 
scout threads may be able to run-ahead of the main thread and to 
comment on how operation-prediction relates to outcome-based 
prediction. Scout threads may be able to pre-calculate a result 
because: (1) The main thread includes all other intervening instruc-
tions which need to be fetched, decoded and executed. (2) The main 
thread also may he stalled due to intervening control-flow miss-pre-
dictions. Since scout threads do not include any control flow, they 
may proceed undisturbed. Finally, while operation prediction may 
be able to predict outcomes that do not exhibit regularity, it does 
need to calculate these outcomes. Outcome-based prediction for-
goes this calculation replacing it with a straightforward table 
lookup. Hence, whenever outcome regularity exists outcome-based 
prediction may be preferable over operation prediction. 

2.1 Slices and Slice Locality 
Before defining and measuring slice locality we must be clear 

about how we define a slice. Conceptually, a slice may include 
instructions that appear long in advance (e.g., thousands of instruc-
tions) of the target instruction. Moreover, a slice could be defined to 
contain arbitrary control-flow and memory dependences (to adhere 
to the static definition of a computation slice). With this definition, 
the slice for each instance of the "jr-  instruction in figure 1 would 
include all preceding instances of instruction 1 (updates of the 
buffer pointer), plus all instructions that wrote the corresponding 
data element of the buffer array (this may include instructions past a 
system call). Such a definition is impractical for our purposes. 
Accordingly, our slice definition stems from a practical implemen-
tation of a slice detector [9] and of the sketch of how an operation 
predictor could work discussed earlier. In the rest of this section we 
explain the choices we made in defining and extracting slices, and 
then we present our definition of slice locality. 

Slice Detection Window: In searching for instructions to con-
struct a slice, we consider only those instructions that appear within 
a fixed distance from the target instruction. In particular, we extract 
slices using a fixed length slice detection window or slicer. The  

instructions in the slicer form a continuous chunk of the dynamic 
instruction trace. Only committed instructions enter the slicer. 
When a target instruction is committed, its slice is extracted using a 
backwards data-flow walk which eliminates all operations that do 
not directly contribute to the target outcome. Slicer size affects slice 
length and therefore it impacts slice locality and the ability to pre-
execute slices early enough. While a shorter slicer may result in 
fewer shorter slices per target instruction and hence in higher repeti-
tion in the dynamic slice stream, the distance between the target and 
lead instructions in these slices could be small. Consequently, it 
may be harder for those slices to run-ahead of the main thread. For 
this reason we experimented with various slicers of 32, 64 or 128 
instructions. We could study locality with larger slicers. We have 
performed some experiments and found that locality drops rapidly 
beyond 128 for most programs. 

Control-Flow: Besides how far back we look in the dynamic 
instruction trace, a second choice in detecting slices is whether we 
include intervening control-flow instructions. In this study we do 
not. Slice detection occurs over a chunk of the dynamic instruction 
trace. Since this is a trace, it only includes a specific control-flow 
path and does not contain the parts of the static slice that would 
appear on other control-flow paths. Accordingly, from a practical 
standpoint it is convenient to ignore any intervening control flow 
instructions. Later on we explain, that the implied control flow path 
(i.e., the directions of all intervening branches at detection time) can 
be used to select the appropriate slice for prediction. 

Memory Dependences: Another choice regarding slices is 
whether we follow memory dependences including stores and their 
parents. Conceptually, the following tradeoffs exist: Including 
memory dependences may allow us to look further in the past, cap-
turing a lead instruction that appears further away from the target. 
Moreover, including memory dependences may improve slice accu-
racy since, if a memory dependence exists, we will be waiting 
appropriately for the corresponding data. However, since memory 
dependences may be changing over time, including them could 
result in incorrect slices. We report results for slices that follow 
memory dependencies. 

Slice Size: Slices with only one instruction (the target), are 
always discarded in this study, as the practical implementation dis-
cussed earlier cannot use them to any benefit. We could also choose 
to restrict our attention to those slices that contain at most a fraction 
of all instructions in the slicer. While including more instructions 
may allow us to capture an earlier lead instruction, at the same time 
it has several, potentially negative implications: First, it reduces the 
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chances of pre-executing the resulting slice in time. Second, it may 
increase slice detection latency and complexity. Finally, more space 
is required to store longer slices. At the extreme, we could include 
all instructions in the slice detection window, however, the chances 
of actually pre-executing such a slice are rather slim. We have 
experimented with two choices: Not restricting the number of 
instructions (e.g.. up to 64 instructions may appear in a slice 
detected using the 64-entry slicer), and only considering those slices 
that contain as many instructions as the 1/4 of the slicer entries (i.e., 
32, 16 and 8 for the 128-. 64- and 32-entry slicers). Restricting slice 
size results in fewer slices being detected. 

Comparing Slices: Slices contain multiple instructions. For this 
reason and in contrast to outcomes, there are several ways in which 
two slices can be compared for the purposes of measuring locality. 
In this study, we consider two slices identical if they are lexically 
identical. That is, if they contain the same instruction sequence. 
With this definition two slices may be considered equivalent even if 
the PCs of individual instructions may differ. This definition is both 
practical and it accommodates identical slices that may appear on 
different control-flow paths. For the purposes of locality measure-
ments we ignore the implied control flow in slices. So two slices 
that are lexically identical but appear on different control flow paths 
and have different implied control flow will be considered the same. 

Slice Locality: For unrestricted slices (i.e. for any length, even 
slices containing just the target operation), we can now define slice-
locality(n) of a target instruction as the relative frequency with 
which a detected slice was encountered within the last n unique 
slices detected by preceding executions of the same static instruc-
tion. Slice-locality( 1) is the relative frequency that the same slice is 
encountered in two consecutive executions of a target instruction. A 
high value of slice-locality( 1) suggests that a simple, "last slice 
encountcred--based predictor could be accurate. For values of n 
greater than 1, slice-locality(n) is a metric of the working set of 
slices per instruction. Formally, it is the relative frequency with 
which the same slice was detected within the last n unique slices 
detected for the specific instruction, assuming there is always a 
slice. When excluding slices due to the restrictions considered ear-
lier, slice-locality(n) is the relative frequency that a given branch or 
loads's slice both meets the restriction criteria, and was seen in the 
last n unique slices that also matched the criteria. While a small 
working set does not imply regularity, we will later explain that it 
may be possible to execute all these slices in parallel and then select 
the appropriate one based on the implied control flow. 

Outcome Context: In practice, having identified a problem 
instruction, one might detect a slice and record it independent of the 
whether the underlying outcome based predictor was correct, or 
choose to record a slice only when a misprediction or cache miss 
actually occurs. The difference is that an outcome may only be hard 
for the outcome-based predictor to anticipate when following the 
implied control-flow of a small subset of all slices seen. We have 
measured the impact on locality as viewed from mispredicted 
branches and cache misses under both circumstances and conclude 
that statistically there is a benefit to waiting for a mispredicted tar- 

eL 	or load that misses, when detecting slices for a particu- 
lar static branch or load. Except where stated otherwise (i.e., in 
Section 3.23) all measurements reported in this paper are based 
upon the latter approach. 

3 Measurements 

We start by detailing our methodology in section 3.1. In Section 
3.2, we report our slice locality analysis first for branches (Section 
3.2.1) and then for loads (Section 3.2.2). Here we are interested in 
determining whether sufficient locality exists in the slice stream of 
mispredicted branches or of loads that miss. This is a property of the 
program (and of the underlying slice detection mechanism). In Sec-
tion 3.2.3 we explore the impact of outcome-context on slice-local-
ity. In Section 3.3, we study how a specific operation predictor 
interacts with an existing outcome-based predictor for branches and 
how well it predicts the addresses of loads that miss. The operation 
predictors we studied execute slices instantaneously when a lead 
instruction is encountered. Ow-  goal is to understand the potential of 
slice prediction. Further work is necessary to develop realistic pre-
dictors where slice execution takes some time. Our results provide 
the insight necessary to do so in a well educated manner. 

3.1 Methodology 
We have used the programs from the SPEC2000 suite shown in 

table 2. All programs were compiled with gee (-02 -funroll-loops - 
finline-functions) for the MIPS-like Simplescalar instruction set 
(PISA). We have used the test input data sets. To obtain reasonable 
simulation times, we skipped the initialization phase and warmed 
up the caches and the branch predictor for the next 25 million 
instructions. The actual number of instructions skipped (i.e., func-
tionally simulated) is shown in table 2. Our measurements were 
made over the next 300 million instructions. In table 2, we also 
report the L I data cache miss rates and the branch prediction accu-
racies (direction and target address). In the interest of space, we use 
the labels shown in table 2 in our graphs. To obtain our measure-
ments we have modified the Simplescalar 3 simulator. Our base 
configuration is an 8-way dynamically-scheduled superscalar pro-
cessor with the characteristics shown in table I. Our base processor 
has a 12 cycle minimum pipeline. 

3.2 Slice Locality 
In this section we study the locality of slices first for branches 

and then for loads. For branches, we focus on those dynamic 
instances that are mispredicted by the underlying outcome-based 
predictor and study whether locality exists in their slice stream. This 
is necessary if history-based operation-prediction is going to be suc-
cessful. For loads, we focus on those dynamic instances that miss in 
the data cache. In both cases we examine only the slices that lead to 
mispredictions, or cache misses, respectively except in Section 
3.2.3 were the impact of ignoring outcome-context is examined. 

Measuring locality in the way we do here allows us to avoid any 
artifacts that a specific implementation of operation prediction may 
introduce. Later in section 3.3, we study models of specific opera-
tion predictors. 

3.2.1 Branch Slice Locality 
Figure 2 reports the weighted average of slice-locality(n) for 

those branches that are mispredicted by the underlying outcome-
based branch predictor. To calculate slice-locality(n), the distribu-
tions for each static branch are weighted by the relative number of 
outcome-based misprcdictions associated with that branch, and so 
the overall figure naturally emphasizes those static branches which 
are mispredicted most often. We report locality in the range of 1 
(bottom bar) through 4 (top bar) and for a variety of slicer configu- 
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Brae Processor Configuration 

Branch Predictor 64K GShare+64K bimodal 
with 64K selector 

Fetch Unit Up to 8 instr. per cycle. 64-entry Fetch Buffer 
Non-blocking Fetch 

Instruction Window Size 128 entries F11 Latencies same as MIPS R10000 

Issue/Decode/Commit BW 8 instructions / cycle Main Memory Infinite, 100 cycles 

Li - Instruction cache 64K, 2-way SA, 32-byte blocks, 
3 cycle hit latency 

Li - Data cache 64K, 4-way SA, 32-byte blocks, 
3 cycle hit latency 

Unified L2 256K, 4-way SA, 64-byte blocks. 
16 cycles hit latency 

Load/Store Queue 64 entries, 4 loads or stores per cycle 
Perfect disambiguation 

Table 1: Base configuratico details. We model an aggressive 8-way, dynamically-scheduled superscalar pmcessor having a 128-entry 
scheduler and a 64-catty load/store queue. 

Benchmark Label Inst. Skipped MR BPA Benchmark Label Inst. Skipped MR BPA 

I64.gzip gzP 101 M 3.1% 92.3% 183.equake eqk 359 NI 2.7% 90.4% 

175.vpr yr 33 M 2.6% 91.0% 188.anunp amp 100 M 28.3% 99.1% 

176.gcc gee 200 M 0.9% 91.4% 197.parser prs 144 M 2.3% 91.2% 

177.mesa msa 101 M 0.7% 99.9% 255.vortex vor 102 M 0.7% 98.5% 

179-art art 1.686 NI 43.9% 98.4% 256.bzip2 bzp 100 M 3.9% 97.6% 

181.mcf mcf 50 M 5.3% 90.9% _300.twolf twf 188 M 6.2% 85.1% 

Table 2: Programs used in our experimental evaluation. MR is the LI data miss rate. BPA is the branch prediction accuracy 
(direction+target). We simulated 300 million committed instructions after skipping the initialization phase. 
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rations. To identify the slicers we use an "NSM" naming scheme. 
"N" is the size of the slicer, i.e., 256. 128, 64 or 32. "S" can be 
either "U" (unrestricted) or "R" (restricted) and specifies whether 
we restrict slice size to up 1/4 of total number of instructions in the 
slicer or not. Finally, "M" signifies that slices include memory 
dependencies. For example, 64UM corresponds to a slicer with 64 
entries that can produce slices of up to 64 instructions and that is 
capable of following memory dependences. 32RM is a slicer that 
has 32 entries and that can detect slices that include only up to 8 
instructions and that can follow memory dependences. We have 
experimented with various slicer configurations. In the interest of 
space we report the following seven from left to right: 256RM, 

128RM, 64RM, 32RM, 64UM, and 32UM. 
Before we present our results it is important to emphasize that 

while high locality is desirable, any locality may be useful for 
improving branch prediction accuracy. This is because we measure 
locality only for mispredicted branches. As we will show in section 
3.3, even when little locality exists, it can positively impact overall 
branch prediction accuracy. 

With unrestricted slices, in all cases but gzip and mesa, using a 
shorter slicer results in higher locality with the average locality 
going from 73% to 83% comparing 64UM to 32UM. With 
restricted slices and a short detection window (32RM) there is much 
lower locality compared to unrestricted slices (32UM), and further-
more, the locality increases going from a 32-entry slicer to a 64-
entry slicer, on average from 59% to 66%. This result suggests that 
many slices have more than 8 instructions that are close to the target 
instruction. This result corroborates the observation by Zilles and 
Sohi that many operations that directly contribute to the computa-
tion of the target are clustered close to the target operation [15). As 
we use a fixed ratio of 1/4 to restrict slices, a shorter slicer is penal-
ized in9re heavily than a longer one. Indeed, for a 256-entry slicer 
(256RM) we see the dominant trend is again a decrease in locality 
for longer slices. 

On the average, slice-locality(4) is about 49% with the 256RM 
slicer and rises to about 61%, and 65% for the 128RM and 64RM 
slicer, while falling back to 59% for the 32RM slicer. More impor-
tantly, most of the locality is captured even if we can record a single 
slice per instruction. In particular, slice-locality(1) is approximately 
34%, 41%, 45% and 46% for the 256RM, 128RM, 64RM and 
32RM slicers. This suggests that a last-slice-based predictor may be 
quite successful. 

As we move towards larger slicers, locality usually drops. In the 
worst case of vpr, slice-locality( I ) drops to about 10% with the 
256RM slicer. For several programs the drop of locality with 
increased slicing windows is a lot less dramatic and slice-locality(1) 
remains well above 30% for 256RM for half the benchmarks. How-
ever, a larger slicer does not necessary result in lower locality. In 
particular, for gzip and mesa locality(1) increases as the slicer is 
increased from 32 to 64 entries, even for unrestricted slices. This 
anomaly has been studied carefully and appears to be the result of 
intervening control flow: A larger slicer allows us to look through 
more instructions when detecting a slice, and hence capture longer 
slices. Normally, this tends to strongly reduce slice locality because 
the number of implied control flow paths leading up to the target 
multiplies as additional basic blocks appear in the slicer. However, a 
longer slicer may also increase locality when a slice skips over a 
segment of instructions that fluctuates in length due to intervening 
control flow. With a short slicer, the earlier part of the slice may be 
evicted occasionally. With a longer slicer, the whole slice may still 
appear in the slicer. 

In table 3 we report the average instruction distance between the 
lead and the target instructions and the average instruction count per 
slice. We define instruction distance as the number of intervening 
instructions (including the lead) in the original instruction trace. In 
the interest of space we restrict our attention to the 256RM, 128RM, 
68RM and 32RM slicers. These two metrics provide an indication 
of whether the slices could potentially run-ahead of the main thread 
(of course, this can only be measured using an actual implementa- 
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Figure 2: Weighted average slice-locality distribution for mispredicted branches (see text for description of weighting procedure). Range 
shown is 1 (bottom) to 4 (top). We use a NSM scheme where N is the size of the detection window (256, 128, 64, or 32). S is "U" if no 
restrictions on slice size are placed and "R" if we restrict slices to 1/4 of the slice detection window, and finally, "M" indicates that we follow 
memory dependences in constructing slices. 

Program 
256-R-.111 128-R-M 64-R-M 32-R-M 

Dist Cnt. &NI Dist. Cnt. #.1 Dist. Cnt. #S1 Dist Cnt. #St 

47.0 110.1 12.7 0.84 90.1 14.2 1.09 42.1 7_2 0.35 16.4 4.3 0.15 

112.5 19.1 0.54 95.9 15.8 0.27 50.8 10.4 0.05 22.3 5.1 0.17 

.1.:-CC 111.8 15.2 0.73 93.3 11.7 0.45 41.9 7.6 0.18 17.8 4.7 0.05 

msa 104.3 8.0 0.00 77.2 5.7 0.00 43.0 4.6 0.00 16.2 3.6 0.00 

art 126.4 133 0.00 109.6 9.1 0.00 46.0 5.4 0.00 153 4.1 0.00 

mcf 104.0 18.5 0.24 100.0 16.8 0.12 43.3 8.5 0.04 17.2 5.2 0.00 

eqk 90.6 6.8 0.02 64.0 6.0 0.00 35.3 4.5 0.00 14.7 3.2 0.00 

amp 106.6 12.1 0.49 80.3 9.4 0.32 40.4 7.3 0.06 18.4 5.0 0.05 

pr s 111.7 16.4 0.61 101.2 12.2 0.48 47.7 7.4 0.18 19.8 4.6 0.07 

,..or 109.7 13.7 0.29 99.7 9.4 0.32 47.9 6.4 0.13 22.0 4.1 0.04 

b7 1 1 1 8 18.0 0.11 103.5 19.4 0.15 48.3 9.8 0.00 23.3 5.7 0.00 

twf 95.6 15_2 0.10 74.3 13.2 0.10 
- 

44.5 9.0 0.06 
- 

a1.3 4.8 0.03 

Table 3: Branch slice statistics: Weighted avera),e instruction distance ("D'st."), instruction count ("Cnt."), and number 
of stores ("#,St") for various slice detection setups. Each slice weighted by the number of mispredictims potentially 
corrected 

tion of an operation predictor). Overall, slice instruction count is 
relatively small and remains small even when we move to longer 
slicers. Moreover, the lead to target instruction distances are on the 
average considerable, especially with the 256RM slicer. 

Table 3 also reports the average number of stores per slice. The 
number of stores is a metric of the number of memory dependences 
in each slice. The number of memory dependencies detected tends 
to grow with slicer size (similar to observations by Zilles and Sohi 
115)), however, for the slicer sizes studied here, the number of 
dependencies detected was small. 

These results are encouraging as they suggest that relatively high 
locality exists in the computation slices that lead to unpredictable 
branches. Moreover, slices tend to be small in size (on the average), 
spread over several tens of instructions of the original program. 
Having shown that programs exhibit the locality necessary for oper-
ation prediction of otherwise mispredicted branches, in Section 
3.3.1 we measure how an approximate operation predictor interacts 
with the underlying outcome-based branch predictor. 

3.2.2 Load Slice Locality 
Figure 3 reports weighted average slice-locality(n) for those 

loads that miss in the LI data cache. The weighting of the distribu-
tion for each static load is based upon the frequency of misses for 
that load. We report results for the same slicer configurations we 
presented in section 3.2.1. We observe trends similar to those for 
mispredicted branches but with locality being stronger. On the aver-
age slice-locality(1) is 58%, 56%, 47%, and 38% for the 32RM, 
64RM, 128RM, and 256RM slicers. Recording up to 4 slices per 
instruction results in a locality of 68%, 77%, 73% and 60% respec-
tively. For most programs, load slice locality is stronger than branch 
slice locality was. In table 4 we also report the average lead to target 
instruction distancc., instruction count, and number of included 
stores for load slices. Slice instruction distance increases with the 
slicer size ,,ad is relatively large. Moreover, slice instruction count 
remains relatively small even with the larger slicers. Load slices 
tend to contain more memory dependencies that branch slices. 
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Figure 3: Slice locality distribution for loads that miss in the LI data cache. Range shown is I (bottom) to 4 (top). We report results for the same slicer 
configurations as in figure 2. 

Program 
256-R-M 128-R-M 64-R-M 32-R-M 

Dist. Cat. #S Dist. Cat. #S Dist Cat. #5 Dist. Cat. #S 

bezP 126.3 13.3 3.07 87.4 10.4 1.75 29.7 5.1 0.93 18.7 3.8 ' 	0.84 

tpr 112.8 18.3 1.77 97.4 13.9 1.22 45.1 9.4 0.76 15.8 3.9 0.50 

gcc 118.5 14.5 1.62 99.6 10.1 1.28 46.3 6.1 0.95 22.7 3.8 0.78 

msa 126.7 15.0 1.36 113,7 10.3 1.08 55.9 6.6 0.96 22.2 4.4 0.76 

an 126.9 10.6 0.00 109.5 6.2 0.00 46.1 3.9 0.00 17.4 3.0 0.00 

mei 124.8 22.8 0.10 108.5 14.0 0.07 47.0 7.9 0.04 14.9 4.8 0.02 

eqk 117.5 11.0 0,57 88.3 7.2 0.46 37.7 6.0 0.22 18.1 3.9 0.14 

amp 124.9 18.2 3.10 113.2 16.2 1.36 50.9 8.6 0.80 23.9 5.0 0.66 

prs 125.5 22.1 , 	1.25 113.9 14.1 1.27 53.6 8.0 0.78 22.6 4.8 0.47 

S'Or 124.9 16.9 2.05 113.3 11.1 1.61 53.6 6.1 0.99 24.2 3.5 0.63 

trzp 117.3 14.0 0.08 100.0 10.8 0.13 42.8 7.9 0.05 16.6 4.5 0.07 

twf 93.7 11.2 0.29 65.9 10.2 0.30 40.8 7_3 0.29 21.6 4.9 0.16 

Table 4: 1.1)ad slice statistics: Weighted average instruction distance ("Dim "), instruction count ("('nt."), and number of 
stores ("#St") for various slice detection setups. Each slice weighted by the nun her of Li cache misses potentially 
prefetched 

rnsa art lid el* arp prs vcr 	trl AVG 
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Figure 4: The effect of outcome-context on slice locality for branches (left) or loads (right): Detecting slices specifically when a branch was 
mispredicted or load missed improves locality. Bars represent locality(4) for a 128-R-M detection mechanism. Darker bars are for detection 
only on mispredict, or on cache miss, for branch slices and load slices respectively. Lighter bars represent the locality for slices of 
mispredicted branches and loads that miss when slices are extracted independent of whether there was a misprediction or cache miss. 
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The results of this section are also encouraging as they show that 
high locality exists in the slice stream of the loads that miss in the 
LI data cache. Overall, slicer size tends to play a dominant role in 
determining locality. For short slicers restricting slice size has a 
very large impact on locality, but this impact decreases for longer 
slicers. 

3.2.3 Effect of Outcome Context on Locality 
Figure 4 reports the change in observed locality for 128RM when 

we allow slices to be added to the slice cache independent of 
whether the underlying outcome-based prediction mechanism was 
correct (in the case of branches), or there was a cache hit (in the 
case of loads). Note that both sets of measurements still represent 
only slices for branches that mispredict. or loads that miss, and are 
again weighted by the frequency of mispredictions and cache 
misses per static branch or load. We found that detecting slices only 
for those dynamic instances of the target instruction for which a 
misprediction, or cache miss event occurs improved locality by 
around 8% and 2% for branches and loads respectively. It is for this 
reason that all other results are reported based upon the detect-
only-on-miss approach. 

