
Proceedings of the

Fifth Workshop on Multithreaded
Execution, Architecture and

Compilation

MTEAC-5
December 1, 2001 -- Austin, Texas

In Association with the
34th International Symposium on Microarchitecture

PROGRAM CO-CHAIRS
Walid Najjar, University of California, Riverside

Antonio Gonzalez, Universitet Politecnica de Catalunya

Dean Tullsen, University of California, San Diego

PROGRAM COMMITTEE

1

Willem Bohm, Colorado State
University

Michel Dubois, University of Southern
California

Guang Gao, University of Delaware

Sebastien Hily, Intel

David Kaeli, Northeastern University

Steve Keckler, University of Texas

Artur Klauser, Intel Corporation

Mario Nemirovsky, Netmetrica, Inc.

Yale Patt, The University of Texas at
Austin

Eric Rotenberg, North Carolina State
University

Andre Seznec, IRISA/INRIA

John Shen, Intel Corporation

Josep Torrellas, University of Illinois,
Urbana-Champaign

Jordi Tubella, Universitet Politecnica de
Catalunya

Mateo Valero, Universitet Politecnica
de Catalunya

Theo Ungerer, University of Karlsruhe

Pen-Chung Yew, University of
Minnesota

2

••••00

•••

•••,

•••••••

MTEAC-5

WORKSHOP PROGRAM

Session I:
Message-Passing for the 21St Century: Integrating User-Level Networks with SMT, Mike
Parker, Al Davis, Wilson Hsieh, University of Utah.

A Binary Translation System for Multithreaded Processors and its Preliminary
Evaluation, Kanemitsu Ootsu, Takashi Yokota, Takafumi Ono, Takanobu Bab, Utsonomiya.

The Predictability of Computations that Produce Unpredictable Outcomes, Tor Aamodt,
Andreas Moshovos, Paul Chow, University of Toronto.

Session II:
Hierarchical Multi-threading for Exploiting Parallelism at Multiple Granularities,
Mohamed M. Zahran, Manoj Franklin, University of Maryland.

Basic Mechanisms of Thread Control for On-Chip-Memory Multi-threading Processor,
Takanori Matsuzaki, Hiroshi Tomiyasu, Makoto Amamiya, Kyushu University.

Maximizing TLP with Loop-Parallelization on SMT, Diego Puppin (Massachusetts Institute
of Technology), Dean Tullsen (University of California, San Diego).

Session III: Keynote Address
Speculative Multithreading: From Multiscalar to MSSP, Gun Sohi, University of
Wisconsin, Madison.

Session IV:
Branch Prediction in a Speculative Dataflow Processor, Bradley C. Kuszmaul, Dana S.
Henry, Yale University.

A Study of Compiler-Directed Multithreading for Embedded Applications, Anasua
Bhowmik, Manoj Franklin, Quang Trinh, University of Maryland.

Prefetching in an Intelligent Memory Architecture Using a Helper Thread, Yan Solihin,
Jaejin Lee, Josep Torrellas, University of Illinois, Urbana-Champaign.

Session V: Keynote Address
Multithreading for Latency, John P. Shen, Intel Corporation.

3

-7.1r irk Fr
kie EP, 0: •

MAcinc_ •
	 Ii

Li DAM irtiVi: 	410Whgli 	1 'P1'rj
	7 - oft, tol opirott-I-Qiehititt90.

11'irk.1

'Ai -• bii trio, 	_
AN:mil-10-.1 1

--1,101 atey;7t

itbomtark 	r 49- `-` -.1900 $êZ It

9-to 	 _- I - III

.10480ae f;' rid-:+iteitii4t•Biaki 	- ' 	*L -
7 41'1,10 	• 	t irk-

Mutklew Itint 	LAN

'yr

'443 .1f101 	 01

I ilea ilttrartr'&01)161'is 1‘711Q34J

af,, A '.1r1CiftitZligtiA bet,bri$1,

. 	ty....irrr i qkiii 	. i•

4 rul3 /41611,4rnol 	1,5'11-.., Tut-•t , .0,AT
% or , 	L, 11.4

, 	atli-Jeatri141104
II 	1,4:111KoM

1' KO brit'111/ 'to 	n 47 • "

.̀VArtiO. JIYIiH .N.L.," -

Itt01101-qt90 I all* i!) ' uitis4reixotti
,cirAv,irtrrf

'ii'i 	riii,t1f.
--c1,11,7jr•o.

-1414 Ackage nir.diê.Li 	40/1

b:Voitilaiglictin0i tr. ALluia
t r cint:;00 	oonRki A

".'4EN vt,`Itatir!rt ,J1-4,oftitIttn; 	n.
- 	 ;TOT ft 14147.40 .:14^1-0

111

1'41 	tk,t i ritoks..1 101 gero-karickiilkIA

:

NI...I-I

I:

.•

-

Message-Passing for the 21st Century:
Integrating User-Level Networks with SMT

Mike Parker, Al Davis, Wilson Hsieh

School of Computing, University of Utah

Abstract
We describe a new architecture that improves message-passing performance, both for device

I/0 and for interprocessor communication. Our architecture integrates an SMT processor with a user-
level network interface that can directly schedule threads on the processor. By allowing the network
interface to directly initiate message handling code at user level, most of the OS-related overhead for
handling interrupts and dispatching to user code is eliminated. By using an SMT processor, most of
the latency of executing message handlers can be hidden. This paper presents measurements that
show that the OS overheads for message-passing are significant, and briefly describes our architecture
and the simulation environment that we are building to evaluate it.

1 Introduction

The same VLSI technology forces that are driving processor interconnect are also having an
impact on I/0 architectures. As clock frequencies increase, high capacitance processor and I/0 buses
cannot keep pace. These buses, on and off chip, are being replaced by point-to-point links. I/O interfaces
are starting to look much more like message-passing networks, as is evidenced by recent standards
such as InfiniBand[25] and Motorola's RapidI0[27]. Communication over these point-to-point I/O net-
works can be viewed as low-level message-passing, where queries are sent to devices and responses are
received from devices. Since technology trends force the hardware to use point-to-point links, there is
an interesting opportunity to expose communication directly to user-level software through a message-
passing interface. By looking at this opportunity from a systems point of view (from user-level software
down to the hardware), we anticipate that we can dramatically reduce the costs for both processor-to-
processor and processor-to-I0 message-passing.

Our architecture for addressing this problem consists of the following combination of ideas:

• An SMT processor allows the overhead of message handlers to be effectively hidden.

• A network interface that supports user-level access can be tightly coupled to the CPU to
avoid the overhead and latency of slower I/O buses. In addition, the network interface can
directly dispatch user-level threads on the SMT processor, which eliminates OS involve-
ment in the common case

• A message cache buffers incoming messages so that they can be accessed quickly by the pro-
cessor, and acts as a staging area for outgoing messages.

• A zero-copy message protocol allows messages to be delivered directly to user-space without
copying.

Not all of these ideas are new. For example, previous research has explored the use of user-level net-
work interfaces[3,9,11,13,18]. However, this specific combination of features is unique, in that it ex-
poses interrupts directly to user-level programs. The important aspect of our architecture lies in its
support for user-level messaging (for th interprocessor communication and 1/0) in a general-purpose
operating system with small modifications to an SMT processor.

The combination of features in our architecture should reduce message handling overheads
dramatically, without requiring gang-scheduling or forcing a change of the message notification model
that is seen by the user-level software. The SMT processor, originally targeted to hide message latency,

5

1

makes it possible to overlap computation and communication without adding a secondary communica-
tion processor. The combination of a zero-copy protocol, a message cache, and user-level access to the
network interface allows user code to communicate without the overhead of OS involvement or data
copying. Finally, our integration of the network interface (NI) with the SMT allow the NI to communi-
cate message arrival events back to the target thread without most of the overhead an interrupt-style
notification would incur.

2 Message Notification Costs

Figure 1 shows how a message send and receive may look from a single node point of view on
a machine that uses a kernel-mode network interface and traditional interrupts for message arrival
notification. Sends, receives, and notifications all make passes through operating system code. Since
the operating system code is unlikely to reside in the cache, these system calls result in cache misses.

Local Node Remote Node
• End-to-End Latency
:Overhead Overhead Overheactl

6

User Code
send()

Kernel Code lin;

NI

Wire and Switch

11
YY"

Cache & TLB Overheads
Figure 1: Anatomy of a message for a kernel-mode NI

User-level interfaces[3,9,11,13,18] and zero-copy protocols[5,7] significantly reduce the over-
head of message sends and receives by eliminating operating system and copying overhead on the mes-
sage send and receive sides. Notifications still have significant opportunity for optimization, as they
remain the performance and scalability bottleneck in general multi-user environments. Polling for no-
tifications consumes significant processor and memory resources, making them undesirable in a multi-
programmed system. Polling is especially poor for programs with irregular or unpredictable communi-
cation patterns. Interrupts in current architectures and operating systems are costly in terms of the
number of processor cycles consumed to determine the cause of and handle the exception[121. This
makes them less than optimal for message notifications.

The components of an interrupt-style notification overhead include:

• processor pipeline flushing (due to the interrupt)

• serial instructions to get and save processor state

• cache and TLB misses to bring in OS code and data to determine the cause of the interrupt

• reading NI registers or data structures to determine which process should be notified

• posting the notification to the process via a signal or other such mechanism

• cache, 'TLB and context switch overhead to begin execution of the user-level notification (signal)
handler

• a trap to return from the user-level handler back to the OS
• serial instructions to save processor state

• cache and TLB overhead to bring in OS code and data

• scheduler and context switch overhead to bring back in the original user process

• post kernel cache and TLB overhead to bring back in the user process's instructions and data

2

Using a refined version of Schaelicke's interrupt measurement work[22], we measured the
overhead of servicing a network interrupt for a minimum sized packet. Under Solaris 2.5.1 on a 147-
MHz Ultra 1, such an interrupt takes approximate 119 microseconds (17500 cycles) when user-level
code is utilizing the entire L2 cache. The process of handling such an interrupt results in about 380
kernel-induced L2-cache misses. (Fewer misses may be observed in practice if the user-level code is not
utilizing the entire L2 cache.) Assuming that each cache miss takes an average of approximately 270
ns to service[17], this accounts for about 103 microseconds or 87% of the interrupt processing time. The
remaining 13% of the time is spent in flushing the pipeline after the interrupt and trap, carefully read-
ing and saving critical processor state, querying the NI for information about the interrupt, and exe-
cuting operating system code to determine how to deal with the interrupt. In addition to incurring the
overhead of cache misses during an interrupt, the process that was running when the interrupt oc-
curred could see up to another 380 L2 cache misses once it is re-scheduled after the interrupt to refill
the cache with its working set.

L2-cache and TLB miss penalties unfortunately scale at memory speeds, as opposed to proces-
sor speeds. As a result, these overheads will become even more important as the memory gap widens.
Optimizations to the OS and signalling system can reduce this overhead. However, reducing the num-
ber of cache misses and other overheads to get the OS penalty down below a few microseconds does not
seem plausible. To make frequent notifications acceptable, the operating system's involvement must
be significantly reduced or eliminated.

3 Architecture

Notifications only become the bottleneck when the rest of the message-passing system is ap-
propriately tuned. This section describes the system architecture, showing how it is optimized for effi-
cient messaging, describes how notifications are delivered to the user-level process without kernel
involvement, and walks through the path a one-way message takes though this architecture. Figure 2
shows a block-level view of the architecture.

System
Network

SMT
Core

Li

Cache
.11E-10-

L2 Cache Memory
Bus

Message

Buffer

Figure 2: Block-level diagram of our architecture

3.1 Components of the Architecture

Using an SMT processor allows communication-related threads to run parallel to computation-
based threads. Much of the overhead required to process sends, receives, and message arrival notifica-
tion can be hidden by overlapping these functions with computation. Previous work has dealt with
overhead by providing external communication processors(14,21]. These extra processors add to the
overall latency and complicate the message-passing mechanism due to the additional overhead of com-
munication between the computation and communication processor. The simultaneous nature of the
SMT processor makes it possible to provide this overlap without requiring the use of an extra commu-
nications processor.

The message buffer acts as both a staging area for outgoing messages as well as a cache for
incoming messages [23]. Messages may be composed directly in the message buffer for user-program
written (P10-style) transfers, or fetched from user memory for DMA-style transfers. Buffering outgo-

7

3

ing messages in the message buffer allows send data to be prefetched from memory and buffered before
going out on the network. This buffering reduces the probability that the network will need to be
stalled, tying up network resources, while waiting for outgoing message data to be supplied by the local
memory subsystem.

Incoming messages are placed in the message buffer. The message buffer acts as a cache for
incoming message data. As a message arrives, the message buffer invalidates corresponding cache
lines in the Li and L2 caches. Misses in the Li cache result in concurrent lookups in both the L2 cache
and the message buffer. In this way, the message buffer is similar to a victim cache to the L2 cache.
When there is a cache hit in the message buffer, data is supplied directly to the L2 cache. This cache
has a triple effect. First, it reduces overhead at the memory interface by saving the data two trips
across the memory bus. Second, it keeps the data near the CPU, where it can be provided quickly on
demand, thus reducing the overall end-to-end latency. Third, having a separate message cache avoids
polluting the cache hierarchy because the processor's working set is not evicted by incoming messages.

A user-level accessible NI is used to reduce send and receive overhead. Having the network in-
terface on the same die, possible in the System on a Chip (SoC) era, opens up possibilities to more tight-
ly integrate it with the processor core, further reducing overhead and latency. Having the NI on die
gives the processor access to it on a per cycle basis. This close coupling further reduces the overhead
in getting information to and from the NI. Message sends and receives do not have to go out over slow
and inefficient I/O buses. A zero-copy protocol[5,7] is used to eliminate copying overhead for received
messages. The combination of user-level access to a closely coupled NI and the zero-copy protocol allow
for efficient sends and receives.

3.2 User-level Notifications

Part of the inefficiency of interrupt processing is due to the legacy view that interrupts are ex-
pected to be infrequent. In a fine-grained message-passing environment that uses interrupts for noti-
fications, this is not the case. One of the contributions of this work is to provide a mechanism whereby
the network interface can directly deliver notifications to a user-level process without the aid of the
operating system. This is accomplished by allowing the NI to share some control over thread execution.

Having the NI tightly coupled to the CPU makes it possible for the NI to share some control
over process execution in much the same way as load-store units can control the pipeline as cache miss-
es are detected. This can be done by thinking of interrupts and notifications (Efferently. Notifications
are a way of telling the user process that it needs to either wake up (in the case of polling) or stop what
it is doing (in the case of an interrupt) and deal with a message arrival. One analogy to this would be
cache misses in a modern superscalar processor. When a cache miss occurs, the memory reference in-
struction stalls. Other independent instructions may continue, but the instruction that caused the
miss waits for the cache to fetch the relevant data. Once the data has been fetched, the cache returns
it to the processor core, and the processor again places priority on the memory reference and dependent
instructions.

This basic idea can be extended to message arrival notifications. When a process reaches a
point where it needs a message arrival notification, it can tell the hardware what specific process state
to change (i.e., program counter or runability) when an arrival occurs. It can then continue processing
until either the notification occurs, or it runs out of things to process. When the notification finally
takes place, the hardware can redirect the user-level software to work on processing the message ar-
rival.

To give the NI shared control over user processes, three mechanisms are available in our ar-
chitecture.

• If a thread wishes to be notified when a message arrives, it can set a lock in a hardware syn-
chronization lock table[24]. The NI can clear the lock bit upon message arrival, which re-
leases the process to run again. If the associated thread is not currently in the CPU, the OS

8

4

receives the notification, and sets the appropriate hardware state to notify the thread the
next time it is scheduled.

• Just as an interrupt causes a current processor to asynchronously branch into a kernel level
interrupt handler, the NI can cause a running user-level process to asynchronously branch
to a notification handler.

• Upon message arrival, the NI can schedule a new thread on the SMT with a previously setup
context. This new thread starts in either an unused context on the SMT or it can evict a run-
ning thread, according to OS policy. If no contexts are available, the NI would notify the OS,
so that it could create the context and schedule it to run at a later time.

3.3 The Journey of a Message

Figure 3 shows how a message may look in our architecture.

End-to-End Latency
Local Node 	 wi Remote Node

User Code

NI

Wire and Switch
	V

Figure 3: Anatomy of a message in our architecture

A user-level program that wants to send a message to a process on a remote processor first com-
poses the message to be sent. Message control information is written into the message buffer. It in-
cludes information on how the message is to be handled on the remote end (where it will be placed and
whether to notify the receiving process), a small amount of user-defined meta-data, and an optional
local pointer to message data. The user process then directs the NI to send the message. The NI begins
to prefetch message data from local memory into the message buffer if required, fills in information
such as routing information, and begins streaming the message onto the wire. On the receive side, the
message is placed directly in the address space of the receiving process by the NI. While the message
is arriving, the NI places the message into the message buffer. As it fills cache lines in the message
buffer, it acquires ownership of those cache lines though the L2-cache interface and sets up appropriate
cache tags in the message buffer.

When an entire message arrives, the NI fills in a notification structure in the user process's
memory space. It then determines which method should be used to notify the corresponding process of
the message arrival. In the case of a blocked process waiting on a message arrival, the NI clears a lock
bit in a synchronization table, which makes the corresponding thread runnable. The user-level process
begins executing and handles the incoming message. In the case of an asynchronous branch or user-
level interrupt, the SMT switches to an alternate program counter and stack. User-level code is then
responsible for saving any of its own state as necessary before handling the notification. Finally, in the
case of a created thread, the NI gives the SMT core minimal context, including a program counter,
stack pointer, and a pointer to the notification structure. The SMT core begins executing at the given
program counter.

In summary, we have presented an architecture that significantly reduces send, receive, and
notification overhead. We have presented three separate user-level notification mechanisms, and have
walked through the path a message takes in our architecture. The key features of the architecture are
the following: SMT processors hide and tolerate message overhead and latency, send and receive over-
head is reduced by a user-level network interface combined with efficient protocols, and notifications
can be delivered directly to user-level without the overhead of an operating system.

9

w send()
rrif

ill not'ification

5

4 Related work

Simultaneous Multithreading (SMT) architectures(8) have begun to see commercial atten-
tion.The SNIT processor is targeted to tolerate latency and hide overhead by allowing one thread to pro-
cess overhead or wait for a long latency operation while the execution of independent threads
continues. SMT architectures promise the ability to simultaneously take advantage of both 1LP and
thread-level parallelism within a single processor core. This architecture helps pave the way to more
efficient communication and synchronization of threads.

Dean Tullsen et al. [241 shows how extra lock and release hardware can be introduced to pro-
vide fine-grained synchronization for threads within the SMT processor. This efficient locking mecha-
nism allows one thread to block on a hardware semaphore and be released by another co-operating
thread quite efficiently. One of the suggested notification primitives in this paper extends some of the
control over this hardware locking table to external events, such as message arrival notifications from
the NI.

Several previous systems have advocated moving the NI closer to the CPU. Flash[14], Ava-
lanche[231, Alewife[11, Shrimp[31, and Tempest[21] all placed the NI directly on the system memory
bus. Moving the NI to the system bus significantly reduces the cost of accessing the NI over accessing
it on a less efficient I/0 bus. In addition to reducing overhead, placing the NI on the system bus allows
these systems efficient access to coherency traffic, which several of these systems use to an additional
advantage. The MIT J-Machine[6] and M-Machine[11] take it one step closer by bringing the NI direct-
ly onto the custom processor. Alewife, the J-Machine, and the M-Machine also have an interesting
characteristic in common in that they all use a thread model or a thread-like model to deal with com-
munication. Alewife uses a modified SPARC processor in an unconventional way to implement these
threads.The J-Machine and M-Machine both build a custom processor to get the desired thread behav-
ior. SMT processors now seem to be a natural way to achieve effective functionality of these machine
with only minor modifications to CPU structure.

In many ways the architecture in this paper is similar to the M-Machine. Both take advantage
of thread capable processors to hide message overhead, and both have forms of automatically dispatch-
ing threads when a message arrives. Our architecture differs from the M-machine in the following
ways. Messages are received directly into a users address space via hardware, eliminating the need for
trusted message handlers. Incoming messages are placed into a message buffer, or message cache, to
avoid pollution of the processor's cache hierarchy. As a part of our work, we are evaluating the useful-
ness of this message-passing architecture both in the context of parallel processing and in the context
of network-based 10. Finally this architecture is built upon modifications of upcoming SMT architec-
tures.

Avalanche[23] placed the network interface on the system bus, keeping it close to the proces-
sor. This allowed it to participate in coherency traffic, and thus maintain a local network cache. The
local cache enables the Avalanche network interface to supply network data to the processor more
quickly than main memory. In addition, it avoids the overhead of wasting system bus bandwidth to
transfer message data across the system bus twice; once on the way to main memory on message ar-
rival, and once on the way back to the processor when the message is consumed.

For Haralyn(5] Wilkes proposed sender-based protocols to reduce overhead. Having the sender
manage its destination buffers implies that data can be easily and effectively received directly into the
receiver's process space. Avalanche also used a sender-based messaging protocol (DDP)[7) to reduce
overhead. Sender-based protocols allow simple and efficient hardware to place incoming messages di-
rectly into the receive process's address space. This avoids kernel involvement on receives. Unlike
Hamlyn and DDP, the sender-based portion of the protocol in this work uses virtual addresses in com-
bination with an NI TLB to remove restrictions on receive buffers.

Active Messages [10] embed a message handler in the header of a message. When a message
arrives, the message handler is executed to handle the payload of the message. Though it is not specif-
ically a goal of this work, the architecture described here would support Active Messages rather well.

10

6

A thread waiting for a message could immediately jump to the handler code in the header without the
penalty of an interrupt and without interfering with the currently running thread. If messages are re-
ceived directly into a message cache, then this handler code could potentially execute directly out of
the message cache, also saving the cache overhead of bringing in conventional handler code. Illinois
Fast Messages [20] is effectively a platform independent implementation of Active Messages.

U-Net [9] reduces communication overhead and latency by virtualizing the network interface.
The local process communicates with the network interface by placing and picking up message packets
from per-process send and receive queues. U-Net suggests placing a TLB in the network interface to
avoid the added restriction of fixed pinned pages. The architecture in this paper also gives the NI ac-
cess to a TLB to allow sends and receives to be handled in user-space.

5 Conclusion

SMT allows important computation to continue while interprocessor communication and I/O
processing and communication overhead is handled in the background. Since message latency is sim-
ilar to memory latency, one way of viewing this work is using an architectural technique for hiding
memory latency to hide message latency. Conversely, we can view our work as generating more paral-
lelism for SMT processors from I/O and parallel workloads.

To evaluate this architecture, we are extending LRSIM[22] to accurately model an SMT pro-
cessor and adding a model of our network interface. LRSIM is based on RSIM[19], and has already
been extended to include accurate I-cache, memory and I/0 architecture models. The simulator in-
cludes a fairly complete NetBSD based kernel that will be extended to handle the SMT processor (all
kernel operations are fully simulated). The simulator runs unmodified Solaris binaries. For our eval-
uations, we will model a 2-5 GHz 4-8 thread SMT that can issue 8-16 instructions per cycle. L1 instruc-
tion and data caches will be 32KB to 128 1°3 each, and the L2 Cache will be 4-16IVIB. The system
network bandwidth modeled will range from 4Gbls to 32Gb/s. Disk controllers, LAN interfaces (i.e.,
Ethernet), and other I/0 devices will hang off the system network. There are a few open issues in our
design:

• It remains unknown how much send side buffering will be optimal. Too little buffering could
lead to too many bubbles in the network fabric. Too much could lead to increased message
latency. For the purposes of this design, the amount of buffering will be user configurable.

• The point at which DMA becomes more efficient than PIO needs to be characterized for this
architecture. Though it has been characterized for previous systems, the break-even point
on our architecture may be different as PIO can overlap computation on the SMT processor.

• The relative performance of each of the notification mechanisms needs to be characterized.

The results from the simulations will be compared with existing and proposed systems to as-
sess the benefits of our architecture.

Acknowledgements
We thank Lambert Schaelicke for his help in understanding and extending his interrupt mea-

surement techniques. We also thank Lambert, John Carter, Katie Parker, and Greg Parker for help in
reviewing this paper. This work was sponsored in part by DARPA and AFRL under agreement number
F30602-98-1-0101 and DARPA Order Numbers F393/00-01 and F376/00. The views and conclusions
contained herein are those of the authors and should not be interpreted as necessarily representing the
official polices or endorsements, either express or implied, of DARPA, AFRL, or the U.S. Government.

References
[1] Anant Agarwal, et al. The MIT Alewife Machine: Architecture and Performance. In Proceedings

of the 22nd Annual ISCA, 1995, pp. 2-13.
[2] Mark Birnbaum and Howard Sachs. How VSIA Answers the SoC Dilemma. IEEE Computer,

32(6):42-50.

11

7

12

[3] Matthias A. Blumrich, et al. Virtual Memory Mapped Network Interface for the SHRIMP Mul-
ticomputer. In Proceedings of the 21st Annual ISCA, April 1994, pp. 142-153.

[4] Doug Burger. Billion-Transistor Architectures. IEEE Computer, 30(9):46-48, September 1997.
[5] Greg Buzzard, et al. Hamlyn: a high-performance network interface with sender-based memory

management. HP Laboratories Technical Report HPL-95-86, August 1995.
[6] William J. Daily, et al. Retrospective: The J-Machine. In 25 Years of ISCA - Selected Papers,

1998, pp. 54-58.
[7] Al Davis, Mark Swanson, and Mike Parker. Efficient Communication Mechanisms for Cluster

Based Parallel Computing. Communication, Architecture, and Applications for Network-Based
Parallel Computing, 1997, pp. 1-15

[8] Susan J. Eggers, et al. Simultaneous Multithreading: A Platform for Next-Generation Proces-
sors. IEEE Micro, 17(5):12-19, October 1997.

[9] Thorsten von Eicken, et al. U-Net: A User-Level Network Interface for Parallel and Distributed
Computing. In Proceedings of the 15th ACM SOSP, December 1995, pp. 40-53.

110] Thorsten von Eicken, et al. Active Messages: A Mechanism for Integrated Communication and
Computation. In Proceedings of the 19th Annual ISCA, 1992, pp. 256-266

[11] Marco Fillo, et al. The M-Machine Multicomputer. In Proceedings of the 28th Annual Interna-
tional Symposium on Microarchitecture, 1995, pp. 146-156.

[12] Andrew Gallatin, Jeff Chase, and Ken Yocum. Trapeze/IF': TCP/IP at Near-Gigabit Speeds. In
Proceedings of 1999 USENIX Annual Technical Conference, FREENIX Track, June 1999.

[13] Dana S. Henry and Christopher F. Joerg. A Tightly-Coupled Processor-Network Interface. In
Proceedings of the 5th International ASPLOS, October 1992, pp. 111-122.

[14] Jeffrey Kuskin, et al. The Stanford FLASH Multiprocessor. In Proceedings of the 21st Annual
ISCA, April 1994, pp. 302-313.

[15] Richard P. Martin, et al. Effects of Communication Latency, Overhead, and Bandwidth in a
Cluster Architecture. In Proceedings of the 24th Annual ISCA, June 1997, pp. 85-97.

[16] Doug Matzke. Will Physical Scalability Sabotage Performance Gains? IEEE Computer, 30(9):37-
39, September 1997.

[17] Larry McVoy and Carl Staelin. lmbench: Portable Tools for Performance Analysis. In Proceed-
ings of the USENDC 1996 Technical Conference, January 1996, pp. 279-294.

[18] Shubhendu S. Mukherjee and Mark D. Hill. Making Network Interfaces Less Peripheral. IEEE
Computer, 31(10), October 1998, pp 70-76.

[19] V. S. Pai et al. RSIM: An Execution-Driven Simulator for ILP-Based Shared-Memory Multipro-
cessors and Uniprocessors. In Proceedings of the 3rd Workshop on Computer Architecture Edu-
cation, 1997.

[20] Scott Pakin, Vijay Karamcheti, and Andrew A. Chien. Fast Messages (FM): Efficient, Portable
Communication for Workstation Clusters and Massively-Parallel Processors. IEEE Concurren-
cy, vol 5, no. 2, April-June 1997, pp. 60-73.

[21] Steven K. Reinhardt, James R. Larus, and David A. Wood. Tempest and Typhoon: User-Level
Shared Memory. In Proceedings of the 21st Annual ISCA, 1994, pp. 325-336.

[22] Lambert Schaelicke. Architectural Support for User-Level 110. Ph.D. Dissertation, University of
Utah, 2001.

[23] Mark Swanson, et al. Message Passing Support in the Avalanche Widget. Technical Report
UUCS-96-002, University of Utah, March 1996.

[24] Dean M. Tullsen, et al. Supporting Fine-Grained Synchronization on a Simultaneous Multi-
threading Processor. In Proceedings of the 5th HPCA, January 1999.

[25] InfiniBand Trade Association. http://www.infinibandta.org.
[26] International Technology Roadmap for Semiconductor,. Semiconductor Industry Assoc., 1998.
[27] Motorola Semiconductor Product Sector. RapidIO: An Embedded System Component Network

Architecture. February 22, 2000.

8

A Binary Translation System for Multithreaded Processors
and its Preliminary Evaluation

Kanemitsu Ootsu, Takashi Yokota, Takafumi Ono, and Takanobu Baba

Department of Information Science, Faculty of Engineering, Utsunomiya University
7-1-2 Yoto, Utsunomiya-shi, Tochigi, 321-8585 Japan.

plione&fa.x: +81-28-689-{6284, 6290} e-mail: Ikim, yokotal@is utsunomiya-u 	. jp

Abstract

Thread level parallelism (TLP) is a key technology to coming generation of high performance proces-
sors. Although it provides higher processing capability, the loss of compatibility with existing processors is a
crucial issue. This research is motivated by the following two points: (1) TLP requires multithread program-
ming which is rather difficult for ordinary programmers, or complexed compilation technologies that can
exploit multithread parallelism, and (2) existing binary codes should be executed efficiently on multithreaded
processors. In this paper, we first propose a binary translation system, that translates existing binary codes
to multithreaded ones and optimizes them dynamically during execution. The system inputs the original
binary codes and translates them to internal RTL representation. It analyzes the structure of the program
and applies multithreading to loop bodies in a thread pipelining manner. A pilot binary translator, that is
a part of the proposed system, was built for the sake of preliminary evaluation. Evaluation results illustrate
effectiveness of the system.
Keywords: binary translation, thread level parallelism, multithreading, thread pipelining, run-time opti-
mization.

1 Introduction

Thread level parallelism (TLP) is one of the most promising key issue to high-performance processor architecture
in the next generation. Present state-of-the-art technologies, such as superscalar, out-of-order, speculative
execution, and value prediction, are successful in keeping continuous compatibility with conventional processor's
instruction set architecture (ISA). And even in different architectures, i.e., VLIW (very long instruction word),
a sort of binary translation technology is adapted so that the processor looks like conventional ISA from users
view.

On the other hand, TLP essentially requires multithreaded machine codes to exploit full ability of the
architecture. Because of the discontinuity of binary code compatibility, we can find the following two problems.

First, who (what) can produce multithreaded codes? Most programmers are not so skilled to make their
application fully multithreaded. To this problem, further compiler technologies are required for automatic
multithreading of an original application program in the near future. Second one is rather practical, i.e., we
should abandon plenty of existing (single-thread) binary codes if their source codes are not available. The
single-thread binary codes could run on multithreaded processors, although, they can receive no performance
gain from TLP. Thus these two problems prevent TLP from being widely accepted. As a realistic solution to the
problems, we focus our approach on the efficient reuse of existing binary codes on a multithreaded architecture
that exploits rich TLP.

In this paper, we propose a binary translation and run-time optimization system.[14, 15] We first introduce
binary translation technology that translates existing single-thread code to multithreaded ones. Source binary
codes are analyzed, decomposed into threads, and then mapped onto the target architecture.

We then introduce dynamic (run-time) optimization of the translated codes. Because of lack of source code
information, static analysis has some limitations: e.g., distinction of instruction words and data is not clear,
and the target addresses of indirect jumps remain unknown.

13

1

The rest of this paper is organized as follows. We first discuss design principles to realize our ideas in
Section 2, where we make some basic assumptions and discuss system requirements. Then we propose a binary
translation and optimization system in Section 3, where basic components and their functions are discussed.
Section 4 describes static optimizer in detail and Section 5 shows the preliminary evaluation. Section 6 presents
related works which aim at binary translation or optimization. This section clarifies the standpoint of the
proposed system and thus its unique features. Finally, we conclude this paper in Section 7.

2 Design Principles

2.1 Multithreading by the Thread Pipelining Model

In order to run a single-thread binary code efficiently on a multithreaded processor, logical structure embedded
within the source binary code is extracted and the program is restructured to a set of threads. For the following
discussion, we make an assumption on the target multithreaded architecture.

Needless to say, single-thread code follows a sequential programming manner. Although the ideal objective
is to exploit all possible parallelism inherent in the program, it is not realistic for binary code inputs. We have
started discussion with a simple idea: we payed our attention to loop structures.

The idea is very natural. A programmer tends to follow a sequential program (thread) depicted in a one-
dimensional space. In such situations, a parallel structure is expressed as a loop. In other words, a loop structure
contains inherent parallelism. Thus, it is appropriate that each iteration in the loop is converted to a thread. In
many cases, a loop structure contains many iterations, and thus enables us to exploit the maximum parallelism.

Thread pipelining model[li best fits to our purpose described above. Figure 1 shows partial structure of
the multithreaded processor based on the model. Each thread generated by binary translation is mapped to
a thread execution unit in order. Communication unit and Memory Buffer handle inter-thread control and
dependencies. respectively.

Basically, each iteration corresponds to a thread, and threads are executed in a pipeline manner. Figure
2 illustrates the thread pipelining[1]. Each thread consists of four stages: Continuation, Target Store Address
Generation (TSAG), Computation, and Writeback.

The Continuation stage introduces loop variables and necessary data so as to be used in the thread. After
the Continuation stage completes, the succeeding thread is invoked. The TSAG stage checks dependencies of
shared data between threads. Addresses of shared data are notified to Memory Buffer, which detects access
dependencies between threads by monitoring addresses. The Computation stage does the peculiar calculation
assigned to the thread. After completing the Computation stage, a thread terminates its life in the Writeback
stage. The Writeback stage cannot be started until the preceding threads' Writeback stages are completed.

2.2 Single- to Multi-thread Binary Translation

As described above, we have introduced a thread pipelining concept to our system. This pipelining is a fun-
damental requirement in the proposed system. It is totally different from existing translation systems in that
it converts single-thread code to multithreaded one whereas others translate to single-thread. In other words,
ordinal translators don't change program structure, although, our system should arrange the analyzed program
structure to achieve the best fit to the thread pipelining model.

Source binary code is first analyzed with its logical structure, and the structure is re-organized following the
thread pipeline manner. Then, target machine code is generated. During analysis of program structure (i.e.,
control- and data-flow) and re-configuration phase, abstract representation is required. We have introduced RTL
(register transfer level) representation, which is used internally in the translator. Actual translation procedure
is displayed in Section 3.

2.3 	Necessity of Run-time Optimization

In principle, binary translator converts a loop structure to a set of threads. This requires accurate analysis
of program structure, however, the translator could not find full information because of lack of source code
information. For example, indirect branch hides the target address of iteration. So, some loop structures may

14

2

Continuation

TSAG

Computadon

Write-Sect

Continuation

TSAG

Computation

Write-Back

Continuation

NAG

Computetion

Write-Sack
L2 Cacho

Thread 1

lord 	Thread 1+1

Thread 1+2

commit

Ll 1-Cacha Li 1-Cache

Execution
Unit

Exsoution
Unit

•
Communksatto
Unit

Communication 	
Unit

Butter

Write Back
Unit !

Write Back
Unit

Lt 0-Cacti. Li D-Cache

15

Throw:Nina 0 	 ThreadUnit t

Figure 1: Thread Execution Units 	 Figure 2: Thread Pipelining Model

remain unfound even when the analysis phase is completed. These loop structures cannot be converted to
multithreaded code, and they do not appear until the translated codes run.

Thus, to exploit full parallelism of the program, it is necessary that behavior of the program is monitored and
that 'hot' portion is translated to multithreaded code. This methodology is a kind of run-time optimization.
Like the binary translation introduced in the previous section, run-time optimization requires re-structuring
of the program (i.e., converting single-thread code to multithreaded one) where other run-time optimization
techniques do not essentially affect program structure.

3 The Binary Translation and Optimization System

3.1 Systems Logical Structure

As discussed above, in order to execute existing binary codes on next-generation multi-threaded processor,
the system requires following two phases: (i) binary translation and static optimization and (ii) run-time
optimization. Figure 3 illustrates the configuration of the proposed system.

In Figure 3, STO (Static Translation and Optimizer) executes the phase (i) and DTO (Dynamic Translation
and Optimizer) performs (ii). The figure includes Multithreaded Processor, whose basic architecture is described
in Section 2.1 and Figure 1. The processor's basic ISA is not limited to some specific architecture since the
original binary codes may be translated according to the target architecture by STO and DTO.

STO inputs the sequence of the source binary codes and translates them to the target binary code. If the
program requires dynamic linked libraries (DLLs), STO prepares the necessary libraries and links. Resulting
executable binary image is put into the main memory and the processor executes the executable.

During the processor executes the translated binary code, the behavior of program is monitored. We intro-
duce profiling techniques for monitoring. We assume that the processor has additional mechanisms that reduce
profiling overheads.

DTO uses the profiling information and observes actual behavior of the application program. When detecting
a buried 'hot' loop, it begins binary translation and optimization. It substitutes the single-thread 'hot' part by
the translated multithreaded code, and thus accelerates total execution.

3.2 Static Translation and Optimization (STO)

As shown in Figure 3, STO inputs the source binary code and translates it to multithreaded code. Once STO
reads the source binary code, the code is translated into an internal representation. The representation is, in
principle, abstracted in a machine independent RTL (register transfer level) form. The internal representation

3

Analysis Info

/ I
CFA (Control Flow Ana.)

R (Intermediate Rep,)

DFA (Datatiow A..)

etc...

Multithreaded Codsi

(binary, multi-thread)

Execubon Results,

Monitoring

/ Execution Path Info /
etc...

Linker & Loader

/ Promos* image

	4
p .

Multithrsed Processor

	4
DTO (Dynamic Translator & Optimizer)

Hot-Path Selection
Global Scheduling
Partial Dead Coda Elimination
etc...

Thread-pipe I in In g
Inter-thread communication

Profiling Into

Dynamically Muitithneaded Code

STO (Static Translator & Optimizer)

single-thread multi-thread

(classical) static optimization

code analysis info generation

Orivinal Code
(binary, single-thread)

Execution Profile Info

Figure 3: Proposed System Diagram

enables STO to do powerful optimization as taken in ordinal compilers/optimizers. In the proposed system,
STO generates threads in the internal representation level.

Basically, STO works before the program runs. Its mission is to prepare translated binary code for the
multithreaded processor before the program is started, however, it could not complete the translation. The
reason is that no clear distinction is made between instruction code and data and that run-time information
is buried. For example, an indirect jump operation hides its branch target address and thus prevents further
analysis. Another example is the self-modifying code that determines its own execution code at run-time, so
STO cannot know exactly what is to be done in the program. The remaining translation should be done at
run-time and DTO handles it.

During analysis of input binary code, STO acquires useful information: code analysis information, control-
and data-flow information. DTO does full use of these information. This reduces overheads in run-time opti-
mization. STO inserts profiling codes so that DTO can collect proper information at low cost.

3.3 Dynamic Translation and Optimization (DTO)

DTO's major objective is run-time optimization (Figure 3). Unlike STO, DTO runs concurrently with the
execution of application. It is invoked at proper intervals during application execution. DTO collects profiling
information and monitors the program behavior. After detecting a hot-path, DTO arranges global scheduling,
eliminates redundant codes, and applies possible optimization methods[2]. Then. DTO substitutes the original
code to the optimized one.

Profiling codes are not removed by the DTO optimization. This means that profiling continues until the
application is terminated. So DTO can apply further optimization incrementally and it can follow the change
of program behavior. The DTO approach is similar to profile-guided compilation[3]. Since DTO can collect
more detailed information, it should achieve deeper optimizations.

Source binary codes may contain self-modifying codes. STO cannot handle such codes since actual codes
are determined at run-time. Thus, DTO should provide similar functions that STO does: i.e., the series of
binary translation and optimization processes. Actually, input of source binary code, translation to internal
representation, and control- and data-flow analysis should be processed by DTO.

4

4 Binary Translation Method

We have built an experimental binary translation software in order to estimate the effectiveness of the proposed
system. The pilot translation system is to be a part of STO in the proposed system. This section introduces
binary translation methods employed in the pilot system.

4.1 Basic Algorithm

As introduced in the previous section, the binary translator inputs binary codes and outputs multithreaded one.
The translator performs the following steps:

(1) inputs source binary code and translates to internal representation,
(2) determines basic blocks, analyzes control-flow, and detects loop structure,
(3) analyzes data-flow, detects loop variables and inter-loop dependencies,
(4) converts loop structure to multithread codes in a thread pipelining fashion, and
(5) generates target machine code from internal representation.

The translator reads the source binary code. It begins code analysis from the starting address specified in the
binary code. Input code is translated into the internal representation in order.

The internal representation categorizes instructions into six groups: alu operation, inter-register transfer,
jump, branch, load/store, and other operations. Each instruction category has its unique operand expression.
Figure 4 shows a part of instruction stream converted into the internal representation. The internal represen-
tation forms a list structure. Once the input binary codes are read and translated into the representation,
succeeding processes, (2) to (5), are performed on the representation.

In the step (2), the translator determines basic blocks and analyzes control flow. It seeks back-edges, i.e.,
backward jumps/branches, in the internal representation. A back-edge is an important hint to mine a loop
structure. The translator trys to find a path from the target address of a back-edge to the back-edge itself. If
the path exists, it constitutes a loop structure.

In the step (3), the translator analyzes data-flow in the loop structure. It presumes loop variables used in
the loop. The present pilot system finds the loop variables by increment of integer variables. The translator
can analyze multiplexed loops.

The translator modifies the internal representation according to the result of multithreading operation (in
the step (4)). Step (5) generates the target machine codes from the internal representation.

Next, we will explain step (4), the key part of the translator, in more detail.
In order to exploit sufficient parallelism by multithreading, we have found the following two requirements:

(i) an interval of thread invocation should be shortened, and (ii) the synchronization time in resolving depen-
dency should be reduced.

To solve (i), the Continuation stage prepares loop variables used in the succeeding thread. The values of
loop variables are computed in the preceding thread. A newly created thread can start the execution of its loop
body.

To reduce synchronization overheads due to inter-thread dependency (ii), the translator tries to move 'load'
and 'store' instructions of shared data backward and forward in the Computation stage, respectively.

After the Continuation stage, addresses of inter-thread dependent data are registered in Memory Buffer in
the TSAG stage. Execution of the consecutive TSAG stages cannot be overlapped since the stage determines
shared data. Thus, at the entrance of the stage, the processor waits for completion signal from its preceding
thread, and at the exit of the TSAG stage it sends completion signal to its succeeding thread. These inter-thread
communications are handled by Communication Unit, shown in Figure 1.

Most calculations in the original loop body are executed in the Computation stage. Inter-thread dependencies
are registered at the TSAG stage and Memory Buffer monitors all memory accesses. It handles inter-thread
synchronization in a producer-consumer manner.

The Writeback stage writes calculation results onto memory. Since the resulting data should be stored in
the semantic order, the stage cannot be overlapped between threads. Thus at the start-point of the stage, the
processor should wait for a termination signal from its predecessor. After completion of this stage, the thread
terminates.

17

5

'next 'next
opcode_type ld/st
address 	ann1
<WV"

opcode_type a lu
address 	nnn3
<alu>

operand
!Mg

e_addr
62 	I

re9 	Sfp
offset 16

Following the thread pipelining model, as shown in Figure 2, each thread consists of four stages. Three out
of four stages cause overheads and only Computation stage performs the peculiar calculation in the iteration.
Thus, to exploit sufficient performance on this model, the Computation stage should be long enough to hide
overheads caused in other stages. We have introduced a loop unrolling technique as a solution. The succeeding
section discusses the effectiveness.

lw $2,16($fp)
	

bne $2,$0,$L2
	

addu $2,$3,1

null

Figure 4: Internal Representation Example

4.2 Translation Example

Figure 5 illustrates a simple example of translation. The instruction stream, listed in the left side, is a part
of the source binary code (disassembled for display use). In our pilot translator, only a hot-path (i.e., loop) is
translated to multithreaded code as described in Section 4. The right side list shows the translated output of
the hot-path.

To avoid complexity in evaluation processes, the original ISA is extended by adding several thread control
instructions so that the codes can be run on the target multithreaded architecture.