33 Accuracy and Interference with Outcome-
Based Prediction 

In this section, we model specific operation predictors and study 
their accuracy. We first explain how our branch operation predictor 
works. A slice is detected after each branch that was mispredicted. 
Detected slices are stored in an infinite slice cache where they are 
identified by the lead instruction. Only up to 4 slices per lead 
instruction can be present in the slice cache, however other than this 
there is no restriction on the total number of slices in the cache. 
Upon encountering a dynamic instance of the lead instruction we 
spawn all slices that are associated with it. Note that these slices 
may relate to the same, or different target operations. For the pur-
poses of this study, we assume that the resulting scout threads com-
plete instantaneously, however the outcomes of these threads are 
not used immediately. Also, all register and memory values from 
instructions before the lead are assumed to be available. The out-
come from slice execution is saved while the slice is matched-up to 
the arriving flow of instructions. This matching is based upon 
matching instructions and register dependences. A more practical 
method would be to record the implied control flow of the slice 
when it was detected and compare this to the observed control flow 
after a slice has spawned. however, the latter technique does not 
readily allow control independence. On average we found that 47%, 
58%, and 73% of all branch slice executions are discarded for the 
32RM, 64RM, and 128RM slice detection mechanisms. When and 
if the target branch appears, if more than two slices have matched 
up to the instruction stream we select the first slice that spawned, or 
the most recently extracted slice if both spawned at the same time. 
Most of the time there is only a single prediction available to be 
consumed, if any (89%, 85%, and 80% for 32RM, 64RM, and 
128RM respectively when executing branch slices). 

3.3.1 Branches 
To quantify the potential accuracy of our operation predictor for 

branches and how it interacts with the underlying outcome-based 
predictor we provide a breakdown of operation prediction for all 
dynamic branches. We break down branches based on whether the  

underlying outcome-based predictor correctly predicts the particu-
lar dynamic branch instance, on whether a prediction was available 
from the operation prediction and on whether the latter, if available, 
was correct. For ease of explanation we use a "vP" naming scheme. 
"v" can be w(rong) or r(ight) and signifies whether the outcome-
based predictor correctly predicted the branch. "P" can be N(one), 
W(rong) or R(right) and signifies whether no prediction was avail-
able from the operation predictor, and if there was one, whether it 
was correct or not. For example, rN and rR correspond to branches 
that were correctly predicted by the outcome-based predictor and 
for which no prediction or a correct one was available from the 
operation predictor respectively. Category rW corresponds to 
destructive interference between operation and outcome-based pre-
diction, while catceory wR corresponds to constructive interference. 

"rN", "wN", "rR" and "wW" do not impact the accuracy of the 
outcome-based predictor. In our results we report "rW" and "rR" as 
fractions measured over the total number of correctly predicted 
branches by the outcome predictor. We also report "wW" and "wR" 
as fractions measured over the total number of incorrectly predicted 
branches by the outcome predictor. Ideally, "rW", "wN" and "wW" 
would all be 0%, in which case "wR" would be 100% (all previ-
ously mispredicted branches are now correctly predicted by the 
operation-based predictor) 

Figure 5 reports accuracy results for operation predictors that uti-
lize, from left to right, a 128RM, 64RM or a 32RM slicer. Part (a) 
reports accuracy for correctly predicted branches (categories "rR" 
and "rW") while part (b) reports accuracy for mispredicted 
branches (categories "wR" and "wW"). Categories "rN" and "wN" 
are implied (missing upper part of the bars). In comparing the 
results of two graphs we must also take into account the relative 
fraction of correctly and incorrectly predicted branches (i.e., the 
accuracy of the underlying outcome-based predictor). We do so 
later in this section. In most cases, the operation predictors interact 
favorably with the underlying outcome predictor since "rW-  is in 
most cases very small. In all programs, the operation predictor cor-
rectly predicts a large fraction of those branches that are mispre-
dicted by the underlying outcome-based predictor as shown in part. 
(b) (category "wR") while it incorrectly predicts very few (category 
"wW"). 

On the average, ignoring timing considerations, the operation 
predictor offers correct predictions for about 66%, 68% and 59% of 
all mispredicted branches when the 128RM, 64RM or the 32RM 
slicers are used respectively. On the average, the operation predic-
tion interferes destructively with the underlying outcome-based 
branch predictor in very few cases. We re-iterate that in interpreting 
he results of figure 5, one should also consider the relative fractions 
of correctly versus incorrectly predicted branches. We report the 
absolute change in prediction accuracy in addition to the outcome-
based branch predictor in table 5 (the branch prediction accuracy of 
the outcome based predictor was reported in table 2). We observe 
that in most programs the operation predictor helps the underlying 
outcome-based predictor resulting in higher overall accuracy. In 
some cases (e.g., mesa) where outcome-based prediction is very 
high, the operation predictor actually harms overall accuracy. Since 
in most cases, this destructive interference occurs for programs with 
high branch accuracy, it may be possible to use a confidence mech-
anism (e.g., a counter with every slice) to filter out those slices that 
lead to incorrect predictions very often or to simply disable opera-
tion prediction when outcome prediction is above a threshold. Such 
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Figure 5: Interaction of operation branch prediction and outcome-based branch prediction. We report results for the following slice detection 

mechanisms: 128-R-M, 64-R-M and 32-R-M. (a) Correctly predicted branches and (h) Mispredicted branches. 

Program I28-R-M 64-R-M 32-R-M Program I28-R-M 64-R-M 32-R-M 

K-4,  +3.3% +4.5% +3.6% eqk +5.5% +6.5% +6.5% 
vpr +5.9% +4.9% +1.6% amp +0.6% +0.6%,  +0.5% 
gee +5.4% +6.4% +5.9% prs +4.8% +5.8% +5.8% 
msa +0.1% -1.7% -1.7% vor +1.1% +1.2% +1.1% 
art -1.7% +0.1% +0.2% bzp +1.9% +1.4% +1.0% 

mcf +4.7% +5.7% +5.7% twf +5.4% +8.1% +8.9% 

'able Change in branch prediction accuracy wit! operation prediction over the base outcome-based predictor. 

an investigation is beyond the scope of this paper. Overall the frac-
tion of mispredicted branches that get a correct prediction from the 
operation predictor is greater than the locality we observed in sec-
tion 3.2.1. The main reason is that we restrict the number of slices to 
4 per lead PC as opposed to 4 per target PC which allows for greater 
coverage if a lead operation is associated with a single target. 

3.3.2 Loads 
Finally, we report accuracy for an operation predictor for load 

addresses. The results are shown in figure 6 for predictors based on 
the 128RM, 64RM and 32RM slicers. In part (a) we report results 
for those loads that hit in the data cache, while in part (b) we report 
results for the loads that miss in the data cache. The results of part 
(a) are provided for completeness. These loads hit in the data cache, 
so correctly predicting their addresses is not as important. We show 
two categories: hR are the loads whose addresses are correctly pre-
dicted while /iW are the loads whose addresses are incorrectly pre-
dicted. In an actual implementation hW may translate into cache 
pollution. Overall, /1W is negligible. In part (b) we report a break-
down of predictions for loads that miss in the data cache. Two cate-
gories are shown; mR includes the loads for whom the addresses are 
correctly predicted while mW includes those that are not. Ideally, 
mW would be 0% and mR would be 100%. In all cases, mW is 
barely noticeable. Moreover, mR tends to be higher for shorter slic-
ers. We can observe that the accuracy of the operation predictor is 
extremely high (mR vs. mW). Moreover, the operation predictor 
offers correct predictions for many of the loads that miss in the data 
cache. Overall coverage is less than the locality we observed in sec-
tion 3.2.2. The main reason is that now we restrict the number of  

slices to just 4 per lead PC as opposed to 4 per target PC (this 
restriction was placed since we need to associate slices with the lead 
PC in this operation predictor). In many programs, the same lead 
PC appears in the slices for more than one target load. Accordingly, 
thrashing occurs and coverage suffers. For example, consider a 
linked list where each element is a structure with multiple fields. All 
loads that access each field may be missing at the same time. All 
these loads will be getting the base address of the element in ques-
tion from the same load. Consequently, their slices will probably 
have the same lead instruction and hence they will cause thrashing 
in the lead PC's slice set. A potential solution to this problem could 
be to allow more slices per lead PC. Alternatively, we may opt for 
carefully selecting the loads for which we detect slices and apply 
operation prediction (e.g., first loads that misses per block as 
opposed to all loads that miss per block). 

The tradeoffs in load address prediction are quite different than 
those for branch prediction. In load address prediction, an incorrect 
prediction does not necessarily impact performance negatively. It 
can only do so indirectly by increasing resource contention or by 
polluting the data cache. Also, while we may predict the exact 
address incorrectly, we may still predict the correct cache block 
address correctly. Moreover, while it is desirable to have a high cov-

erage (that is to provide correct predictions for as many of the loads 
that miss as possible), higher coverage may not translate in higher 
performance for reasons that include the following: Two loads that 
miss may be accessing the same block, accordingly, we may actu-
ally prefetch the block even if we do not correctly predict both of 
them. Also, in some cases, performance may be limited by other 
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loads, hence correctly predicting a load address may have a negligi-
ble impact on performance. 

4 Related Work 
Operation prediction shares similarities with a number of 

recently proposed multi-threaded models where a number of poten-
tially speculative, helper threads are used to enhance an otherwise 
sequential, main thread. Simultaneous subordinate micro-threading 
and assisted execution are two such proposals [2,13]. In the exam-
ple application of SSMT given in [2] the helper threads are imple-
mented in microcode and are used to enhance branch prediction. 

Zilles and Sohi suggested extracting slices at compile time and 
using them to pre-execute performance critical instructions [15,161. 
Assuming compile-time extraction, they have demonstrated that 
such slices can greatly improve performance, especially if they are 
optimized. Farcy et al., proposed an operation predictor for 
branches for a restricted class of branches [5]. Moshovos also sug-
gested the possibility of generalized operation prediction [8]. 
Moshovos et al., proposed slice processors, the first dynamic, 
autonomous and generalized operation predictor-based prefetcher 
and demonstrated that it can improve performance even when com-
pared to an outcome-based predictor [9]. Collins et al., demon-
strated a software-driven slice-based prefetcher for an EPIC-like 
architecture [4). In parallel with this work, Collins et al., also pro-
posed a dynamic slice pre-execution prcfetcher where slices are 
optimized and can be chained [17). Annavaram et al., proposed a 
non-speculative slice-based prefetching scheme where slices are 
detected and pre-executed from the fetch buffer and demonstrated 
that it can effectively prefetch data for a 4-way 000 core with a 
64-entry scheduler [1]. Luk described a software-controlled 
prefetching method based on slice pre-execution [6]. In the Specu-
lative Data-Driven Multithreading (SDDM) execution model, pro-
posed by Roth and Sohi, performance critical slices leading to 
branches or frequently missing loads are pre-executed [12]. A regis-
ter integration mechanism is used to merge slice produced results 
into the main thread and to filter out any incorrectly calculated val-
ues. As proposed. SDDM relies on a profiling phase and the com-
piler to build slices and to orchestrate their execution. 

Some operation outcome predictors exist. Stride predictors are an 
early example where the actual computation is built in the design. 
Roth at al., proposed an operation predictor for recursive data struc- 

tures [10], while Mehrotra et al., proposed operation predictors for 
linked lists and arrays [7]. Roth at al., proposed an operation predic-
tor for indirect jumps [11). In all aforementioned proposals, the 
class of predictable operations is fixed in the design. Slipstream 
Processors also use a helper thread to run-ahead of the main 
sequential thread in effect pre-executing instructions [14). The 
helper thread is formed by removing predictable computations from 
the main sequential thread. They study the dynamic creation of 
chaining slices in which a slice can, in essence, re-spawn itself. A 
similar chaining mechanism was proposed by Zillcs and Sohi in 
[16] based on hand-optimized slices. Finally. an  Instruction Path 
Coprocessor could potentially be used to support dynamic extrac-
tion and execution of slices [3]. 

This study also appears in our recent technical report [18]. To the 
best of our knowledge, no other work on the locality characteristics 
of the slice stream of mispredicted branches or loads that miss 
exists. Moreover, in their majority, most aforementioned slice-based 
execution models rely on compile-time slice creation or manual 
selection. 

5 Conclusion 
In this study we were motivated by the recently proposed opera-

tion-based prediction. Existing outcome-based predictors rely on 
regularities in the outcome stream so that they can accurately pre-
dict a large fraction of the program's outcomes. However, some out-
comes do not exhibit sufficient regularity. Operation prediction has 
the potential of successfully predicting some of these outcomes. 
Operation prediction looks for regularity in the computation stream 
that produces outcomes that do not exhibit sufficient regularity. It 
works by dynamically extracting the computation slices that lead to 
such outcomes and by attempting to pre-execute them next time 
around. For operation prediction to be successful, it is necessary 
that the computation stream of such outcomes exhibits sufficient 
regularity. 

Several works have demonstrated that operation prediction 
method work or may work for branches or loads, In this work we 
study program behavior and explain why operation prediction may 
work. In particular, we studied the locality of the computations that 
lead to otherwise unpredictable outcomes. We focused on loads and 
branches and studied locality under various realistic assumptions 
about slice detection. Moreover, we have studied models of opera- 
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tion predictors and how they interacted with an underlying out-
come-based predictor. Our results demonstrate that high locality 
exists in the computation stream of unpredictable branches and of 
loads that miss in the data cache. Moreover, we have shown that the 
potential exists for operation prediction to boost accuracy over an 
existing outcome-based branch predictor and of accurately predict-
ing the addresses of load references that would miss in the data 
cache. To the best of our knowledge no previous work on the local-
ity of slices for mispredicted branches and loads exist. 

While our results are promising we have not studied actual opera-
tion predictors taking timing into account. Nevertheless, we have 
seen that slices tend to spread over large region of the original 
instruction stream while they contain on the average few instruc-
tions. Moreover, our results remain valid and important as they 
demonstrate that programs do exhibit the behavior necessary for 
operation prediction to be successful. Further investigation is 
required in tuning operation predictors so that the make use of 
available resources effectively while being able to execute scout 
threads early enough for providing predictions for modern high-per-
formance processors. 
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Abstract 

of the hierarchy exploits instruction-level parallelism 
and thread-level parallelism, whereas the upper level 
exploits more distant parallelism. Detailed simulation 
studies with a cycle-accurate simulator indicate that 
the hierarchical multithreading model provides scalable 
performance for most of the non-numeric benchmarks 
considered. 

Keywords: Speculative multithreading, Control 
independence, Microardiitecture, Thread-level Paral-
lelism, parallelism granularity 

1 Introduction 

A defining challenge for research in computer science 
and engineering has been the ongoing quest for faster 
execution of programs. The commodity microprocessor 
industry has been traditionally looking to fine-grain or 
instruction level parallelism (ILP) for improving perfor-
mance, by using sophisticated microarchitectural tech-
niques and compiler optimizations. These techniques 
have been quite successful in exploiting ILP. 

Many proposals such as the multiscalar [3][13], trace 
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processing [8], superthreading [14], and clustered mul-
tithreading [2][6] have been proposed to reduce the cy-
cle time and to exploit thread level parallelism. All 
of these proposals are geared to exploiting thread-level 
parallelism at one granularity. In this paper we inves-
tigate a hierarchical multithreading model to exploit 
thread-level parallelism at two granularities. It makes 
use of decentralization and multithreading to extract 
both fine- and medium-grain parallelism (also known 
as ILP and TLP). This execution model has the po-
tential for better scalability of performance than non-
hierarchical multithreading execution models. 

The rest of the paper is organized as follows. Section 
2 presents the background and related work. Section 
3 describes the HMT (Hierarchical Multi-Threading) 
thread model. Section 4 presents a detailed description 
of the HMT microarchitecture. Section 5 presents ex-
perimental results obtained from detailed simulations 
of a cycle-accurate HMT simulator. Finally we con-
clude in section 6, followed by a list of references. 

2 Background and Related 
Work 

Limited size instruction window is one of the major 
hurdles in exploiting parallelism. Programs are hun-
dreds of millions of instructions. Window size is only 
two or three dozens of instructions. In order to extract 
lots of parallelism, we need to have a large instruction 
window, which increases the visibility of the program 
structure at run time. However, having a very large 
instruction window is difficult, for the following rea-
sons: (i) Implementation constraints limit the window 
size. (ii) Branch misprediction reduces the number of 
useful instructions in the instruction window. (iii) Hav-
ing a large instruction window increases the complexity 
of the instruction scheduler, thus increasing the cycle 
time. 

The central idea behind multithreading is to have 

As we approach billion-transistor processor chips, the 
need for a new architecture to make efficient use of 
the increased transistor budget arises. Many studies 
have shown that significant amounts of parallelism ex-
ist at different granularities that is yet to be exploited. 
Architectures such as superscalar and VLIW use cen-
tralized resources, which prohibit scalability and hence 
the ability to make use of the advances in sernicon- 

- 

	

	ductor technology. Decentralized architectures make a 
step towards scalability, but are not geared to exploit 
parallelism at different granularities. In this paper we 
present a new execution model and microarchitecture 
for exploiting both adjacent and distant parallelism in 
the dynamic instruction stream. Our model, called hi-
erarchical multi-threading, uses a two-level hierarchical 
arrangement of processing elements. The lower level 



multiple flows of control within a process, allowing 
parts of the process to be executed in parallel. In the 
parallel threads model, threads that execute in parallel 
are control-independent, and the decision to execute a 
thread does not depend on the other active threads. 
Under this model, compilers and programmers have 
had little success in parallelizing highly irregular nu-
meric applications and most of the non-numeric appli-
cations. For such applications, researchers have pro-
posed a different thread control flow model called se-
quential threads model, which envisions a strict se-
quential ordering among the threads. That is, threads 
are extracted from sequential code and run in paral-
lel, without violating the sequential program seman-
tics. Inter-thread communication between two threads 
(if any) will be strictly in one direction, as dictated 
by the sequential thread ordering. No explicit syn-
chronization operations are necessary. This relaxation 
makes it possible to "parallelize" non-numeric appli-
cations into threads without explicit synchronization, 
even if there is a potential inter-thread data depen-
dence. The purpose of identifying threads in such a 
model is to indicate that those threads are good candi-
dates for parallel execution in a multithreaded proces-
sor. 

Examples of prior proposals using sequential threads 
are the multiscalar model [3][13], the superthreading 
model [14], the trace processing model [8], and the 
dynamic multithreading model [1]. In the sequential 
threads model, threads can be nonspeculative or spec-
tilative from the control point of view. If a model sup-
ports speculative threads, then it is called speculative 
multithreading (SpMT). This model is particularly 
useful to deal with the complex control flow present 
in typical non-numeric programs. In fact, many of 
the prior proposals using sequential threads implement 
SpNIT [3][5][6][8][13)[14]. 

The speculative multithreading architectures dis-
cussed so far use a single level of multi-threading. The 
program is partitioned into a set of threads, and mul-
tiple threads are run in parallel using multiple PEs. 
The PEs are usually organized as a circular queue in 
order to maintain sequential thread ordering. A major 
drawback associated with single-level multithreading is 
that it is limited to exploiting TLP at one granularity 
only, namely the size of each thread. Thus, if it exploits 
fine-grain TLP, then it does not exploit more distant 
parallelism, and vice versa. In order to obtain high 
performance, we need to extract parallelism at differ-
ent granularities. 

A second drawback of single-level multithreading is 
that it is difficult to exploit control independence be-
tween multiple threads. If there is a thread-level mis-
prediction, then all subsequent threads beginning from  

the mis-speculated thread are generally squashed, even 
though some threads may be control independent on 
the misspeculated one. It is possible to modify the 
hardware associated with the circular queue in order 
to take advantage of control independence [9], however 
the design becomes more complicated. 

3 The HMT Thread Model 

We investigate hierarchical multithreading (HMT) to 
overcome the limitations of single-level multithread-
ing. This section introduces the software aspects of 
our HMT model; the next section details the microar-
chitecture aspects. An important attribute of any mul-
tithreading system is its thread model, which specifies 
the sequencing of threads, the name spaces (such as 
registers and memory addresses) threads can access, 
and the ordering semantics among these operations, 
particularly those done by distinct threads. 

As our HMT work primarily targets non-numeric 
applications, we use SpNIT as its thread sequencing 
model. However, threads are formed at two different 
granularities. The control flow graph is partitioned into 
supertasks, which are again partitioned into tasks. A 
task is a group of basic blocks and can have multiple 
targets. A supertask is a group of tasks at a macro 
level, which can be thought of as a bigger subgraph of 
the control flow graph. A supertask represents a sub-
stantial partition of program execution, the idea being 
that there is little if any control dependence between 
supertasks, and ideally only minimal data dependence. 
Generally, instructions in two adjacent supertasks are 
far away in the dynamic instruction stream and have 
a high probability of being mutually control indepen-
dent. Thus, we have three hierarchical levels of nodes 
in a CFG: basic blocks, tasks, and supertasks. 

The criterion used for this partitioning is important, 
because an improper partitioning could in fact result in 
high inter-thread communication and synchronization, 
thereby degrading performance! True multithreading 
should not only aim to distribute instructions evenly 
among the threads, but also aim to minimize inter-
thread communication by localizing a major share of 
the inter-instruction communication occurring in the 
processor to within each PE. In order to achieve this, 
mutually data dependent instructions are most likely 
allocated to the same thread. 

In this paper, tasks are formed as done for the mul-
tiscalar processor in [3]. Supertasks are dynamically 
generated as a collection of tasks. This is done as fol-
lows: the task predictor begins assigning tasks to PEs 
of a superPE. As soon as all the PEs of the superPE 
are running these tasks are assumed to be a supertask, 
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given a unique ID and stored in a specific table. For the 
time being, each supertask is composed of fixed num-
ber of tasks. Thus, is task prediction is used in order to 
generate the required number of tasks per supertask. 
This may not be the best strategy but is used for the 
time being in order to test our architecture. 

4 The HMT Microarchitecture 

In this section we describe one possible microarchitec-
ture for our HMT thread model. In order to parallelly 
execute multiple tasks and supertasks in an efficient 
manner, we investigate a two-level hierarchical multi-
threaded microarchitecture. The higher level is com-
posed of several superPEs, and is used for executing 
multiple supertasks in parallel. At the lower level of 
the hierarchy, each superPE consists of several PEs, 
each of which executes a task. Figure 1 presents a 
block diagram of the higher level of the hierarchy. The 
superPEs are organized as a circular queue, with head 
and tail pointers, such that at any point of time the 
active superPEs are between the head and the tail. A 
global sequencer assigns supertasks to the superPEs. 

4.1 Program Execution in the HMT 
Processor 

Initially, all the superPEs are idle, with the head and 
tail pointers pointing to the same superPE. The global 
sequencer assigns the first supertask to the head su-
perPE, and advances the tail pointer to the next one 
in the circular queue. The supertask successor predic-
tor then predicts the successor of the supertask just 
assigned. (Our experiments show that control flow be-
tween supertasks is highly repetitive.) In the next cy-
cle, the predicted successor supertask is assigned to the 
next superPE. This process is repeated until all of the 
superPEs are busy. Currently we set the size of a su-
pertask to be equal to X tasks where X is the number 
of PEs per superPE. 

Each superPE executes the supertask assigned to it. 
Only the head superPE is allowed to physically com-
mit, and update the architected state. All the others 
buffer their values, as will be shown in detail later. 
When the head superPE commits, the head pointer is 
advanced to the next superPE. At that time, a check 
is done to see if the supertask prediction done for the 
new head superPE is correct or not. If the prediction 
turns out to be wrong, then all the supertasks from the 
new head until the tail are squashed, and ,,k,e correct 
supertask is assigned to the new head. 

The above description is for the higher level of the 
hierarchy, the one involving supertasks and superPEs. 

SupertiirSuccessor 
Predictor  

Global Sequencer 

Head 

Super PE 0 Super ).{. PE 1 

-I 	Value 
Predictor 

Super PE 3 
(Optional) 

Super PE 2 

Interconnect 

Figure 1: The HMT Processor 

Next, we shall see how each supertask is executed 
within a superPE. 

4.2 Lower Level of HMT Microarchi-
tecture: SuperPE 

The lower level of the HMT hierarchy considered in this 
paper is almost identical to a multiscalar processor, as 
described in [3]. The internals of this level are (briefly) 
described for the benefit of readers who are unfamil-
iar with the details of the multiscalar processor. Due 
to space limitations, this description is kept brief; in-
terested readers are encouraged to consult [3] for the 
details. The internals of a superPE are shown in Figure 
2. It consists of a group of PEs, eadi of which can be 
considered a small superscalar processor with a small 
instruction window, small instruction issue, etc. These 
PEs are connected as a circular queue with head and 
tail pointers, similar to the higher level. The circular 
queue imposes a sequential order among the PEs, with 
the head pointer indicating the oldest active PE. 

A local sequencer with a local task successor predic-
tor is responsible for assigning tasks to the PEs. When 
the tail PE is idle, a sequencer invokes the next task (as 
per sequential ordering) on the tail PE, and advances 
the tail pointer. When a task prediction is found to 
be incorrect, all subsequent tasks within the superPE 
are squashed; supertasks executing in subsequent su-
perPEs are not squashed. Completed tasks are retired 
from the head of the PE queue, enforcing the required 
sequential ordering within the supertask. This retire-
ment is speculative, if the superPE is not the current 
head of the higher level of the hierarchy. 
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4.3 Inter-superPE Register Communi-
cation 

Next, let us consider communication of register values 
from one supertask to another, at the higher level of the 
HMT hierarchy. As shown in Figure 2, each superPE 
maintains a global register file to store the supertask's 
incoming register values (from the previous superPE or 
the data value predictor). When a new register value 
arrives at a superPE, this value is compared against the 
existing value for that register in the global register file. 
If there is a change, then the new value is forwarded 
to its head PE, from where it gets forwarded to subse-
quent PEs, if required. 

A superPE receives two sets of register values, one 
coming from the previous superPE (in case the current 
one is not the head superPE) and the other from the 
data value predictor. The choice between these values 
is done based on the confidence values. Each register 
value, whether coming from the value predictor or the 
predecessor superPE, has its own confidence value, and 
the superPE chooses the value with the highest confi-
dence. Each superPE also has a confidence estimator 
to calculate the confidence values for the register values 
sent to its successor, as shown in Figure 2. Of course, if 
the predecessor superPE is the head and is committing, 
its values have the highest confidence. 

The confidence estimations coming from the value 
predictor, are derived from the saturating counters of 
the predictor. The confidence of the values corning 
from the predecessor depends on the distance of the 
predecessor from the head superPE, the number of cy-
cles since the assignment of the supertask to the prede- 

cessor as well as whether registers have been modified 
by the predecessor. In order to optimize inter-superPE 
register communication, we need to address two ques-
tions: (1) how often are register values sent to a su-
perPE (whether from the data value predictor or from 
the predecessor superPE)? (2) which values should be 
sent? 

For the first question, the following scheme is ap-
plied: the data value predictor predicts values for all 
registers only once for each supertask, and this is done 
at the time the supertask is assigned to a superPE. 
Each time a superPE wants to send values to its suc-
cessor, it first calculates confidence for its values and 
then sends them. The receiving superPE will compare 
the confidence values of the new register values against 
the existing confidence values. If the new confidence 
value is higher for a particular register, then the new 
value is accepted. Register values are passed from a 
superPE to its successor when the successor superPE 
is about to speculatively commit its first task, which 
is not too early so the superPE does not use obselete 
values nor too late so the superPE would not have done 
a lot of useless work. 

Next we address the second question of which value 
exactly to send. Sending all the register values has 
two drawbacks: (1) high bandwidth requirement, (2) 
low utility, as all registers may not have new values. 
Therefore, all registers are communicated only the first 
time. As time progresses since a supertask started exe-
cution, register values generated by that supertask tend 
to have higher confidence values and only modified reg-
isters are communicated to the subsequent superPEs. 
Also, all register values are communicated from the 
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head superPE when it is about to physically commit. 	4.4 Inter-SuperPE Memory Communi- 
cation 

4.3.1 Data Value Prediction 

The HMT microarchitecture can benefit from data 
value prediction, which involves predicting the incom-
ing register values for a supertask. One option for the 
data value predictor is a hybrid predictor that uses 2-
delta stride predictor [11] as well as context based pre-
dictor [12]. This hybrid predictor can be modified to 
predict all register values at once, in a way similar to 
[10]. 

Without the data value predictor, the only source 
of information available will be the premature regis-
ter values coming from the predecessor superPE. Be-
cause these will most likely change during execution, 
the newly assigned supertask is likely to do a lot of 
useless work, if data value prediction is not used. 

The job of the data value predictor is: given a super-
task ID, predict all register values at the same time, to-
gether with confidence values for each predicted value. 
The predictor is updated each time a supertask is phys-
ically committed by the head superPE. 

The data value predictor has two tables: SHT (Su-
pertask History Table) and VPT (Value Prediction Ta-
ble). Each SHT entry contains the following fields: 
(i)Frequency of accessing the entry, in order to use 
least frequently used replacement policy. (ii)Tag field, 
(iii)For each architected register it has: Last k values 
produced for this register, confidence estimator for the 
stride and predictor type (stride or context) that made 
the last prediction. 

The last two values in the history of a register are 
used to make a prediction using a delta stride predictor. 
The confidence estimator of the delta stride predictor is 
simply a saturating counter that is incremented in case 
of correct prediction and decremented otherwise. The 
last k values are combined using a hash function and 
are used to index the VPT that contains k saturating 
counters for those values. The value with the highest 
counter is picked as the prediction of the context based 
predictor, with the corresponding counter as the con-
fidence estimator. From the values predicted by the 
stride and context components, we pick the one with 
higher confidence. In the case of a misprediction, the 
counters corresponding to the predictor that made the 
last prediction are decremented. Similarly, in the case 
of a correct prediction, the corresponding counters are 
incremented. If the confidence estimators happen to be 
the same, one of the two values is selected at random. 

At the higher level of the HMT hierarchy, inter-
superPE memory communication is done by connect-
ing the Address Resultion Buffers (ARBs) [4] of each 
superPE by a bidirectional ring. Thus, the memory 
data dependence speculation part is distributed at the 
higher level. When a load reference is issued in a su-
perPE, and its ARB does not contain a prior store to 
the same location, the request is forwarded to the pre-
decessor superPE's ARB, and so on. Similarly, when 
a store is issued in a superPE, it will be forwarded to 
the successor superPE's ARB, if no subsequent stores 
have already been issued to the same address from its 
superPE. 

4.5 Advantages of the HMT Paradigm 

Task mispredictions typically cause squashing only 
within its superPE. Data dependence violations only 
cause re-execution of the affected instructions. 

The benefits of HMT stern from two important fea-
tures: program characteristics and technological as-
pects. Program characteristics reveal the following: (i) 
Studies have shown that parallelism is there [7][15], but 
most of it cannot be exploited due to the large distance 
in the dynamic instruction stream. Our proposed ar-
chitecture exploits some of the distant parallelism by 
executing supertasks in parallel. (ii) Multiscalar stud-
ies show IPC (Instructions Per Cycle) to be tapering 
off as more and more PEs are added [13]. This is be-
cause, in the case of a task misprediction, all the PEs 
starting from the PE with the misprediction will be 
squashed, thus decreasing the percentage of PEs doing 
useful work. We try to avoid this by letting each su-
perPE have a small number of PEs and assign control-
independent supertasks to multiple superPEs, as much 
as possible. 

Also, if we squash a PE in a superPE, only the sub-
sequent PEs in the same superPE are squashed; the 
remaining PEs in the other superPEs are not squashed 
(unless there is a change in successor supertask). 

An important point to note is that the hierarchical 
arrangement of PEs as in the HMT microarchitecture 
does not require substantial additions or complexity to 
the hardware. The main newly introduced hardware 
is the confidence estimators for the register values and 
the comparators for comparing them. The data value 
predictor and the supertask predictor are two other 
newly introduced hardware structures. Apart from 
these, there is little new hardware. In fact, the two-
level hierarchy can be dynamically reconfigured as a 
flat multithreaded processor, if required. 



Default Values for Simulator Parameters 
PE Processor 

Parameter Value 	1 Parameter Value 

Max task size 32 instructions 
PE issue width 2 instructions/cycle — 
Task predictor 2-level predictor 

1K entry. pattern size 6 
Supertask predictor 2-level predictor 

1K entry, pattern size 6 _ 
Li - Icache 16KB, 4-way set assoc., 

1 cycle access latency 
Li - Dcache 128KB, 4-way set assoc., 

2 cycle access latency 
Functional unit 

latencies 
It/Branch :- 1 cycle 
NIul/Div :- 10 cycles 

Data value predictor hybrid(stride, context), k=4 
_ SHT 1K entries and VPT 64K entries 

Table 1: Default Parameters for the Experimental Evaluation 
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5 Experimental Evaluation 

The previous section presented a detailed description 
of an HMT microarchitecture. Next, we present a de-
tailed quantitative evaluation of this processing model. 
Such an evaluation is important to study its perfor-
mance characteristics, and to see how scalable this ar-
chitecture is. 

5.1 Experimental Methodology and 
Setup 

Our experimental setup consists of a detailed cycle-
accurate execution-driven simulator based on the 
NILPS-II ISA. The simulator accepts executable im-
ages of programs, and does cycle-by-cycle simulation; 
it is not trace driven. The simulator faithfully mod-
els the HMT architecture depicted in Figures 1 and 2; 
all important features of the HMT processor, including 
the superPEs, the PEs within the superPEs, execution 
along mispredicted paths, inter-PE & inter-superPE 
register communication, and inter-PE & inter-superPE 
memory communication have been included in the sim-
ulator. The simulator is parameterized; we can vary 
the number of superPEs, the number of PEs in a su-
perPE, the PE issue width, the task size, and the cache 
configurations. Some of the hardware parameters are 
fixed at the default values given in Table 1. The pa-
rameters on the left hand side of the table are specific 
to a PE, and those on the right are for the entire pro-
cessor. The successor predictor we use is similar to a 
two-level data value predictor [16). 

For benchmarks, we use a collection of 7 programs, 
five of which are from the SPEC95 suite. The pro-
grams are compiled for a NIIPS R3000-Ultrix platform 
with a MIPS C (Version 3.0) compiler using the op-
timization flags distributed in the SPEC benchmark 
makefiles. The benchmarks are simulated up to 100  

million instructions each. 
Our simulation experiments measure the execution 

time in terms of the number of cycles required to ex-
ecute a fixed number of instructions. While reporting 
the results, the execution time is expressed in terms of 
instructions per cycle (IPC). The IPC values include 
only the committed instructions, and do not include 
the squashed instructions. 

5.2 Experimental Results 

Our first set of experiments are intended to show the 
benefits of the hierarchical arrangement. For this pur-
pose, we simulate an HMT(3 x 4) processor (that is, 
an HMT processor with 3 superPEs, each of which has 
4 PEs) as well as an HMT (1 x 12) processor, both 
of which do not use data value prediction, in order to 
show the potential of the HMT without the advan-
tage of data value prediction. These results are pre-
sented in Figure 3. On the X-axis, we plot the bench-
marks, and on the Y-axis, we plot the IPC values. Each 
benchmarks has two histogram bars, corresponding to 
HMT(3 x 4) and HMT (1 x 12), respectively. 

The first thing to notice in Figure 3 is that the 
HMT(3 x 4) architecture is performing better than 
the non-hierarchical HMT(1 x 12) architecture for 
5 of the 7 benchmarks. Looking at specific bench-
marks, the HMT architecture performs relatively the 
best for bzip2 and ijpeg. It performs relatively 
worse for compress95 and ii. Among these two, 
compress95 does not have much parallelism. ii has 
notable amounts of parallelism; on analyzing the re-
sults for ii, we found that the prediction accuracy for 
procedure returns was low. We intend to investigate 
better predictors for predicting the return addresses in 
a hierarchical setting. 

We next present some run-time statistics for the 
HMT(3 x 4) configuration; these statistics are some-
what different for the different configurations. Table 
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Figure 3: Performance of an HMT(3 x 4) Processor 
and an HMT(1 x 12) Processor, without Data Value 
Prediction 

2 presents these statistics. In particular, it presents 
the data value prediction accuracy, supertask predic-
tion accuracy, average active superPEs in a cycle, and 
the number of distinct supertasks executed. 

Next, we perform sensitivity studies to study the 
performance of the HMT architecture under various 
conditions. In particular, we experiment with two dif-
ferent values for the number of PEs per superPE — 
2 and 3. For each of these values, we vary the num-
ber of superPEs from 1 to 3. These studies use data 
value prediction at the higher level; performance does 
not scale very well when data value prediction is not 
used. Figure 4 presents the results of these sensitivity 
studies. The left graph is for 2 PEs/SuperPE and the 
right one is for 3 PEs/SuperPE. 

From the results presented in Figure 4, we can see 
that except for compress95 and ii, all of the other 
bencInnarks show good scalability in performance when 
the number of superPEs is increased from 1 to 3. That 
is, even when we use a total of 12 PEs, we still get 
reasonably good performance. 

6 Summary and Conclusions 

This paper presents a two-level hierarchical architec-
ture that exploits parallelism at different granularities. 
The processing elements are organized in ring of rings, 
rather than a single ring. While each smaller ring (su-
perPE) executes a sequence of tasks (one per PE) as in 
the Multiscalar, a high-level sequencer assigns super-
tasks to the superPEs. Such an architecture addresses 
several key issues, including maintaining a large in- 

struction window, while avoiding centralized resources 
and minimizing wire delay. 

Detailed simulation results show that for most of 
the non-numeric benchmarks used, the hierarchical 
approach provides better performance than the non-
hierarchical approach. The results also show that a 
small percentage of the programs may not benefit from 
a hierarchical multithreading execution model. 

The HMT microarchitecture presented in this paper 
is just one way to exploit parallelism at multiple granu-
larities. Future work involves integrating compiler sup-
port. We intend to start with a post-compilation step 
to generate supertasks that are roughly of the same 
size, are somewhat control independent, and are some-
what data independent. We also intend to explore the 
memory hierarchy and memory disambiguation system 
to find the best model for the HMT model. 
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Abstract 

In this paper, we describe basic mechanisms of thread control for the FUCE processor. FUCE 
means FUsion of Communication and Execution. The goal of the FUCE processor project is to fuse 
the intra-processor execution and inter-processor communication. In order to achieve this goal, the 
FUCE processor integrates the processor units, memory unit and communication units into a single 
chip. The FUCE processor has mechanisms for pre-loading thread context and hiding memory access 
latency. With these mechanisms, no data cache memory is required, since memory access latency can 
be hidden due to a simultaneous multi-threading mechanism and the on-chip-memory system with 
broad-bandwidth low latency internal bus of the FUCE processor. This approach can reduce the 
performance gap between instruction execution, and memory and network excesses. 

Keywords Multi-threading, pre-loading thread context, hiding of memory access latency, on-chip-
memory processor, on-chip multi-processor. 

1 Introduction 
Currently, communication and VLSI device technologies are advancing towards higher and higher speeds 
and are becoming larger in scale. For example, optical-fiber transmission-line technology is now achiev-
ing Giga-bits/sec speeds and will achieve Tera-bits/sec speeds in the near future. New communication 
protocols, e.g., IP on WDM and IP on SONET, are now under development. In addition, hardware 
VLSI device technology is advancing to larger scale integration VLSI's with Giga-gate logic and Giga-bit 
memory on chip, and higher clock speeds of several Giga-Hz. 

Software technologies including processor architectures, in contrast, are still developing within the 
conventional framework. The development of new architecture and software technologies is urgently 
required. 

Against the background of these hardware and software technology trends, we are pursuing the FUCE 
project at Kyushu University. FUCE means FUsion of Communication and Execution. The main objec-
tive of this research is, as the name shows, to develop a new architecture that truly fuses communication 
and computation. The FUCE project aims to develop a new processor-architecture and kernel-software 
(operating system) for fusing computation and communications. We call the processor the FUCE pro-
cessor, and the kernel-software CEFOS (Communication and Execution Fusion OS) [2] 

The FUCE processor is an on-chip-memory processor developed based on a fine-grain multi-threading 
concept. In the FUCE processor, a thread is a tiny process executed without preemption. The fine-grain 
multi-threading technique promises high performance in fusing communication and internal execution. 
Both event handling, i.e., incoming/outgoing messages and I/O, and internal process execution are con-
trolled by a uniform thread execution mechanism. The on-chip-memory processor technique also promises 
high performance in hiding memory access latency. No data cache memory is required in the FUCE pro-
cessor, since the on-chip-memory system provides low latency memory accesses. 
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This paper introduces the FUCE processor and discusses the simultaneous multi-threaded execution 
mechanism and on-chip-memory system. Section 2 presents an overview of the FUCE processor. Section 
3 discusses the FUCE process and FUCE threads. Section 4 covers the effect of hiding the memory access 
latency. Section 5 discusses the originality of the FUCE processor in comparison with related work. 

2 Overview of the FUCE processor 

The objective in designing the FUCE processor is to fuse the intra-processor execution and inter-processor 
communication so that the mechanism reduces the performance gap between intra-processor execution 
and inter-processor communication by integrating into one chip the execution units, communication units 
and memory unit. 

An overview of FUCE Processor is shown in Figure 1. 
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Figure 1: the FUCE Processor 

The FUCE processor executes multiple threads in parallel and concurrently. It is designed as a multi-
processor on a single chip to support high-speed multi-thread execution. In the on-chip multi-processor, 
multiple execution units, a ready thread queue control and event-handling units are incorporated into one 
chip. In addition to multiple execution units, a communication control unit and a main memory are also 
integrated into the chip. Another important design issue is the data path between execution units and 
memory units. The FUCE processor incorporates a broad-bandwidth low-latency internal bus. It also 
has external memory units (e.g. off-chip-memory or disks), which are connected to an external memory 
interface. It uses on-chip-memory as main memory and uses the external memory units as secondary 
memory. 

Our design specifications for the FUCE processor are as follows: 

1. Multiple units for thread execution. 

2. Highly efficient thread execution. 



3. Large size of register files. 

4. High-speed broadband bus. 

5. Large on-chip-memory. 

The FUCE processor is being designed with future VLSI technology in mind. Table 1 shows the 
specifications of the FUCE processor. In the near future, VLSI technology will be able to achieve 800 
Mega-transistors/chip with a chip size of 600mrn2[11]. The FUCE processor uses half the area of the 
chip for on-chip memory. Also, we estimate that the number of transistors for a thread execution unit 
will be up to 5 Mega-transistors/unit, so 8-16 thread execution units and the non-thread execution 
unit will require 100 Mega-transistors. Therefore, the FUCE processor can integrate other units (e.g. 
communication control units and a broadband internal bus) into one chip. 

Table 1: Specification of On-chip FUCE Processor 

2005 
	

2010 

Clock cycles 4 Giga-Hz 10 Giga-Hz 
On-chip-memory Capacity 256 Mega-Bytes 1 Giga-Byte 
On-chip-memory Speed 2 Giga-Hz 5 Giga-Hz 
Internal Bus Speed 512 Giga-Bytes/sec 2.5 Tera-Bytes/sec 

2.1 Execution Unit 
The FUCE processor has two kinds of instruction execution units. One is the thread execution unit, and 
the other is the non-thread execution unit. The thread execution units execute threads without preemp-
tion. The non-thread execution unit executes non-thread code, which handles interrupts or exceptions for 
the OS kernel. Thread execution units have no preemption mechanism, while the non-thread execution 
unit can suspend and resume operations. 

The FUCE processor has multiple thread execution units, each of which executes a thread inde-
pendently. We believe that the memory system performance is more important than complicated high 
performance execution such as speculative execution and out-of-order execution. Therefore, the thread 
execution units of the FUCE processor are constructed with a simple pipeline structure. Here, the thread 
is defined as a sequence of instructions that is executed exclusively without any interruption except for 
some emergency cases such as infinite loops. 

The features of the thread execution units are: 

1. Thread execution units issue two instructions simultaneously and in order, and execute those two 
instructions in parallel. 

2. Thread execution units transfer a set of registers in one instruction. We call this mechanism block 
load/store. 

3. The execution pipeline of a thread execution unit will not stall while loading data from memory. 
We call this mechanism non-blocking load. 

4. Thread execution units have two sets of register files: a current register file and alternative register 
file. The current register file is used for the thread execution in the foreground. The context of 
a ready thread is pre-loaded into the alternative register file in the background. The alternative 
register file takes the place of the current register file when the next ready thread runs. 

5. Thread execution units have a thread entry buffer. This buffer is a hardware queue, which holds 
ready threads. 

2.2 On-Chip-Memory 

Current processors, which have off-chip memory, suffer from processor-pin bottleneck. It is therefore 
difficult to expand the memory buses of current processors. On the other hand, on-chip-memory pro-
cessors scarcely suffer from processor-pin bottleneck, because on-chip-memory processors do not require 
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processor pins for the memory buses and it is easy to expand their memory buses. Furthermore, on-
chip-memory processors make low-latency memory access possible. Low latency (e.g. around 4-8 cycles) 
and broadband (e.g. 512 Giga-Bytes/sec) data transfer are two features of the FUCE processor memory 
system. 

The FUCE processor can also hide the memory access latency. In order to hide the memory access 
latency, it implements mechanisms that allow the thread execution units to access the on-chip-memory 
with low latency. These mechanisms are the block load/store and the non-blocking load. It can also 
reduce the overhead of memory access involved in switching the thread context thanks to the pre-loading 
of thread context. 

The FUCE processor assumes that thread instructions are re-ordered by the compiler to pre-fetch the 
data. Re-ordering of instructions is such that the thread execution unit pre-fetches the data into a register 
during the thread execution. This pre-fetch instruction uses the non-blocking load and block load/store. 
This pre-fetch mechanism will avoid pipeline stall and reduce the idle time while the data are loaded into 
the register. In addition, the block load/store reduces the number of data transfer instructions. 

With the memory units integrated into the chip, memory access becomes possible in four to eight 
cycles, and high-speed data transfer is performed between the execution unit and the memory unit. In 
addition, the FUCE processor has a mechanism for hiding the memory access latency, i.e. pre-loading 
of thread context. Note here that, even though the FUCE processor hides a low memory access latency 
(e.g. 4-8 cycles), it can not hide a large memory access latency of 100 cycles or more. Since the memory 
access to off-chip-memory takes too many cycles for the memory access latency to be hidden, the FUCE 
processor provides only on-chip-memory. 

In fine-grain multi-threading, threads consist of small chunks of instructions and thread execution will 
terminate before data in cache memory are used more than once. In this situation, the gains afforded 
by cache memory are less than the overhead necessary for the cache memory control. But the FUCE 
processor can hide the memory access latency, and therefore no data cache memory is required for fine-
grain multi-threading. On the other hand, the FUCE processor employs an instruction cache due to the 
principle of locality of instruction sequence in a thread. 

In the FUCE processor memory system design, internal data transfer is more important than the data 
transfer between internal main memory and external memory. 

3 FUCE process and FUCE threads 

The basic structure of process and threads controlled in the FUCE processor is shown in Figure 2. The 
FUCE processor's process has more than one thread. The process is a unit of resource operation and the 
thread is a unit of processor assignment. Threads in the same process share elements of their processing 
environment such as a stack and a virtual memory space. 

The basic features of the FUCE thread are as follows: 

1. The FUCE thread is a fine-grain multi-thread. A large amount of the FUCE thread is assumed to 
run concurrently. Concurrent FUCE thread executions hide the communication latency. 