A thread pipeline begins with bstr instruction. In the Continuation stage, the thread calculates the loop
variable used in its succeeding thread from its own variable (address ($fp+16) in Figure 5), stores the result
by sttsw instruction, and then generates the succeeding thread by lfrk. Note that a loop variable is accessed
via ($sp-8) in this example.

In the TSAG stage, dependent address of ($fp+48) is registered to Memory Buffer by altsd instruction.
For proper synchronization among neighboring threads, wtsagd and tsagd instructions are used.

We can find a load instruction that fetches data from ($fp+48). When the instruction is executed, Memory
Buffer detects the memory access and execution stalls until the preceding thread updates the data.

In the Writeback stage, estr instruction writes calculated data into memory and the thread terminates.

5 Preliminary Evaluation

5.1 Experimental Translation System

To evaluate the basic idea of binary translation to multithreaded codes and their optimization, we have built
a pilot translation system. Figure 6 shows the block diagram. The objective of the system is to evaluate the
STO functions which was described in Section 3.2. MultiThread Code Generator in Figure 6 follows all the
translation steps (1) to (5) described in Section 4.1.

In Figure 6, MultiThread Code Generator translates source binary code to multithreaded one. Hot-path
is manually guided to the translator for evaluation purpose. Resulting partial binary code is merged into the
original (single-thread) binary code by Binary Patcher. Binary Patcher removes hot-spot codes from the
--iginal binary code, and inserts translated multithreaded code. Thus the hot-path is executed in the thread-
pipelining manner and the rest of the program is executed in a single thread. At this timing, necessary run-time
libraries are linked. Then, the prepared multithreaded binary code is executed in a simulator.

6

source binary code tranalated code

11L0:

31,21

ILl:

1w
lw

bee

IA
evt.d.w
reov.d
jal
1.d
add.d
s.d
lw
addu
move
sw

112,16(1fp)
$3,20(0p)
$2,32,113
$2,30,11L2
$1.1
$f0,164$(p)
MAIM
11(12,11f0
sin
$f2.48(3fp)
1110,1111.6f0
11(0,48(11(p)
13,1641(p)
62,33,1
$3.112
$3,18411(p)
111.0

/. Continuation Stage */
batr
lw 	62,16(31p)
sw 	32,-3(1isp)
lw 	32,-13(3.p)
addi 	12,12,1
add i 	$3,$fp.16
'vital,/ 	13,22

Sw 	112,-(143.p)
lw 	33,20(3(p)

$2.12,113
bee 	12,110,111.3

$ST-END
$L3: 	Itrk

TSAG Stage •/
wtsagd
addiu 	$2,1fp,48
altad 	32
taagd

f• Computation Stage */
1.. 	lif0,-8(11•p)
evt.d.w 	2f0,11(0
rtiov.d 	$112,3f0
jal 	sin
1.d 	$(2.48(Sfp)
add.d 	11(0.11(2,100
s.d 	$f0,48(11(p)
addiu 	$3.11cp,48
addiu 	114,11fp,48
lw 	112.0(13)
•ttsw 	14,112

Singt•Thread binary coda

MultiThread Code Generator

MultiThread partisi assembly code

1

WUThread partial binary code)

Binary Pateher

MultiThread binsry cods)

MuftiThread Pm:miser

Writeback Stage •I
$ST-ENatr

Figure 6: Block Diagram of the Pilot
Figure 5: A Simple Example of Binary Translation 	System

5.2 Evaluation Environment

We have assumed that the target multithreaded processor follows the architecture of SIMCA[4]. SIMCA is a
simulator based on thread pipelining model and matches to our evaluation purpose.

Original binary codes are compiled by gcc cross compiler for SIMCA. The compiler's version is 2.7.2.3 and
"-02" option is applied. Application programs are (a) integral calculation in a 'sin' trigonometric function
using a trapezoidal equation and (b) inner product calculation.

Performance was measured as execution cycles of the hot-path by using the SLMCA simulator. Original
binary code was executed on SIMCA and the number of execution cycles of the hot-path was measured. Similar
evaluation was done for the translated code. By comparing the number of execution cycles, speed-up ratio was
calculated.

In this preliminary evaluation, the number of thread units were assumed to be 4, 8, and 16. Furthermore,
the loop-unrolling technique was applied to each application program; the measured unrolling factors were 4,
8, and 16 and no unrolling was measured for comparison purpose.

5.3 Evaluation Results

Figures 7 and 8 illustrate evaluation results for integral and inner product calculation applications, respectively.
In the integral calculation (Figure 7), the system gains performance linearly to the number of thread units.

Unrolling factor does not affect the performance except `no unroll' case.
In the inner product calculation (Figure 8), we can find that speed-up ratio is limited by unrolling factor.

In `no unroll' case, speed-up ratio is around 0.9 in spite of the number of thread units. We can find the similar
phenomenon in the 'unroll 4' case. In the 'unroll 8' case, speed-up is achieved when 8 thread units are used.
However, the performance saturates in the 16 thread units case. We can recognize linear speed-up in the 'unroll
16' case.

The integral calculation contains many operations enough to hide thread pipelining overheads. This leads
near-linear speed-up according to the number of thread units.

On the other hand, the inner product calculation contains less operations than the integral calculation. Thus
thread pipelining overheads could not be hidden unless sufficient loop-unrolling is applied.

These results reveal that efficiency in thread pipelining heavily depends on the grain size of calculation.

19

7

16

14

12

210

No Unroll 0
Unroll 4 0

Unroll 8 •
Unroll 16

4
	

8
	

16
	

4
	

8 	 16
N...grter of Thread Umei
	

Number or Thread Unsts

Figure 7: Speed-up Ratio in Integral Calculation 	Figure 8: Speed-up Ratio in Inner Product Cal-
culation

6 Related Works

In general, the major objective of binary translation is to execute existing binary codes based on different ISA.
FX!32[5] of Compaq is a translation subsystem in Windows NT for Alpha processor, that enables x86 win32

codes to run on Alpha platforms. It emulates x86 instructions and does binary translation into Alpha ISA
codes. During idle time, The binary translation is executed with profiling results from the preceding emulation.
Once the code is translated, the resulting native code is executed and earns high performance.

DAISY[6] of IBM translates well-used ISA codes, such as PowerPC and x86, so that programs run on the
original VLIW processor. The system exploits instruction level parallelism (ILP). It does no emulation.

Transmeta's Crusoe[7] has similar mechanism to DAISY. Crusoe is based on VLIW and it has unique ISA.
The processor runs CMS (Code Morphing Software) and the software dynamically translates x86 instructions to
its internal ones. Different from DAISY, CMS translates only hot-spot codes and takes incremental optimization
concurrently with program execution.

These systems listed above are for translation purpose into different ISA. Following systems aims at opti-
mization.

Dynamo[81 of Hewlett-Packard translates PA-RISC binaries to PA-RISC codes for optimization purpose.
Dynamo translates concurrently with emulation of PA-RISC instructions. From profiling results of emulation,
it can find hot-spots and translates into optimized codes. The resulting codes are cached, thus, once the hot-spot
is translated, the optimized codes are executed for acceleration.

Morph[9] of Harvard University does profiling under the cooperation with operating system, and it optimizes
executed codes off-line using the results of profiling.

Deco[1O] of Harvard University does run-time optimization and binary translation. Deco can re-translate
optimized codes according to change of the program's behavior.

BOA[11] of IBM focuses EPIC-style approach, that aims at high clock frequency by simplified hardware,
abandoned out-of-order superscalar mechanisms like PowerPC. BOA optimizes instruction scheduling for such
architecture by using binary translation technology. Where DAISY translates only once, BOA continuously
monitors the behavior of execution paths and does run-time optimization.

Java's HotSpotVM[12] collects profile information during interpretive execution. When it detects a hot-
spot, the hot codes are translated into native codes. The VM uses the translated binaries so that it accelerates
performance.

UQBT[13] is a framework of retargetable binary translation. The system's unique point is that, theoretically,
it enables any ISA codes translated into any other ISA. Currently it supports SPARC, x86, and Java bytecode.

All systems shown above assume single-thread code and none aims at performance enhancement by multi-
threading.

8

7 Concluding Remarks

In this paper, we proposed a binary translation and optimization system that enables existing binary codes
to run on the future multithreaded processors. We first discussed about the basic assumption on the target
architecture and the essential requirements for single-thread binary codes to be translated to multithreaded
codes.

The proposed system roughly consists of static translator and optimizer (STO) and dynamic translator and
optimizer (DTO). STO initially translates an input binary code to the multithreaded one. DTO handles the
dynamic behavior of the translated program and optimizes according to profiling results at run-time.

A pilot binary translator was built for the sake of preliminary evaluation. Programs used for evaluation are
integral calculation in a sin trigonometric function using a trapezoidal equation and inner product calculation.
The results show overheads in thread pipelining and, if each thread has sufficient calculation, the overhead can
be negligible and the speed-up, linear to the number of thread units, is achieved.

At the present time, DTO is not completed. We will continue to develop the proposed system and show
effectiveness in practical programs such as SPEC benchmarks.

Acknowledgement This research was supported in part by the Grant-in-Aid for Scientific Research (C) of
Japan Society for Promotion of Science (JSPS) No.12680328.

References

[1] J. Y. Tsai, J. Huang, and et al., "The Superthreaded Processor Architecture," IEEE Transactions on
Computers, Special Issue on Multithreaded Architectures, Vol. 48, No. 9, 1999.

[2] D. F. Bacon, S. L. Graham and 0. J. Sharp, "Compiler Transformations for High-Performance Computing,"
ACM Computing Surveys, Vol. 26, No. 4, pp. 345-420, 1994.

[3] M. D. Smith, "Overcoming the Challenges to Feedback-Directed Optimization," Proceedings of ACM SIG-
PLA N Workshop on Dynamic and Adaptive Compilation and Optimization (Dynamo '00), 2000.

[4] J. Huang. "The Simulator for Multi-threaded Computer Architecture(SLMCA), Release 1.2.," http://www-
mount.cs.umm.edu/Research/Ag-assiz/simca.html.

[5] R. J. Hoolo.vay and M. A. Herdeg, "DIGITAL FX!32: Combining Emulation and Binary Translation,"
Digital Technical Journal, Vol.9, No 1, pp. 3-12, 1997.

[6] K. Ebcioglu, E. R. Altman, "DAISY: Dynamic Compilation for 100% Architectural Compatibility," Pro-
ceedings of 24th Annual International Symposium on Computer Architecture, pp. 26-37, 1997.

[7] A. Kaliber, "The Technology Behind Crusoe Processors," 2000, URL: http://www.transmeta.com/crusoe
/download/pdf/crusoetechwp.pdf.

[8] V. Bala, E. Duesterwald, S. Banerji, "Dynamo: A Transparent Dynamic Optimization System," Proceedings
of Programming Language Design and Implementation, 2000.

[9] X. Zhang, Z. Wang, and et ad., "System Support for Automatic Profiling and Optimization," Proceedings
of 16th Symposium on Operating Systems Principles, 2000.

[10] E. Feigin, "A Case for Automatic Run-Time Code Optimization," Senior thesis, Harvard College, Division
of Engineering and Applied Sciences, 1999.

[11] S. Sathaye, P. Ledak, and et al., "BOA: Targeting Multi-Gigahertz with Binary Translation," Workshop
on Binary Translation (Binary99), 1999.

[12] Sun Microsystems, "Java HotSpotTM Technology,'' URL: http://java.sun.com/products/hotspot/
[13] C. Cifuentes and M. Van Emtnerik, "UQBT: Adaptable Binary Translation at Low Cost," Computer, Vol.

33, No. 3, pp. 60-66, 2000.
[14] K. Ootsu, T. Ono, T. Baba, "2. Me;...„dology for Multithreading with Binary Translation," IPSJ SIG

Notes, Vol.2001, No.10, pp.41-46, January 2001 (in Japanese).
[15] T. Ono, K. Ootsu, T. Yokota, T. Baba, "Preliminary Evaluation of Binary-Level Multithreading," IPSJ

SIG Notes, Vol.2001, No.76, pp.183-188, August 2001 (in Japanese).

21

9

:-

irt,

I I

11111

I ri

1.811

PAW, torziti ;s04 	t oidtn, ,tpdt 	-
sodi fin r ri43r,to rwr. :04ziart 	tA 	 -11114

1.04titel1,t 	tra

wrtitbitukia -̀ligusuth Nis 1O-11ri 7- 4:
bdi SOgliblift fnla %Kb 	 -t

ilitak./w2 	aItiorrt *of" ..
wiitiol.zurrer le I ALI :Itim111019
.001.mil 	T1 i1 II 1bkDJ ib -, .140.1 -
Asti items -r 	4014itliT11# a 'lin

'cretek bainit •tr-rf A 	ir4111-e.

kb ' 	P•1-tirbw,bn 14/11144fIlt; 114 c'ttak ft--*-

n lima

Yb.411 4Ij id' .1. 41
(04coarlititfiltitti P,b11 	 •},1 1 1,1

• t`PINArl'l LOR401 WWI Ihtil9 teit1 bt rOt ti1 IL HP '3
Intl' ft

' 	AC t'141.1 	kfooitill it 1jtttflI LL ;
1 P- hi, to- *Hatt-Ill 	rF1Lirj ty.t? orrr)

rttuvit—ri, LINikierAG-0 Ditij#6 :111-1P.arinf
-r4t4n ir 	ki rrtl 11500 1R1Iii4J',VOW Itrril

h ITÜIprt) -4.-‘tott-rt.1.4.441.t4I I 	 7,. ' 	.;r4 .4riurr
njt -nlvrioritc 2ixtft3. ,te c 	#4, 	1141114114 1 A4117/

(J 4f 	IP- 11 	1114.1144a*er uR1
.4,3n al 07. 4_ 	 I/

lbw zomarr.i.v/ 	„

I it Iry ri ore 4:44powl. Kra 	rrr1i ry 1.41314irtctor
' 	(1',/ ' {IL) ir,01.fte 10 toco...ortio ,;. •rirl 11,TAL'.

	

ban 41/4641 Lb ,hs4'A 	1.
1 it p-Mtliztm-A 	Uttwil lArtillett anti-W*0.1Z

16 le •C, rlOgIttoilMii) 	e . 	-1 IJ 1 "
- 	401 rtg;* ruI1 Alpo Frium4 	 tC1-

	

AL41.) 1441 MrtiOlfftrri 	1-1
	

tl
"- 	41. hIPP wstrizriti rL 	 PLi41,

	

.At tatinajtoirtIV ter, ,F14.kili 	i;

' 	'- ibligittolIvibin_vtott

.U. 1..w4
,1 1 To)? .iutetstuk tigtittittrifi 1/ 1101

rF.111C 1 4amaziA .j r"L'' 's

14,1, .14 4,..gulk 	41:k AUX!)
' f 	IlisbkatIbtri Ii ,Ttb

atvcrtoifi'0%-nrq-ni kitt_Aliaff41"1441
I I 	lit HAM NnAT-4049144+3 4 04.

4.4 p.114 inuswa44 ,1141ffill4 "NSA I
fir ke(k'' tit Se
- 110. 	 1,K1 etrr w+Artklt 	11;ir

altlir II I atIOAtit 	,011,Zr # -P 114,11-17

klin1/1- - 8. topliANA tatr A.rutviiii 14: .

I IOW 1 1 1 1 1 Jabui'44.69.1, 	,Put1.4' 	t
(MO 	 Agit trf' 41u 4r4

11-1. 1+4-At kill'ii,##;•-•1 mit of /AL* arm n cut')11' /. IIJE
ni„j 	 it,gy friqui ,444.114.17:

	

COM at4•40 	.141'
,#-KJ T I1h,A

A 	J1*, - I kceig iat,Y" i ifY01.1eK 	1'4
_ming 	 T 	.74 cH. ,3

-1.0 	 (MX 	11

orq turt,blarriott 	 /.

".1.:Line.11.111 	- 	.11*..11111•i,lati 	.144!•t.

-Mt 1011,."0 	 ",w.iits1 1 1 1
',Y.:. 	Li:y*4101'1 	' -ft J.

1441144114r4til 	- iQ fur* rLjtTiiii

tgtal 	th
	

—

".? 	rqc; ,514ILL'w414 J1161 	1-
vgaturrAtkaol,a 	4--rsoNk.11.14 	 _

ilitabbblEX/4 worbil.bra t(1.1 114t1lit4e.) u

Mikity. F. .4 A" 	 r.

IKgtjvt arnrkttnn
	

11-144,the

11,54411,-.7.1 	f.,.1.0T./.-uulif.' ii ;w

I 4 'r ef 	air]tI1 j

la 01444 	n 	Irekki 74xrrp, I 	I

t‘t'e 	&i1 Itritruret 	• 	' 	'

1.4141141:144,471i11if 11±410•T
a--444

1 4
Ipreb

*
1 .1

IL

The Predictability of Computations that Produce Unpredictable Outcomes

Tor Aamodt 	 Andreas Moshovos
	

Paul Chow

Department of Electrical and Computer Engineering
University of Toronto

laamodt,moshovos,p0Oeecg.toronto.edu

23

Abstract
We study the dynamic stream of slices that lead to branches that foil

an existing branch predictor and to loads that miss and measure

whether these slices exhibit locality (i.e. repetition). We argue that

this regularity can be used to dynamically extract slices for an oper-

ation-based predictor that speculatively pre-computes a load

address or branch target (i.e. an outcome) rather than directly pre-

dicting the outcome based upon the history of outcomes. We study

programs from the SPEC2000 suite and find they exhibit good slice-

locality for these problem loads and branches. Moreover we study

the performance of an idealized operation-based predictor (it can

execute slices instantaneously). We find that it interacts favorably

with an existing sophisticated outcome-based branch predictor and

that slice-locality provides good insight into the fraction of all

branch mispredictions it can potentially eliminate. Similar observa-

tions hold for operation-based prefetching of loads that miss. On

average slice locality for branches and loads was found to be above

64% and 76% respectively when recording the 4 most recent unique

slices per branch or load over a window of 64 committed instruc-

tions, and close to 61% and 73% for branches and loads respec-

tively when we look at slices over a window of up to 128 committed

instructions. The idealized operation predictor was found to correct

approximately 68% of branch mispredictions or prefetch about 67%

of loads that miss respectively (slices detected over a window of 64

instructions). At the same time, on average, the branch operation

predictor mispredicts less than 0.6% of all branches that are cor-

rectly predicted by an existing branch predictor

1 Introduction
Recently, the prospect of generalized operation-prediction has

been raised as a way of boosting accuracy over existing outcome-

based predictors. In operation prediction we guess a sequence of
operations, or a computation slice that can be used to pre-compute a
performance critical outcome (e.g., load address or branch target).
This is in contrast to outcome-based predictors that directly predict
outcomes exploiting regularities in the outcome stream. Since oper-
ation prediction does not require any regularity in the outcome
stream, it has the potential of predicting outcomes that foil existing
outcome-based predictors (in section 2, we provide an example that
illustrates the potential of operation prediction).

Several recent proposals have shown that slice-based precompu-

lotion (the mechanism operation-prediction uses for predicting out-
comes) can be used to successfully pre fetch memory data, and may
potentially be used to pre-compute hard to predict branches

[4,9,15,16,10,11,12,171. In this work, we study program behavior to
understand why operation-prediction works or may work for pre-
dicting otherwise hard to predict program events.

We build on the experience with outcome-history-based dynamic
prediction and study whether typical programs exhibit the behavior
necessary for operation history-based prediction to be successful.
We explain that, in a way that parallels outcome-based prediction,
operation predictors can be built to exploit regularities in the opera-
tion (i.e., computation) stream. For example, previous work has
shown that sufficient locality, or repetition exists in the value stream
of many programs. This program characteristic is what facilitates
outcome-based value prediction. In this work we study a set of pro-
grams from the SPEC2000 suite to determine whether sufficient
repetition exists in the slices used to calculate performance critical
outcomes that otherwise foil existing outcome-based predictors.
This program characteristic is necessary (but not sufficient as we
explain in section 2) if history-based operation prediction is to be
successful. We restrict our attention to mispredicted branches and to
loads that miss and study how much repetition, or locality exists in
the operation streams that lead to them. To the best of our knowl-
edge, no previous work on the dynamic locality characteristics of
such slices exist. With few exceptions and as we explain in section
4, related proposals approach slice pre-execution as an alternate
execution model, where the compiler orchestrates slice generation
and pre-execution. While compiler directed slice pre-execution is
an interesting and viable option, dynamic slice detection and execu-
tion can have its own advantages (e.g., binary compatibility).
Accordingly, we believe it is an important alternative that deserves
attention.

Our study provides the foundation necessary for understanding
whether programs exhibit some of the behavior necessary for opera-
tion prediction. Moreover, our results provide insight on what kind
of operation predictors we should be considering if we arc to
achieve a desired accuracy and coverage. For example, our study
shows how successful a last-operation predictor can potentially be
or whether pattern-based operation predictors may be necessary. A
last-operation prediction would simply record the slice used to cal-
culate a branch or load and use it the next time around to pre-calcu-
late the branch or the load address. Such a predictor can be
successful only if slices tend to repeat multiple times. Alternatively,
a pattern-based operation predictor can exploit patterns in slice
occurrence, e.g., slice SI appears always after slice S2, and so on.
While more complex, a pattern-based operation predictor could
offer better accuracy and coverage over a last-operation one. How-

1

ever. in this work we restrict our attention to analyzing the potential
of operation prediction. Specifically, the predictors we studied pre-
compute their slices instantaneously. An actual predictor would
require some time to execute through the predicted slice, hence it
may not be able to pre-execute the slice early enough for prediction
purposes. Further work is necessary to determine whether this is
possible. Yet, in previous work we have shown that a simple predic-
tor for loads that miss can successfully pre-execute loads that miss
often for a set of pointer-intensive applications [9].

Our results indicate that performance critical slices exhibit high
locality, more so for loads that miss. In particular, we find that aver-
age slice locality for branches and loads is above 64% and 76%
when we record up the 4 most recent slices per branch or load
respectively over a window of 64 committed instructions and close
to 61% and 73% for branches and loads respectively when we look
at slices over a window of up to 128 committed instructions. Our
idealized operation predictor can correctly predict about 68% of
mispredicted branches and accurately prefetch 67% of loads that
miss (slices detected over a window of 64 instructions). At the same
time, on the average the branch operation predictor mispredicts less
than 1% of all branches that are correctly predicted by an existing
branch predictor. Overall, we find that coverage (e.g., the fraction of
branches that get a correct prediction from the operation predictor
hut an incorrect prediction from the existing outcome-based predic-
tor) is highly correlated to the locality exhibited by the correspond-
ing slices.