2. The FUCE thread is a tiny process with no interruption. Therefore, the FUCE thread never 
suspends until it encounters its thread termination instruction. Furthermore, it has no limits in 
principle on its execution time. 

3. The FUCE thread is a lightweight thread, and the lightweight thread can reduce the thread switch-
ing overhead. 

4. The FUCE thread never accesses Off-Chip memory while it is running. Therefore, the FUCE thread 
is split when its execution has a large latency because it must access off-chip memory. 

The FUCE processor can execute multiple threads belonging to different processes, enabling it to 
execute multi-threaded code on the multiple thread execution units. This approach can obtain sufficient 
ready threads to keep all of the thread execution units busy. If the FUCE thread has off-chip memory 
access, such as accessing external memory or accessing another node processor's memory, it will be 
separated into two threads, which are the caller thread and the recipient thread. In this way, the FUCE 
processor will be able to hide the latency of accessing off-chip memory. 
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3.1 Basic Mechanisms of Thread Control 
The basic mechanisms of thread control are shown in Figure 3. To simplify the hardware mechanism of 
thread control, an operating system controls the thread execution in the FUCE processor. The thread 
execution control is performed through the software and hardware queue. 

The operating system has one software queue, and controls the thread execution with the software 
queue. The software queue has threads, which are synchronized threads and can be executed immediately. 
Also, the software queue is able to have many threads which belong to another process. The operating 
system manages many processes, and each process has one thread scheduler. 

The operating system controls the thread execution in the FUCE processor, synchronizing the threads. 
In order to synchronize the threads, the operating system has thread schedulers, which synchronize 
the threads in each process. The thread scheduler controls the thread execution order dynamically by 
synchronizing threads, and enqueuing synchronized threads in the software queue. 

The hardware queue consists of the thread entry buffer. A Ready thread is registered in the thread 
entry buffer, and waits to be assigned to an idle thread execution unit. The operating system, when 
notified that the thread entry buffer is empty, moves a thread to the thread entry buffer. This notification 
is managed by hardware, but the transaction is controlled by software. The FUCE processor also has 
special instructions which control thread registration. 
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Figure 3: Basic Mechanisms of Thread Control 

4 Hardware Support Mechanisms for Thread Execution 

4.1 Thread Context Pre-loading 
Context switches occur quite often in fine-grain multi-threading, and the overhead of a context switch 
is quite serious. In order to reduce this overhead, the FUCE processor pre-loads the thread context. In 
pre-loading, the processor uses two sets of register files and the thread entry buffer. The pre-loading 
mechanism allows the FUCE processor to achieve fast thread-context switches. 

The FUCE Processor pre-loads the next thread context using the pre-loading unit, which is a special 
unit for the thread pre-loading. The FUCE processor has multiple thread pre-load units, each of which is 
connected to a thread execution unit. The pre-load units pre-load the next thread context with reference 
to the data included in the header of the next thread instructions. Figure 4 shows an overview of thread 
context pre-loading. The basic mechanism and function of thread context pre-loading are as follows: 

1. A ready thread is assigned to an idle thread execution unit. The allocated thread uses the current 
register file when it begins to run. 
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2. When the thread execution unit begins to run the allocated thread, a new ready thread in the 
thread entry buffer is assigned to the thread execution unit. 

3. While the thread execution unit is executing the allocated thread in foreground, it loads the thread 
context of a new ready thread, which is to be executed right after the current thread execution 
terminates, into its alternative register file in the background. 

4. After the thread execution terminates, the thread execution unit exchanges the alternative register 
file and the current register file, and begins to execute the new thread. 

Figure 4: Pre-loading of Thread Context 

4.2 Effect of thread context pre-loading 

We evaluated the effect of the thread context pre-loading, described in section 4.1 using two benchmark 
programs: 

• Matrix: 1000 x 1000 matrix multiplication. 

• 8-Queens: Finding all solutions of the 8-queens problem. 

The specifications for the thread execution units used in the evaluation are shown in Table 2. In the 
evaluation, we used 8 thread execution units. 

Table 2: Specifications of the thread execution units 

Instruction Issuing Rate 2 instructions/clock-cycle 
Number of Registers 64 x 2 
Block-data per Transfer 4 blocks/instruction 
Memory Access Latency 4, 6, 8, 10 cycles 
Latency of Floating Point Execution 4 cycles 

4.2.1 Matrix 

The effect is examined for the matrix multiplication of 1000 x 1000 matrices. In this evaluation, we 
evaluated two cases of execution time and pipeline stall, and examined them for memory access latencies 
of 4, 6, 8 and 10 cycles: (a) With thread context pre-loading, (b) Without thread context pre-loading. 
Figure 5 shows the execution time and pipeline stall time. 
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In the Matrix problems, most of the instructions are load instructions, and the other instructions are 
multiplication and addition. The FUCE processor can load the data into the register without pipeline 
stall by using thread context pre-loading. So it can execute matrix problems with only a tiny pipeline 
stall (about 0.5%) (Figure 5: (a) With thread context pre-loading). On the other hand, It can not hide 
pipeline stall, when it does not use thread context pre-loading (Figure 5: (b) Without thread context 
pre-loading). 

We can see from these results that thread context pre-loading makes a clear contribution to reducing 
pipeline stall and increasing the performance of thread execution. 

4.2.2 8-Queens 

We evaluated the execution time and the pipeline stall time in finding all solutions of the 8-queens 
problem. In this evaluation, on-chip memory access latency is 4 cycles. Figure 6 shows the execution 
time and the pipeline stall time. 

In the 8-queens problem, the load instructions and the store instructions constitute about 35 percent 
of all the instructions. In addition, the load instruction and the store instructions are distributed. So, it 
is difficult for the FUCE processor to hide memory access latency (Figure 6: (a) Normal instructions). 
However, the FUCE processor can reduce on-chip memory access latency by separating instructions into 
threads and re-ordering thread instructions (Figure 6: (b) Re-ordering Threaded instructions). These 
approaches use thread context pre-loading. 

We can see from these results that thread context pre-loading can reduce the execution time and 
pipeline stall time. This is because thread context pre-loading reduces the overhead of thread context 
switching. 
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5 Related Work 

The importance and feasibleness of the fine-grain multi-threading technique are generating interest in the 
parallel computing research field. For instance, the MTA machine has been commercialized[3] and the 
HTMT project is enthusiastically proceeding towards the goal of a Petaflops machine[4]. The concepts 
behind the FUCE machine have emerged from our research on multi-threading architecture and the 
parallel processing language V[5][6]. 

Because on-chip-memory processors achieve low latency and high-speed memory access, the on-chip-
memory processor technique is being researched in the field of high performance computer systems. For 



instance, PPRAM is an architectural framework for merged memory/logic ASSPs (Application-Specific 
Standard Products)[7]. Hydra[8] integrates multiple processors and cache memory on a single chip. The 
FUCE processor integrates not only multiple execution units and main memory but also communication 
control units into a single chip, in order to fuse communication and internal execution. 

A great deal of research into on-chip multi-processors is also currently being pursued around the world. 
NIP98[9], for example, supports efficient thread creation and execution through mechanisms involving 
inheritance of register values, resolution of data dependencies and speculative execution. However, these 
mechanisms make the hardware logic more complicated. The FUCE processor does not rely on such 
complicated mechanisms. SNIT[10] is a simultaneous multi-threading processor. in which multiple threads 
are dynamically assigned to execution units at both the instruction level and the thread level. The FUCE 
processor is being developed based on the technique of fine-grain multi-threading and runs multiple 
threads concurrently in the multiple thread execution units. The FUCE processor is similar to SNIT 
in that both rely on concurrent multi-thread execution. However, the multi-threading approach of the 
FUCE processor, in sharp contrast to that of SMT, is to assign each thread to a single execution unit and 
execute it exclusively on that execution unit in order to make the hardware logic simple and transparent. 

6 Conclusion 

This paper has discussed the basic mechanisms of thread control for on-chip-memory multi-threading 
processor architecture, and evaluated the effect of thread context pre-loading in the FUCE processor. In 
the FUCE processor architecture, we are making use of the technique of on-chip-memory processing. hi 
addition, we are using thread execution support mechanisms, such as thread context pre-loading and the 
hiding of memory access latency. These mechanisms are very effective for thread execution. 

Through these approaches, the FUCE processor can reduce the performance gap between instruction 
execution, and memory and network access. The architecture of the FUCE processor, which integrates 
on-chip-memory VLSI processor construction and simultaneous multi-thread processing, will provide 
solutions to important future technical issues in high performance parallel and distributed processing. 
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Abstract 

This paper describes research in exploiting loop-level 
parallelism on a simultaneous multithreading proces-
sor. We discuss some general and ad-hoc techniques 
for loop parallelization that proved to be effective 
with SMT, and how they were tuned for it. These 
techniques have been tested on the well-known Liv-
ermore loops, chosen for their variety of behaviors. 
The set of optimizations used produced significant 
improvement overall: we were able to improve aver-
age IPC from 2.72 to 3.97, and to gain an average 
speedup of 1.39 over optimized single-thread code, 
using up to eight threads. 

We also describe a simple but effective method for 
determining the best number of threads to be used 
for parallel loops on a multithreaded processor. The 
model uses compile-time information to predict the 
most efficient point. 

Keywords: simultaneous multithreading, loop par-
allelization, compiling 

1 Introduction 

The simultaneous multithreading (SMT) processor 
[12] is a computing paradigm that allows multiple 
threads to share the processing resources at the level 
of functional units each cycle. This allows thread-
level parallelism to be exploited at a very fine gran-
ularity. The role of a parallel compiler for SMT is 
to extract parallelism, and to tune parallelization to 
take advantage of its peculiar resource sharing. 

Parallelization on a SNIT processor presents differ-
ent challenges than a conventional parallel processor, 
due to the unique features of the processor. First, 
because threads share resources at such a fine level, 
increasing instruction-count to introduce paralleliza-
tion can actually decrease performance if spare fetch 
and execution bandwidth is not available. Second, 
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tullseacs.ucsd.edu  

because all execution resources are available to even a 
single thread, increasing parallelism beyond the level 
that maximizes instruction-level parallelism, or satu-
rates execution bandwith, is unnecessary and poten-
tially harmful. 

Thus, parallelization on SNIT requires more care-
ful tuning of parallelism and parallel optimizations, 
balancing the cost vs. benefit. Also, because thread-
level parallelism is not constrained by memory layout 
(all threads share the same memory hierarchy), the 
compiler is free to optimize the number of threads 
used, and the methods of parallelization, indepen-
dently for each loop in the program. 

This paper is structured as follows. Section 2 de-
scribes some related work. Section 3 studies the ef-
fectiveness of techniques for loop-parallelization. Ex-
plored techniques include iteration interleaving, loop 
fusion, cyclic reduction, loop peeling, loop-invariant 
code motion, and local accumulation. Section 4 intro-
duces a method for determining the best number of 
threads for a specific loop. The last section concludes 
and presents future work. 

2 Related Work 

In [13], effective techniques for fine-grained synchro-
nization are discussed. SNIT offers communication at 
the level of the Li cache. The authors explain how 
to take advantage of this feature to parallelize tight 
loops that could not be parallelized on conventional 
parallel machines. Our work leverages some of their 
results. 

In [6], Mitchell et al. were able to predict the per-
formance of a few algorithms by measuring parame-
ters such as data and register locality. However, pre-
diction was strictly problem-dependent, and required 
a time-consuming data-fitting process. Because we 
limit our attention to determining the best number 
of threads, the method proposed here is simpler. 
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They also demonstrate the complex interactions 
between ILP-enhancing compiler optimizations and 
threading, also confirming that too much paralleliza-
tion is not beneficial after the processor is saturated. 

Other techniques that introduce novel approaches 
to creating thread-level parallelism on a multi-
threaded processor include slip-streaming [10], and 
speculative precomputation [2, 14]. However, this 
paper focuses on more traditional compiler-generated 
parallelism on a multithreaded processor. 

The Cray MTA processor [1] features an advanced 
threading compiler which is capable of several of the 
transformations described here; however, the MTA is 
an LIW, cycle-interleaved multithreading processor; 
thus, it represents a significantly different execution 
model with less intimate sharing of and competition 
for resources between threads. 

3 Effectiveness of loop-parall-
elization techniques 

The first part of this research presents case studies 
of loop-parallelization with the SMT processor. The 
Livermore loops have been chosen for this purpose 
because of their wide availability, their well-known 
features, and their generality and variety. We apply 
some standard and some ad-hoc parallelization tech-
niques to the various kernels in order to understand 
which are effective, and what is the performance gain. 
The goal is to show that a compiler can effectively 
target parallelization on the SMT processor. For the 
simulations, the parameters used are the same used 
in [11]. As explained there, these parameters de-
scribe a likely next-generation SNIT processor, with 
out-of-order instruction execution, 8-wide fetch and 
execute, 2-level on-chip caches, and hardware support 
for 8 threads. In some instances, we also simulate 16 
threads to verify that some benchmarks have optimal 
points beyond the limits of our machine. 

Parallelization was performed at the high-level 
code (C source). All the kernels were rewritten man-
ually, using general principles. We tried to emulate 
the work of an advanced compiler in all of our trans-
formations. 

Parallelization techniques used here include gen-
eral loop restructuring, such as loop fusion, loop peel-
ing, invariant code motion, arid some more advanced 
techniques aimed at this architecture. These include 
interleaving, cyclic reduction, and local accumula-
tion. 

In the following analysis, two principal metrics will 
be discussed: processor utilization and completion 
time. Even if completion time is the most important 

Kernel loop no. 7 
Comp.flags• -02, Seq time 8883392 

Number at threads 

Figure 1: Execution statistics for kernel 7 

value when discussing the effect of multithreading, 
processor utilization is a useful description of how 
well processor resources are exploited: we cannot ex-
pect very high improvement in terms of completion 
time if processor utilization is high for the sequen-
tial version. Processor utilization is measured as the 
average percentage of useful instructions fetched rel-
ative to the total bandwidth (8 instructions per cy-
cle). Completion time is measured as a percentage of 
the time taken by the sequential version. For both 
metrics, the values corresponding to 0 threads in the 
plots refer to the sequential version, as opposed the 
the single-thread version of the parallel code, which 
is the 1-thread result. 

All simulation was done using the SMTSIM [11] 
simulator, running Alpha executables and compiled 
with gcc at the highest level of optimization. 

3.1 Independent iterations 

The Livermore loop kernels can be classified into four 
groups: independent-iteration loops, loop-carried de-
pendence loops, accumulation loops, and large loops. 
This and the following sections will present overall re-
sults for all the loops of each type, as well as specific 
discussion of loops that either had typical or note-
worthy behavior. 

Loops with independent iterations are basically 
vector computations that can be carried on indepen-
dently for every element. They are easy to parallelize, 
using iteration interleaving. This consists in assigning 
iterations to threads not in blocks, but interleaved. 
As shown in [5], in these cases this is the most ef-
ficient way to express parallelism: better cache and 
TLB utilization is reached with this solution. 

These kinu of loops are easily run on the SNIT pro-
cessor, with good speedup. Figure 1 shows statitics 
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for kernel 7 as an example. Completion time asymp- -- 
totically decreases to 60% of sequential time, achiev-
ing much higher processor utilization. We cannot ex-
pect any more improvement, as almost all the proces-
sor bandwidth (92%) is taken by useful instructions. 
On average, these loops, when parallelized achieve 
about 1.5 speedup. 

The highest available parallelism is found in kernel 
9. This code suffers from very bad Dcache utilization 
(only 70% to 80% Dcache hit ratio) and very high 
average memory delay (116.5 cycles). When more 
threads are running, data are moved into the shared 
cache by the first thread: the other threads will find 
their data ready in the cache, due to the interleaving, 
with an effect similar to prefetching. The 8-thread 
version has an average memory delay of just 46.2 cy-
cles, and runs 2.5 times faster. In figure 2, results are 
shown for up to 16 threads, which will be discussed 
further in section 4. 

We should note that loop 8 is in this category (inde-
pendent iterations) with some compiler assistance. In 
this kernel, some temporary values are stored tidily in 
a vector, but are never used outside the iteration that 
created them. We assume that a compiler can deter-
mine this fact using some simple techniques (compar-
ing indices...), and then introduce suitable temporary 
variables, local to each iteration. This transformation 
makes iterations independent. This change proved to 
be effective with sequential code as well. The mul-
tithreaded code is more than twice as fast. Figure 
3 shows this result, with the non-multithreaded code 
also taking advantage of this optimization. 

Kernel loop no. 11 
Comp.flags -02-DALG2B. Seq time 722554 

Number of threads 

Figure 4: Execution statistics for kernel 11 

parallelize: interleaving is not useful here, as iter-
ations need to be executed strictly in order. Also, 
loop skewing failed due to high overhead. 

Nonetheless, kernel 11 was successfully parallelized 
using cyclic reduction [4], a powerful algorithm for the 
running sum problem, which was tuned to SMT by 
reducing the level of recursion to 2. 

The initial low processor utilization on this kernel 
offers large opportunity to introduce advanced tech-
niques. Even if more instructions are executed, about 
1.7 times as much in this case, the increase in avail-
able TLP allows much better instruction throughput, 
overcoming the large overhead. The multithreaded 
version is almost twice as fast (see figure 4). We ex-
pect this optimization to be very useful with other 
kinds of loops. 

3.2 Loop-carried dependence loops 

Loops featuring loop-carried data dependences (Liv-
ermore loops 5, 11, 19, 20, 23) are more difficult to 

3.3 Accumulation loops 

Livermore kernels no. 3, 4, 6, and 13 are particu-
larly interesting, as they feature some independent 
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computation, followed by accumulation of all the val-
ues. So. one part of the body could be easily paral-
lelized among threads (interleaving), while accumu-
lation was protected by suitable (ordered) locking to 
prevent critical races. 

To manage these cases, we introduce a technique 
called local accumulation. If the accumulation is car-
ried on by an associative and commutative function, 
the order is not important: every thread can com-
pute a local summation, which at the end takes part, 

in the global sum, performed by one specific thread. 
Figure 5 shows typical behavior for this cate-

gory (in this case, loop 3). The two-thread version 
presents a boost in performance with respect to se-
quential code (1.6 speedup), but after this, the global 
sum introduces sequentiality, which makes further 
threads useless. We verified that a tree reduction 
for summation is not effective, as its cost overwhelms 
the increased ILP. 

It. is interesting to note that the optimizations 
introduced are effective sometimes even if just one 
thread is running. The MT version of kernel 6 with 
one thread runs faster than the original sequential 
version (see table 1). In this case, we introduced a 
temporary variable to store the local summation, the 
value of which was then summed to the final results. 
This transformation allowed better register allocation 
and memory usage even when no actual TLP was ex-
ploited. 

3.4 Larger loops 

Five of the 24 Livermore loops featured larger, more 
complex loops, with complex branching and data-
dependent memory-accesses. In these cases, the gen-
eral technique was to interleave iterations, introduc-
ing ordered locking to protect possible dependences. 

We expect that a compiler will not be able to improve 
the performance significantly due to the difficulties of 
analyzing the complex code. In these cases, the pro-
grannner may be able to give more directions to the 
compiler, e.g. by augmenting the code with some 
compilation directives. 

Nonetheless, some other standard techniques 
proved useful in some cases. The three loops com-
posing kernel 18 are just a smart splitting of a larger 
loop, to increase ILP. When loops are fused, more op-
portunity for thread-level parallelism emerges, which 
is exploited when more threads are used. This so-
lution is not good with few threads, because the in-
creased ILP provided by loop distribution is greater 
than the TLP provided by loop fusion. 

In figure 6, a comparison between the two ver-
sions (loop fusion and loop distribution) is given. 
To achieve the best performance at any number of 
threads, the compiler would have to produce multi-
ple versions of the code, which could be selected at 
runtime based on the number of hardware contexts 
available. This idea is gaining importance for tradi-
tional processors also, under the broader denomina-
tion of feedback-directed optimization [7]. 

Another note is about kernel 24. This loop scans a 
vector looking for the first minimum. It was par-
allelized successfully (see figure 7) considering the 
minimum as an accumulation, using local variables 
to store the local minimum for each thread. This 
type of restructuring can be debatable, as this re-
quires the compiler to recognize that the test x [k] < 
x[m] is a way to compute an accumulation function. 
but we believe that the usage of a library function 
min could make this transformation automatic (some 
libraries, such as MPI, feature specific parallel imple-
mentations for the minimum). 

4 
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6 

166P 	try. 1 2 4 8 be. IPC MT 1PC 
1 	IND 
2 	LOG 
3 	ACC 
4 	ACC 

100 
100 
100 
100 

100 
100 

55 
65 

100 
100 

56 
67 

100 
100 

57 
72 

100 
100 

55 
65 

5.32 
6.10 
2.18 
2.40 

5.34 
6.10 
3,94 
3.80 

5 	DEP 
6 	ACC 
7 	IND 
8 	IND 

000 
87 

100 
100 

100 
68 
84 

69 

100 
60 
67 
47' 

100 
64 
61 
37 

100 
60 
61 
37 

1.22 
1.34 
462 
1 69 

1.22 
2.25 
7.53 
4.50 

9 	IND 100 98 67 37 ' 37 0.35 0.93 
10 	IND 100 91 86 90 86 2.56 2.97 
11 	DEP 100 77 60 59 57 1.39 2.42 
12 	IND 100 76 76 75 75 4.92 696 
13 	ATC-' 100 68 41 39 39 1.53 3.95 
14 	LOG 100 100 84 83 82 3.57 386 
15 	IND 100 82 76 73 72 4.86 6.72 
16 	LOG 100 100 100 100 100 1.21 1.21 
17 	IND 100 51 27 25 24 1.68 6.90 
1.8 	LOG 100 87 68 64 64 2.68 4.21 
19 	DEP 100 100 100 100 100 1.01 1.01 
20 	DEP 100 300 100 109 100 0.70 0.70 
23 	IND 100 100 97 99 96 6.11 6.37 
22 	IND 100 84 72 45 46 2.54 5.57 
23 	DEP 100 100 100 100 100 1.26 1.26 
24 	LOG 100 93 79 77 74 4.46 6.03 
averegC 99 85 76 73 72 2.72 197 

lipeeCup % 102.58 117.19 133_28 136 75 138.62 

1.4 

12 

1.0 

0.8 
0 	 2 	 4 

Number of threads 

Table 1: Experimental data for the Livermore loops 
Speedup 

Figure 8: Average speedup for the Livermore loops 

3.5 Overall speedup 

In most cases, good speedups were achieved by ap-
plying varied optimization techniques appropriate to 
each loop. Overall results obtained with these tech-
niques are given in figures 8, where the dashed line 
represents the speedup that can be reached choosing 
the best number of threads independently for every 
kernel. With the techniques discussed here, we were 
able to achieve significant speed-up: IPC is increased 
on average from 2.72 to 3.97, and completion time 
exhibits speedups averaging 1.39. 

In this work, we assume a low-cost thread spawning 
mechanism, or that, in parallel code, threads avail-
able for parallel execution would be waiting on syn-
chronization variables between parallel loops. This 
latter model can be implemented with low overhead, 
due to the fast on-chip communication offered by 
SMT. 