The rest of this paper is organized as follows. Section 2 reviews
operation prediction, how it relates to outcome-based prediction,
and the various choices existing when dynamically extracting
slices. Section 3 presents our locality and accuracy results. In Sec-
tion 4, we discuss related work explaining how operation prediction
relates to other recently proposed slice-based execution models.
Finally, Section 5 summarizes our findings and offers concluding
remarks.

2 Operation Prediction Basics
In this section we review operation prediction, explain how it

relates to existing outcome-based predictors, and discuss what
requirements exist for operation prediction to be successful. In sec-
tion 2.1, we discuss some of the choices that exist in dynamically
extracting slices and explain the choices made for the purposes of
our study.

Consider the example cede fragment of figure 1(a). It is an infi-
nite while loop containing a switch statement. What particular tar-
get the switch statement will follow depends on the value read from
the uni-dimensional buffer. First, consider how an outcome-based
predictor will attempt to predict the branch that implements the
switch statement. Such a predictor will observe the outcome stream
of this branch (and possibly of other branches also). That is, it will
observe the various targets taken by the switch statement during
successive iterations of the while loop. It will try to associate each
target occurrence with an appropriate target history, that is a
sequence of past targets that preceded the one in question. The hope
is that next time the same target history appears, the same target will
follow. For example. such a predictor may observe that when the
targets for "A" and "B- appear, then with high probability the target
for "C" appears. This predictor may then guess "C" every time "A"
and "B" appear in sequence. Essentially, the outcome-based predic-

tor builds a tabular, approximate representation of the program's
function by observing the values (outcomes) it generates. Outcome-
based prediction is successful if the outcome-stream exhibits suffi-
cient repetition, a property commonly referred to as locality. In our
example code, repetition will exist only to the extent that the data
stored in the buffer array follows some repeatable pattern. Opera-
tion prediction offers the potential of predicting outcomes that do
not necessarily follow a repeatable pattern. Rather than trying to
guess the program's function based on the values it produces, it
directly observes the computation stream, attempting to exploit any
regularities found there. Returning to our switch statement example,
let us now take a closer look at what happens during execution time.
Figure 1(b) shows how the switch statement is implemented in
pseudo-MIPS machine code. When the code of part (a) executes,
the computation stream will contain repeated appearances of the
computation slice shown in part (b). While the target computed by
each slice may be different, we can observe that the actual slice
remains constant. Operation prediction builds on this observation
and attempts to dynamically identify such slices and use them to
pre-compute outcomes that otherwise foil outcome-based predic-
tors. As we explain in section 4, operation prediction has existed in
restricted form for years. For example, stride-based prcfetchers or
value predictors are examples of specialized operation prediction
where the actual slice or class of slices is built in the predictor
design.

In this work we are concerned with generalized operation predic-
tion where the slices are dynamically extracted and predicted. Fol-
lowing a generalization of the model proposed by Moshovos et al.,

[91, an operation predictor for our example would identify the "jr"
(instruction 7) as a problematic control flow instruction, or as a tar-

get instruction. At commit time, it will extract the computation slice
that lead to the particular instance of the target instruction as shown
in part (b). This slice, will contain only the instructions that contrib-
uted to the calculation of the actual target. Note that these instruc-
tions are not necessarily adjacent in the dynamic instruction trace (a
mechanism for extracting such slices has been proposed [9]). This
slice will be stored in a slice cache where it will be identified by the
lead instruction (i.e., the oldest one, instruction I in our example).
Next time the lead instruction appears in the decode stage, the slice
will be executed as a separate scout thread. Provided that the scout
thread completes before the appropriate instance of the target
instruction appears, the processor may use its result to predict the
target. The aforementioned steps for operation prediction parallel
those for outcome-based prediction. In operation prediction the unit
of prediction is a slice while in outcome-based prediction it is an
outcome. Accordingly, detecting a slice and storing it in the slice
cache is equivalent to observing an outcome and recording it in a
prediction table. Executing a scout thread is equivalent to probing
the prediction table.

The operation predictor described uses history-based prediction
concepts. Such a predictor observes the slices of otherwise unpre-
dictable results. If these slices tend to follow a repeatable pattern
then it may be possible to use the past history of appearances to
accurately predict the slices of future instances and hence pre-com-
pute otherwise unpredictable outcomes. The same principle under-
lies many existing outcome-based predictors instead of exploiting
regularity in the slice stream we instead exploit regularity in the
outcome stream (e.g., values, addresses and branch directions). For
history-based operation prediction to be successful it is necessary to

'7

while (true)
lead 	1: addu rbuffer rouffer !ter i

switch (*buffer++)
2: lb rchor. C(rbuffer)

case "A-: 3: sll rChor, rchor, 2 iter i+ /

case "Z":
4: lui rtoble, Table31 .16
5: addu rtoble rtoole, rchor

) 6: tw rtorget, Table15 .0(rtoole)
target 	7: jr rtorget

(a)
	

(b)

Figure I: A switch statement whose target behavior depends on the data stored within the buffer
array. (6) The computation slice that calculates the target during run-time.

25

have sufficient regularity in the computation, or slice stream of the
instruction we want to predict. Moreover, the slices so identified
must be able to execute and complete before the main thread needs
the prediction itself. In this work we focus mainly on the first
requirement. In particular, we study the slice locality characteristics
of some SPEC2000 programs focusing on branches that are mispre-
dieted by an outcome-based branch predictor and on loads that
miss.

Before we present our results it is necessary to re-iterate why
scout threads may be able to run-ahead of the main thread and to
comment on how operation-prediction relates to outcome-based
prediction. Scout threads may be able to pre-calculate a result
because: (1) The main thread includes all other intervening instruc-
tions which need to be fetched, decoded and executed. (2) The main
thread also may he stalled due to intervening control-flow miss-pre-
dictions. Since scout threads do not include any control flow, they
may proceed undisturbed. Finally, while operation prediction may
be able to predict outcomes that do not exhibit regularity, it does
need to calculate these outcomes. Outcome-based prediction for-
goes this calculation replacing it with a straightforward table
lookup. Hence, whenever outcome regularity exists outcome-based
prediction may be preferable over operation prediction.

2.1 Slices and Slice Locality
Before defining and measuring slice locality we must be clear

about how we define a slice. Conceptually, a slice may include
instructions that appear long in advance (e.g., thousands of instruc-
tions) of the target instruction. Moreover, a slice could be defined to
contain arbitrary control-flow and memory dependences (to adhere
to the static definition of a computation slice). With this definition,
the slice for each instance of the "jr- instruction in figure 1 would
include all preceding instances of instruction 1 (updates of the
buffer pointer), plus all instructions that wrote the corresponding
data element of the buffer array (this may include instructions past a
system call). Such a definition is impractical for our purposes.
Accordingly, our slice definition stems from a practical implemen-
tation of a slice detector [9] and of the sketch of how an operation
predictor could work discussed earlier. In the rest of this section we
explain the choices we made in defining and extracting slices, and
then we present our definition of slice locality.

Slice Detection Window: In searching for instructions to con-
struct a slice, we consider only those instructions that appear within
a fixed distance from the target instruction. In particular, we extract
slices using a fixed length slice detection window or slicer. The

instructions in the slicer form a continuous chunk of the dynamic
instruction trace. Only committed instructions enter the slicer.
When a target instruction is committed, its slice is extracted using a
backwards data-flow walk which eliminates all operations that do
not directly contribute to the target outcome. Slicer size affects slice
length and therefore it impacts slice locality and the ability to pre-
execute slices early enough. While a shorter slicer may result in
fewer shorter slices per target instruction and hence in higher repeti-
tion in the dynamic slice stream, the distance between the target and
lead instructions in these slices could be small. Consequently, it
may be harder for those slices to run-ahead of the main thread. For
this reason we experimented with various slicers of 32, 64 or 128
instructions. We could study locality with larger slicers. We have
performed some experiments and found that locality drops rapidly
beyond 128 for most programs.

Control-Flow: Besides how far back we look in the dynamic
instruction trace, a second choice in detecting slices is whether we
include intervening control-flow instructions. In this study we do
not. Slice detection occurs over a chunk of the dynamic instruction
trace. Since this is a trace, it only includes a specific control-flow
path and does not contain the parts of the static slice that would
appear on other control-flow paths. Accordingly, from a practical
standpoint it is convenient to ignore any intervening control flow
instructions. Later on we explain, that the implied control flow path
(i.e., the directions of all intervening branches at detection time) can
be used to select the appropriate slice for prediction.

Memory Dependences: Another choice regarding slices is
whether we follow memory dependences including stores and their
parents. Conceptually, the following tradeoffs exist: Including
memory dependences may allow us to look further in the past, cap-
turing a lead instruction that appears further away from the target.
Moreover, including memory dependences may improve slice accu-
racy since, if a memory dependence exists, we will be waiting
appropriately for the corresponding data. However, since memory
dependences may be changing over time, including them could
result in incorrect slices. We report results for slices that follow
memory dependencies.

Slice Size: Slices with only one instruction (the target), are
always discarded in this study, as the practical implementation dis-
cussed earlier cannot use them to any benefit. We could also choose
to restrict our attention to those slices that contain at most a fraction
of all instructions in the slicer. While including more instructions
may allow us to capture an earlier lead instruction, at the same time
it has several, potentially negative implications: First, it reduces the

3

chances of pre-executing the resulting slice in time. Second, it may
increase slice detection latency and complexity. Finally, more space
is required to store longer slices. At the extreme, we could include
all instructions in the slice detection window, however, the chances
of actually pre-executing such a slice are rather slim. We have
experimented with two choices: Not restricting the number of
instructions (e.g.. up to 64 instructions may appear in a slice
detected using the 64-entry slicer), and only considering those slices
that contain as many instructions as the 1/4 of the slicer entries (i.e.,
32, 16 and 8 for the 128-. 64- and 32-entry slicers). Restricting slice
size results in fewer slices being detected.

Comparing Slices: Slices contain multiple instructions. For this
reason and in contrast to outcomes, there are several ways in which
two slices can be compared for the purposes of measuring locality.
In this study, we consider two slices identical if they are lexically
identical. That is, if they contain the same instruction sequence.
With this definition two slices may be considered equivalent even if
the PCs of individual instructions may differ. This definition is both
practical and it accommodates identical slices that may appear on
different control-flow paths. For the purposes of locality measure-
ments we ignore the implied control flow in slices. So two slices
that are lexically identical but appear on different control flow paths
and have different implied control flow will be considered the same.

Slice Locality: For unrestricted slices (i.e. for any length, even
slices containing just the target operation), we can now define slice-
locality(n) of a target instruction as the relative frequency with
which a detected slice was encountered within the last n unique
slices detected by preceding executions of the same static instruc-
tion. Slice-locality(1) is the relative frequency that the same slice is
encountered in two consecutive executions of a target instruction. A
high value of slice-locality(1) suggests that a simple, "last slice
encountcred--based predictor could be accurate. For values of n
greater than 1, slice-locality(n) is a metric of the working set of
slices per instruction. Formally, it is the relative frequency with
which the same slice was detected within the last n unique slices
detected for the specific instruction, assuming there is always a
slice. When excluding slices due to the restrictions considered ear-
lier, slice-locality(n) is the relative frequency that a given branch or
loads's slice both meets the restriction criteria, and was seen in the
last n unique slices that also matched the criteria. While a small
working set does not imply regularity, we will later explain that it
may be possible to execute all these slices in parallel and then select
the appropriate one based on the implied control flow.

Outcome Context: In practice, having identified a problem
instruction, one might detect a slice and record it independent of the
whether the underlying outcome based predictor was correct, or
choose to record a slice only when a misprediction or cache miss
actually occurs. The difference is that an outcome may only be hard
for the outcome-based predictor to anticipate when following the
implied control-flow of a small subset of all slices seen. We have
measured the impact on locality as viewed from mispredicted
branches and cache misses under both circumstances and conclude
that statistically there is a benefit to waiting for a mispredicted tar-

eL 	or load that misses, when detecting slices for a particu-
lar static branch or load. Except where stated otherwise (i.e., in
Section 3.23) all measurements reported in this paper are based
upon the latter approach.

3 Measurements

We start by detailing our methodology in section 3.1. In Section
3.2, we report our slice locality analysis first for branches (Section
3.2.1) and then for loads (Section 3.2.2). Here we are interested in
determining whether sufficient locality exists in the slice stream of
mispredicted branches or of loads that miss. This is a property of the
program (and of the underlying slice detection mechanism). In Sec-
tion 3.2.3 we explore the impact of outcome-context on slice-local-
ity. In Section 3.3, we study how a specific operation predictor
interacts with an existing outcome-based predictor for branches and
how well it predicts the addresses of loads that miss. The operation
predictors we studied execute slices instantaneously when a lead
instruction is encountered. Ow- goal is to understand the potential of
slice prediction. Further work is necessary to develop realistic pre-
dictors where slice execution takes some time. Our results provide
the insight necessary to do so in a well educated manner.

3.1 Methodology
We have used the programs from the SPEC2000 suite shown in

table 2. All programs were compiled with gee (-02 -funroll-loops -
finline-functions) for the MIPS-like Simplescalar instruction set
(PISA). We have used the test input data sets. To obtain reasonable
simulation times, we skipped the initialization phase and warmed
up the caches and the branch predictor for the next 25 million
instructions. The actual number of instructions skipped (i.e., func-
tionally simulated) is shown in table 2. Our measurements were
made over the next 300 million instructions. In table 2, we also
report the L I data cache miss rates and the branch prediction accu-
racies (direction and target address). In the interest of space, we use
the labels shown in table 2 in our graphs. To obtain our measure-
ments we have modified the Simplescalar 3 simulator. Our base
configuration is an 8-way dynamically-scheduled superscalar pro-
cessor with the characteristics shown in table I. Our base processor
has a 12 cycle minimum pipeline.

3.2 Slice Locality
In this section we study the locality of slices first for branches

and then for loads. For branches, we focus on those dynamic
instances that are mispredicted by the underlying outcome-based
predictor and study whether locality exists in their slice stream. This
is necessary if history-based operation-prediction is going to be suc-
cessful. For loads, we focus on those dynamic instances that miss in
the data cache. In both cases we examine only the slices that lead to
mispredictions, or cache misses, respectively except in Section
3.2.3 were the impact of ignoring outcome-context is examined.

Measuring locality in the way we do here allows us to avoid any
artifacts that a specific implementation of operation prediction may
introduce. Later in section 3.3, we study models of specific opera-
tion predictors.

3.2.1 Branch Slice Locality
Figure 2 reports the weighted average of slice-locality(n) for

those branches that are mispredicted by the underlying outcome-
based branch predictor. To calculate slice-locality(n), the distribu-
tions for each static branch are weighted by the relative number of
outcome-based misprcdictions associated with that branch, and so
the overall figure naturally emphasizes those static branches which
are mispredicted most often. We report locality in the range of 1
(bottom bar) through 4 (top bar) and for a variety of slicer configu-

4

Brae Processor Configuration

Branch Predictor 64K GShare+64K bimodal
with 64K selector

Fetch Unit Up to 8 instr. per cycle. 64-entry Fetch Buffer
Non-blocking Fetch

Instruction Window Size 128 entries F11 Latencies same as MIPS R10000

Issue/Decode/Commit BW 8 instructions / cycle Main Memory Infinite, 100 cycles

Li - Instruction cache 64K, 2-way SA, 32-byte blocks,
3 cycle hit latency

Li - Data cache 64K, 4-way SA, 32-byte blocks,
3 cycle hit latency

Unified L2 256K, 4-way SA, 64-byte blocks.
16 cycles hit latency

Load/Store Queue 64 entries, 4 loads or stores per cycle
Perfect disambiguation

Table 1: Base configuratico details. We model an aggressive 8-way, dynamically-scheduled superscalar pmcessor having a 128-entry
scheduler and a 64-catty load/store queue.

Benchmark Label Inst. Skipped MR BPA Benchmark Label Inst. Skipped MR BPA

I64.gzip gzP 101 M 3.1% 92.3% 183.equake eqk 359 NI 2.7% 90.4%

175.vpr yr 33 M 2.6% 91.0% 188.anunp amp 100 M 28.3% 99.1%

176.gcc gee 200 M 0.9% 91.4% 197.parser prs 144 M 2.3% 91.2%

177.mesa msa 101 M 0.7% 99.9% 255.vortex vor 102 M 0.7% 98.5%

179-art art 1.686 NI 43.9% 98.4% 256.bzip2 bzp 100 M 3.9% 97.6%

181.mcf mcf 50 M 5.3% 90.9% _300.twolf twf 188 M 6.2% 85.1%

Table 2: Programs used in our experimental evaluation. MR is the LI data miss rate. BPA is the branch prediction accuracy
(direction+target). We simulated 300 million committed instructions after skipping the initialization phase.

27

rations. To identify the slicers we use an "NSM" naming scheme.
"N" is the size of the slicer, i.e., 256. 128, 64 or 32. "S" can be
either "U" (unrestricted) or "R" (restricted) and specifies whether
we restrict slice size to up 1/4 of total number of instructions in the
slicer or not. Finally, "M" signifies that slices include memory
dependencies. For example, 64UM corresponds to a slicer with 64
entries that can produce slices of up to 64 instructions and that is
capable of following memory dependences. 32RM is a slicer that
has 32 entries and that can detect slices that include only up to 8
instructions and that can follow memory dependences. We have
experimented with various slicer configurations. In the interest of
space we report the following seven from left to right: 256RM,

128RM, 64RM, 32RM, 64UM, and 32UM.
Before we present our results it is important to emphasize that

while high locality is desirable, any locality may be useful for
improving branch prediction accuracy. This is because we measure
locality only for mispredicted branches. As we will show in section
3.3, even when little locality exists, it can positively impact overall
branch prediction accuracy.

With unrestricted slices, in all cases but gzip and mesa, using a
shorter slicer results in higher locality with the average locality
going from 73% to 83% comparing 64UM to 32UM. With
restricted slices and a short detection window (32RM) there is much
lower locality compared to unrestricted slices (32UM), and further-
more, the locality increases going from a 32-entry slicer to a 64-
entry slicer, on average from 59% to 66%. This result suggests that
many slices have more than 8 instructions that are close to the target
instruction. This result corroborates the observation by Zilles and
Sohi that many operations that directly contribute to the computa-
tion of the target are clustered close to the target operation [15). As
we use a fixed ratio of 1/4 to restrict slices, a shorter slicer is penal-
ized in9re heavily than a longer one. Indeed, for a 256-entry slicer
(256RM) we see the dominant trend is again a decrease in locality
for longer slices.

On the average, slice-locality(4) is about 49% with the 256RM
slicer and rises to about 61%, and 65% for the 128RM and 64RM
slicer, while falling back to 59% for the 32RM slicer. More impor-
tantly, most of the locality is captured even if we can record a single
slice per instruction. In particular, slice-locality(1) is approximately
34%, 41%, 45% and 46% for the 256RM, 128RM, 64RM and
32RM slicers. This suggests that a last-slice-based predictor may be
quite successful.

As we move towards larger slicers, locality usually drops. In the
worst case of vpr, slice-locality(I) drops to about 10% with the
256RM slicer. For several programs the drop of locality with
increased slicing windows is a lot less dramatic and slice-locality(1)
remains well above 30% for 256RM for half the benchmarks. How-
ever, a larger slicer does not necessary result in lower locality. In
particular, for gzip and mesa locality(1) increases as the slicer is
increased from 32 to 64 entries, even for unrestricted slices. This
anomaly has been studied carefully and appears to be the result of
intervening control flow: A larger slicer allows us to look through
more instructions when detecting a slice, and hence capture longer
slices. Normally, this tends to strongly reduce slice locality because
the number of implied control flow paths leading up to the target
multiplies as additional basic blocks appear in the slicer. However, a
longer slicer may also increase locality when a slice skips over a
segment of instructions that fluctuates in length due to intervening
control flow. With a short slicer, the earlier part of the slice may be
evicted occasionally. With a longer slicer, the whole slice may still
appear in the slicer.

In table 3 we report the average instruction distance between the
lead and the target instructions and the average instruction count per
slice. We define instruction distance as the number of intervening
instructions (including the lead) in the original instruction trace. In
the interest of space we restrict our attention to the 256RM, 128RM,
68RM and 32RM slicers. These two metrics provide an indication
of whether the slices could potentially run-ahead of the main thread
(of course, this can only be measured using an actual implementa-

5

g •
1"

I

I

L,

illi
.?

1 , 	ii

,

-

ii' Ill 1

11_111 .,
111

' 	:
j

'II

I -

i'

i
lii

i

1, 	i

' '
:•- 1,.. F.

E
I

- 14
„ .n

611111

1

I.

- III ' 	:r

ii

i Li

1111

' ..
3'RM

digh.........464RM ,
''

128RM
I

1
256RM I

gzp vpr gcc msa art mcf eqk amp prs vor bzp twf AVG

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

02

0.1

0.0

Figure 2: Weighted average slice-locality distribution for mispredicted branches (see text for description of weighting procedure). Range
shown is 1 (bottom) to 4 (top). We use a NSM scheme where N is the size of the detection window (256, 128, 64, or 32). S is "U" if no
restrictions on slice size are placed and "R" if we restrict slices to 1/4 of the slice detection window, and finally, "M" indicates that we follow
memory dependences in constructing slices.

Program
256-R-.111 128-R-M 64-R-M 32-R-M

Dist Cnt. &NI Dist. Cnt. #.1 Dist. Cnt. #S1 Dist Cnt. #St

47.0 110.1 12.7 0.84 90.1 14.2 1.09 42.1 7_2 0.35 16.4 4.3 0.15

112.5 19.1 0.54 95.9 15.8 0.27 50.8 10.4 0.05 22.3 5.1 0.17

.1.:-CC 111.8 15.2 0.73 93.3 11.7 0.45 41.9 7.6 0.18 17.8 4.7 0.05

msa 104.3 8.0 0.00 77.2 5.7 0.00 43.0 4.6 0.00 16.2 3.6 0.00

art 126.4 133 0.00 109.6 9.1 0.00 46.0 5.4 0.00 153 4.1 0.00

mcf 104.0 18.5 0.24 100.0 16.8 0.12 43.3 8.5 0.04 17.2 5.2 0.00

eqk 90.6 6.8 0.02 64.0 6.0 0.00 35.3 4.5 0.00 14.7 3.2 0.00

amp 106.6 12.1 0.49 80.3 9.4 0.32 40.4 7.3 0.06 18.4 5.0 0.05

pr s 111.7 16.4 0.61 101.2 12.2 0.48 47.7 7.4 0.18 19.8 4.6 0.07

,..or 109.7 13.7 0.29 99.7 9.4 0.32 47.9 6.4 0.13 22.0 4.1 0.04

b7 1 1 1 8 18.0 0.11 103.5 19.4 0.15 48.3 9.8 0.00 23.3 5.7 0.00

twf 95.6 15_2 0.10 74.3 13.2 0.10
-

44.5 9.0 0.06
-

a1.3 4.8 0.03

Table 3: Branch slice statistics: Weighted avera),e instruction distance ("D'st."), instruction count ("Cnt."), and number
of stores ("#,St") for various slice detection setups. Each slice weighted by the number of mispredictims potentially
corrected

tion of an operation predictor). Overall, slice instruction count is
relatively small and remains small even when we move to longer
slicers. Moreover, the lead to target instruction distances are on the
average considerable, especially with the 256RM slicer.

Table 3 also reports the average number of stores per slice. The
number of stores is a metric of the number of memory dependences
in each slice. The number of memory dependencies detected tends
to grow with slicer size (similar to observations by Zilles and Sohi
115)), however, for the slicer sizes studied here, the number of
dependencies detected was small.

These results are encouraging as they suggest that relatively high
locality exists in the computation slices that lead to unpredictable
branches. Moreover, slices tend to be small in size (on the average),
spread over several tens of instructions of the original program.
Having shown that programs exhibit the locality necessary for oper-
ation prediction of otherwise mispredicted branches, in Section
3.3.1 we measure how an approximate operation predictor interacts
with the underlying outcome-based branch predictor.

3.2.2 Load Slice Locality
Figure 3 reports weighted average slice-locality(n) for those

loads that miss in the LI data cache. The weighting of the distribu-
tion for each static load is based upon the frequency of misses for
that load. We report results for the same slicer configurations we
presented in section 3.2.1. We observe trends similar to those for
mispredicted branches but with locality being stronger. On the aver-
age slice-locality(1) is 58%, 56%, 47%, and 38% for the 32RM,
64RM, 128RM, and 256RM slicers. Recording up to 4 slices per
instruction results in a locality of 68%, 77%, 73% and 60% respec-
tively. For most programs, load slice locality is stronger than branch
slice locality was. In table 4 we also report the average lead to target
instruction distancc., instruction count, and number of included
stores for load slices. Slice instruction distance increases with the
slicer size ,,ad is relatively large. Moreover, slice instruction count
remains relatively small even with the larger slicers. Load slices
tend to contain more memory dependencies that branch slices.

6

28

1 .0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

32UN

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

02

0.1

0

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

02

0.1

•

0

29

gzp vpr gcc msa art mcf eqk amp prs vor bzp twf AVG

Figure 3: Slice locality distribution for loads that miss in the LI data cache. Range shown is I (bottom) to 4 (top). We report results for the same slicer
configurations as in figure 2.

Program
256-R-M 128-R-M 64-R-M 32-R-M

Dist. Cat. #S Dist. Cat. #S Dist Cat. #5 Dist. Cat. #S

bezP 126.3 13.3 3.07 87.4 10.4 1.75 29.7 5.1 0.93 18.7 3.8 ' 	0.84

tpr 112.8 18.3 1.77 97.4 13.9 1.22 45.1 9.4 0.76 15.8 3.9 0.50

gcc 118.5 14.5 1.62 99.6 10.1 1.28 46.3 6.1 0.95 22.7 3.8 0.78

msa 126.7 15.0 1.36 113,7 10.3 1.08 55.9 6.6 0.96 22.2 4.4 0.76

an 126.9 10.6 0.00 109.5 6.2 0.00 46.1 3.9 0.00 17.4 3.0 0.00

mei 124.8 22.8 0.10 108.5 14.0 0.07 47.0 7.9 0.04 14.9 4.8 0.02

eqk 117.5 11.0 0,57 88.3 7.2 0.46 37.7 6.0 0.22 18.1 3.9 0.14

amp 124.9 18.2 3.10 113.2 16.2 1.36 50.9 8.6 0.80 23.9 5.0 0.66

prs 125.5 22.1 , 	1.25 113.9 14.1 1.27 53.6 8.0 0.78 22.6 4.8 0.47

S'Or 124.9 16.9 2.05 113.3 11.1 1.61 53.6 6.1 0.99 24.2 3.5 0.63

trzp 117.3 14.0 0.08 100.0 10.8 0.13 42.8 7.9 0.05 16.6 4.5 0.07

twf 93.7 11.2 0.29 65.9 10.2 0.30 40.8 7_3 0.29 21.6 4.9 0.16

Table 4: 1.1)ad slice statistics: Weighted average instruction distance ("Dim "), instruction count ("('nt."), and number of
stores ("#St") for various slice detection setups. Each slice weighted by the nun her of Li cache misses potentially
prefetched

rnsa art lid el* arp prs vcr 	trl AVG
	

VP 	 fru at ad Eqk arp tas • 14 I* AVG

Figure 4: The effect of outcome-context on slice locality for branches (left) or loads (right): Detecting slices specifically when a branch was
mispredicted or load missed improves locality. Bars represent locality(4) for a 128-R-M detection mechanism. Darker bars are for detection
only on mispredict, or on cache miss, for branch slices and load slices respectively. Lighter bars represent the locality for slices of
mispredicted branches and loads that miss when slices are extracted independent of whether there was a misprediction or cache miss.

7

The results of this section are also encouraging as they show that
high locality exists in the slice stream of the loads that miss in the
LI data cache. Overall, slicer size tends to play a dominant role in
determining locality. For short slicers restricting slice size has a
very large impact on locality, but this impact decreases for longer
slicers.

3.2.3 Effect of Outcome Context on Locality
Figure 4 reports the change in observed locality for 128RM when

we allow slices to be added to the slice cache independent of
whether the underlying outcome-based prediction mechanism was
correct (in the case of branches), or there was a cache hit (in the
case of loads). Note that both sets of measurements still represent
only slices for branches that mispredict. or loads that miss, and are
again weighted by the frequency of mispredictions and cache
misses per static branch or load. We found that detecting slices only
for those dynamic instances of the target instruction for which a
misprediction, or cache miss event occurs improved locality by
around 8% and 2% for branches and loads respectively. It is for this
reason that all other results are reported based upon the detect-
only-on-miss approach.

33 Accuracy and Interference with Outcome-
Based Prediction

In this section, we model specific operation predictors and study
their accuracy. We first explain how our branch operation predictor
works. A slice is detected after each branch that was mispredicted.
Detected slices are stored in an infinite slice cache where they are
identified by the lead instruction. Only up to 4 slices per lead
instruction can be present in the slice cache, however other than this
there is no restriction on the total number of slices in the cache.
Upon encountering a dynamic instance of the lead instruction we
spawn all slices that are associated with it. Note that these slices
may relate to the same, or different target operations. For the pur-
poses of this study, we assume that the resulting scout threads com-
plete instantaneously, however the outcomes of these threads are
not used immediately. Also, all register and memory values from
instructions before the lead are assumed to be available. The out-
come from slice execution is saved while the slice is matched-up to
the arriving flow of instructions. This matching is based upon
matching instructions and register dependences. A more practical
method would be to record the implied control flow of the slice
when it was detected and compare this to the observed control flow
after a slice has spawned. however, the latter technique does not
readily allow control independence. On average we found that 47%,
58%, and 73% of all branch slice executions are discarded for the
32RM, 64RM, and 128RM slice detection mechanisms. When and
if the target branch appears, if more than two slices have matched
up to the instruction stream we select the first slice that spawned, or
the most recently extracted slice if both spawned at the same time.
Most of the time there is only a single prediction available to be
consumed, if any (89%, 85%, and 80% for 32RM, 64RM, and
128RM respectively when executing branch slices).

3.3.1 Branches
To quantify the potential accuracy of our operation predictor for

branches and how it interacts with the underlying outcome-based
predictor we provide a breakdown of operation prediction for all
dynamic branches. We break down branches based on whether the

underlying outcome-based predictor correctly predicts the particu-
lar dynamic branch instance, on whether a prediction was available
from the operation prediction and on whether the latter, if available,
was correct. For ease of explanation we use a "vP" naming scheme.
"v" can be w(rong) or r(ight) and signifies whether the outcome-
based predictor correctly predicted the branch. "P" can be N(one),
W(rong) or R(right) and signifies whether no prediction was avail-
able from the operation predictor, and if there was one, whether it
was correct or not. For example, rN and rR correspond to branches
that were correctly predicted by the outcome-based predictor and
for which no prediction or a correct one was available from the
operation predictor respectively. Category rW corresponds to
destructive interference between operation and outcome-based pre-
diction, while catceory wR corresponds to constructive interference.

"rN", "wN", "rR" and "wW" do not impact the accuracy of the
outcome-based predictor. In our results we report "rW" and "rR" as
fractions measured over the total number of correctly predicted
branches by the outcome predictor. We also report "wW" and "wR"
as fractions measured over the total number of incorrectly predicted
branches by the outcome predictor. Ideally, "rW", "wN" and "wW"
would all be 0%, in which case "wR" would be 100% (all previ-
ously mispredicted branches are now correctly predicted by the
operation-based predictor)

Figure 5 reports accuracy results for operation predictors that uti-
lize, from left to right, a 128RM, 64RM or a 32RM slicer. Part (a)
reports accuracy for correctly predicted branches (categories "rR"
and "rW") while part (b) reports accuracy for mispredicted
branches (categories "wR" and "wW"). Categories "rN" and "wN"
are implied (missing upper part of the bars). In comparing the
results of two graphs we must also take into account the relative
fraction of correctly and incorrectly predicted branches (i.e., the
accuracy of the underlying outcome-based predictor). We do so
later in this section. In most cases, the operation predictors interact
favorably with the underlying outcome predictor since "rW- is in
most cases very small. In all programs, the operation predictor cor-
rectly predicts a large fraction of those branches that are mispre-
dicted by the underlying outcome-based predictor as shown in part.
(b) (category "wR") while it incorrectly predicts very few (category
"wW").

On the average, ignoring timing considerations, the operation
predictor offers correct predictions for about 66%, 68% and 59% of
all mispredicted branches when the 128RM, 64RM or the 32RM
slicers are used respectively. On the average, the operation predic-
tion interferes destructively with the underlying outcome-based
branch predictor in very few cases. We re-iterate that in interpreting
he results of figure 5, one should also consider the relative fractions
of correctly versus incorrectly predicted branches. We report the
absolute change in prediction accuracy in addition to the outcome-
based branch predictor in table 5 (the branch prediction accuracy of
the outcome based predictor was reported in table 2). We observe
that in most programs the operation predictor helps the underlying
outcome-based predictor resulting in higher overall accuracy. In
some cases (e.g., mesa) where outcome-based prediction is very
high, the operation predictor actually harms overall accuracy. Since
in most cases, this destructive interference occurs for programs with
high branch accuracy, it may be possible to use a confidence mech-
anism (e.g., a counter with every slice) to filter out those slices that
lead to incorrect predictions very often or to simply disable opera-
tion prediction when outcome prediction is above a threshold. Such

8

31

10

0.9

08 -

	

0.7 	

	

0.6 	
0.5
0.4

0.3 -
0.2

01

	

0.0 	
1

2RM
tiM

28RM

10
0.9
08
0.7
0.6
05
0.4
03

02
0.1
0.0 1

gzp vpr gcc msa art met eqk amp prs vor bzp twf AVG

rR 	 rW

(a)

gzp vpr gcc msa art mcf eqk amp prs vor bzp twf AVG

wR 	 wVV

(b)

Figure 5: Interaction of operation branch prediction and outcome-based branch prediction. We report results for the following slice detection

mechanisms: 128-R-M, 64-R-M and 32-R-M. (a) Correctly predicted branches and (h) Mispredicted branches.

Program I28-R-M 64-R-M 32-R-M Program I28-R-M 64-R-M 32-R-M

K-4, +3.3% +4.5% +3.6% eqk +5.5% +6.5% +6.5%
vpr +5.9% +4.9% +1.6% amp +0.6% +0.6%, +0.5%
gee +5.4% +6.4% +5.9% prs +4.8% +5.8% +5.8%
msa +0.1% -1.7% -1.7% vor +1.1% +1.2% +1.1%
art -1.7% +0.1% +0.2% bzp +1.9% +1.4% +1.0%

mcf +4.7% +5.7% +5.7% twf +5.4% +8.1% +8.9%

'able Change in branch prediction accuracy wit! operation prediction over the base outcome-based predictor.

an investigation is beyond the scope of this paper. Overall the frac-
tion of mispredicted branches that get a correct prediction from the
operation predictor is greater than the locality we observed in sec-
tion 3.2.1. The main reason is that we restrict the number of slices to
4 per lead PC as opposed to 4 per target PC which allows for greater
coverage if a lead operation is associated with a single target.

3.3.2 Loads
Finally, we report accuracy for an operation predictor for load

addresses. The results are shown in figure 6 for predictors based on
the 128RM, 64RM and 32RM slicers. In part (a) we report results
for those loads that hit in the data cache, while in part (b) we report
results for the loads that miss in the data cache. The results of part
(a) are provided for completeness. These loads hit in the data cache,
so correctly predicting their addresses is not as important. We show
two categories: hR are the loads whose addresses are correctly pre-
dicted while /iW are the loads whose addresses are incorrectly pre-
dicted. In an actual implementation hW may translate into cache
pollution. Overall, /1W is negligible. In part (b) we report a break-
down of predictions for loads that miss in the data cache. Two cate-
gories are shown; mR includes the loads for whom the addresses are
correctly predicted while mW includes those that are not. Ideally,
mW would be 0% and mR would be 100%. In all cases, mW is
barely noticeable. Moreover, mR tends to be higher for shorter slic-
ers. We can observe that the accuracy of the operation predictor is
extremely high (mR vs. mW). Moreover, the operation predictor
offers correct predictions for many of the loads that miss in the data
cache. Overall coverage is less than the locality we observed in sec-
tion 3.2.2. The main reason is that now we restrict the number of

slices to just 4 per lead PC as opposed to 4 per target PC (this
restriction was placed since we need to associate slices with the lead
PC in this operation predictor). In many programs, the same lead
PC appears in the slices for more than one target load. Accordingly,
thrashing occurs and coverage suffers. For example, consider a
linked list where each element is a structure with multiple fields. All
loads that access each field may be missing at the same time. All
these loads will be getting the base address of the element in ques-
tion from the same load. Consequently, their slices will probably
have the same lead instruction and hence they will cause thrashing
in the lead PC's slice set. A potential solution to this problem could
be to allow more slices per lead PC. Alternatively, we may opt for
carefully selecting the loads for which we detect slices and apply
operation prediction (e.g., first loads that misses per block as
opposed to all loads that miss per block).

The tradeoffs in load address prediction are quite different than
those for branch prediction. In load address prediction, an incorrect
prediction does not necessarily impact performance negatively. It
can only do so indirectly by increasing resource contention or by
polluting the data cache. Also, while we may predict the exact
address incorrectly, we may still predict the correct cache block
address correctly. Moreover, while it is desirable to have a high cov-

erage (that is to provide correct predictions for as many of the loads
that miss as possible), higher coverage may not translate in higher
performance for reasons that include the following: Two loads that
miss may be accessing the same block, accordingly, we may actu-
ally prefetch the block even if we do not correctly predict both of
them. Also, in some cases, performance may be limited by other

9

^

71-1- -r-n
gzp vpr gee msa art mcf eqk amp prs vor bzp twf AVG

0 hR 	(a) 	 • hW

10

0.9

0.8

0.7

0.6

0.5

0.4

0.3

02

0.1

0.0 	
gzp

to

09

0.8

07

0.6

05

0.4

0.3

02

0 1

0.0
met eqk amp prs'vor bzp twf AVG

(b) 	 • mW

Figure 6: Breakdown of load address operation prediction. We report results for the following slicers: I28RM, 64RM and
32RM. (a) Loads that hit in the data cache. (b) Loads that miss in the data cache.

32

loads, hence correctly predicting a load address may have a negligi-
ble impact on performance.

4 Related Work
Operation prediction shares similarities with a number of

recently proposed multi-threaded models where a number of poten-
tially speculative, helper threads are used to enhance an otherwise
sequential, main thread. Simultaneous subordinate micro-threading
and assisted execution are two such proposals [2,13]. In the exam-
ple application of SSMT given in [2] the helper threads are imple-
mented in microcode and are used to enhance branch prediction.

Zilles and Sohi suggested extracting slices at compile time and
using them to pre-execute performance critical instructions [15,161.
Assuming compile-time extraction, they have demonstrated that
such slices can greatly improve performance, especially if they are
optimized. Farcy et al., proposed an operation predictor for
branches for a restricted class of branches [5]. Moshovos also sug-
gested the possibility of generalized operation prediction [8].
Moshovos et al., proposed slice processors, the first dynamic,
autonomous and generalized operation predictor-based prefetcher
and demonstrated that it can improve performance even when com-
pared to an outcome-based predictor [9]. Collins et al., demon-
strated a software-driven slice-based prefetcher for an EPIC-like
architecture [4). In parallel with this work, Collins et al., also pro-
posed a dynamic slice pre-execution prcfetcher where slices are
optimized and can be chained [17). Annavaram et al., proposed a
non-speculative slice-based prefetching scheme where slices are
detected and pre-executed from the fetch buffer and demonstrated
that it can effectively prefetch data for a 4-way 000 core with a
64-entry scheduler [1]. Luk described a software-controlled
prefetching method based on slice pre-execution [6]. In the Specu-
lative Data-Driven Multithreading (SDDM) execution model, pro-
posed by Roth and Sohi, performance critical slices leading to
branches or frequently missing loads are pre-executed [12]. A regis-
ter integration mechanism is used to merge slice produced results
into the main thread and to filter out any incorrectly calculated val-
ues. As proposed. SDDM relies on a profiling phase and the com-
piler to build slices and to orchestrate their execution.

Some operation outcome predictors exist. Stride predictors are an
early example where the actual computation is built in the design.
Roth at al., proposed an operation predictor for recursive data struc-

tures [10], while Mehrotra et al., proposed operation predictors for
linked lists and arrays [7]. Roth at al., proposed an operation predic-
tor for indirect jumps [11). In all aforementioned proposals, the
class of predictable operations is fixed in the design. Slipstream
Processors also use a helper thread to run-ahead of the main
sequential thread in effect pre-executing instructions [14). The
helper thread is formed by removing predictable computations from
the main sequential thread. They study the dynamic creation of
chaining slices in which a slice can, in essence, re-spawn itself. A
similar chaining mechanism was proposed by Zillcs and Sohi in
[16] based on hand-optimized slices. Finally. an Instruction Path
Coprocessor could potentially be used to support dynamic extrac-
tion and execution of slices [3].

This study also appears in our recent technical report [18]. To the
best of our knowledge, no other work on the locality characteristics
of the slice stream of mispredicted branches or loads that miss
exists. Moreover, in their majority, most aforementioned slice-based
execution models rely on compile-time slice creation or manual
selection.

5 Conclusion
In this study we were motivated by the recently proposed opera-

tion-based prediction. Existing outcome-based predictors rely on
regularities in the outcome stream so that they can accurately pre-
dict a large fraction of the program's outcomes. However, some out-
comes do not exhibit sufficient regularity. Operation prediction has
the potential of successfully predicting some of these outcomes.
Operation prediction looks for regularity in the computation stream
that produces outcomes that do not exhibit sufficient regularity. It
works by dynamically extracting the computation slices that lead to
such outcomes and by attempting to pre-execute them next time
around. For operation prediction to be successful, it is necessary
that the computation stream of such outcomes exhibits sufficient
regularity.

Several works have demonstrated that operation prediction
method work or may work for branches or loads, In this work we
study program behavior and explain why operation prediction may
work. In particular, we studied the locality of the computations that
lead to otherwise unpredictable outcomes. We focused on loads and
branches and studied locality under various realistic assumptions
about slice detection. Moreover, we have studied models of opera-

10

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

tion predictors and how they interacted with an underlying out-
come-based predictor. Our results demonstrate that high locality
exists in the computation stream of unpredictable branches and of
loads that miss in the data cache. Moreover, we have shown that the
potential exists for operation prediction to boost accuracy over an
existing outcome-based branch predictor and of accurately predict-
ing the addresses of load references that would miss in the data
cache. To the best of our knowledge no previous work on the local-
ity of slices for mispredicted branches and loads exist.

While our results are promising we have not studied actual opera-
tion predictors taking timing into account. Nevertheless, we have
seen that slices tend to spread over large region of the original
instruction stream while they contain on the average few instruc-
tions. Moreover, our results remain valid and important as they
demonstrate that programs do exhibit the behavior necessary for
operation prediction to be successful. Further investigation is
required in tuning operation predictors so that the make use of
available resources effectively while being able to execute scout
threads early enough for providing predictions for modern high-per-
formance processors.

6 Acknowledgments
This research was supported by a Natural Sciences and Engineer-

ing Research Council of Canada (NSERC) research grant and by
research funds from the University of Toronto. Tor Aamodt was
supported by an NSERC PGS 'B' scholarship. We acknowledge the
comments and suggestions of the anonymous referees that helped
improve this paper.

REFERENCES
[1] M. M. Annavaram, J. NI. Patel, and E. S. Davidson. Data

Prcfctching by Dependence Graph Pre-computation. In
Proc. 28th International Symposium on Computer
Architecture, July 2001.

[2] R. Chappell, J. Stark, S. Kim. S. Reinhardt, and Y. Patt.
Simultaneous subordinate microthreading (SSMT). In Proc.
26th Intl. Symposium on Computer Architecture, pages 186-
195, May 1999.

[3] Y. Chou and J. Shen. Instruction path coprocessors. In Proc.
27th Intl. Symposium on Computer Architecture, pages 270-
281, June 2000.

[4] J. D. Collins, H. Wang, D. M. Tullsen, C. J. Hughes,
Y. Fong Lee, D. Lavery, and J. P. Shen. Speculative
Precomputation: Long-range Prefetching of Delinquent
Loads. In Proc. 28th International Symposium on Computer
Architecture, July 2001.

[5] A. Farcy, 0. Temam, and R. Espasa. Dataflow Analysis of
Branch Mispredictions and Its Application to Early
Resolution of Branch Outcomes. In Proc. 31st Annual
International Symposium on Microarchitecture, Dec. 1998.