Table 1 shows the results with more details. The 
type column represents the category in which the 
loop falls: independent iterations (IND), loop-carried  

dependences (DEP), accumulation (ACC) and large 
loops (LRG). The table reports completion time and 
average speedup for the parallel code with 1 2, 4 and 
8 threads (results for the other numbers of threads are 
not shown for simplicity), normalized with respect to 
the sequential time, set equal to 100. We also set 
completion time equal to 100 if the MT code was ac-
tually slower, as we can always run sequential code if 
needed. The table then reports the completion time 
and average speedup reached with the best number 
of threads. It shows also IPC for the sequential code 
and useful IPC for the best number of threads, that 
is computed as: 

useful IPC = sequential IPC * speedup 

This way, we do not count any overhead introduced 
by multi-threading, we measure only how efficiently 
the useful instructions of the sequential code were run 
by the parallel code. In 7 cases we were able to have 
more than 6 useful IPC, out of a total bandwidth 
of 8. For instance, while kernel 11 reaches an actual 
processor utilization of about 60%, i.e. more than 4.5 
IPC, useful IPC is only 2.42. 

As the reader can observe, the best performance is 
not always reached with eight threads. For accumu-
lation loops, for instance, a few threads are usually 
enough. Therefore, it is crucial to be able to deter-
mine the right number of threads to best exploit the 
available resources. 

There are two reasons to limit thread use to the op-
finial point (or below). In some cases, performance 
decreases significantly when more threads are used. 
Second, from a system-level view, this presents the 
system with more options to use the idle threads for 
other purposes. Even if we determine that an applica-
tion will saturate the processor (because it saturates 
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best copies = 

CPL * min 
1..5 	nunzinstsi  

if independent iterations 

bandwidth,) 

a particular resource, for example the floating point 
execution units), system-level performance could still 
be improved if other threads are introduced which do 
not bottleneck on the same resource. Techniques for 
identifying such threads are discussed in [9]. 

In the next section, we introduce a method that 
allows the compiler to determine the optimal number 
of threads to use for each loop. 

We make the assumption that the best number of 
threads is the minimum number that reaches full pro-
cessor utilization before saturating. Keeping the min-
imum number, we have a better utilization of shared 
resources. The best number of copies can be com-
puted as: 

56 

4 Determining the best num-
ber of threads 

Let's call critical path length (CPL) the length of the 
instruction critical path (longest chain of dependent 
instructions) within a basic block. To compute the 
CPL, we consider instruction latency. For memory 
operations, we use average memory access time as 
measured by the simulator on the sequential version 
of each kernel. 

We wrote a small program that allowed us to col-
lect CPL figures automatically, using Atom [3], a tool 
able to augment binary Alpha code with analysis rou-
tines. Atom is also used to determine which are the 
most stressed basic blocks, in the discussion that fol-
lows. 

If the block represents a loop body, a single itera-
tion will take at least CPL cycles. Not all the func-
tional units will typically be used in this time: many 
of them may remain empty due to low ILP. We can 
have a performance gain if we can squeeze another 
copy of the loop body into the schedule, filling the 
empty slots. 

A higher number of threads does not in general 
guarantee higher performance. Further performance 
improvement is limited if one of the functional units 
is saturated. In our terminology, this means that the 
number of instructions of a given type cannot be ex-
ecuted within CPL cycles by the available resources. 
In particular, we track the number of integer, load-
store, synchronization and floating point functional 
units, as well as total issue bandwidth (five different 
counts). If a functional unit. is not saturated, more 
copies of the body loop can run together as different 
SNIT threads, as long as iterations can be executed 
partially or fully in parallel. 

saturation, if nurninsts, > CPL * band width, 

where bandwidth, is the bandwidth (available func-
tional units) of instructions of type i, and nurninsts, 
the count of instruction of type i. In this case, we 
break all instructions into the 5 categories just de-
scribed. 

1 	if dependent iterations 

This approach has been tried, with the results 
shown in table 2. 

Refinement of this model to have a more precise 
approximation of the best number of threads is a con-
tinuing direction of this research, but we are encour-
aged by the success of the initial techniques. Also, 
the current model manages only those loops (14 out 
of 24) for which one single basic block is responsible 
for most of the running time (>80%). Despite its 
current simplicity, the presented model still enables 
the following observations: 

• For kernels featuring loop-carried dependences, 
adding more threads is not useful when naive 
parallelization is used. 

• Very high expected values describe a situation 
in which increasing the number of threads is use-
ful; particularly interesting is kernel no. 9, which 
scales up to 16 threads (see figure 2): the model 
says that it would scale well even to a really 
higher number of threads. 

• Low expected values can be observed when the 
processor-utilization curve features a minimum; 
these situations require careful tuning of the 
number of threads. 

The most unexpected result is given by kernel no. 
6, which does not scale beyond 4 threads. Its low per-
formance is mostly determined by a very high mem-
ory latency, the effects of which are hidden by fewer 
threads than expected by the model. 

Giving the compiler control over the number of 
threads created, as well as the tools to choose the 
right number, can enable significantly higher perfor-
mance than naïvely creating the maximum number of 
threads. This maximizes both per-application per-
formance and system-level performance (not shown 
directly in this work) when the other thread contexts 
are made available for other purposes. This ability 
is maximized if the processor has the ability to dy-
namically allocate and deallocate threads during the 
execution of the program without high overhead. 
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Kernel 1 3 4 5 6 7 8 
Actual 8 2 2 1 4 7 8 
Expect. 8.8 5.1 5.1 1 17.4 6.3 5.5 ' 

Kernel 9 10 11 12 13 21 23 
Actual 8(16) 7 1 2 5 3 1 
Expect. 35.3 9.2 1 4 3.3 6.0 1 

Table 2: Actual best number of threads compared 
with expected best number of copies 

In this direction, we believe that this model can be 
used to predict symbiosis [8] effects. The model can 
tell which units are saturated and which are not, and 
how many threads are best if the available resources 
are reduced, in a certain sense predicting the inter-
action of two multi-threaded programs. If the two 
programs have different requests and they can run at 
their best with a limited number of threads, we can 
expect them to run together effectively. This will be 
an interesting topic of future research. 

5 Conclusion and Future Work 

We have shown that standard and ad-hoc paralleliza-
tion techniques can improve significantly the perfor-
mance of loops on an SMT processor: IPC increasead 
on average from 2.72 to 3.97, and completion time 
achieves an average speedup of 1.39 over the sequen-
tial version, using up to eight threads. 

The demonstrated optimizations should be within 
the capabilities of a reasonable compiler. The Cray 
MTA compiler already does some of these optimiza-
tions for that architecture. 

We have also shown a model to determine the best 
number of threads for a given loop. We were able 
to make predictions about the number that offered 
the best performance for specific loops, using com-
pile time information. We believe that a compiler 
featuring such a model can boost the performance by 
running each loop with the most appropriate num-
ber of threads. We also believe that the model can 
improve system-level performance, predicting which 
programs can run together with good symbiotic ef-
fect. 

Future work will be in the direction of developing 
and implementing an advanced parallelizing compiler 
for the SMT. This will require support of automatic 
rewriting for loops, using techniques such as those 
shown here, and a performance model that best ex-
ploits the TLP features of the architecture. 
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Speculative Multithreading: from Multiscalar to MSSP 

Gun i Sohi 

My research group at Wisconsin has been working on speculative multithreading 
techniques for over a decade. This talk will overview some of what we have learned over 
the years. We will start with our early work on multiscalar, continue with data-driven 
multithreading and speculative slices, and then on to our most recent work on master-
slave speculative parallelization. 
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Abstract 

A processor with an explicit dataflow instruction-set architec-
ture may be able to achieve performance comparable to a su-
perscalar RISC processor, even on serial code. To achieve this, 
the dataflow processor must support speculative operation, es-
pecially speculative branches, and a pipeline with bypassing 
for serial code. This paper outlines a set of mechanisms to im-
plement speculative operation with a bypassing pipeline, in a 
paper design called the Speculative Dataflow Processor (SDP). 

The SDP uses several novel ideas as compared to tradi-
tional dataflow processors. Branches are predicted and specu-
lated using a new branch firing rule. Several branch statements 
are grouped together so that they use a single branch predic-
tion. The scheduling and bypass logic is similar to, but simpler 
and faster than, the corresponding logic in a superscalar RISC 
processor. 

Speculation introduces some new compiler issues. Addi-
tional care must be taken by the compiler to prevent specula-
tive tokens from Iteration i + 1 from overrunning the nonspec-
ulative tokens from Iteration i of a loop. 

1 Introduction 

Processors with explicit dataflow instruction-set architectures 
(for example 1PC90, GKW85J) have generally not been as fast 
as contemporary von Neumann processors. They have per-
formed especially poorly on programs that have little paral-
lelism. One approach to solve this problem is to design proces-
sors that are a hybrid of dataflow and traditional RISC proces-
sors to obtain the best of both worlds, executing both serial and 
parallel code efficiently. (See for example P-RISC (NA88) and 
simultaneous multithreading 1TEL95) at the RISC end of the 
spectrum and EM-5 [SKY91] and the Tera MTA 1ACC+95] at 
the dataflow end.) This paper argues that a "pure" dataflow 
processor can also compete effectively if two problems are 
solved: It must have speculative branch execution, and the 
pipeline must be very efficient for serial code. We present here 
a paper design of a processor, called the Speculative Dataflow 
Processor (SDP), that we believe will work reasonably well 
based on our analysis and also on the intution we have gained 
from several compiler and processor VLSI projects. We have 
not yet implemented a compiler, simulator, or a circuit design 
for SDP, although we are working on the compiler and simu-
lator. 

Our goal is to design a dataflow processor that competes 
effectively with a superscalar microprocessor. This means that 
we are not interested in high processor utilization, for 
Contrast this approach with, for example, the Tera MTA archi-
tecture [ACC+ 95]), which attempts to achieve high processor 
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(Kuszmaul) and NSF CAREER Grant 9702281 (Henry.) 
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utilization and is willing to use a very expensive memory sys-
tem to achieve it. A processor does not need to achieve high 
utilization of its ALU or VLSI, since VLSI is cheap. Since 
the memory system dominates the cost of a high-performance 
machine, it would suffice to achieve high memory-subsystem 
utilization. 

In addition to branch prediction, a dataflow processor 
should speculate on load/store conflicts, but there is not space 
here to discuss that mechanism. 

Figure 1 illustrates the mechanisms needed to implement 
branch speculation in our dataflow architecture. (Here we are 
describing the state of the machine with tokens drawn on arcs, 
but as we shall see later, we use an explicit-token store de-
sign in which the tokens correspond to entries in an activation 
frame.) Figure 1(a) shows a C code segment that we compiled 
to the dataflow graph in Figure 1(b). The graph contains arith-
metic operators, such as "+", together with switch operators 
(which implement branches), identified by diamonds. Switch 
operators have two inputs: a predicate (shown entering from 
the left of the diamond) and a datum (shown entering from 
above the diamond.) 

Several switches may share the same predicate. In Fig-
ure 1(b), two switches share the same predicate, "<". To help 
remind the reader that the switches are related we draw the 
switches with the same shared predicate on the same horizon-
tal row. In our implementation, we will take advantage of their 
shared predicate to reduce their speculation costs. We distin-
guish between switches and branches as follows: A switch can 
route a single token according to a predicate. A branch is the 
collection of switches that implement a single branch in the 
original program. That is, a branch is the set of switches shar-
ing the same predicate. 

Except for switches, each operator in Figure 1(b) uses 
the traditional dataflow tiring rule—the operator fires once a 
value, called token, arrives at each input. Switch operators 
may fire twice, however. A switch can fire whenever its data 
token (vertical input) arrives. If the switch's predicate token 
(left input) has not yet arrived, the switch may predict the pred-
icate's value and passes the data token to the T output or the F 

output accordingly. The switch fires again once the predicate 
token arrives. If the predicate token's value does not agree 
with the prediction, the switch initiates branch recovery. 

To illustrate how a switch recovers from misprediction, 
Figure 1(b) and Figure 1(c) show the runtime state immedi-
ately before and after a misprediction. We assume that, ini-
tially, one input token was inserted along each input arch x, 
y, z, and w. Solid tokens within each graph indicate data 
that has not yet been consumed. In Figure 1(b), the compar-
ison operators, "<" and ">2", have not yet consumed their 
input tokens. At the same time, however, all switches have al-
ready predicted their outcomes. The predicted outcomes are 
shown in bold inside each diamond. Based on these predic-
tions, tokens have already propagated all the way to the multi-
ply operation. 

To enable recovery from misprediction, we must remem- 
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if (x > y) { 
t = x; 
x = y; 
y = t; 

if (y > 2) 
y = y + z; 
y = y - w; 

X W Z W 

X X 

0 

(a) C Code 	 (b) Speculative Execution 	 (c) Speculation resolved 

Figure 1: An example of how speculation works. (a) A fragment of C code. (b) The runtime state with the "<" test predicted tnie, 
and the ">2" test predicted false. (c) The restored graph after the "<" test resolves to false. 

ber some tokens even after they have been consumed. These 
tokens are illustrated with dashed lines in Figure 1(b). The 
dashed lines show the input tokens of every operator that has 
fired speculatively. We keep track of which operators have 
fired speculatively by marking each token with the list of pred-
icates on which it is speculating. For example, we remember 
the input tokens of the "+" operator because the operator's left 
input token is speculating on the outcome of both predicates. 

Figure 1(c) illustrates recovery from misprediction. In this 
example, the "<" operator has resolved to False; the affected 
switches have fired again and detected a misprediction. As 
a result, every operator that speculated on the predicate "<" 
undoes its computation, restoring any input token that it shonld 
not have consumed. 

The rest of this paper is organized as follows. Sec-
tion 2 describes the SDP instruction-set architecture. Section 3 
sketches how to implement branch speculation in SDP. Sec-
tion 4 argues that SDP should compare well to a superscalar 
processor. Section 5 discusses compilation issues raised by 
speculation. Section 6 shows how to support provably effi- 

cient multithreaded scheduling, and Section 7 concludes with 
a discussion of related and future work. 

2 	Instruction Architecture 

Having outlined the idea behind the mechanism in Section 1, 
in this section we describe the instruction set architecture 
(ISA) for the SDP. The rest of the paper will then describe 
the implementation issues for this ISA. 

Except for switches, the SDP processor's instruction set ar-
chitecture is analogous to the explicit token store architecture 
pioneered by Monsoon [PC90]. Figure 2 illustrates the archi-
tected state using the code segment and execution graph front 
Figure I. The state consists of set of frames, such as the one 
shown in Figure 2(a), and instruction memory The instruction 
memory holds the static information about the program (the 
"text" of the program), whereas the frames hold dynamic in-
fonnation for the procedure's outstanding instructions. Each 
frame corresponds to one procedure invocation or one thread, 
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(a) One frame (of many.) 
	

(b) Instruction Memory. 

Figure 2: Architected State. 

typically. 

2.1 	The Frame 

A frame is a contiguous region of memory which is used as the 
backing store for state that is normally kept in the processor 
core. When there are many active frames, the processor will 
need to move some of the frame state out of the core to the 
memory. 

The frame includes 

• a f ramemask which is used in branch speculation. 

• a collection of frame entries (f 0, f 1. (dots), 

• fields to implement ready-to-execute instructions, and 

• fields to implement another set of deferred instructions. 

Each of these are described below. 

The Frame Mask 

The framemask keeps track of all of the outstanding unre-
solved branches for a frame. Switches that use the same predi-
cate share one branch-mask entry. In Figure 2, the first entry in 

the mask lists the prediction made by the "<" predictor in Fig-
ure 1; the second entry in the mask lists the prediction made 
by the "> 2" predictor in Figure 1. 

The frame mask is part of the architected state because 
the compiler must manage the allocation of the frame mask 
entries. 

The Frame Entries 

For each instruction that has a token on one of its inputs, the 
frame keeps track of the instructions arguments and state. In 
Figure 2(a), arguments that have not yet been consumed ap-
pear inside a shaded token, and arguments that have been spec-
ulatively consumed appear inside a dashed token. There is 
an additional argument mask stored with each argument token 
which is part of our impleentation and will be described in the 
following section. 

The Ready-to-Execute Set 

Each frame keeps in its state the set of all instructions that are 
ready fire. More than one frame may have instructions which 
are ready to execute, however. The frame provides storage, 
called nextreadyf rame, to build a linked list of all such 
frames. 



The Deferred Set 

Another set of instructions, called the deferred set, is also 
kept by the system. In the frame the nextdef erre-
dreadyf rame, ndef erredready, and di locations store 
a per-frame list of deferred instrutions. This deferred set 
supports a provably efficient scheduler for multithreaded pro-
grams, and its rationale and behavior is described below in 
Section 6. 

2.2 The Instruction Memory 

The assembly format of an arithmetic instruction consists of: 

address: opcode f (ii, him) (i2, f2,p2) 

where address is the instruction's address in instruction 
memory, f is an index into the frame, i is an offset in instruc-
tion memory starting from the current instruction, and p is an 
instruction's input port (Right or Left.) The individual instruc-
tion fields are 

opcode: the operation. 

f: the index of the instruction's frame entry, 

address + 	the address of the first output's instruction, 

: the index of the first output frame entry. 

pi : the input port of the first output, 

and similarly for the second output's address, index, and port. 
In addition, switch instructions name an entry, b, in the 

branch mask that holds their prediction while they speculate: 

address: 	BR f (it, ft,P1) (i2!f2,p2) b. 

Branches that share the same predictor share the same mask 
entry. In addition. static switches that never dynamically co-
exist within the frame may also name the same mask entry. 

3 	Implementing Branch Speculation 

Section 2 described the SDP instruction set architecture (ISA), 
which is the programmer-visible behavior of the machine. 
This section sketches an implementation, and Section 4 argues 
that the implementation should be at least as fast as a super-
scalar pipeline. 

To implement branch speculation, we added a n-bit frame 
mask register to the frame. The register uses 2-bits to encode 
the state of each entry in the frame mask. There are three 
states, which we notate as 

CI: the entry is not in use, 
: the entry's predicate is predicted taken, and 

CI: the entry's predicate is predicted not-taken. 

Each entry's value is set the first time a switch fires speculating 
on the entry's predicate. Each entry's value is cleared when-
ever a switch fires for the second time. confirming or refuting 
that prediction. 

We also maintain a n-bit argument mask with each argu-
ment field in the frame. Each argument mask lists a subset 
of the frame mask on which the corresponding argument is 
speculating. Figure 2 shows the setting of all the argument 
masks for the program state described in Figure 1(b). For ex-
ample, the ADD instruction's left argument is speculating on  

both predicates from Figure 1 while its right argument is not 
speculating on either. 

A dedicated n-bit broadcast bus ties the frame mask to 
the argument masks. Whenever a predicate resolves, the bus 
communicates the resolved value to each argument mask. If 
the predicate was correctly predicted, each dependent argu-
ment simply clears the predicate's entry in its mask since it is 
no longer speculating on that predicate. If the predicate was 
incorrectly predicted, each dependent argument deletes itself 
and possibly reinstates its sibling to implement branch recov-
ery. 

We considered using a scheme in which mispredicted 
branches create "kill tokens" that follow the paths of the orig-
inal speculated tokens, but we were concerned that the kill 
tokens might not catch up in time to avoid certain race con-
ditions. In fact, under some conditions the kill tokens might 
never catch up with the tokens that they are trying to kill. 

4 Performance: SDP vs. Superscalar 

Now that we have discussed the implementation of branch 
speculation in the SDP, in this section we argue that the SDP 
pipeline should be as fast as a superscalar pipeline. In Sec-
tion 5 we will discuss compilation issues. In this section, we 
describe briefly the rest of the SDP core and argue that the SDP 
circuitry is no more difficult to implement than a standard su-
perscalar processor's circuitry with some parts of the circuitry 
simpler and faster than superscalar's. The key observation is 
that each entry in the SDP's frame corresponds is a superset of 
an entry in the superscalar's reordering buffer. 

Unlike a superscalar processor, the SDP explicitly names 
the children of each instruction in the frame. As a result, the 
SDP does not have to broadcast each result to the entire frame. 
Instead, it can directly write each result into each child's frame 
entry. This optimization replaces area-intensive associative 
writes into the superscalar reordering buffer with faster and 
smaller direct writes into the SDP's frame. 

However, explicitly naming each instruction's children 
also has its costs. If there are many destinations for an instruc-
tion, and the instruction has limited fan-out, then extra fanout 
instructions will be needed. In our architecture, we used in-
structions with fanout of two, but it may make sense to use 
instructions with a fanout of three or four to reduce the need 
for extra fanout instructions. 

Also appearing in a frame entry but not in a reordering 
buffer entry is the argument mask described in the previous 
section. This mask supports selective recovery from mispre-
diction in the SDP. Unlike a traditional superscalar processor, 
the SDP can back out of exactly those instructions that depend 
on a mispredicted branch. In contrast, a superscalar undoes 
all instructions following a mispredicted branch, whether they 
actually depend on the mispredicted branch or not. 

The SDP does not need renaming logic since the compiler 
explicitly manages the reuse of frame entries. Explicitly man-
aging storage reuse puts pressure on the size of the frame, 
however. It remains to be seen how large a frame is needed 
to achieve good performance. 

The critical-path length of a program may be longer us-
ing SDP than using a serial instruction set, because in a su-
perscalar, correctly predicted branches do not appear in the 
critical path of the program at all. In the SDP. even correctly 
predicted branches add the cost of the switch instruction to the 
critical path. The number of instructions can be greater in SDP 
than in superscalar processors as well, since a single branch in 
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while (x > i) { 
= i+1; 

x = x/2; 

(a) C code. 	 (b) Compiled for traditional firing rule. 	 (c) Compiled for speculation. 

Figure 3: Loop barrier example. This code computes i+=lg ( x ) ; x=1. 

a superscalar may correspond to many switch instructions in 
SDP. 

In other aspects. the SDP is essentially identical to a super-
scalar reordering buffer entry, and executes in the same way. 
For example, the same bypassing techniques used by the su-
perscalar processor can be used in the SDP. 

5 Compiler Support 

This section discusses compiler issues for SDP, which are im-
portant even for serial programs. The next section will dis-
cuss the hardware support needed for highly concurrent mul-
tithreaded programs. In addition to the hardware issues de-
scribed in Sections 3 and 4, the compiler needs to take extra 
care when compiling for a speculative dataflow processor. 

First, as we saw in Figure 1, the compiler must group to-
gether switches that use the same predicate. Such grouping 
reduces the number of outstanding predictions to the number 
of unresolved predicates rather than unresolved switches. In 
addition, the compiler must understand our new firing rule for 
switches. Without the compiler's cooperation, the speculative 
firing of a switch could yield multiple tokens along one arch 
in violation of our explicit-token-store dataflow architecture. 

Figure 3 illustrates the effect of the new switch firing rule. 
It shows a simple serial C code loop compiled with the tradi-
tional single-firing rule (Figure 3(b)) and with our new spec-
ulative firing rule for switches (Figure 3(c)). In Figure 3(b) 
the compiler has used the traditional rule, assuming that each 
switch will fire only once, after both inputs have arrived. Un-
der this assumption, all initial inputs to the loop will be con-
sumed before the next iteration's inputs are generated. If the 
switches were to fire speculatively instead, without waiting for 
their predicate tokens, the program would fail. As Figure 3(b)  

illustrates, the next speculative value of x could reach the pred-
icate operator ">" before the first value has been consumed. 

To avoid multiple tokens along the input arch to the pred-
icate operator, the compiler must introduce explicit specula-
tion barrier instructions as in Figure 3(c). We have shown 
the branches with branch masks ("b=0"), and the speculatiion 
barrier is denoted by -wait b= O." A speculation barrier will 
not fire until the branch mask mentioned has resolved. 

One optimization for this kind of code would be to unroll 
the loop. Figure 4(a) shows the code unrolled once by hand, 
and Figure 4(b) shows the resulting code. Note that the first set 
of wait instructions waits on the second branch to resolve, and 
the second set of wait instructions waits on the first branch 
to resolve. (Initially both branches start in a resolved state, 
which gets the loop started.) This means that the first iteration 
and the second (of the original loop) can execute concurrently. 
And then when the first iteration finishes, the third iteration 
can start and run concurrently with the second. Then when the 
second iteration finishes, the fourth iteration can start, running 
concurrently with the third. Thus, if the compiler unrolls k it-
erations of the loop, every contiguous sequence of k iterations 
will be able to run concurrently, even if they do not align with 
the unrolling. 