C.-K. Luk. Tolerating Memory Latency through Software.
Controlled Pre-Execution in Simultaneous Multithreading
Processors. In Proc. 28th International Symposium on
Computer Architecture, July 2001.
S. Mehrotra and L. Harrison. Examination of a memory
access clasification scheme for pointer-intensive and
numeric programs. In Proc. 10th Intl. Conference on
Supercomputing, Sept. 1997.
A. Moshovos. Memory Dependence Prediction. Ph.D.
thesis, University of Wisconsin-Madison, Madison, WI,
Dec. 1998.
A. Moshovos, D. N. Pnevmatikatos. and A. Baniasadi. Slice
Processors: An Implementation of Operation-Based
Prediction. In Proc. International Conference on
Supercomputing, June 2001.
A. Roth, A. Moshovos, and G. S. Sohi. Dependence based
prefetching for linked data structures. In Proc. 8th
International Conference on Architectural Support for
Programming Languages and Operating Systems, pages
115-126, Oct. 1998.
A. Roth, A. Moshovos, and G. S. Sohi. Improving virtual
function call target prediction via dependence-based pre-
computation. In Proc. Intl. Conference on Supercomputing,
pans 356-364, June 1999.
A. Roth and G. S. Sohi. Speculative Data-Driven
Multithreading. In Proc. 7th International Symposium on
High Performance Computer Architecture, Jan 2001.
Y. Song and M. Dubois. Assisted execution. Technical
report, Technical Report CENG-98-25, Department of EE-
Systems, University of Southern California, Oct. 1998.
K. Sundaramoorthy, 	Z. Purser, 	and 	E. Rotenberg.
Slipstream processors: Improving both performance and
fault tolerance. In Proc. 9th International Conference on
Architectural Support for Programming Languages and
Operating Systems, Nov. 2000.
C. Zilles and G. Sohi. Understanding the Backward Slices of
Performance Degrading Instructions. In Proc. 27th
International Symposium on Computer Architecture, pages
172-181, June 2000.
C. Zilles and G. Sohi. Execution-Based Prediction Using
Speculative Slices. In Proc. 28th International Symposium
on Computer Architecture, June-July 2001.
J. D. Collins, D.M. Tullsen, H. Wang, and J.P. Shen,
Dynamic Speculative Prccomputation. To Appear In Proc.
34th International Symposium on Microarchiteaure, Dec.
2001.
Tor Aamodt, Andreas Moshovos, and Paul Chow, The
Predictability of Computations that Produce Unpredictable
Outcomes, Technical Report #TR-01-08-01, EECG,
University of Toronto, August 2001.

33

11

r.

^ 	.1
111 	

ii,14(1. I ..1-

IA 1.4

rPrrtial .S 	• .'")04‘ -kV" - ' I d 	- • ofitilP
bbt oritflltliptirr rt3.
• Vosive it016,3ii .411i .zirrxot. r 44C‘ ,

	

T9P1 	.11104400, r, -1 L .
q-0/1 At,s11- $64 14611itaiskl, 1-Insin, it. 	r--111

.;W 	 oPewthiMAIrlise:-,4111 	044,61-'

tan libitehtibM 	 - 	'Ter 	rkh rt,

446/14•R-Aff Act' 	 r
1E3 	,ftneinAivi- 	- 	I-0 -t

jij1 jJJ:jI1,
Wrier 1,10126,724101

shit ^4.41 4'1 kat' .0-, ii

• h3Ittklo4 	117r, ft, 	. 1 h. 1. l• •
IMPS-1-4 vftati,kotti 10* :nom

▪ 1 ”r•

6111,014 iCIV.Viqtat 	 Lr•It A/WCIWN,I1/4 	 ;

411 641,4 Sidltidiserob .11.rr rx,mbilanq 	 "1-1 -
Arlivapriarivittikhr 11.1 - 	L• 'I iAIM 	DELWi pit .1,

.4 'Mat
sigui0.1.0 r. -Lilt 	J :44?- 	- 	,

• ø1itomps4 /ow 1 	tr Irvzsh 	law.- II
Aft ail 	• Ihieff,r,lat-kIIMI

Mirlitrld • gi 41/P .12'.1 	 Vrt,
•ffrii 	Plikluth,013 	6 I 	IIrJL4144;itry,i .4, . •

dlial Alcrr.rii Ii, 	ollirTrirt.)
rafi,dibleaI 	 F7 A rta9K11111rIllirStrit

tHrg .01•11Dintntf 	 A . ! '4h tr11.1.1tht.: '1
po'litterryttim„°)- bawl, 	Ht. 	-4/4 11jj --4.-10111e4A 4,- 1

-. Ala tii4fint41 II4.41I 	t.

(Akt 	. 	r-All' 1

1604-611r. 	- • 	 L.",-0111 	*. H.
/OA 	-rale(1 	- - 	frit 1,44KI 	p.m&

pi% 	 '

.1011
/0011,1 	 J4-301_ 	4,1,1' 	tri.1
1443$100.<1 Irretirtervind 	 'Tr-, , •

JUR: 4414-Zo44tt 4,4.4 r-ist'. rri4!r...,11 1-1
.0300c ALl 	 4 „vrtsi-iu 	SA' 	 II

loinA 0-10110141- 6T 410111,17tou."(11,Yrim1401117-. 	a
ilk‘10711ifitkikfell$11 16-1 	re[104 	tv.okr.fit -rirr

_err 	[. 	1111. - II rb4I4 $1401 	 r
nor14kgp.m., r 	-

X:023 	 - lext.1514 !row!. 	tI H1,

c/A. MV#10 'INI1111.-- f IC fr

-r

- 	44' I N-41 	'11401- 	IP, I 	 ” cITO
11 	1 i 4,1: 1144.105E 	-1.0 	-1(-1 	 i• 	•

,441.....41(1111#: 	N 4-111 . 	Ii 	4 1 	P.
, 	114 `:••'• 	;PP* 	itern r III 111. 401 I t 	r dr 1/$14)14.

I 	1(11 	al;1511 .01.:04.VP 	 00-11 -.411-Ai 	 tlit117,04

I 	''11F6A LIP 	nua 141'.411 141 	' 	r-irr Artr • •,-Irituie‘
i'. 6111Y1 k-•• N Wit 	 t 	"40-910 IN•441̀

. 	 tit .-tib-Arotalty.. -furl 	rk.p.hody-,

	

f 	,-,frA441:itf 	 T rt. 	I it- 171
411t$1,,,, re I a v 	viteeniwro., 	I,I4-,44.1 11- 4J1 LAP

11•41 _ttgif-au 	 rn` 	110 	 u'r-ci' "114

	

44V4 *II,- 14 .110.4-1 iit,I t/wc, I1r1 rg 	- lob

'OR1.I Y4 'A 149F''r• 	f 	 - 	r

	

flr.rnistrri but ! 	 . .11:1
lab ik 	 irmil1Jrim1t-

-.41. 4,J4cfs LoIriTo I hi' 	 rf wherry,

	

-u larrtu attt 1,141) LW 	 I 	1.'"11 0-ti4
ka401

1l'i44011 	ti-tod 	 1.4114;"1- '4.17a UtriVital
tekVti Trr411*1

	

iaertittl tell FE 	 4

- ,xinzw21auna14 4,40-42,114,A44, ilIk•V 	 r”V
11 ra.77G-1101) cpmtaftli 11,,,Lorfi 	 ILIA
- kir 	 Ref- flLIt thiii4ithylpomy f(

141 110.111044.4 	 tI lottligio,„
-v-Tvils,)1/1,41LIILIdiJ 	I 	I,rII Law aigivraerm

	

K4..11 	540.4.4414#

a.moory 40
Nirki .1! 	twro 	 1+0.4,1 '̂ -r, tall 4 B.

*00 ioarbirrurfi Trj
- 	 .1-tiorrater, UM_ 	"110101,

UIOtsi rtrAte•tufworr,

	

tfli,0144 	n X -14 jaa,jr: 	,144mun 	rtri
r 	Ittibet1111910,1ro fitionitatolku tokromosribri?.

fr: 1%ji Ooki "triltroit,0415
?MO

	

din ibtriogithl-ithit kilooloofirI 	.41
ill--$7141111065 M RTItJGL -Ihi

DOW; WON Mt,
14,411. 24 0 ,1011W H

.4 .L Atir „irr10.110 	,r,ihr 441_

' 1144-1Af-14. WI+ 	FASID140110 MfS
I I Illria414 IIuf.411,41111.411r044 1114 1,4r1 	AC/1j

'At Out -0a 0,0.1.11/4
•Arrialdi 	.frrIffraIT 	. cyan

-.411140.0f-1 	Um •m[4141r-#470 	IV
--A. .1 .toiernotra &IRA! 	JO-WM!' Lill
-r r.141itk L.411A 	ifretorlitarty,,, rorptrkite,-.-:. r,

4,41,

' EL

Hierarchical Multi-Threading For Exploiting Parallelism at Multiple
Granularities

35

Mohamed M. Zahran
ECE Department

University of Maryland
College Park, MD 20742
mzahranCeng.umd.edu

Abstract

of the hierarchy exploits instruction-level parallelism
and thread-level parallelism, whereas the upper level
exploits more distant parallelism. Detailed simulation
studies with a cycle-accurate simulator indicate that
the hierarchical multithreading model provides scalable
performance for most of the non-numeric benchmarks
considered.

Keywords: Speculative multithreading, Control
independence, Microardiitecture, Thread-level Paral-
lelism, parallelism granularity

1 Introduction

A defining challenge for research in computer science
and engineering has been the ongoing quest for faster
execution of programs. The commodity microprocessor
industry has been traditionally looking to fine-grain or
instruction level parallelism (ILP) for improving perfor-
mance, by using sophisticated microarchitectural tech-
niques and compiler optimizations. These techniques
have been quite successful in exploiting ILP.

Many proposals such as the multiscalar [3][13], trace

Manoj Franklin
ECE Department and UMLkCS

University of Maryland
College Park, MD 20742
manojGeng.umd.edu

processing [8], superthreading [14], and clustered mul-
tithreading [2][6] have been proposed to reduce the cy-
cle time and to exploit thread level parallelism. All
of these proposals are geared to exploiting thread-level
parallelism at one granularity. In this paper we inves-
tigate a hierarchical multithreading model to exploit
thread-level parallelism at two granularities. It makes
use of decentralization and multithreading to extract
both fine- and medium-grain parallelism (also known
as ILP and TLP). This execution model has the po-
tential for better scalability of performance than non-
hierarchical multithreading execution models.

The rest of the paper is organized as follows. Section
2 presents the background and related work. Section
3 describes the HMT (Hierarchical Multi-Threading)
thread model. Section 4 presents a detailed description
of the HMT microarchitecture. Section 5 presents ex-
perimental results obtained from detailed simulations
of a cycle-accurate HMT simulator. Finally we con-
clude in section 6, followed by a list of references.

2 Background and Related
Work

Limited size instruction window is one of the major
hurdles in exploiting parallelism. Programs are hun-
dreds of millions of instructions. Window size is only
two or three dozens of instructions. In order to extract
lots of parallelism, we need to have a large instruction
window, which increases the visibility of the program
structure at run time. However, having a very large
instruction window is difficult, for the following rea-
sons: (i) Implementation constraints limit the window
size. (ii) Branch misprediction reduces the number of
useful instructions in the instruction window. (iii) Hav-
ing a large instruction window increases the complexity
of the instruction scheduler, thus increasing the cycle
time.

The central idea behind multithreading is to have

As we approach billion-transistor processor chips, the
need for a new architecture to make efficient use of
the increased transistor budget arises. Many studies
have shown that significant amounts of parallelism ex-
ist at different granularities that is yet to be exploited.
Architectures such as superscalar and VLIW use cen-
tralized resources, which prohibit scalability and hence
the ability to make use of the advances in sernicon-

-

	

	ductor technology. Decentralized architectures make a
step towards scalability, but are not geared to exploit
parallelism at different granularities. In this paper we
present a new execution model and microarchitecture
for exploiting both adjacent and distant parallelism in
the dynamic instruction stream. Our model, called hi-
erarchical multi-threading, uses a two-level hierarchical
arrangement of processing elements. The lower level

multiple flows of control within a process, allowing
parts of the process to be executed in parallel. In the
parallel threads model, threads that execute in parallel
are control-independent, and the decision to execute a
thread does not depend on the other active threads.
Under this model, compilers and programmers have
had little success in parallelizing highly irregular nu-
meric applications and most of the non-numeric appli-
cations. For such applications, researchers have pro-
posed a different thread control flow model called se-
quential threads model, which envisions a strict se-
quential ordering among the threads. That is, threads
are extracted from sequential code and run in paral-
lel, without violating the sequential program seman-
tics. Inter-thread communication between two threads
(if any) will be strictly in one direction, as dictated
by the sequential thread ordering. No explicit syn-
chronization operations are necessary. This relaxation
makes it possible to "parallelize" non-numeric appli-
cations into threads without explicit synchronization,
even if there is a potential inter-thread data depen-
dence. The purpose of identifying threads in such a
model is to indicate that those threads are good candi-
dates for parallel execution in a multithreaded proces-
sor.

Examples of prior proposals using sequential threads
are the multiscalar model [3][13], the superthreading
model [14], the trace processing model [8], and the
dynamic multithreading model [1]. In the sequential
threads model, threads can be nonspeculative or spec-
tilative from the control point of view. If a model sup-
ports speculative threads, then it is called speculative
multithreading (SpMT). This model is particularly
useful to deal with the complex control flow present
in typical non-numeric programs. In fact, many of
the prior proposals using sequential threads implement
SpNIT [3][5][6][8][13)[14].

The speculative multithreading architectures dis-
cussed so far use a single level of multi-threading. The
program is partitioned into a set of threads, and mul-
tiple threads are run in parallel using multiple PEs.
The PEs are usually organized as a circular queue in
order to maintain sequential thread ordering. A major
drawback associated with single-level multithreading is
that it is limited to exploiting TLP at one granularity
only, namely the size of each thread. Thus, if it exploits
fine-grain TLP, then it does not exploit more distant
parallelism, and vice versa. In order to obtain high
performance, we need to extract parallelism at differ-
ent granularities.

A second drawback of single-level multithreading is
that it is difficult to exploit control independence be-
tween multiple threads. If there is a thread-level mis-
prediction, then all subsequent threads beginning from

the mis-speculated thread are generally squashed, even
though some threads may be control independent on
the misspeculated one. It is possible to modify the
hardware associated with the circular queue in order
to take advantage of control independence [9], however
the design becomes more complicated.

3 The HMT Thread Model

We investigate hierarchical multithreading (HMT) to
overcome the limitations of single-level multithread-
ing. This section introduces the software aspects of
our HMT model; the next section details the microar-
chitecture aspects. An important attribute of any mul-
tithreading system is its thread model, which specifies
the sequencing of threads, the name spaces (such as
registers and memory addresses) threads can access,
and the ordering semantics among these operations,
particularly those done by distinct threads.

As our HMT work primarily targets non-numeric
applications, we use SpNIT as its thread sequencing
model. However, threads are formed at two different
granularities. The control flow graph is partitioned into
supertasks, which are again partitioned into tasks. A
task is a group of basic blocks and can have multiple
targets. A supertask is a group of tasks at a macro
level, which can be thought of as a bigger subgraph of
the control flow graph. A supertask represents a sub-
stantial partition of program execution, the idea being
that there is little if any control dependence between
supertasks, and ideally only minimal data dependence.
Generally, instructions in two adjacent supertasks are
far away in the dynamic instruction stream and have
a high probability of being mutually control indepen-
dent. Thus, we have three hierarchical levels of nodes
in a CFG: basic blocks, tasks, and supertasks.

The criterion used for this partitioning is important,
because an improper partitioning could in fact result in
high inter-thread communication and synchronization,
thereby degrading performance! True multithreading
should not only aim to distribute instructions evenly
among the threads, but also aim to minimize inter-
thread communication by localizing a major share of
the inter-instruction communication occurring in the
processor to within each PE. In order to achieve this,
mutually data dependent instructions are most likely
allocated to the same thread.

In this paper, tasks are formed as done for the mul-
tiscalar processor in [3]. Supertasks are dynamically
generated as a collection of tasks. This is done as fol-
lows: the task predictor begins assigning tasks to PEs
of a superPE. As soon as all the PEs of the superPE
are running these tasks are assumed to be a supertask,

ARB

Data Cache

given a unique ID and stored in a specific table. For the
time being, each supertask is composed of fixed num-
ber of tasks. Thus, is task prediction is used in order to
generate the required number of tasks per supertask.
This may not be the best strategy but is used for the
time being in order to test our architecture.

4 The HMT Microarchitecture

In this section we describe one possible microarchitec-
ture for our HMT thread model. In order to parallelly
execute multiple tasks and supertasks in an efficient
manner, we investigate a two-level hierarchical multi-
threaded microarchitecture. The higher level is com-
posed of several superPEs, and is used for executing
multiple supertasks in parallel. At the lower level of
the hierarchy, each superPE consists of several PEs,
each of which executes a task. Figure 1 presents a
block diagram of the higher level of the hierarchy. The
superPEs are organized as a circular queue, with head
and tail pointers, such that at any point of time the
active superPEs are between the head and the tail. A
global sequencer assigns supertasks to the superPEs.

4.1 Program Execution in the HMT
Processor

Initially, all the superPEs are idle, with the head and
tail pointers pointing to the same superPE. The global
sequencer assigns the first supertask to the head su-
perPE, and advances the tail pointer to the next one
in the circular queue. The supertask successor predic-
tor then predicts the successor of the supertask just
assigned. (Our experiments show that control flow be-
tween supertasks is highly repetitive.) In the next cy-
cle, the predicted successor supertask is assigned to the
next superPE. This process is repeated until all of the
superPEs are busy. Currently we set the size of a su-
pertask to be equal to X tasks where X is the number
of PEs per superPE.

Each superPE executes the supertask assigned to it.
Only the head superPE is allowed to physically com-
mit, and update the architected state. All the others
buffer their values, as will be shown in detail later.
When the head superPE commits, the head pointer is
advanced to the next superPE. At that time, a check
is done to see if the supertask prediction done for the
new head superPE is correct or not. If the prediction
turns out to be wrong, then all the supertasks from the
new head until the tail are squashed, and ,,k,e correct
supertask is assigned to the new head.

The above description is for the higher level of the
hierarchy, the one involving supertasks and superPEs.

SupertiirSuccessor
Predictor

Global Sequencer

Head

Super PE 0 Super).{. PE 1

-I 	Value
Predictor

Super PE 3
(Optional)

Super PE 2

Interconnect

Figure 1: The HMT Processor

Next, we shall see how each supertask is executed
within a superPE.

4.2 Lower Level of HMT Microarchi-
tecture: SuperPE

The lower level of the HMT hierarchy considered in this
paper is almost identical to a multiscalar processor, as
described in [3]. The internals of this level are (briefly)
described for the benefit of readers who are unfamil-
iar with the details of the multiscalar processor. Due
to space limitations, this description is kept brief; in-
terested readers are encouraged to consult [3] for the
details. The internals of a superPE are shown in Figure
2. It consists of a group of PEs, eadi of which can be
considered a small superscalar processor with a small
instruction window, small instruction issue, etc. These
PEs are connected as a circular queue with head and
tail pointers, similar to the higher level. The circular
queue imposes a sequential order among the PEs, with
the head pointer indicating the oldest active PE.

A local sequencer with a local task successor predic-
tor is responsible for assigning tasks to the PEs. When
the tail PE is idle, a sequencer invokes the next task (as
per sequential ordering) on the tail PE, and advances
the tail pointer. When a task prediction is found to
be incorrect, all subsequent tasks within the superPE
are squashed; supertasks executing in subsequent su-
perPEs are not squashed. Completed tasks are retired
from the head of the PE queue, enforcing the required
sequential ordering within the supertask. This retire-
ment is speculative, if the superPE is not the current
head of the higher level of the hierarchy.

37

From Value
Predictor Register Value

[From Previous
SuperPE

Register Value

To Head PE From Tail PE

Confidence
Estimator

Figure 2: Block Diagram of a SuperPE

Fdtch
Unit

RF

From Previous
SuperPE

PE 0 PE 1

Task Successor
Predictor (Sequence›—

PE 3 PE 2

To Next
SuperPE

ARB

I FUs I

Confidence

To Next
SuperPE

Global
Register File

Confidence
Comparator

4.3 Inter-superPE Register Communi-
cation

Next, let us consider communication of register values
from one supertask to another, at the higher level of the
HMT hierarchy. As shown in Figure 2, each superPE
maintains a global register file to store the supertask's
incoming register values (from the previous superPE or
the data value predictor). When a new register value
arrives at a superPE, this value is compared against the
existing value for that register in the global register file.
If there is a change, then the new value is forwarded
to its head PE, from where it gets forwarded to subse-
quent PEs, if required.

A superPE receives two sets of register values, one
coming from the previous superPE (in case the current
one is not the head superPE) and the other from the
data value predictor. The choice between these values
is done based on the confidence values. Each register
value, whether coming from the value predictor or the
predecessor superPE, has its own confidence value, and
the superPE chooses the value with the highest confi-
dence. Each superPE also has a confidence estimator
to calculate the confidence values for the register values
sent to its successor, as shown in Figure 2. Of course, if
the predecessor superPE is the head and is committing,
its values have the highest confidence.

The confidence estimations coming from the value
predictor, are derived from the saturating counters of
the predictor. The confidence of the values corning
from the predecessor depends on the distance of the
predecessor from the head superPE, the number of cy-
cles since the assignment of the supertask to the prede-

cessor as well as whether registers have been modified
by the predecessor. In order to optimize inter-superPE
register communication, we need to address two ques-
tions: (1) how often are register values sent to a su-
perPE (whether from the data value predictor or from
the predecessor superPE)? (2) which values should be
sent?

For the first question, the following scheme is ap-
plied: the data value predictor predicts values for all
registers only once for each supertask, and this is done
at the time the supertask is assigned to a superPE.
Each time a superPE wants to send values to its suc-
cessor, it first calculates confidence for its values and
then sends them. The receiving superPE will compare
the confidence values of the new register values against
the existing confidence values. If the new confidence
value is higher for a particular register, then the new
value is accepted. Register values are passed from a
superPE to its successor when the successor superPE
is about to speculatively commit its first task, which
is not too early so the superPE does not use obselete
values nor too late so the superPE would not have done
a lot of useless work.

Next we address the second question of which value
exactly to send. Sending all the register values has
two drawbacks: (1) high bandwidth requirement, (2)
low utility, as all registers may not have new values.
Therefore, all registers are communicated only the first
time. As time progresses since a supertask started exe-
cution, register values generated by that supertask tend
to have higher confidence values and only modified reg-
isters are communicated to the subsequent superPEs.
Also, all register values are communicated from the

39

head superPE when it is about to physically commit. 	4.4 Inter-SuperPE Memory Communi-
cation

4.3.1 Data Value Prediction

The HMT microarchitecture can benefit from data
value prediction, which involves predicting the incom-
ing register values for a supertask. One option for the
data value predictor is a hybrid predictor that uses 2-
delta stride predictor [11] as well as context based pre-
dictor [12]. This hybrid predictor can be modified to
predict all register values at once, in a way similar to
[10].