6 Support for Parallel Programs 

So far we have explained how to run serial programs on a spec-
ulative dataflow processor, taking advantage of the parallelism 
within one subroutine of an otherwise serial program. This 
section outlines how a dataflow processor can be designed 
to support provably efficient scheduling of highly concurrent 
multithreaded programs. Section 7 will then discuss the re-
lated and future work. 



  

while (x > i) 1 
i = i+1; 
x = x/2; 
if (l (x > i)) break; 
i = i+1; 
x = x/2; 

The SDP can support highly concurrent programs by exe-
cuting several frames concurrently. One of the problems with 
such programs is that if the call tree is expanded breadth-first 
or randomly, then the system can run out of memory eas-
ily. Many Monsoon programs had this difficulty: either they 
would run too slowly because they lacked parallelism, or they 
had plenty of parallelism but needed huge amounts of mem-
ory, and it was very difficult to tweak the program to get it to 
run "just right." 

Our approach is to provide support for a provably efficient 
scheduler, such as the one used in Cilk [BJ10- 95]. To be con-
crete, we will discuss the support needed for the Cilk sched-
uler. 

The trick is to prevent the system from allocating new 
frames when there are already enough frames to keep the pro-
cessor busy. Figure 5 shows an example of this idea at work. 
A Cilk program that spawns a total of eight children (the root 
node spawns two children, each of which spawn to grandchil-
dren, each of which spawn two great grandchildren) could re-
quire up to 15 frames to run if the frame allocation is not con-
strained. A better situation is shown We in Figure 5(c), in 
which part of the tree has been completed, and part of the tree 
is waiting to be spawned, and part of the tree is begin worked 
on. The part of the tree that is being worked on has at most 2 
active leaves in this case, and the part of the tree that is waiting 
to be spawned is deferred. 

To be more specific about the allocation rule, we provide 
here a brief review of the Cilk system, from the perspective of 
a multithreaded processor architect. In Cilk, the computation 
is structured into a call tree, in which a vertex corresponds to a 
subroutine instance, and in which certain subtrees can execute 
in parallel. To execute several subtrees in parallel, the pro-
grammer writes a collection of "spawn" procedure calls, and 
then a "sync" operation that waits for all the children to com-
plete. An ordinary procedure call is simply a spawn of a single 
subtree, followed by a sync. 

Cilk achieves optimal time and space bounds simultane-
ously. The time bounds are expressed using the time to exe-
cute on one processor, T1, and the critical path length of the 
program, T., which is the time it would take to run on an in-
finite number of processors. On P processors, Cilk can run a 
program in time that is T11 P +0(T.). If the space bound on 
one processor is SI , then the space bound on P processors is 
P • S. These bounds are optimal under certain assumptions. 

Cilk programs must be strict in order for the scheduler to 
achieve these bounds. Informally, a strict program is one in 
which, once a subtree starts, it is able to finish without waiting 
for other subtrees to finish. 

Cilk achieves these time and space bounds by guaranteeing 
that at most P "leaves" of the call tree exist at any given time. 
Another way to say this is that in the tree, at most P forks are 
expanded at any glen time. 

When the system has fewer than P leaves running, every 
spawn actually starts up a new subtree in parallel. When the 
system has P leaves active, then no new subtrees are spawned. 
That is, the system runs in a serial, depth-first, order on each 
of the extant branches of the tree. That means that only one 
spawned child of a frame is actually started at a time. The 
others wait until the first one completes, and then another 
spawned child can run. 

For the discussion here, we are interested in supporting 
Cilk on a single speculative dataflow processor that may have 
a limited number of frames. So P, instead of referring to the 
number of processors, refers to the number of leaf frames we 
can support in the processor core. The speedup bounds work 
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(a) C code unrolled once. 
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(b) Compiled for speculation 

 

Figure 4: An unrolled version of the code from Figure 3. 
When we unroll the loop we can use split-phase speculation 
barriers so that the two iterations of the loop can run concur-
rently.. 

 



deferred 

int recurse ( int n) { 
if (n==0) serially_work( ) ; 
else { 

spawn recurse (n-l) ; 
spawn recurse (n-l) ; 
sync; 
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A 	finished 

deferred 

active leaves 

(a) The program. (b) The entire call tree for 	(c) Only two leaves are al- 
recurse (3) ; 	 lowed to exist at a time. 

Figure 5: In Cilk, a limited number of forks in the dynamic call tree are allowed. Each node of the call tree shown in (b) represents 
one invocation of the procedure named recurse. The whole call tree includes eight leaf nodes, but if on a two-processor system 
we only want there to be two leaves enabled. Parts of the tree have already finished executing, and so their frame memory is 
deallocated, and part of the tree is waiting to execute, but we do not actually allocate memory until one of the leaves finishes. 

out differently as well, since there are not actually P ALUs 
and other computational units, but the system still has a sound 
theoretical basis. 

Thus, to make this dataflow-oriented Cilk work requires 
that the runtime system be able to distinguish between two 
cases when spawning a child. The "serial case" is when a child 
is being spawned and there are no other children currently in 
existance. The "parallel case" is when there is already a child 
running for a particular frame, and we must be careful not to 
start another child unless there are idle processing resources. 

Most of the support for Cilk-scheduling within the SDP 
can be implemented in software, with a very small amount 
of hardware support. The system must maintain a separate 
"deferred" execution queue for the instructions that allocate 
new frames. Instructions arc executed via the regular window-
scheduling mechanism whenever possible. The rule for when 
a deferred frame allocation instruction can run is more com-
plex, however. 

The idea is that frame allocation instructions in the de-
ferred queue should not be run if there are too many spawned 
children in the system. To make this work the processor keeps 
a global count of how many leaf children are running. The pro-
cessor might be designed to allow, say, 16 concurrent leaves in 
the call tree to be executing. If the global count is less than 
16, then the processor executes a frame allocation instruction 
Out of the deferred queue (putting the resulting tokens into the 
regular execution pipeline) and increments the global counter. 
If the global count is greater than 16, then the processor does 
not execute instructions from the deferred queue. 

Here is how the system can compute how many active 
leaves exist in the call tree. In software, a Cilk program sets 
up a counter in the activation frame to keep track of how many 
children are running (the "active-child count.") Initially the 
counter is set to zero. When spawning a child subroutine, if the 
active-child count is zero, the spawn is treated like a serial call 
(the frae allocation instruction is executed normally), and the 
local counter is incremented. If the active-child count is pos-
itive, then the token that starts the frame allocation is placed 
into the deferred queue, and the count is not incremented. 

When a forked child completes, the system must decre-
ment the parent frame's counter, and if that goes from two to 
one, it must decrement the global leaf counter, which will then 
allow some deferred instruction (if there is one) to run, allo-
cating a new frame. 

The effect of all this is to implement a provably efficient 
scheduler by providing the mechanisms needed to prove the 
Cilk results for SDP. 

We could have taken the decision to perform Cilk-style 
scheduling in software, but we wanted to be able to write 
Cilk-style programs in which the spawn and procedure call 
instruction-sequence are the same. We wanted the "serial 
case" to run as fast as possible, and so we provide hardware 
support for the Cilk-style scheduling. 

7 Related and Future Work 

The biggest difference between our machine and previous 
pure dataflow machines, such as Monsoon [PC901 and the 
Manchester dataflow machine [GKW851 is that we make ex-
tensive use of speculation to achieve high performance on 
single-threaded code. In contrast Monsoon could only use 
one eighth of a single processor's cycles on single threaded 
code. The speculation we propose is possible because of ad-
vances in VLSI technology since the previous generation of 
pure dataflow machines. 

Among the hybrids, the two machines that look the most 
like our proposed machine are the Tera (now known as Cray) 
MTA, and the EM-5. Beyond the fact that our machine is a 
pure dataflow machine, and makes extensive use of specula-
tion their are some other interesting differences. 

The Tera MTA [ACC+95] allows very restricted out-of-
order execution within a single thread (called a stream). Each 
instruction specifies how many successive instructions can be 
issued before this instruction completes, and this is limited by 
7. So in effect, a single stream has a window size of 8 or less. 
The pipeline depth for the MTA is about 70 clock ticks, and 
so at least 9 streams are required to achieve 100% processor 



utilization. The MTA relies on the compiler detecting many 
streams of parallel instructions (of the order of a few tens per 
processor) to get high throughput. In contrast, our approach 
is to implement bypasses so that, a dependant instruction can 
run on the next cycle immediately after the completion of its 
predecessor. Even so, our processor would require high par-
allelism to achieve 100% utilization because some operations. 
such as memory. take a long time, and that would require a 
highly parallel memory subsystem. which seems infeasible for 
a microprocessor using today's memory technology. 

In the EM-5 [SKY91]. the scheduling unit is a "strongly-
connected component", which may be one or more instruc-
tions. The instructions within a component are executed in 
sequence. Instructions in the same strongly-connected com-
ponent can be run in successive cycles, but dependent instruc-
tions in different components cannot. 

We are currently building a C compiler and simulator for 
the SDP. Several other researchers have shown that it is pos-
sible to systematically compile serial programs for dataflow 
machines [B P89. NHSB94, WA95). Given that it is possible to 
compile serial programs. our compiler work is directed to sup-
porting the thesis that a pure dataflow processor can compete 
with a von Neumann processor. We hope to soon have results 
about the effectiveness of our branch prediction scheme and of 
our fetch prediction scheme, and of the SDP in general. 

As a possible improvement to the ideas of the SDP, we 
are considering a dataflow processor with a very different ap-
proach to managing data and tokens. Instead of using tokens 
that carry data, we are considering a dataflow processor that 
uses explicit registers, and in which the tokens carry only syn-
chronization information. This would reduce the number of 
switches to be comparable to a superscalar processor. Instead 
of one switch for every data value, it would be more like one 
switch per branch. That would allow us to remove the branch 
masks from the ISA because the branch masks can be dynam-
ically assigned to the instructions. This approach would also 
reduce the number of instructions in the code. 
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ABSTRACT 
Growing demand for high performance in embedded sys-
tems is creating new opportunities to leverage techniques 
such as pipelining and instruction-level parallel processing, 
which were originally developed for general-purpose pro-
cessors. In this paper, we investigate the applicability of 
compiler-directed multithreading in speeding up embedded 
applications. In particular, we take programs from the Pow-
erstone benchmark suite—a collection of programs from the 
embedded applications area—and use our compiler-directed 
multithreading framework to partition them into multiple 
threads. 'While performing the partitioning, the compiler 
not only considers data dependence information, but also 
considers control independence information and profile-based 
information on the most likely control flow paths. Our 
compiler framework is implemented on the SUIF-NIachSUIF 
platform. The average code expansion due to the introduc-
tion of thread information is only 0.82%, but, the perfor-
mance potential is quite substantial. The effect of different 
criteria on our thread partitioning technique is evaluated us-
ing a trace-driven, multithreaded processor simulator. Our 
measurements indicate that future embedded processors can 
speed up the execution of sequential programs with low de-
grees of multithreading. 

Keywords 
Branch prediction, control dependence, Powerstone bench-
marks, profiling, speculative execution, thread-level paral-
lelism (TLP) 

1. INTRODUCTION 
Improving the execution speed of embedded applications 

is becoming an important problem. Any serious attempts 
at solving this problem should carefully consider the trends 
in technology. In spite of the severe power consumption 
requirements, the number of transistors in embedded pro-
cessors has been rising, primarily due to advances 
technology. This ongoing explosion in device technology is 
complemented by a similar increase in clock speed. This 
situation is complicated by a constraint that is germane to 
embedded processors—low power consumption. Designers 
of embedded processors have been utilizing the increasing 
transistor budget to incorporate special features that speed 
up some aspects of embedded computing. But today em-
bedded processors are being used for a wide variety of ap- 

plications, and embedded processor designers have begun 
to include features that are traditionally found in general-
purpose processors [16]. 

Recent studies on multithreading confirm that there is 
significant performance potential in executing a small num-
ber of threads in parallel. Furthermore, the use of multiple 
hardware sequencers or processing elements (to fetch and ex-
ecute multiple threads)—besides making judicious use of the 
available transistor budget increase—fits very nicely with 
the goal of decentralization, which is very important to deal 
with on-chip wire delays. Using the increased device count 
to build additional processing elements (PEs) is indeed a 
very credible option [2] [5] [13] [14]. The primary means 
of increasing processor performance, besides increasing the 
clock speed and reducing the memory latency, has always 
been the exploitation of the inherent parallelism present in 
programs, with the use of a combination of software and 
hardware techniques. Although the majority of previous re-
search in embedded processors focused on a single thread 
of execution, a more effective increase of parallelism can be 
achieved from the execution of multiple threads belonging 
to the same program'. 

This paper investigates the potential of software (compiler-
based) techniques to partition sequential embedded programs 
into multiple threads that the hardware can execute in par-
allel. Because the compiler has an overall view of the pro-
gram, it can find the control independent points in the pro-
gram and partition the sequential program into multiple 
threads. It can also determine data dependences between 
distant code. We use both of these features, along with 
profile-based data on likely control flow paths, to partition 
sequential programs into multiple threads. Thus, our com-
piler based thread partitioning algorithm takes into account 
both control and data independence to do effective thread 
partitioning. From the hardware side, data value predic-
tion is incorporated to reduce the effect of inter-thread data 
dependences. 

Our studies with embedded applications have led to the 
following observations: 

• The performance potential of single-threaded proces-
sors is fairly limited. 

'The term "thread" has different meanings in different con-
texts; our notion of threads is finer than the coarse-grain 
OS-level threads, and comprise of tens to hundreds of in-
structions. 



• Compiler-directed speculative multithreading, along with 
data value speculation, has good potential to speed up 
embedded applications 

• Some embedded programs benefit from the use of non-
loop threads 

The rest of this paper is organized as follows. Section 2 
provides background information on multi-threading for em-
bedded systems applications. Section 3 presents an overview 
of our multi-threading compiler framework. Section 4 presents 
an experimental evaluation of the compiler-generated threads 
for the Powerstone benchmarks. Section 5 presents a sum-
mary and the major conclusions of this paper. 

2. MULTITHREADING FOR EMBEDDED 
APPLICATIONS 

2.1 	Constraints for Embedded Processors 
Embedded processors currently form an important sector 

of the processor market. They are particularly used in many 
applications in the communications and mobile computing 
area. Although the basic tenets of computing in the em-
bedded systems world are the same as those in the general-
purpose computing world, there are some additional con-
straints to be considered while designing embedded proces-
sors. The constraints concern primarily with power dissi-
pation, code size, and die size. Many embedded processors 
are used in applications such as cellular phones where the 
power supply is derived from a battery. For such applica-
tions, it is very important that the power consumption of the 
processor is as low as possible. Many embedded systems are 
also constrained by memory size and die size limitations. 
Limited memory size implies that the code size should be 
as small as possible. In spite of these special constraints for 
embedded systems, the demands on the processing power 
for embedded applications has been steadily rising. 

1./ 	Parallelism in Powerstone Benchmark Pro- 
grams 

It is worthwhile to characterize embedded applications. 
In particular, we like to know how much parallelism exists, 
what kind of branch prediction accuracies we can obtain, etc. 
To that end, we measure the available parallelism (under 
different machine models) present in the Powerstone bench-
mark, a collection of embedded application programs in-
cluding automobile control, signal processing, graphics and 
fax applications. A description of the benchmarks is given 
in Table 1. These portable and embedded benchmarks are 
used to make design trade-offs in the architecture and the 
compiler of the Motorola low power M-CORE processor 
[161. For this study, we use a software tool called TAPE 
(Tool for Available Parallelism Estimation) [3]. TAPE per-
forms trace-based simulation, and performs a parallelism 
limit study by constructing a dynamic dependence graph 
(DDG) based on the different kinds of dependences present 
among the instructions of the trace. TAPE allows different 
models for handling control dependences: realistic branch 
prediction, realistic branch prediction augmented with ex-
ploitation of control independences, and perfect branch pre-
diction. 

Let us take a quick look at the amount of parallelism 
available in the Powerstone benchmarks under the differ- 

Benchmark Description 

auto Automobile control application 
bffo 
bilv Shift, AND, OR operation 
blit Graphics application 

compress A Unix utility 
des Data Encryption standard 

firint 
g3fax Group three fax decode 

(Single level image decompression) 
ucbqsort U.C.B. Quicksort 

Table 1: Powerstone benchmark suite 

ent control flow models. Table 2 presents the available par-
allelism obtained for 3 abstract machine models (given in 3 
columns): (i) an execution model in which control specu-
lation is employed within a window of 32 instructions, but 
control independence is not utilized, (ii) an execution model 
in which control speculation is employed, and control in-
dependence is utilized whenever a branch is mispredicted 
within a window of 256 instructions, and (iii) an execution 
model that utilizes perfect branch prediction and a window 
size of 256 instructions. The first case indicates a limit of 
what can be achieved by ILP (instruction-level parallelism) 
techniques, and the second indicates the potential of pursu-
ing multiple threads. These measurements were done with 
the Alpha instruction set architecture. 

Table 2 also presents the branch prediction accuracies ob-
tained for the benchmarks. Whereas many of the bench-
marks obtain very high prediction accuracies, in the range 
96%-99.9%, there are a few that obtain substantially low 
prediction accuracies—compress (91.0%), ucbqsort (81.06%), 
and des (75.42%). The parallelism obtained by branch pre-
diction alone is naturally low for these three benchmarks 
(around 5). The column that is of particular interest to us 
is the penultimate one, because it shows the potential of 
multithreading to improve performance. On looking at this 
column, we can see that except for auto, des, and g3f ax, 
the others can obtain reasonable performance enhancements 
by small-scale multithreading. 

This characterization also indicates that for most of the 
programs in the Powerstone benchmark suite, instruction-
level parallelism (ILP) techniques can capture only a limited 
amount of parallelism. 

2.3 Speculative Multi-threading for Embed-
ded Processors 

Many of the embedded applications are non-numeric in 
nature. In particular, in such applications memory addresses 
are difficult (if not impossible) to statically predict—in part 
because they often depend on run-time inputs and behavior—
that makes it extremely difficult for the compiler to stti-
cally prove whether or not potential threads are indepen-
dent. To deal with these difficulties, the speculative mul-
tithreading (SpMT) model has been found to be more ef-
fective [8] [15]. This model is particularly important to deal 
with the complex control flow present in typical non-numeric 
programs. In this model, threads are extracted from sequen-
tial code and run in parallel, without violating the sequen-
tial program semantics. This means that inter-thread corn- 
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Table 2: Available Parallelism with Different Control Flow Models 

Benchmark 
Branch 

prediction 
accuracy 

Available parallelism with 	 ' 
No utilization of 

control 
independence 

Utilization of 
control 

independence 

Perfect 
branch 

prediction 
auto 99.8670 6.67 6.77 6.77 
bffo 99.23% 10.00 20.59 20.60 
bilv 97.14% 12.16 15.89 15.89 
blit 99.90% 9.99 10.22 10.22 
compress 91.00% 5.44 10.25 14.93 
des 75.42% 4.44 8.52 9.27 
firint 97.09% 10.18 19.45 19.56 
g3fax 96.09% ' 5.70 7.51 7.84 
ucbqsort 81.06% 5.65 10.78 15.73 	' 
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munication between any two threads (if any) is strictly in 
one direction, as dictated by the sequential thread ordering. 
Thus, no explicit synchronization operations are necessary, 
as the sequential semantics of the threads guarantee proper 
synchronization. Program correctness will not be violated 
if at rim time there is a true data dependence between two 
threads. The purpose of identifying threads in such a model 
is to indicate that those threads are good candidates for 
parallel execution. 

3. COMPILER BASED THREAD PARTITION-
ING 

In this section we provide a brief description of our com-
piler framework for thread partitioning. A detailed descrip-
tion is beyond the scope of this paper; the objective of this 
paper is to study the effectiveness of multithreading for em-
bedded applications. 

3.1 	Multi-threaded Architectural Model 
The multi-threaded architectural model assumes that the 

program has been partitioned into a collection of threads. 
Each thread can spawn any arbitrary number of threads. A 
particular thread can also be spawned from different places. 
Threads can be spawned speculatively if required; i.e., a 
thread can be spawned before knowing for sure that control 
flow will reach that thread. If it is found that the con-
trol speculation was wrong, then the speculative thread is 
squashed from its PE. But other threads spawned by this 
speculative thread will be aborted, only if those threads are 
also control dependent on the same branch. If they are con-
trol independent of that branch they can continue execution. 

In its general form, this multi-threaded processor hard-
ware consists of a number of processing elements (PEs). 
Each PE has its own program counter, fetch unit, decode 
unit, and execution unit, so as to fetch and execute instruc-
tions from the thread currently assigned to it. The PEs are 
connected together by an interconnection network. 

3.2 Compiler Framework 
In this subsection we briefly describe our compiler frame-

work for thread partitioning. The layout of our overall sys-
tem is shown in Figure 1. 

While partitioning the program into threads, the compiler 
has to consider three mutually independent factors-data 
dependence, control dependence, and thread size-together,  

to decide a good partitioning. Partitioning programs into 
threads for non strict languages ( like C) such that total 
execution time is minimized, is an NP-Complete problem. 
So we formulate some metrics and use them to find a good 
solution of the partitioning problem. 

In the following subsections we discuss how the compiler 
takes care of data dependence, control dependence, and the 
thread size. The compiler does the program analysis and 
partitioning on a high level intermediate representation. The 
high level representation retains all the source level pointer 
and type information, and hence it is possible to take into 
account the dependences due to pointer aliasing and array 
references. Hence the compiler is able to extract parallelism 
even from pointer intensive programs. We assume that the 
multi-threaded architecture can take care of the anti- and 
output- register dependences with dynamic register renam-
ing. We have used the profiling information to find out the 
most likely path, that the control will take and this infor-
mation is used by the compiler to specify threads that are 
to be spawned speculatively. 

3.3 	Program Profiling 
We have used a separate compiler pass to instrument the 

source code and to gather the profiling information. In the 
profiling pass, we find out for every basic block, which basic 
block is most likely to be visited next. The compiler uses 
this to find out the most likely path and also to estimate the 
number of instructions that would be executed between two 
basic blocks. Furthermore, we find out the number of loop 
iterations using the profiling information. The estimate on 
the number of loop iterations helps us to decide whether to 
execute the loop iterations in parallel even in presence of 
available parallelism. We will discuss this in details in the 
following subsections. 

3.4 Data Dependence 
In our framework we formulated a metric called data de-

pendence count to partition the programs such that the data 
dependence between threads are minimized. 

Our thread partitioning algorithm works in multiple passes. 
In the first pass, the compiler builds the CFG and also finds 
out the data dependence information. It does the traditional 
data flow analysis and calculates the read/write sets [1] for 
every instruction. We have implemented an intraprocedu-
ral pointer analysis to have an improved data dependence 
information. The pointer analysis helps us in getting more 
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precise read/write sets. After calculating the read/write sets 
for every instruction, data flow analysis is performed and for 
every variable in the read set of an instruction, the set of 
reaching definitions [11 are determined. 

The data dependence count (DDC) is the weighted count 
of the number of data dependence arcs coming into a basic 
block from other blocks as shown in Figure 2. This mod-
els the extent of data dependences this block has on other 
blocks. If the dependence count is small, then this block 
is more or less data independent from other blocks and it 
may be beneficial to begin a thread at the beginning of that 
basic block. While counting the data dependence arcs, the 
compiler gives more weights to the arcs coming from blocks 
that belong to the threads closer to the block under consid-
eration. The dependences from distant threads are likely to 
be resolved earlier and hence the current thread is less likely 
to wait for the data generated in that thread. Moreover, we 
give less weightage to the data dependence arcs coming from 
the less likely paths. The advantage of using this metric are 
twofold. First of all, it is much simple to compute. Also 
we found it more accurate than other sequential execution 
based modeling in the presence of out-of-order execution in-
side each thread. 