Without the data value predictor, the only source
of information available will be the premature regis-
ter values coming from the predecessor superPE. Be-
cause these will most likely change during execution,
the newly assigned supertask is likely to do a lot of
useless work, if data value prediction is not used.

The job of the data value predictor is: given a super-
task ID, predict all register values at the same time, to-
gether with confidence values for each predicted value.
The predictor is updated each time a supertask is phys-
ically committed by the head superPE.

The data value predictor has two tables: SHT (Su-
pertask History Table) and VPT (Value Prediction Ta-
ble). Each SHT entry contains the following fields:
(i)Frequency of accessing the entry, in order to use
least frequently used replacement policy. (ii)Tag field,
(iii)For each architected register it has: Last k values
produced for this register, confidence estimator for the
stride and predictor type (stride or context) that made
the last prediction.

The last two values in the history of a register are
used to make a prediction using a delta stride predictor.
The confidence estimator of the delta stride predictor is
simply a saturating counter that is incremented in case
of correct prediction and decremented otherwise. The
last k values are combined using a hash function and
are used to index the VPT that contains k saturating
counters for those values. The value with the highest
counter is picked as the prediction of the context based
predictor, with the corresponding counter as the con-
fidence estimator. From the values predicted by the
stride and context components, we pick the one with
higher confidence. In the case of a misprediction, the
counters corresponding to the predictor that made the
last prediction are decremented. Similarly, in the case
of a correct prediction, the corresponding counters are
incremented. If the confidence estimators happen to be
the same, one of the two values is selected at random.

At the higher level of the HMT hierarchy, inter-
superPE memory communication is done by connect-
ing the Address Resultion Buffers (ARBs) [4] of each
superPE by a bidirectional ring. Thus, the memory
data dependence speculation part is distributed at the
higher level. When a load reference is issued in a su-
perPE, and its ARB does not contain a prior store to
the same location, the request is forwarded to the pre-
decessor superPE's ARB, and so on. Similarly, when
a store is issued in a superPE, it will be forwarded to
the successor superPE's ARB, if no subsequent stores
have already been issued to the same address from its
superPE.

4.5 Advantages of the HMT Paradigm

Task mispredictions typically cause squashing only
within its superPE. Data dependence violations only
cause re-execution of the affected instructions.

The benefits of HMT stern from two important fea-
tures: program characteristics and technological as-
pects. Program characteristics reveal the following: (i)
Studies have shown that parallelism is there [7][15], but
most of it cannot be exploited due to the large distance
in the dynamic instruction stream. Our proposed ar-
chitecture exploits some of the distant parallelism by
executing supertasks in parallel. (ii) Multiscalar stud-
ies show IPC (Instructions Per Cycle) to be tapering
off as more and more PEs are added [13]. This is be-
cause, in the case of a task misprediction, all the PEs
starting from the PE with the misprediction will be
squashed, thus decreasing the percentage of PEs doing
useful work. We try to avoid this by letting each su-
perPE have a small number of PEs and assign control-
independent supertasks to multiple superPEs, as much
as possible.

Also, if we squash a PE in a superPE, only the sub-
sequent PEs in the same superPE are squashed; the
remaining PEs in the other superPEs are not squashed
(unless there is a change in successor supertask).

An important point to note is that the hierarchical
arrangement of PEs as in the HMT microarchitecture
does not require substantial additions or complexity to
the hardware. The main newly introduced hardware
is the confidence estimators for the register values and
the comparators for comparing them. The data value
predictor and the supertask predictor are two other
newly introduced hardware structures. Apart from
these, there is little new hardware. In fact, the two-
level hierarchy can be dynamically reconfigured as a
flat multithreaded processor, if required.

Default Values for Simulator Parameters
PE Processor

Parameter Value 	1 Parameter Value

Max task size 32 instructions
PE issue width 2 instructions/cycle —
Task predictor 2-level predictor

1K entry. pattern size 6
Supertask predictor 2-level predictor

1K entry, pattern size 6 _
Li - Icache 16KB, 4-way set assoc.,

1 cycle access latency
Li - Dcache 128KB, 4-way set assoc.,

2 cycle access latency
Functional unit

latencies
It/Branch :- 1 cycle
NIul/Div :- 10 cycles

Data value predictor hybrid(stride, context), k=4
_ SHT 1K entries and VPT 64K entries

Table 1: Default Parameters for the Experimental Evaluation

40

5 Experimental Evaluation

The previous section presented a detailed description
of an HMT microarchitecture. Next, we present a de-
tailed quantitative evaluation of this processing model.
Such an evaluation is important to study its perfor-
mance characteristics, and to see how scalable this ar-
chitecture is.

5.1 Experimental Methodology and
Setup

Our experimental setup consists of a detailed cycle-
accurate execution-driven simulator based on the
NILPS-II ISA. The simulator accepts executable im-
ages of programs, and does cycle-by-cycle simulation;
it is not trace driven. The simulator faithfully mod-
els the HMT architecture depicted in Figures 1 and 2;
all important features of the HMT processor, including
the superPEs, the PEs within the superPEs, execution
along mispredicted paths, inter-PE & inter-superPE
register communication, and inter-PE & inter-superPE
memory communication have been included in the sim-
ulator. The simulator is parameterized; we can vary
the number of superPEs, the number of PEs in a su-
perPE, the PE issue width, the task size, and the cache
configurations. Some of the hardware parameters are
fixed at the default values given in Table 1. The pa-
rameters on the left hand side of the table are specific
to a PE, and those on the right are for the entire pro-
cessor. The successor predictor we use is similar to a
two-level data value predictor [16).

For benchmarks, we use a collection of 7 programs,
five of which are from the SPEC95 suite. The pro-
grams are compiled for a NIIPS R3000-Ultrix platform
with a MIPS C (Version 3.0) compiler using the op-
timization flags distributed in the SPEC benchmark
makefiles. The benchmarks are simulated up to 100

million instructions each.
Our simulation experiments measure the execution

time in terms of the number of cycles required to ex-
ecute a fixed number of instructions. While reporting
the results, the execution time is expressed in terms of
instructions per cycle (IPC). The IPC values include
only the committed instructions, and do not include
the squashed instructions.

5.2 Experimental Results

Our first set of experiments are intended to show the
benefits of the hierarchical arrangement. For this pur-
pose, we simulate an HMT(3 x 4) processor (that is,
an HMT processor with 3 superPEs, each of which has
4 PEs) as well as an HMT (1 x 12) processor, both
of which do not use data value prediction, in order to
show the potential of the HMT without the advan-
tage of data value prediction. These results are pre-
sented in Figure 3. On the X-axis, we plot the bench-
marks, and on the Y-axis, we plot the IPC values. Each
benchmarks has two histogram bars, corresponding to
HMT(3 x 4) and HMT (1 x 12), respectively.

The first thing to notice in Figure 3 is that the
HMT(3 x 4) architecture is performing better than
the non-hierarchical HMT(1 x 12) architecture for
5 of the 7 benchmarks. Looking at specific bench-
marks, the HMT architecture performs relatively the
best for bzip2 and ijpeg. It performs relatively
worse for compress95 and ii. Among these two,
compress95 does not have much parallelism. ii has
notable amounts of parallelism; on analyzing the re-
sults for ii, we found that the prediction accuracy for
procedure returns was low. We intend to investigate
better predictors for predicting the return addresses in
a hierarchical setting.

We next present some run-time statistics for the
HMT(3 x 4) configuration; these statistics are some-
what different for the different configurations. Table

bzip2 compress95 ijpeg Ii 	m88ksim tektronix vortex
iii 1

Figure 3: Performance of an HMT(3 x 4) Processor
and an HMT(1 x 12) Processor, without Data Value
Prediction

2 presents these statistics. In particular, it presents
the data value prediction accuracy, supertask predic-
tion accuracy, average active superPEs in a cycle, and
the number of distinct supertasks executed.

Next, we perform sensitivity studies to study the
performance of the HMT architecture under various
conditions. In particular, we experiment with two dif-
ferent values for the number of PEs per superPE —
2 and 3. For each of these values, we vary the num-
ber of superPEs from 1 to 3. These studies use data
value prediction at the higher level; performance does
not scale very well when data value prediction is not
used. Figure 4 presents the results of these sensitivity
studies. The left graph is for 2 PEs/SuperPE and the
right one is for 3 PEs/SuperPE.

From the results presented in Figure 4, we can see
that except for compress95 and ii, all of the other
bencInnarks show good scalability in performance when
the number of superPEs is increased from 1 to 3. That
is, even when we use a total of 12 PEs, we still get
reasonably good performance.

6 Summary and Conclusions

This paper presents a two-level hierarchical architec-
ture that exploits parallelism at different granularities.
The processing elements are organized in ring of rings,
rather than a single ring. While each smaller ring (su-
perPE) executes a sequence of tasks (one per PE) as in
the Multiscalar, a high-level sequencer assigns super-
tasks to the superPEs. Such an architecture addresses
several key issues, including maintaining a large in-

struction window, while avoiding centralized resources
and minimizing wire delay.

Detailed simulation results show that for most of
the non-numeric benchmarks used, the hierarchical
approach provides better performance than the non-
hierarchical approach. The results also show that a
small percentage of the programs may not benefit from
a hierarchical multithreading execution model.

The HMT microarchitecture presented in this paper
is just one way to exploit parallelism at multiple granu-
larities. Future work involves integrating compiler sup-
port. We intend to start with a post-compilation step
to generate supertasks that are roughly of the same
size, are somewhat control independent, and are some-
what data independent. We also intend to explore the
memory hierarchy and memory disambiguation system
to find the best model for the HMT model.

Acknowledgements

This work was supported by the U.S. National Science
Foundation (NSF) through a CAREER grant (MIP
9702569) and a regular grant (CCR 0073582).

References

[1] H. Akkary and M. A. Driscoll, "A Dynamic Multi-
threading Processor," in Proc. 31st Inn Symposium
on Microarchitecture, 1998.

[2] P. Faraboschi, G. Desoli, and J. Fischer, "Clustered
Instruction-level Parallel Processors," Tech. Rep., HP
Labs, 1998.

[3] M. Franklin, The Multiscalar Architecture. PhD the-
sis, Technical Report 1196, Computer Science Depart-
ment, University of Wisconsin-Madison, 1993.

[4] M. Franklin and G. S. Sohi, "ARB: A Hardware
Mechanism for Dynamic Reordering of Memory Ref-
erences," IEEE Transactions on Computers, vol. 45,
no. 5, pp. 552-571, 1996.

[5] V. Krishnan and J. Torrellas, "Executing sequen-
tial binaries on a clustered multithreaded architecture
with speculation support," in Int'l conf. on High Per-
formance Computer Architecture (HPCA), 1998.

[6] P. Marcuello and A. Gonzalez, "Clustered Speculative
Multithreaded Processors," in Proc. Int'l conf. on Su-
percomputing, pp. 20-25, 1999.

[7] I. Martel, D. Ortega, E. Ayguakle, and M. Valero,
"Increasing Effective IPC by exploiting Distant Par-
allelism," in Proc. Int'l conf. on Supercomputing,
pp. 348-355, 1999.

[8] E. Rotenberg, Q. Jacobson, Y. Sazeides, and J. E.
Smith, "Trace processors," in Proc. 30th Annual Sym-
posium on Microarchitecture (Micro-30), pp. 24-34,
1997.

41

O 1 Super-PE
• 2 Super-PEs
III 	3 Super-PEs

3PEsSuperPE

* PM tn88ksitn tekironi

4

33

O 1 Super-PE
• 2 Super-PEs
• 3 Super-PEs

3

2.5

ie 2

1.5

0.5

2PEsnuperPE

Benchmark Data Value
Pred. Accuracy

Supertask Pred.
Accuracy

Avg. Active
SuperPEs per cycle

Distinct Supertasks
Executed

bzip2 83.4% 94.7% 2.88 119
compress95 46.3% 88.0% 2.64 164
kiPeg 69.9% 83.9% 2.67 348
Ii 65.0% 87.7% 2.06 628
m88Icsim 91.6% 96.7% 2.83 209
tektronix 68.7% 89.3% 2.55 494
vortex 67.6% 74.7% 2.79 2994

Table 2: Run-Time Statistics for HMT(3 x 4) Configuration

Figure 4: Performance of HMT Architecture for Different Configurations

191 E. R,otenberg, and J. E. Smith, "Control Independence
in Trace processors," in Proc. 32nd Int'l Symposium
an Microarchitectum (Micro-32), 1999.

[10] R. Sathe, K. Wang, and M. Franklin, "Techniques for
performing highly accurate data value prediction," Mi-
croprocessors and Microsystems, 1998.

[11] Y. Sazeides and J. E. Smith, "The Predictability of
Data Values," in Proc.30th Intl Symposium an Mi-
croarchitecture, pp. 248-258, 1997.

[12] Y. Sazeides and J. E. Smith, "Implementations of Con-
text based Value Predictors," Tech. Rep., University
of Wisconsin-Madison, 1997.

1131 G. S. Sohi, S. Breach, and T. N. Vijaykumar, "Multi-
scalar Processors," in Proc. 22nd Int'l Symposium on
Computer Architecture , pp. 414-425, 1995.

[14] J.-Y. Tsai and et.al, "Integrating parallelizing compi-
lation technology and processor architecture for cost-
effective concurrent multithreading," Journal of Infor-
mation Science and Engineering, vol. 14, March 1998.

1151 S. Vajapeyam., P. J. Joseph, and T. Mitra, "Dynamic
Vectorization: A Mechanism for Exploiting Far-flung
ILP in Ordinary Programs," in Proc. 26th Int'l Sym-
posium on Computer Architecture, pp. 12-27, 1999.

[16] K. Wang and M. Franklin, "Highly Accurate
Data Value Prediction using Hybrid Predictors,"
in Proc. 30th Intl Symposium on Microarchitecture,
pp. 281-290, 1997.

Basic Mechanisms of Thread Control for On-Chip-Memory
Multi-threading Processor

Takanori MATSUZAKI t, Hiroshi TOMIYASU t, Makoto AMAMIYA t

t Graduate School of Information Science and Electrical Engineering,
Kyushu University

6-1, Kasuga-Koen, Kasuga, Fukuoka, 816-8580, Japan
{takanori, amamiya}Oal.is.kyushu-u.ac.jp

t Institute of Information Sciences and Electronics,
University of Tsukuba

1-1-1 Tennodai, Tsukuba, Ibaraki, 305, Japan
tomiyasuOis.tsukuba.ac.jp

Abstract

In this paper, we describe basic mechanisms of thread control for the FUCE processor. FUCE
means FUsion of Communication and Execution. The goal of the FUCE processor project is to fuse
the intra-processor execution and inter-processor communication. In order to achieve this goal, the
FUCE processor integrates the processor units, memory unit and communication units into a single
chip. The FUCE processor has mechanisms for pre-loading thread context and hiding memory access
latency. With these mechanisms, no data cache memory is required, since memory access latency can
be hidden due to a simultaneous multi-threading mechanism and the on-chip-memory system with
broad-bandwidth low latency internal bus of the FUCE processor. This approach can reduce the
performance gap between instruction execution, and memory and network excesses.

Keywords Multi-threading, pre-loading thread context, hiding of memory access latency, on-chip-
memory processor, on-chip multi-processor.

1 Introduction
Currently, communication and VLSI device technologies are advancing towards higher and higher speeds
and are becoming larger in scale. For example, optical-fiber transmission-line technology is now achiev-
ing Giga-bits/sec speeds and will achieve Tera-bits/sec speeds in the near future. New communication
protocols, e.g., IP on WDM and IP on SONET, are now under development. In addition, hardware
VLSI device technology is advancing to larger scale integration VLSI's with Giga-gate logic and Giga-bit
memory on chip, and higher clock speeds of several Giga-Hz.

Software technologies including processor architectures, in contrast, are still developing within the
conventional framework. The development of new architecture and software technologies is urgently
required.

Against the background of these hardware and software technology trends, we are pursuing the FUCE
project at Kyushu University. FUCE means FUsion of Communication and Execution. The main objec-
tive of this research is, as the name shows, to develop a new architecture that truly fuses communication
and computation. The FUCE project aims to develop a new processor-architecture and kernel-software
(operating system) for fusing computation and communications. We call the processor the FUCE pro-
cessor, and the kernel-software CEFOS (Communication and Execution Fusion OS) [2]

The FUCE processor is an on-chip-memory processor developed based on a fine-grain multi-threading
concept. In the FUCE processor, a thread is a tiny process executed without preemption. The fine-grain
multi-threading technique promises high performance in fusing communication and internal execution.
Both event handling, i.e., incoming/outgoing messages and I/O, and internal process execution are con-
trolled by a uniform thread execution mechanism. The on-chip-memory processor technique also promises
high performance in hiding memory access latency. No data cache memory is required in the FUCE pro-
cessor, since the on-chip-memory system provides low latency memory accesses.

43

This paper introduces the FUCE processor and discusses the simultaneous multi-threaded execution
mechanism and on-chip-memory system. Section 2 presents an overview of the FUCE processor. Section
3 discusses the FUCE process and FUCE threads. Section 4 covers the effect of hiding the memory access
latency. Section 5 discusses the originality of the FUCE processor in comparison with related work.

2 Overview of the FUCE processor

The objective in designing the FUCE processor is to fuse the intra-processor execution and inter-processor
communication so that the mechanism reduces the performance gap between intra-processor execution
and inter-processor communication by integrating into one chip the execution units, communication units
and memory unit.

An overview of FUCE Processor is shown in Figure 1.

Non-Thread
Execution
Unit

64
Register Re

Register file 7
Instruction
Cache

Thread
Execution
Unit 7

Current

Instruction
Cache

Thread
Execution
Unit 0

Register file 0

Current

Thread
Entry
Buller

JL
64 x 4

Alternative

1024

Broadband Bus Switch (128 x n bit)

%266 ,256 ,256 128

bank 0 bank 1
	

bank n 	

Universal Interface H

External Memory Interface -

On chip main memory Network Network Interface

Inter Processor Connection Network

Figure 1: the FUCE Processor

The FUCE processor executes multiple threads in parallel and concurrently. It is designed as a multi-
processor on a single chip to support high-speed multi-thread execution. In the on-chip multi-processor,
multiple execution units, a ready thread queue control and event-handling units are incorporated into one
chip. In addition to multiple execution units, a communication control unit and a main memory are also
integrated into the chip. Another important design issue is the data path between execution units and
memory units. The FUCE processor incorporates a broad-bandwidth low-latency internal bus. It also
has external memory units (e.g. off-chip-memory or disks), which are connected to an external memory
interface. It uses on-chip-memory as main memory and uses the external memory units as secondary
memory.

Our design specifications for the FUCE processor are as follows:

1. Multiple units for thread execution.

2. Highly efficient thread execution.

3. Large size of register files.

4. High-speed broadband bus.

5. Large on-chip-memory.

The FUCE processor is being designed with future VLSI technology in mind. Table 1 shows the
specifications of the FUCE processor. In the near future, VLSI technology will be able to achieve 800
Mega-transistors/chip with a chip size of 600mrn2[11]. The FUCE processor uses half the area of the
chip for on-chip memory. Also, we estimate that the number of transistors for a thread execution unit
will be up to 5 Mega-transistors/unit, so 8-16 thread execution units and the non-thread execution
unit will require 100 Mega-transistors. Therefore, the FUCE processor can integrate other units (e.g.
communication control units and a broadband internal bus) into one chip.

Table 1: Specification of On-chip FUCE Processor

2005
	

2010

Clock cycles 4 Giga-Hz 10 Giga-Hz
On-chip-memory Capacity 256 Mega-Bytes 1 Giga-Byte
On-chip-memory Speed 2 Giga-Hz 5 Giga-Hz
Internal Bus Speed 512 Giga-Bytes/sec 2.5 Tera-Bytes/sec

2.1 Execution Unit
The FUCE processor has two kinds of instruction execution units. One is the thread execution unit, and
the other is the non-thread execution unit. The thread execution units execute threads without preemp-
tion. The non-thread execution unit executes non-thread code, which handles interrupts or exceptions for
the OS kernel. Thread execution units have no preemption mechanism, while the non-thread execution
unit can suspend and resume operations.

The FUCE processor has multiple thread execution units, each of which executes a thread inde-
pendently. We believe that the memory system performance is more important than complicated high
performance execution such as speculative execution and out-of-order execution. Therefore, the thread
execution units of the FUCE processor are constructed with a simple pipeline structure. Here, the thread
is defined as a sequence of instructions that is executed exclusively without any interruption except for
some emergency cases such as infinite loops.

The features of the thread execution units are:

1. Thread execution units issue two instructions simultaneously and in order, and execute those two
instructions in parallel.

2. Thread execution units transfer a set of registers in one instruction. We call this mechanism block
load/store.

3. The execution pipeline of a thread execution unit will not stall while loading data from memory.
We call this mechanism non-blocking load.

4. Thread execution units have two sets of register files: a current register file and alternative register
file. The current register file is used for the thread execution in the foreground. The context of
a ready thread is pre-loaded into the alternative register file in the background. The alternative
register file takes the place of the current register file when the next ready thread runs.

5. Thread execution units have a thread entry buffer. This buffer is a hardware queue, which holds
ready threads.

2.2 On-Chip-Memory

Current processors, which have off-chip memory, suffer from processor-pin bottleneck. It is therefore
difficult to expand the memory buses of current processors. On the other hand, on-chip-memory pro-
cessors scarcely suffer from processor-pin bottleneck, because on-chip-memory processors do not require

45

processor pins for the memory buses and it is easy to expand their memory buses. Furthermore, on-
chip-memory processors make low-latency memory access possible. Low latency (e.g. around 4-8 cycles)
and broadband (e.g. 512 Giga-Bytes/sec) data transfer are two features of the FUCE processor memory
system.

The FUCE processor can also hide the memory access latency. In order to hide the memory access
latency, it implements mechanisms that allow the thread execution units to access the on-chip-memory
with low latency. These mechanisms are the block load/store and the non-blocking load. It can also
reduce the overhead of memory access involved in switching the thread context thanks to the pre-loading
of thread context.

The FUCE processor assumes that thread instructions are re-ordered by the compiler to pre-fetch the
data. Re-ordering of instructions is such that the thread execution unit pre-fetches the data into a register
during the thread execution. This pre-fetch instruction uses the non-blocking load and block load/store.
This pre-fetch mechanism will avoid pipeline stall and reduce the idle time while the data are loaded into
the register. In addition, the block load/store reduces the number of data transfer instructions.