3.5 	Program Partitioning 
This subsection describes the partitioning algorithm. The 

compiler partitions the CFG into multiple threads, and also 
specifies the points in the program from which a particular 
thread can be initiated. In the partitioning algorithm, I have 
used the basic blocks as the granularity of partitioning, i.e., 
either all the instructions inside a basic block are included 
in a thread or none of them are included. In other words, 
we do not split a basic block across multiple threads. From 
every basic block, .4, the compiler looks ahead until the 
basic block B. which is control independent of A and decides 
which future threads could be initiated from A. Also, at this 
point the compiler decides which basic blocks in the path 
between .4 and B can be included in the current thread, 
i.e. the thread containing A. To maintain load balancing 
between the threads, it uses a lower limit and an upper 
limit for the number of instructions that can be executed in 
one thread. It also selects speculative threads based upon 
the profiling data. It selects the most likely path that the 
program will take for going from basic block A to its next 

BI 

Figure 2: The Data Dependence Arcs 

control independent point B. The compiler partitions the 
program such that the execution in the most likely path 
be optimized. The thread will continue execution in the 
speculated path and if it finds the speculation to be incorrect 
at later point, it will take the correct path. However, there 
is no need to abort the threads that are spawned at the 
control independent point of this thread. 

Several cases may arise when we look inside the most likely 
path between the basic blocks A and B. These are shown 
in Figure 3. The likely path between the basic blocks A and 
B are shown by thick arrow. In Figure 3(a), basic blocks A 
and B are not very far and also by including the instructions 
executed in the likely path between A and B, (including B) 
in thread 1, the size of thread 1 is not going to violate the 
upper limit. So the compiler does not spawn a new thread 
at B. Rather the compiler includes all blocks between A and 
B in thread 1 and looks beyond B to find the next potential 
thread starting point. In figure 3 (b), B is not too close to 
A and yet not too far from A. So B is a potential thread 
starting point. So the compiler marks B as the starting 



Thread 1 

(a) Basic block B is too close to A 

(c) Block B is too tar from Block A 

(b) Block B is at an optimum distance from Block A 

Figure 3: Different Cases in Program Partitioning 

point of thread 2 and forms a thread at B. Now it checks 
the data dependence between the thread containing A and 
the thread containing B according to the data dependence 
distance or the data dependence count. If it is found that 
the total completion time of threads 1 and 2 (where thread 
2 is spawned from the beginning of B), is less than the com-
pletion time if the two threads are executed sequentially one 
after another, then it spawns thread 2 from A. 

In figure 3(c), A and B are very far apart, as far as the 
most likely path between them are concerned. So, starting a 
new thread at B and including all the blocks till B in thread 
1 is not efficient. First of all, the size of thread 1 will become 
very large and moreover there may exist potential threads 
inside the likely path between A and B. So the compiler 
looks inside the likely path between A and B and tries to 
partition it further. In case of 3(c) it is found that basic 
block C is a starting point of thread 2 and this thread is 
speculatively spawned from A, before the actual direction 
of the branch is resolved. Thread 3, which starts from basic 
block B is spawned from somewhere inside thread 2. 

The compiler also checks the paths that are not the likely 
paths and partitions them as well. If at run-time, control 
goes into those unlikely paths, then the threads spawned 
speculatively are aborted. But the threads that are not con-
trol dependent on the aborted threads need not be aborted. 
For example, consider Figure 3 (c). If from A, instead of 
following the most likely path, the control goes to basic 
block D, when both threads 2 and and 3 have been spawned, 
thread 2, would be aborted, but not thread 3, as B is con-
trol independent of A. Moreover in the path containing D, 
there can be spawning of thread 3 as well, and this spawn-
ing should be ignored during execution because thread 3 has 
already been spawned. 

In our compiler framework, the loops are treated as a 
special case of control dependence. For loops the compiler 
checks the dependence between two iterations of the loops, 
and if it is found that spawning another thread for the next  

iteration is profitable, then the thread is spawned. It may 
also happen that, instead of spawning from the beginning 
of the loop for the next iteration, the compiler spawn the 
next iteration from somewhere inside the loop. The large 
body of the loops may be further partitioned into multiple 
threads as described above. While partitioning the loops, 
we use profile information on the number of loop iterations. 
Typically the compiler does not want to execute small loop 
body in parallel. However, if the number of iterations is large 
then the compiler would spawn the iterations as separate 
threads. Otherwise the size of the thread will become very 
large. 

3.6 Implementation in the SUIF Platform 
Our thread partitioning algorithm has been implemented 

on the SUIF-MachSUIF platform [9]. All of the compiler 
analysis and thread partitioning are done at the high-level 
intermediate representation (IR) of SUIF. We have chosen 
the SUIF platform to implement our compiler system be-
cause it provides a modular and flexible infrastructure to 
develop compiler optimizations. SUIF first translates high-
level source code into an IR, and then performs code op-
timization through several independent passes on that IR. 
While transforming high-level programs into IR, SUIF re-
tains all of the relevant information from the high level 
source program. This is particularly helpful for carrying out 
optimization such as profiling and pointer analysis. More-
over, the instructions in the SUIF IR are very close to the as-
sembly level instructions; thus, the estimation of thread sizes 
done at the IR level remains valid in the final assembly level 
as well. In SUIF, it is possible to annotate the instructions 
with necessary information like data dependence, and use 
them in separate passes afterwards. Also, the SUIF pack-
age contains many optimization modules, which improve the 
quality of the code produced. We have used the MachSUIF 
[17] framework to generate Alpha assembly code from the 
SUIF IR. 

4. EXPERIMENTAL STUDY 
In order to see how much of the parallelism measured 

in Section 2.2 can potentially be tapped by our compiler-
directed multithreading approach, we enhanced our software 
tool (TAPE) along the lines of the simulation environment 
used in [15] to study parallelism in general-purpose appli-
cations. The number of PEs, issue size per PE, etc., are 
parameterized. It models a perfect instruction cache and 
data cache. The code executed in the supervisor mode are 
unavailable to the simulator, and are therefore not taken 
into account in the measurements. Furthermore, the simu-
lator does not overlap the execution of threads that precede 
and succeed a system call. For these measurements, each PE 
has an issue width of 4 instructions per cycle, an instruction 
window of 32 entries, and can perform out-of-order execu-
tion. 

When encountering a conditional branch instruction in 
a thread, its PE consults a branch predictor for a predic-
tion. If the prediction is incorrect, the immediate control-
independent point in the program is determined. If this 
point is within the thread, then subsequent threads are not 
squashed. Branch predictions are done using a 2-level Pap 
scheme [20], with a direct-mapped 16K-entry Branch His-
tory Table, a pattern size of 6, and 3-bit saturating counters 
in the Pattern History Table entries. 
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A data value predictor is implemented in the simulator. 
This predictor is a hybrid of a stride predictor and a 2-level 
predictor 119]. The first level of the predictor has 16K en-
tries, and is direct-mapped. Data value prediction is carried 
out only for those instructions that produce a single reg-
ister result. Thus branch instructions, store instructions, 
flops, and double-precision instructions are not considered 
for data value prediction. 

4.1 Code Explosion Due to Thread Informa-
tion 

As mentioned earlier, for embedded system applications, 
it is important that our thread partitioning does not have 
a significant impact on the code size. Table 2 gives the in-
crease in code size because of including thread information 
in the program binary. For each benchmark program, the 
table provides the number of static instructions for Alpha 
ISA, the number of instructions with annotation, and the 
percentage of instructions with annotation. From the ta-
ble, we can see that the code size expansion ranges from 
0.12% to 2.69%, with an average of 0.82%, which is very 
insignificant. The number of instructions that are anno-
tated does not depend on the ISA; rather it depends on the 
program characteristics. For annotating an instruction, we 
need 16/32 bits to specify an instruction address and 2 bits 
to specify the type of annotation. Note that for embedded 
processors where memory size is usually smaller, the num-
ber of bits required to specify the instruction address will 
be even less. Also, we can use special hardware and have 
relative addressing scheme to specify the instruction address 
in the annotations, thereby reducing the space requirements 
further. 

Benchmark 
Static 

Instruction 
Count 

Additional Instrs 
for Conveying 
Thread Info 

Code 
Expansion 

Factor 

auto 1359 5 0.37% 
bffo 1339 6 0.45% 
buy 1671 2 0.12% 
blit 1495 8 0.54% 

compress 2190 59 2.69% 
des 2007 8 0.40% 

g3fax 1561 17 1.09% 
ucbqsort 1787 16 0.90% 

Average 1676.12 i 	15.12 0.82% 

Table 3: Increase in code size of the benchmark pro-
grams because of including thread information 

4.2 Parallelism Without Data Value Predic-
tion 

Our first set of multithreading studies were done with-
-. loying data value prediction. Figure 4 presents the 

overall parallelism in terms of instructions per cycle (IPC) 
obtained in these experiments, with different number of pro-
cessing elements (PEs). All benchmarks are simulated till 
hundred million instructions unless the programs get com-
pleted before that. 

From Figure 2, we can see that across all benchmark 
programs, there is notable speedup with 4 PEs, except for 
bily, blit, g3fax, and ncbqsort. Among these, g3faz did 
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4 

Figure 4: Parallelism Results for varying number of 
PEs when Data Value Prediction is not Employed 

not show any parallelism in the measurements in Section 
2. Even for the ones that show promise, the parallelism 
saturates when the number of PEs reaches 2 or 3. Thus, 
without data value prediction, multithreading has limited 
use for these embedded applications. 

	

4.3 	Parallelism With Data Value Prediction 
Next, we present the parallelism values obtained when 

data value prediction was employed in the multithreaded 
processor. Figure 5 presents the parallelism values obtained 
in these experiments, with data value prediction. For ease of 
comparison, the results from Figure 2 are reproduced along-
side. 

When data value prediction is employed, two of the four 
benchmarks that did not show much parallelism—blit and 
ucbqsort —show a marked improvement. In addition, bffo 
shows further improvement. The most notable speedup is 
seen for blit. On the other extreme, bill/ does not show any 
noticeable speedup with multi-threading, even when data 
value prediction is employed. Most programs have substan-
tial speedups with multithreading. By and large, incorpo-
rating data value prediction helps to reduce the effects of 
inter-thread data dependences, thereby providing notable 
speedups. Thus, we can see that multithreading is quite ef-
fective for embedded systems programs when the processor 
employs data value prediction, which is quite encouraging. 

	

4.4 	Importance of Non-loop Threads 
The experimental measurements conducted so far included 

threads that are loop-centric (iterations of loops) as well as 
non-loops. In the next set of measurements, we measure 
the parallelism obtained when only loop-centric threads are 
employed. Figure 6 presents these results. For each bench-
mark, two bars are given. The first corresponds to using all 
kind of threads, and the second corresponds to using only 
loop-centric threads. Among the benclunarks, only a sin-
gle program—bffo—benefits from using only loop-centric 
threads. For most of the programs, restricting to loop-
centric threads results in less parallelism being exploited. 
This demonstrates the importance of a multithreading frame- 

74 



16 

75 

It PEs 

16 

14 

12 

    

  

PEs 

• 4 
O 3 
• 2 
O 1 

    

10 — 

 

     

; 
au o 
	

bflo 
	

hi Iv 
	bid  co upfess de, 	fu_ int g3fax ucbqsort 

Figure 5: Parallelism Results for varying number of 
PEs when Data Value Prediction is Employed 

work that supports loop-centric as well as other kind of 
threads. 

4.5 	Effect of Selective Loop Unrolling 
Some of the embedded applications are dominated by very 

small loops, whose iterations are fairly independent. If each 
iteration of such a loop is partitioned as a single thread, 
then each thread becomes very small, and the thread over-
head becomes too much. On the other hand, if the entire 
loop is made a single thread, then we fail to exploit the 
inter-iteration parallelism present in these loops. In order 
to deal with this problem, we experimented with selective 
unrolling of loops. Selective unrolling is very important to 
keep the code expansion factor low. We introduced a se-
lective unrolling pass in our compiler framework; currently 
this pass unrolls simple "for" loops with fixed upper and 
lower bounds. The use of selective unrolling showed sub-
stantial potential for 4 of the benchmarks—auto, compress, 
f ir_int, and ucbqsort. The code expansion due to se-
lective loop unrolling for these 4 benchmarks were 58.8%, 
15.1%, 33.11%, and 7.0%, respectively. The improvements 
in thread-level parallelism are shown in Figure 5. For each 
of these 4 benchmarks, 2 bars are shown, the first indicating 
the parallelism before loop unrolling and the second indicat-
ing the parallelism after loop unrolling. Among these two 
benchmarks, auto and fir_int show remarkable improve-
ment due to selective loop unrolling. 

5. DISCUSSION AND CONCLUSIONS 
Embedded processor designs are constrained by power 

consumption, code size, and die size limitations. Neverthe-
less, the performance expected from them has been steadily 
increasin;,-. Today's embedded processors incorporate a vari-
ety of techniques that are used for general-purpose processor 
design. 

To obtain high performance in embedded system appli-
cations, it is important to handle both loop-terminating 
branches and other conditional branches in an efficient man-
ner. Although traditional branch prediction provides some- 
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Figure 6: Parallelism Results for varying number of 
PEs when Using Different Types of Threads 

what reasonable prediction accuracies for embedded sys-
tem application programs, a substantial increase in per-
formance for next-generation systems requires more effec-
tive ways of dealing with conditional branches. Recognizing 
control-independent regions, and performing speculative ex-
ecution along multiple (independent) flows of control have 
the potential to extract the large amounts of parallelism 
that are available at a distance. Given the increasing in-
terest in multithreading for general-purpose processors, we 
expect that future embedded processors will also attempt to 
execute multiple threads in one way or another. 

This paper investigated the applicability of multithread-
ing in embedded system applications. We partitioned pro-
grams from the Powerstone benchmark suite, a collection 
of programs from the embedded systems area, into multi-
ple threads. While performing the partitioning, the com-
piler not only considers control independence information, 
but also considers data dependence information and profile-
based information on the most likely control flow paths. 
We performed several measurements with these compiler-
generated threads. Our measurements show that a major-
ity of the benchmarks programs are able to get substan-
tial increase in parallelism when up to 4 threads are exe-
cuted in parallel, provided data value speculation is used 
to break inter-thread data dependences. Our measurements 
also show that most of the benchmark programs require non-
loop threads also, in addition to loop-centric threads. Re-
sults from these simulations indicate that future processors 
can speed up the execution of embedded system program by 
using multithreading. 

A major advantage of speculative multithreading multi-
threading is backward compatibility with existing proces-
sors. That is, an existing executable program for the origi-
nal (single-threaded) embedded processor forms legal single-
thread code for a multithreading embedded processor. This 
feature is very important from the commercial point of view, 
because of customers' strong preference to have the abil-
ity to run the old binaries in the new machine (although 
those binaries can not benefit from the new machine's mul-
tithreading features). 
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Abstract 

Data prefetching is a popular technique for tolerating long 
memory access latencies. In this paper, we introduce a novel 
type of prefetching: memory-side correlation prefetching im-
plemented in a user-level thread. The prefetching thread runs 
on a general-purpose processor embedded in the main mem-
ory. By allocating the correlation table in main memory, we 
can afford the large space required by the table. In addition, 
the scheme can be supported with few modifications to the 
L2 cache and no modification to the main processor core. We 
introduce a new organization of the correlation table and a 
new prefetching algorithm that enable fast and accurate far-
ahead prefetching with high coverage. Overall, our evalua-
tion shows that the algorithm effectively prefetches irregular 
applications, speeding up three applications by an average of 
1.28. Furthermore, our scheme can work synergistically with 
a conventional processor-side prefetcher to deliver an average 
speedup of 1.36. 

1 Introduction 
Data prefetching is a popular technique to tolerate long mem-
ory access latencies. There have been many proposals using 
a helper thread to help prefetching for the main thread, such 
as [12, 151. These proposals have focused on either SMT 
or CMI' platforms. In this paper, we propose a prefetching 
thread scheme that is suitable for implementation in an In-
telligent Memory Architecture (IMA). In IMA, the memory 
system is augmented with one or more memory processors. 
The nature of the problems in IMA is quite different than in 
SMT or CMP platforms. First, in SMT/CMP, Processor-Side 
prefetching is used, while in IMA, Memory-Side prefetching 
is used, because prefetch requests are generated by the pro-
cessor in the main memory. Secondly, communication be-
tween the threads is cheap in SMT/CMP, wi ;lc it : xpen-
sive in IMA. Thus, a suitable prefetching scheme is one that 
operates autonomously and that can be effective with coarse-
grain communication between the prefetching and the main 

This work was supported in part by the National Science Foundation 
under grants CCR-9970488. EIA-0081307, and EIA-0072102, by DARPA 
under grant F30602-01-C-0078, and by NCSA, Michigan State University, 
and gifts from IBM and Intel. 

threads. In this work, we implement the prefetcher as a user-
level thread that can prefetch irregular applications effectively 
using correlation prefetching algorithms. The only commu-
nication needed by the prefetching thread is the miss address 
stream of the main thread. 

Memory-side prefetching is attractive for several reasons. 
First, it eliminates the overheads that prefetch requests and 
state bookkeeping introduce in the paths between the main 
processor and its caches. Secondly, it can be supported with 
very few modifications to the L2 cache and no modification 
to the main processor core. Thirdly, the prefetcher can exploit 
its proximity to the memory to its advantage. Memory-side 
prefetching has the additional attraction of riding the tech-
nology trend of increased chip integration. Indeed, popular 
platforms like PCs are being equipped with graphics engines 
in the memory system [16]. Some chipsets, like NVIDIA's 
riForce [13] even integrate a powerful processor in the North 
Bridge chip. Similar engines can be provided for prefetching, 
or existing graphics processors can be reused for prefetching 
when under-utilized. Moreover, there are proposals to inte-
grate processing logic in DRAM chips, such as IRAM [8]. 

Using an engine for memory-side prefetching has been 
proposed elsewhere [1, 2, 4, 13, 14, 16, 18]. However, in 
most cases, these engines perform either very simple opera-
tions or highly-specific operations, such as prefetching linked 
data structures [4, 181. Instead, what we would like, is a very 
flexible, general-purpose prefetcher. 

While a memory-side prefetcher can support a variety of 
prefetching algorithms, one type that is particularly suitable 
is Correlation Prefetching [1, 3, 5, 11]. Correlation prefetch-
ing relies on correlation of miss addresses to predict and 
prefetch future misses based on the current state. Because 
the only information the prefetch thread needs is the miss ad-
dress stream, correlation prefetching is suitable for an IMA 
platform. 

In the past, general correlation prefetching has been sup-
ported by hardware controllers that require a large dedicated 
hardware table structure [1, 3, 5, 11]. In all but one case, these 
controllers have been placed between the Li and L2 caches 
or between the Li and the processor. While effective, the ap-
proach has a very high hardware cost. Furthermore, it does 
not prefetch far enough and tends to have a low coverage. 
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This paper introduces a novel prefetching scheme where 
memory-side correlation prefetching algorithms are imple-
mented in software by using a user-level thread. The algo-
rithms run on a general-purpose processor in the main mem-
ory system. The scheme allows prefetching algorithms to 
evolve with the applications, even after the computer system 
is shipped. In addition, the system can be supported with few 
modifications to the L2 cache, and no modifications to the 
main processor core. 

We introduce a new organization of the correlation table 
and a new correlation prefetching algorithm that enable fast 
and far-ahead prefetching, with high coverage and accuracy. 
By allocating the correlation table in main memory, we can 
afford the large space required by the table. We demonstrate 
that the software algorithm can effectively prefetch data for 
irregular applications. Indeed, our scheme speeds up three 
SPECInt2000 applications by an average of 1.28. We also 
show that our scheme can work synergistically with a conven-
tional processor-side prefetcher to deliver an average speedup 
of 1.36. 

The rest of the paper is organized as follows: Section 2 dis-
cusses memory-side prefetching and correlation prefetching; 
Section 3 presents our design; Section 4 discusses our eval-
uation setup: Section 5 evaluates our design; and Section 6 
concludes. 

2 Related Issues 

2.1 	Memory-Side Prefetching 
Memory-Side prefetching occurs when prefetching is initi-
ated by one or a set of engines that reside in or beside the main 
memory (definitely beyond any memory bus). Chip man-
ufacturers have integrated hardwired controllers that prob-
ably recognize very simple sequences like strides, such as 
NVIDIA's DASP engine in the North Bridge chip [13] and 
Intel's prefetch cache in its i860 chipset. 

In this paper, we propose to use a simple general-purpose 
memory processor for memory-side prefetching. Although 
this idea is applicable to a generic memory system, we will 
illustrate it on a PC-like memory system depicted in Figure 1-
(a). The memory processor can be placed in several places, 
such as in the North Bridge (Memory Controller) chip (1), or 
in the DRAM chips (2). The advantages of the first case are 
that it is simple to support, because the DRAM interface is not 
modified, and that the memory processor can be employed 
for other uses, such as a graphics engine. The second case, 
although more complicated to support, has the advantage of 
lower memory access latency and higher memory bandwidth 
due to higher integration. In this paper, we study the perfor-
mance potential of the DRAM case. 

Memory- and processor-side prefetching are not the same 
as Push and Pull (or on-demand) prefetching [18], respec-
tively. Push prefetch occurs when prefetched data is sent 
to a cache or processor that has not requested it, while pull 
prefetch is the opposite. Clearly, a memory prefetcher can act 
as a pull prefetcher, by simply storing the prefetched data in 

(a) 

Figure 1: Architecture of the system (a), and actions of the 

prefetches (b). 

a local buffer and supplying it to the processor on demand. 
In general, however, memory-side prefetching is most inter-
esting when it performs push prefetching to the caches of the 
processor, because it can hide a larger fraction of memory 
access latency. 

In our system, the memory processor observes the requests 
from the main processor that reach main memory. Based on 
them, and after examining some internal state, the memory 
processor prefetches other lines that it expects the main pro-
cessor to need in the future (Figure 1-(b)). 

In this paper, we concentrate on push prefetching into the 
L2 cache. Since the memory processor only sees L2 cache 
miss streams, it aims to eliminate L2 cache misses by pushing 
the prefetched data into the L2 cache. L2 cache miss penalty 
is the largest component of memory access latency, and it is 
the hardest to hide, even by an out-of-order processor. 

Our scheme is inexpensive to support. The main processor 
core does not need to be modified at all. The L2 cache needs 
to have the following supports. First, as in many other sys-
tems [4, 71, the L2 cache controller has to be able to accept 
lines from the memory system that it has not requested. To 
do so, the L2 has to assign unused Miss Status Handling Reg-
isters (MSHRs) [10] to such lines. Secondly, if the L2 has 
a pending request for the same line when a prefetch arrives, 
the prefetch simply steals the MSHR and updates the cache 
as if it were the reply. Finally, a prefetched line arriving at 
L2 is dropped in the following cases: the L2 cache already 
has a copy of the line, the write back queue has a copy of the 
line because the L2 is trying to write it back to memory, all 
MSHRs are full, or all the lines in the set where the prefetch 
line wants to go are in pending state. 

2.2 Correlation Prefetching 
Correlation Prefetching uses the current state of the refer-
ence or miss stream to predict and prefetch future misses. 
Two popular correlation schemes are the Stride-Based and 
Pair-Based schemes. The former tries to find a stride pattern 
in the miss stream and prefetch all the locations that would 
be accessed if the pattern continues in the future. The lat- 
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ter tries to identify a correlation between pairs of misses, for 
example between a miss and its immediate successor. It ba-
sically records a sequence of miss addresses in a table, and 
later when it encounters the head of the sequence, it looks 
up the table and prefetches the rest of the sequence. What 
makes pair-based schemes attractive is their general applica-
bility, i.e. they work for any miss sequences that repeat. This 
is true for regular applications and for a wide range of irregu-
lar applications such as those that operate on sparse matrices 
and linked data structures. Furthermore, the schemes can be 
employed without any compiler support or changes in the ap-
plication binaries. 

Pair-based correlation prefetching has only been studied 
using a hardware implementation of prefetch engines [1, 3, 5, 
11, 171, usually by placing the engine between the Li and L2 
cache [3, 5, 11, 17]. These studies have demonstrated the ap-
plicability of pair-based correlation prefetching on a wide va-
riety of applications. However, they also reveal shortcomings 
of the approach. One critical problem is that to be effective, it 
needs large storage space to match the footprints of the appli-
cations. One and two Megabytes of dedicated on-chip SRAM 
tables have been proposed [5, 11], while some applications 
with larger footprints even need a 7.6 MB off-chip SRAM 
table [11]. Furthermore, it does not prefetch far enough and 
has low coverage (unless it is tightly coupled to the main pro-
cessor and uses more fine grain information [11]). For exam-
ple, for each miss, Joseph and Grunwald only store inunedi-
ate successors [5]. The coverage is low because it needs one 
miss to trigger the prefetcher to prefetch the successor of the 
miss. At best only half of the misses can be eliminated. This 
scheme uses a wide table that stores many successors per miss 
and continuously rebuilds the table to increase the coverage. 
However, it causes excessive useless prefetches. 

3 Proposed Scheme 
Pair-based correlation prefetching is suitable for our memory-
side prefetching system to support because it has general ap-
plicability and can be supported inexpensively. We show that 
shortcomings of the current correlation prefetching schemes 
can be eliminated by improving the correlation algorithms 
and implementing them in software. The algorithms de-
scribed are implemented in a prefetching thread running on 
the memory processor. The code for the prefetching thread 
is written in C and hand-optimized for minimal prefetch re-
sponse and occupancy time. 

In the following sections, we discuss the concepts (Sec-
tion 3.1), the architecture (Section 3.2), pair-based correla-
tion prefetching algorithms (Section 3.3), and conventional 
processor-side prefetching (Section 3.4). 

3.1 Concepts 
Prefetching algorithms are implemented as a user-level helper 
thread that we call prefetching thread. The actions of the 
memory processor are determined by the behavior of the 
prefetching thread that we implement. The operation of 

the prefetching thread can be conceptually divided into two 
phases: learning and prefetching. In the learning phase, the 
prefetching thread records the L2 read and write miss patterns 
that it observes in a correlation table, one miss at a time. In 
the prefetching phase, every time that the prefetching thread 
sees a miss, it looks up the correlation table and prefetches 
several memory lines to the L2 cache of the main proces-
sor. No action is taken on a write-back memory access. In 
practice, as in [5], we found that combining the learning and 
prefetching phases enables the correlation table to quickly 
learn new patterns and provides the best performance in most 
cases (Figure 2). 

Miss address 	 Prefetch addresses 	 Handier finishes 
available 	 avaiiable 	 processing 

Prefeiching phase 
	

Learning phase 

Response Time 

Occupancy Time 

Figure 2: Timing of the prefetching thread. 

The prefetching algorithm can be characterized by its re-
sponse time and occupancy time (Figure 2). The response 
time is defined as the time beginning when the prefetching 
thread obtains a miss address until the prefetching thread pro-
duces the prefetch addresses. The occupancy time is the time 
the prefetching thread is busy and cannot process another 
miss address. As can be seen in the figure, the prefetching 
phase is always executed before the learning phase to mini-
mize the response time. For the software implementation to 
be viable, the occupancy time has to be smaller than the av-
erage time between two consecutive L2 cache misses. Also, 
for best performance, the response time needs to be as small 
as possible. 

By using a prefetching thread that stores the correlation 
table in the main memory, we eliminate the high hardware 
cost required by the table in the traditional implementation. 
We further address the inadequacies of traditional correla-
tion prefetching, namely low prefetching coverage, and not 
prefetching far enough, by improving the correlation algo-
rithms (Section 3.3). 

3.2 	Architecture of the System 
When we integrate the memory processor in the DRAM 
chips, the DRAM chips and possibly the DRAM interface 
need to be modified. Extra complexities in handling multi-
ple DRAM chips must also be addressed. Our goal in this 
paper is to study the performance potential of this case. Con-
sequently, we abstract away the implementation complexity 
of integrating the processor in the DRAM by assuming a sin-
gle chip main memory with a single memory processor in it 
(Figure 3). 

The key communication occurs through queues /, 2, and 
3. Miss requests from the main processor are deposited in 
queues / and then in 2. In the learning phase, the memory 
processor uses the entries in queue 2 to build its state. In the 
prefetching phase, the memory processor uses the entries in 
queue 2 and its state to generate addresses to prefetch. The 
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Figure 3: Microarchitecure a DRAM chip that includes a 
memory processor used for con-elation prefetching. 

lines prefetched are deposited in queue 3. If the memory pro-
cessor suffers a cache miss on its correlation table structure, it 
accesses the DRAM directly. Queue 4 is in the replying path 
from memory to the main processor. 

3.3 Pair-Based Correlation Algorithms 
We now discuss the pair-based correlation prefetching algo-
rithms. We consider two different organizations for the cor-
relation table: a basic one that does not allow data replication 
and a more advanced one that allows replication. Their use 
gives rise to different algorithms. We consider them in turn. 

Pair-Based Algorithms with Basic Table Organization 

Each row in this table stores the tag of the miss address, and 
the addresses of a set of immediate successor misses stored in 
MRU order. We consider two algorithms that use this basic 
organization: Base and Chain. 

Base follows the scheme proposed by Joseph and Grun-
wald [5]. For any given miss, Base is only interested in 
prefetching immediate successor misses. The parameters of 
the algorithm are the number of immediate successors pre-
dicted (NumSucc), the number of misses that the con-elation 
table can store predictions for (NumRows), and the associa-
tivity of the con-elation table (Assoc). 

Base is illustrated in Figure 4-(a). It shows two snapshots 
of the correlation table at the point that the corresponding 
miss trace has been consumed (i and ii). In the example, 
NumSucc is 2. NumRows is 4, and Assoc is 1. Within a row, 
successors are replaced using LRU replacement policy. As in 
Joseph and Grunwald's study [5], we find that LRU replace-
ment policy for the successors in each row works best. The 
figures show the successors in MRU order from left to right. 
In the learning phase, the processor keeps a pointer to the row 
of the last miss observed. When a miss occurs, its address is 
placed as one of the immediate successors of the last miss, 
and a new row is allocated for the new miss unless an en-
try for the address already exists. In the prefetching phase 
(iii), when a miss is observed, the processor finds the cor-
responding row and prefetches all the NumSucc immediate 
successors, starting from the MRU one. 

Since Base only prefetches immediate successors, its cov-
erage and latency hiding capabilities are limited. To improve  

this, we propose the Chain algorithm, which for every miss 
prefetches multiple levels of successors. The algorithm takes 
one extra parameter called NumLevels, which is the number 
of levels of successors prefetched. The algorithm is illustrated 
in Figure 4-(b). 

In the learning phase. Chain is identical to Base (i and ii). 
However, Chain does more work in the prefetching phase 
(iii). After prefetching the row of immediate successors, it 
takes the most recently-used successor among them and in-
dexes the correlation table with its address. If the entry is 
found, it prefetches all NumSucc successors there. Then, it 
takes the most recently used successor in that row and repeats 
the process for IsiumLevels-I times. As an example, suppose 
that a miss on line a occurs (iii). The memory processor first 
prefetches d and b. Then, it takes the MRU entry d, looks-up 
the table, and prefetches ds successor, c. 

While improving the coverage and far-ahead prefetching 
capability over Base, Chain has two limitations. One limita-
tion is that the response time of the algorithm is high. To issue 
prefetches in response to a miss, it needs to make Nun:Levels 
accesses to different rows in the table, each possibly involv-
ing a low-associative search and potentially causing a cache 
miss. The second limitation is that it does not prefetch the 
correct MRU successors of each level of successors. Instead, 
it only prefetches successors found along the MRU path. 

Pair-Based Algorithms with Replicated Table Organiza-
tion 

Each row in this table stores the tag of the miss address, and 
NumLeveis levels of successors. Each level contains Num-
Succ addresses, which are MRU-ordered. 

We propose a a new algorithm called Replicated that ex-
ploits this table organization. Replicated takes the same pa-
rameters as Chain. In the learning phase, Nun:Levels pointers 
to the table are kept for efficient access, pointing to the rows 
for the address of the last miss, second last, and so on. When 
a miss occurs, its address is recorded in the correct position of 
MRU successors of the last few misses by using these point-
ers. Figures 4-(c) illustrates the algorithm. In the example, 
NumSucc is 2, NumRows is 4, Assoc is 1, and NumLevels is 
2. The figure shows two snapshots of the correlation table in 
the learning phase at the point where the corresponding miss 
trace has been consumed (i and ii). The figure also shows the 
position of the two pointers, and the algorithm in prefetching 
phase (iii). 

Note that this organization solves the two problems of 
Chain. First, the response time is much shorter. We can 
prefetch several levels of successors with a single row access, 
possibly with only one cache miss. In fact, we shift some 
computation from the prefetching phase. which is the critical 
phase, to the learning phase. Now the learning phase needs 
to update several rows in the table. However, the rows are 
most likely still in the cache and, since we keep the point-
ers to the entries of last few miss addresses, the associative 
search is avoided. Secondly, by grouping together all the suc-
cessors from a given level, we can identify the correct MRU 
successors from that level, yielding higher accuracy. 
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Figure 4: Pair-based correlation algorithms: Base (a), Chain (b), and Replicated (c). 

Characteristics Base Chain Replicated 

Levels of successors prefetched 
Full l'ARI.J ordering for each level? 
Num. row accesses in the prefetching phase (SEARCH) 
Num. row accesses in the learning phase (NO SEARCH) 
Response Time 
Space requirement (for constant number of prefetches) 

1 
Yes 

1 
1 

Low 
_ 	x 

NumLevels 
No 

Num Levels 
I 

High 
_ 	x 

NumLevels 
Yes 

1 
NumLevels 

Low 
NumLevels x 

Table 1: Comparing the different pair-based algorithms. 

cept that the prefetch lines are put directly in the Li cache. 

In our system, we assume that the memory controller 
can distinguish the prefetches issued by the processor-side 
prefetcher from regular misses. The memory controller 
chooses not to pass such prefetches to the memory processor. 
As a result, in general, the processor-side prefetcher targets 
the regular misses while the memory-side prefetcher targets 
the irregular ones. 

Algorithm Comparison 
Table 1 compares the three pair-based schemes. From the 
table, we see that Replicated algorithm tries to solve prob-
lems in current correlation prefetching algorithms: it looks far 
ahead by prefetching several levels of successors, thereby im-
proving coverage, while keeping high accuracy by prefetch-
ing the correct MRU successors in each level. Its only short-
coming is its high space requirements for the correlation ta-
ble. Fortunately, this is a minor issue, since the table is allo-
cated in the main memory. 

The response time is better with the Replicated algorithm 
than with the Chain algorithm. The handler in Replicated 
runs very efficiently because cache lines are well utilized. 
Note that all the correlation algorithms could be implemented 
in hardware. However, Replicated is very suitable for a soft-
ware implementation because it has a low response time, far-
ahead prefetching capability, and uses cache lines well. 

3.4 Conventional Prefetching 
Previous studies found that placing a stride-based prefetcher 
as a front end of a pair-based prefetcher makes pair-based 
prefetching more effective [3, 171. We exploit this finding by 
including processor-side prefetching in the form of a hard-
ware multi-stream sequential prefetcher at the Li cache. The 
prefetcher has similar capabilities to stream buffers [6], ex- 

4 Evaluation Environment 
Applications. To evaluate our prefetching scheme, we use 
three mostly irregular memory-intensive applications from 
the SPECInt2000 suite. Irregular applications are hardly 
amenable to compiler-based prefetching. Consequently, they 
are the obvious target for the type of prefetching that we pro-
pose. We choose Gap, Mcf, and Parser. Gap uses a subset of 
the test input set, Mcf uses the test input set, and Parser uses 
a subset of the train input set. 

Simulation Environment. The evaluation is performed us-
ing execution-driven simulation. Our environment is based 
on an extension to MINT that supports dynamic superscalar 
processor models with register renaming, branch prediction, 
and non-blocking memory operations [9]. 

The architecture modeled is that of a high-end PC with a 
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' Mesa Prx in DRAM 

6-issue dynamic, 1.6 CU t. Int. fp, 'dist FU: 4.4.2. 
Pending !dist: 8/16. Branch penalty: 12 cycles. LI 
data: write-back. 16 KB, 2 way. 32-B line, 3-cycle 
hit RT. 12 data: write-back, 512 KB, 4 way, 64-B 
line. 19-cycle hit RT. RT memory latency: 243 cy-
cles (row miss). 208 cycles (row hit). Main mem-
ory bus: split-transaction. 8-B wide, 400 Mllz. 3.2 
GB/sec peak. 

-. 

2-issue dynamic, SOO MHz. In. fp. Id/st FU: 2,2,1. 
Pending Id/st: 4/4. 	Branch penalty: 6 cycles. 	LI 
data. write-back, 32 KB, 2 way. 32-B line, 4-cycle 
hit RT. RT memory latency: 56 cycles (row miss). 
21 cycles (row hit). Internal DRAM data bus: 32-B 
wide, 800 MHz, 2.5.6 GB/sec. 

DRAM parameters Dual channel. each channel 2-B wide, 800 MHz; 
total 3.2 GB/sec peak. Random access time (IRAC) 
45 ns: from Mem Controller (rSysrem) 60 ns. 

- Other Depth of queues ! through 4: 16. 

Table 2: Parameters of the simulated architecture. Laten-
cies correspond to contention-free conditions. RT stands for 
round-trip from the processor. All cycles are 1.6 GHz cycles. 
512-KB L2 cache is chosen for the main processor because 
we run small inputs for the applications. 

memory processor that is integrated in the DRAM, follow-
ing the microarchitecture of Figure 3. Table 2 shows the pa-
rameters used for each component of the architecture. The 
architecture is modeled cycle by cycle, including contention 
effects. 

In the simulation. both the application thread and the 
prefetching thread are run simultaneously. We model the 
contention between the two threads on memory subsystems 
that are shared (memory controller, DRAM channels, DRAM 
banks, etc.). The simulation includes all overheads incurred 
by running the two threads on different processors. 

Algorithm Parameters. Table 3 shows the default param-
eter values that we use for the algorithms described in Sec-
tion 12. For the Base algorithm, we use the values similar to 
what Joseph and Grunwald use for their system [51 to make 
the comparison easier. For all the algorithms, we use Nun-
Rows = K. which results in a table of size 1.3 MBytes, 0.66 
MBytes, and 1.8 MBytes for Base, Chain, and Repl, respec-
tively. These sizes are very tolerable, since the table is a plain 
software data structure that is stored in main memory, is dy-
namically allocated, and is cached by the memory processor. 

The conventional prefetching discussed in Section 3.4 
takes two parameters: the number of streams it is able 
to prefetch simultaneously (NumSeq) and the number of 
prefetches that it issues per miss in a sequence observed 
(NumPrej). We implement this algorithm in hardware in 
the LI cache (Conven4) and also in software running on the 
memory processor (Seq 1 and Seq4). 

    

fi Algorithm 
	

Labe Parameter Values 

 

Base 
Chain 
	

Chain 
Replicated 
	

Repi 
Conventional I-Stream 
	

Seq 1 
Conventional 4-Stream 5- 

NumSucc = 4, Assoc.  = 4 
NumSucc =2. Assoc =2, NumLeveis = 3 
NumSucc = 2, Assoc = 2. NumLevels = 3 
NumSeq = I. NumPref = 6 
.NumSeq = 4, NurnPref = 6 

 

Conventional 4-Stream 	Conven4 NumSeq = 3. NumP ref = 6 

 

    

    

Table 3: Parameter values used in the algorithms. 
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Figure 5: Characterizing the predictability of misses. 

5 Evaluation 
To evaluate our prefetching scheme, we first characterize the 
behavior of applications (Section 5.1) and then compare the 
performance of different algorithms (Section 5.2). 

5.1 	Characterizing Application Behavior 
For memory-side correlation prefetching to be effective, the 
miss address streams have to be predictable. In this experi-
ment, we record the fraction of L2 cache misses that are cor-
rectly predicted. For a sequential scheme, this means that the 
upcoming address exactly matches the one predicted, while 
for a pair-based scheme, the upcoming address matches one 
of the predicted successors. The thread does not perform 
prefetching here and it only observes the addresses of all L2 
cache misses. 

In our experiments, shown in Figure 5, we record the frac-
tion of L2 cache misses that are correctly predicted. We try 
stride-based schemes that detect up to one stream (Seql) and 
four streams (Seq4), the Base algorithm, and the combination. 

The figure shows that the miss stream is largely pre-
dictable, with Seq4, Base, and Seq4+Base correctly predict-
ing roughly 40%, 70%, and 80% of the misses on average, 
respectively. However, the predictability of each applica-
tion differs. For example, Mcf does not have sequential pat-
terns, while Parser has mostly sequential patterns, and Gap 
is mixed. 

Lid 
	

Ponies' 
	

Avenge 

Figure 6: Characterizing the time between consecutive 
misses. 

Seq4 always outperform Seq I , indicating that multiple 
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Figure 7: Execution time of the different algorithms. 

stream support is necessary for a sequential scheme. The fig-
ure shows that in all applications, Base is almost as good as 
the combination Seq4+Base. This is because a correlation ta-
ble is able to detect both sequential and irregular patterns, as 
long as the patterns repeat. Once the table learns a pattern, it 
can predict it effectively. However, it is still beneficial to have 
a multi-stream sequential prefetcher at the processor-side for 
several reasons: it does not need learning, it can be cheaply 
implemented, and it can hide the full memory latency if in-
tegrated with the Li cache. Furthermore, it splits the misses 
into regular and irregular streams, and by tackling the regular 
one, it removes some load from the memory prefetcher. 

We now consider the time between misses. Figure 6 classi-
fies the misses according to the number of cycles between two 
consecutive misses arriving at the memory. The misses are 
grouped in bins corresponding to [0,80) 1.6 GHz processor 
cycles, [80,200), etc. The most significant bins in the figure 
are [200,280), [280,00), and [0,80), which contribute on aver-
age to 54%, 28%, and 18% of all miss distances. The misses 
with distances between 200 and 280 are critical as they are 
both frequent and hard to hide even with out-of-order pro-
cessors. Furthermore, since the round-trip memory latency 
is between 208 and 243 cycles, dependent misses are likely 
to fall in this bin. This characterization suggests that, to be 
on the safe side, occupancy time of the prefetching algorithm 
should be less than 200 cycles. 

The [0,80) bin contains misses that may not give enough 
time for our prefetching thread to respond. Fortunately, these 
misses are not frequent and are likely to be overlapped with 
each other or with computation. Thus, they harm the perfor-
mance much less than the bin size implies. 

5.2 Comparing the Different Algorithms 
Figure 7 compares the execution time of the applications in 
different cases: no prefetching (NoPre!), hardware processor-
side LI prefetching as shown in Table 3 (Conven4), different 
software memory-side prefetching schemes as shown in Ta-
ble 3 (Base, Chain, and Rep!), and the combination of Con- 

vetz4 and Rep! (Conven4+Repl). For each application and the 
average, the bars are normalized to NoPref They are broken 
down into miss stall time past the L2 cache (PastL2), miss 
stall time between the Li and L2 caches (LI toL2), and the 
remaining time (Busy) that represents processor computation 
plus various pipeline stalls. 

On average, the PastL2 time is the most significant com-
ponent of the execution time, contributing about 40%, while 
Busy and LI toL2 follow with 35% and 25%, respectively. 
Thus, although our software scheme can only target L2 cache 
misses, we are targeting the main performance bottleneck. 

The conventional scheme (Conven4) performs well on ap-
plications with some sequential patterns, such as Gap and 
Parser, but is ineffective in the application that has purely 
irregular patterns (Mcf). On average, Conven4 reduces the 
execution time by 10%. 

The pair-based schemes show mixed performance. The 
Base scheme, modeled after Joseph and Grunwald's, shows 
limited speedups because it does not prefetch far enough. 
Chain performs slightly better than Base, but is limited by 
inaccuracy and high response time. Repl is able to reduce the 
execution time significantly. It outperforms both Base and 
Chain in all applications. Its impact comes from the nice 
properties of the Replicated algorithm, as discussed in Sec-
tion 3. 

The combined scheme (Conven4+Repl) performs the best. 
Its impact is significant: it removes on average 60% of PastL2 
stall time, providing an average speedup of 1.36. Compared 
to processor-side prefetching only (Conven4) with an average 
speedup of 1.11, and memory-side prefetching only (Rep!) 
with an average speedup of 1.28, there is a clear synergis-
tic effect in the combined scheme. Memory-side prefetching 
helps processor-side prefetching in irregular patterns, while 
processor-side prefetching helps in regular patterns. 

Workload of the Prefetching Thread 
We can gain further insight by examining the work load of 
the prefetching thread. Figure 8 shows the average response 
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time and occupancy of the prefetching thread for each of the 
memory-side prefetching algorithm. The latencies are shown 
in 1.6 GHz cycles and correspond to the average of all ap-
plications. Each bar is broken down into computation time 
(Busy) and memory stall time (Mem). The numbers on top of 
each bar show the average [PC of the prefetching thread. The 
IPC is calculated as the number of instructions divided by the 
number of memory processor cycles. 

The figure shows that for all the algorithms, the occupancy 
time is less than 200 cycles, showing the viability of the soft-
ware implementation. Chain and Repl have the lowest occu-
pancy time. Due to the fewer associative searches and the bet-
ter cache use, Repl has only slightly higher occupancy time 
compared to Chain, despite performing more table updates. 

The response time is very important for prefetching effec-
tiveness. The figure shows that Rep! has the lowest response 
time. its value is around 30 cycles. 
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Figure 8: Response and occupancy time of the prefetching 
thread for each of the prefetching algorithm. 

6 Conclusions 
This paper introduced memory-side correlation-based 
prefetching implemented in a user-level thread. The scheme 
runs on a general-purpose processor in the main memory. 
The scheme can be supported with few modifications to the 
L2 cache and no modification to the main processor. We 
introduced a new organization of the correlation table and a 
new correlation prefetching algorithm that enable fast and 
accurate far-ahead prefetching with high coverage. Overall, 
our scheme effectively prefetched irregular applications, 
speeding up three SPECInt2000 applications by an average 
of 1.28. Furthermore, our scheme can work synergistically 
with a conventional processor-side prefetcher to deliver an 
average speedup of 1.36. 
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Multi-Threading For Latency 
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It looks like multithreading is here to stay with the recent introduction of the "Hyper-
Threading" technology by Intel for Xeon family server processors. This talk will start 
with Intel's Hyper-Threading technology and move on to cover ongoing research 
activities in Intel Labs related to Hyper-Threading. More specifically, the focus is on 
Speculative Precomputation techniques for both Itanium and IA32 machines, and how to 
leverage multithreading resources to achieve better latency for single-threaded 
applications. This talk concludes by suggesting a paradigm of leveraging TLP to achieve 
better MLP in order to realize a new form of ILP. 
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