With the memory units integrated into the chip, memory access becomes possible in four to eight
cycles, and high-speed data transfer is performed between the execution unit and the memory unit. In
addition, the FUCE processor has a mechanism for hiding the memory access latency, i.e. pre-loading
of thread context. Note here that, even though the FUCE processor hides a low memory access latency
(e.g. 4-8 cycles), it can not hide a large memory access latency of 100 cycles or more. Since the memory
access to off-chip-memory takes too many cycles for the memory access latency to be hidden, the FUCE
processor provides only on-chip-memory.

In fine-grain multi-threading, threads consist of small chunks of instructions and thread execution will
terminate before data in cache memory are used more than once. In this situation, the gains afforded
by cache memory are less than the overhead necessary for the cache memory control. But the FUCE
processor can hide the memory access latency, and therefore no data cache memory is required for fine-
grain multi-threading. On the other hand, the FUCE processor employs an instruction cache due to the
principle of locality of instruction sequence in a thread.

In the FUCE processor memory system design, internal data transfer is more important than the data
transfer between internal main memory and external memory.

3 FUCE process and FUCE threads

The basic structure of process and threads controlled in the FUCE processor is shown in Figure 2. The
FUCE processor's process has more than one thread. The process is a unit of resource operation and the
thread is a unit of processor assignment. Threads in the same process share elements of their processing
environment such as a stack and a virtual memory space.

The basic features of the FUCE thread are as follows:

1. The FUCE thread is a fine-grain multi-thread. A large amount of the FUCE thread is assumed to
run concurrently. Concurrent FUCE thread executions hide the communication latency.

2. The FUCE thread is a tiny process with no interruption. Therefore, the FUCE thread never
suspends until it encounters its thread termination instruction. Furthermore, it has no limits in
principle on its execution time.

3. The FUCE thread is a lightweight thread, and the lightweight thread can reduce the thread switch-
ing overhead.

4. The FUCE thread never accesses Off-Chip memory while it is running. Therefore, the FUCE thread
is split when its execution has a large latency because it must access off-chip memory.

The FUCE processor can execute multiple threads belonging to different processes, enabling it to
execute multi-threaded code on the multiple thread execution units. This approach can obtain sufficient
ready threads to keep all of the thread execution units busy. If the FUCE thread has off-chip memory
access, such as accessing external memory or accessing another node processor's memory, it will be
separated into two threads, which are the caller thread and the recipient thread. In this way, the FUCE
processor will be able to hide the latency of accessing off-chip memory.

Process2

Thread

CD

CD.

/

Enqueue

Thread
Scheduler

Processl

(72) Thread

C)

C7-) Thread
Scheduler

Enqueue

Shared with threads
in a process

3.1 Basic Mechanisms of Thread Control
The basic mechanisms of thread control are shown in Figure 3. To simplify the hardware mechanism of
thread control, an operating system controls the thread execution in the FUCE processor. The thread
execution control is performed through the software and hardware queue.

The operating system has one software queue, and controls the thread execution with the software
queue. The software queue has threads, which are synchronized threads and can be executed immediately.
Also, the software queue is able to have many threads which belong to another process. The operating
system manages many processes, and each process has one thread scheduler.

The operating system controls the thread execution in the FUCE processor, synchronizing the threads.
In order to synchronize the threads, the operating system has thread schedulers, which synchronize
the threads in each process. The thread scheduler controls the thread execution order dynamically by
synchronizing threads, and enqueuing synchronized threads in the software queue.

The hardware queue consists of the thread entry buffer. A Ready thread is registered in the thread
entry buffer, and waits to be assigned to an idle thread execution unit. The operating system, when
notified that the thread entry buffer is empty, moves a thread to the thread entry buffer. This notification
is managed by hardware, but the transaction is controlled by software. The FUCE processor also has
special instructions which control thread registration.

47

More than
one thread

Thread 2

Thread 3

0
\\N\ Thread 1

Process
Virtual memory
Wow

(hit of
resource

.4cperat ion*. 	 Fi lee

I Software Queue I I 	 I
I 	 I
I 	move threads to 	I 	 OS

-L.—.—. .—.—.-------4.—.---.—..
1 	thread entry buffer 	I 	 HW

Unit of processor
allocation

Stack

Figure 2: Basic Structure of FUCE process and
FUCE threads

Thread Queue

Thread Entry
Butler
(Hardware Queue)

Figure 3: Basic Mechanisms of Thread Control

4 Hardware Support Mechanisms for Thread Execution

4.1 Thread Context Pre-loading
Context switches occur quite often in fine-grain multi-threading, and the overhead of a context switch
is quite serious. In order to reduce this overhead, the FUCE processor pre-loads the thread context. In
pre-loading, the processor uses two sets of register files and the thread entry buffer. The pre-loading
mechanism allows the FUCE processor to achieve fast thread-context switches.

The FUCE Processor pre-loads the next thread context using the pre-loading unit, which is a special
unit for the thread pre-loading. The FUCE processor has multiple thread pre-load units, each of which is
connected to a thread execution unit. The pre-load units pre-load the next thread context with reference
to the data included in the header of the next thread instructions. Figure 4 shows an overview of thread
context pre-loading. The basic mechanism and function of thread context pre-loading are as follows:

1. A ready thread is assigned to an idle thread execution unit. The allocated thread uses the current
register file when it begins to run.

•

\ register
Current
Register
Rise

LoacVStore
(3) pre-loed thread context Unit

MMU

Pre-bed Unit

Thread Entry
Butler

1

k Them, Emma= UM

current
Thread
Resource

Resource
Butter

Altrernstiye
Register
Files

Pre-load
UnO
controler

(2) assign a nest
reedy *read

Thread Execution Unit

(1) Ihreed begin to run

2. When the thread execution unit begins to run the allocated thread, a new ready thread in the
thread entry buffer is assigned to the thread execution unit.

3. While the thread execution unit is executing the allocated thread in foreground, it loads the thread
context of a new ready thread, which is to be executed right after the current thread execution
terminates, into its alternative register file in the background.

4. After the thread execution terminates, the thread execution unit exchanges the alternative register
file and the current register file, and begins to execute the new thread.

Figure 4: Pre-loading of Thread Context

4.2 Effect of thread context pre-loading

We evaluated the effect of the thread context pre-loading, described in section 4.1 using two benchmark
programs:

• Matrix: 1000 x 1000 matrix multiplication.

• 8-Queens: Finding all solutions of the 8-queens problem.

The specifications for the thread execution units used in the evaluation are shown in Table 2. In the
evaluation, we used 8 thread execution units.

Table 2: Specifications of the thread execution units

Instruction Issuing Rate 2 instructions/clock-cycle
Number of Registers 64 x 2
Block-data per Transfer 4 blocks/instruction
Memory Access Latency 4, 6, 8, 10 cycles
Latency of Floating Point Execution 4 cycles

4.2.1 Matrix

The effect is examined for the matrix multiplication of 1000 x 1000 matrices. In this evaluation, we
evaluated two cases of execution time and pipeline stall, and examined them for memory access latencies
of 4, 6, 8 and 10 cycles: (a) With thread context pre-loading, (b) Without thread context pre-loading.
Figure 5 shows the execution time and pipeline stall time.

E
xe

cu
tio

n
 t
im

e
 (
cl

oc
k)

500M

400M

300M

200M

100M

E
xe

cu
tio

n
 t
im

e
(c

lo
ck

)

100M

execution

EN idle (pipeline stall)

In the Matrix problems, most of the instructions are load instructions, and the other instructions are
multiplication and addition. The FUCE processor can load the data into the register without pipeline
stall by using thread context pre-loading. So it can execute matrix problems with only a tiny pipeline
stall (about 0.5%) (Figure 5: (a) With thread context pre-loading). On the other hand, It can not hide
pipeline stall, when it does not use thread context pre-loading (Figure 5: (b) Without thread context
pre-loading).

We can see from these results that thread context pre-loading makes a clear contribution to reducing
pipeline stall and increasing the performance of thread execution.

4.2.2 8-Queens

We evaluated the execution time and the pipeline stall time in finding all solutions of the 8-queens
problem. In this evaluation, on-chip memory access latency is 4 cycles. Figure 6 shows the execution
time and the pipeline stall time.

In the 8-queens problem, the load instructions and the store instructions constitute about 35 percent
of all the instructions. In addition, the load instruction and the store instructions are distributed. So, it
is difficult for the FUCE processor to hide memory access latency (Figure 6: (a) Normal instructions).
However, the FUCE processor can reduce on-chip memory access latency by separating instructions into
threads and re-ordering thread instructions (Figure 6: (b) Re-ordering Threaded instructions). These
approaches use thread context pre-loading.

We can see from these results that thread context pre-loading can reduce the execution time and
pipeline stall time. This is because thread context pre-loading reduces the overhead of thread context
switching.

49

200M

(a) (b) 	(a) (b) 	(a) (b) 	(a) (b)
4 	6 	8 	10

On-Chip Memory Access Latency (cycle)

(a) With thread context pre-loading

(b) Without thread context pre-loading

Figure 5: Matrix Multiplication

(a) 	 (b)

(a) Normal instructions
(non threaded instructions)

(b) Re-ordering Threaded instructions
(thread context pre-loading)

Figure 6: 8-Queens Problem

5 Related Work

The importance and feasibleness of the fine-grain multi-threading technique are generating interest in the
parallel computing research field. For instance, the MTA machine has been commercialized[3] and the
HTMT project is enthusiastically proceeding towards the goal of a Petaflops machine[4]. The concepts
behind the FUCE machine have emerged from our research on multi-threading architecture and the
parallel processing language V[5][6].

Because on-chip-memory processors achieve low latency and high-speed memory access, the on-chip-
memory processor technique is being researched in the field of high performance computer systems. For

instance, PPRAM is an architectural framework for merged memory/logic ASSPs (Application-Specific
Standard Products)[7]. Hydra[8] integrates multiple processors and cache memory on a single chip. The
FUCE processor integrates not only multiple execution units and main memory but also communication
control units into a single chip, in order to fuse communication and internal execution.

A great deal of research into on-chip multi-processors is also currently being pursued around the world.
NIP98[9], for example, supports efficient thread creation and execution through mechanisms involving
inheritance of register values, resolution of data dependencies and speculative execution. However, these
mechanisms make the hardware logic more complicated. The FUCE processor does not rely on such
complicated mechanisms. SNIT[10] is a simultaneous multi-threading processor. in which multiple threads
are dynamically assigned to execution units at both the instruction level and the thread level. The FUCE
processor is being developed based on the technique of fine-grain multi-threading and runs multiple
threads concurrently in the multiple thread execution units. The FUCE processor is similar to SNIT
in that both rely on concurrent multi-thread execution. However, the multi-threading approach of the
FUCE processor, in sharp contrast to that of SMT, is to assign each thread to a single execution unit and
execute it exclusively on that execution unit in order to make the hardware logic simple and transparent.

6 Conclusion

This paper has discussed the basic mechanisms of thread control for on-chip-memory multi-threading
processor architecture, and evaluated the effect of thread context pre-loading in the FUCE processor. In
the FUCE processor architecture, we are making use of the technique of on-chip-memory processing. hi
addition, we are using thread execution support mechanisms, such as thread context pre-loading and the
hiding of memory access latency. These mechanisms are very effective for thread execution.

Through these approaches, the FUCE processor can reduce the performance gap between instruction
execution, and memory and network access. The architecture of the FUCE processor, which integrates
on-chip-memory VLSI processor construction and simultaneous multi-thread processing, will provide
solutions to important future technical issues in high performance parallel and distributed processing.

Acknowledgments
This research was pursued with support for R&D activities in the info-communications area from the
Telecommunication Advancement Organization of Japan.

References
[1] T. Nlatsuzaki, et al. An Architecture of On-Chip-Memory Multi-threading Processor, Proc. of Inter-

national Workshop on Innovative Architecture for Future Generation High-Performance Processors
and Systems (INVLk01),1 2001, To Appear.

[2] M. Amamiya. et al. An architecture of fusing communication and execution for global distributed
processing, In SSGRR2000 Computer and Business Conference, 8 2000.

[3] G. Alverson, et al. Tera Hardware-Software Cooperation, Proc. Supercomputing, San Jose, 1997.

[4] G. Gao, et al. Hybrid Technology Multithread Architecture, Proceedings of The Sixth Symposium on
The Frontiers of Massively Parallel Computation (Frontiers '96), pp.98-105, October, 1996

[5] M. Amamiya, et al. Datarol:A Parallel Machine Architecture for Fine-Grain Multithreading, Proc.
Third Working Conference on Massively Parallel Programming Models, London, 1997.

[6] M. Amarniya, et al. Co-Processor Design for Fine-grain Message Handling in KUMP/D. Proc. Euro-
pean Conference on Parallel Processing, Passau, pp.779-788, 1997.

[7] K. Murakami, et al. Parallel Processing RAM (PPRAN1), Japan-Germany Forum on Information
Technology, Nov. 1997.

[8] L. Hammond, et al. "The Stanford Hydra CMP", IEEE Micro, Vol. 20, No. 2, March/April 2000

[9] N. Nishi, et al. A 1GIPS 1W Single-Chip Tightly-Coupled Four-Way Multiprocessor with Architecture
Support for Multiple Control Flow Execution, In Proc. ISSCC2000, WP25.5.

[10] Dean M. Tullsen!*t al. "Simultaneous Multithreading: Maximizing On-Chip Parallelism," Proceed-
ings of the 22nd Annual International Symposium on Computer Architecture, June, 1995.

[11] The International Technology Roadmap for Semiconductors (ITRS), http://public.itrs.net/

[12] Mosys, Inc. littp://www.mosysinc.com/mhome/

50

Maximizing TLP with loop-parallelization on SMT

51

Diego Puppin
Massachusetts Institute of Technology
77 Massachusetts Avenue, NE43-618,

Cambridge, MA, 02139
diegoOmit.edu

(617) 253-6284

Abstract

This paper describes research in exploiting loop-level
parallelism on a simultaneous multithreading proces-
sor. We discuss some general and ad-hoc techniques
for loop parallelization that proved to be effective
with SMT, and how they were tuned for it. These
techniques have been tested on the well-known Liv-
ermore loops, chosen for their variety of behaviors.
The set of optimizations used produced significant
improvement overall: we were able to improve aver-
age IPC from 2.72 to 3.97, and to gain an average
speedup of 1.39 over optimized single-thread code,
using up to eight threads.

We also describe a simple but effective method for
determining the best number of threads to be used
for parallel loops on a multithreaded processor. The
model uses compile-time information to predict the
most efficient point.

Keywords: simultaneous multithreading, loop par-
allelization, compiling

1 Introduction

The simultaneous multithreading (SMT) processor
[12] is a computing paradigm that allows multiple
threads to share the processing resources at the level
of functional units each cycle. This allows thread-
level parallelism to be exploited at a very fine gran-
ularity. The role of a parallel compiler for SMT is
to extract parallelism, and to tune parallelization to
take advantage of its peculiar resource sharing.

Parallelization on a SNIT processor presents differ-
ent challenges than a conventional parallel processor,
due to the unique features of the processor. First,
because threads share resources at such a fine level,
increasing instruction-count to introduce paralleliza-
tion can actually decrease performance if spare fetch
and execution bandwidth is not available. Second,

Dean Tullsen
University of California, San Diego

9500 Gilman Drive
La Jolla, CA, 92093

tullseacs.ucsd.edu

because all execution resources are available to even a
single thread, increasing parallelism beyond the level
that maximizes instruction-level parallelism, or satu-
rates execution bandwith, is unnecessary and poten-
tially harmful.

Thus, parallelization on SNIT requires more care-
ful tuning of parallelism and parallel optimizations,
balancing the cost vs. benefit. Also, because thread-
level parallelism is not constrained by memory layout
(all threads share the same memory hierarchy), the
compiler is free to optimize the number of threads
used, and the methods of parallelization, indepen-
dently for each loop in the program.

This paper is structured as follows. Section 2 de-
scribes some related work. Section 3 studies the ef-
fectiveness of techniques for loop-parallelization. Ex-
plored techniques include iteration interleaving, loop
fusion, cyclic reduction, loop peeling, loop-invariant
code motion, and local accumulation. Section 4 intro-
duces a method for determining the best number of
threads for a specific loop. The last section concludes
and presents future work.

2 Related Work

In [13], effective techniques for fine-grained synchro-
nization are discussed. SNIT offers communication at
the level of the Li cache. The authors explain how
to take advantage of this feature to parallelize tight
loops that could not be parallelized on conventional
parallel machines. Our work leverages some of their
results.

In [6], Mitchell et al. were able to predict the per-
formance of a few algorithms by measuring parame-
ters such as data and register locality. However, pre-
diction was strictly problem-dependent, and required
a time-consuming data-fitting process. Because we
limit our attention to determining the best number
of threads, the method proposed here is simpler.

1

They also demonstrate the complex interactions
between ILP-enhancing compiler optimizations and
threading, also confirming that too much paralleliza-
tion is not beneficial after the processor is saturated.

Other techniques that introduce novel approaches
to creating thread-level parallelism on a multi-
threaded processor include slip-streaming [10], and
speculative precomputation [2, 14]. However, this
paper focuses on more traditional compiler-generated
parallelism on a multithreaded processor.

The Cray MTA processor [1] features an advanced
threading compiler which is capable of several of the
transformations described here; however, the MTA is
an LIW, cycle-interleaved multithreading processor;
thus, it represents a significantly different execution
model with less intimate sharing of and competition
for resources between threads.

3 Effectiveness of loop-parall-
elization techniques

The first part of this research presents case studies
of loop-parallelization with the SMT processor. The
Livermore loops have been chosen for this purpose
because of their wide availability, their well-known
features, and their generality and variety. We apply
some standard and some ad-hoc parallelization tech-
niques to the various kernels in order to understand
which are effective, and what is the performance gain.
The goal is to show that a compiler can effectively
target parallelization on the SMT processor. For the
simulations, the parameters used are the same used
in [11]. As explained there, these parameters de-
scribe a likely next-generation SNIT processor, with
out-of-order instruction execution, 8-wide fetch and
execute, 2-level on-chip caches, and hardware support
for 8 threads. In some instances, we also simulate 16
threads to verify that some benchmarks have optimal
points beyond the limits of our machine.

Parallelization was performed at the high-level
code (C source). All the kernels were rewritten man-
ually, using general principles. We tried to emulate
the work of an advanced compiler in all of our trans-
formations.

Parallelization techniques used here include gen-
eral loop restructuring, such as loop fusion, loop peel-
ing, invariant code motion, arid some more advanced
techniques aimed at this architecture. These include
interleaving, cyclic reduction, and local accumula-
tion.

In the following analysis, two principal metrics will
be discussed: processor utilization and completion
time. Even if completion time is the most important

Kernel loop no. 7
Comp.flags• -02, Seq time 8883392

Number at threads

Figure 1: Execution statistics for kernel 7

value when discussing the effect of multithreading,
processor utilization is a useful description of how
well processor resources are exploited: we cannot ex-
pect very high improvement in terms of completion
time if processor utilization is high for the sequen-
tial version. Processor utilization is measured as the
average percentage of useful instructions fetched rel-
ative to the total bandwidth (8 instructions per cy-
cle). Completion time is measured as a percentage of
the time taken by the sequential version. For both
metrics, the values corresponding to 0 threads in the
plots refer to the sequential version, as opposed the
the single-thread version of the parallel code, which
is the 1-thread result.

All simulation was done using the SMTSIM [11]
simulator, running Alpha executables and compiled
with gcc at the highest level of optimization.

3.1 Independent iterations

The Livermore loop kernels can be classified into four
groups: independent-iteration loops, loop-carried de-
pendence loops, accumulation loops, and large loops.
This and the following sections will present overall re-
sults for all the loops of each type, as well as specific
discussion of loops that either had typical or note-
worthy behavior.

Loops with independent iterations are basically
vector computations that can be carried on indepen-
dently for every element. They are easy to parallelize,
using iteration interleaving. This consists in assigning
iterations to threads not in blocks, but interleaved.
As shown in [5], in these cases this is the most ef-
ficient way to express parallelism: better cache and
TLB utilization is reached with this solution.

These kinu of loops are easily run on the SNIT pro-
cessor, with good speedup. Figure 1 shows statitics

52

2

6 	8 	10 	12 	14 	16

120

100 0

120

100

0--enownefized oonrielion time
useful iredfixtorts fetched (%)

4

20

Kernel loop no. 9
Running with up to 16 threads

Number of threads

Figure 2: Execution statistics for kernel 9

Kernel loop no. 8
Comp laOs -02. Seq time 1444081

20 Ca 	 0-0 nownal.zed corrviimon time -
3-1E1 useful instructors) fetched (%)

4 	6
	

8
Number of threads

Figure 3: Execution statistics for kernel 8

53

for kernel 7 as an example. Completion time asymp- --
totically decreases to 60% of sequential time, achiev-
ing much higher processor utilization. We cannot ex-
pect any more improvement, as almost all the proces-
sor bandwidth (92%) is taken by useful instructions.
On average, these loops, when parallelized achieve
about 1.5 speedup.

The highest available parallelism is found in kernel
9. This code suffers from very bad Dcache utilization
(only 70% to 80% Dcache hit ratio) and very high
average memory delay (116.5 cycles). When more
threads are running, data are moved into the shared
cache by the first thread: the other threads will find
their data ready in the cache, due to the interleaving,
with an effect similar to prefetching. The 8-thread
version has an average memory delay of just 46.2 cy-
cles, and runs 2.5 times faster. In figure 2, results are
shown for up to 16 threads, which will be discussed
further in section 4.

We should note that loop 8 is in this category (inde-
pendent iterations) with some compiler assistance. In
this kernel, some temporary values are stored tidily in
a vector, but are never used outside the iteration that
created them. We assume that a compiler can deter-
mine this fact using some simple techniques (compar-
ing indices...), and then introduce suitable temporary
variables, local to each iteration. This transformation
makes iterations independent. This change proved to
be effective with sequential code as well. The mul-
tithreaded code is more than twice as fast. Figure
3 shows this result, with the non-multithreaded code
also taking advantage of this optimization.

Kernel loop no. 11
Comp.flags -02-DALG2B. Seq time 722554

Number of threads

Figure 4: Execution statistics for kernel 11

parallelize: interleaving is not useful here, as iter-
ations need to be executed strictly in order. Also,
loop skewing failed due to high overhead.

Nonetheless, kernel 11 was successfully parallelized
using cyclic reduction [4], a powerful algorithm for the
running sum problem, which was tuned to SMT by
reducing the level of recursion to 2.

The initial low processor utilization on this kernel
offers large opportunity to introduce advanced tech-
niques. Even if more instructions are executed, about
1.7 times as much in this case, the increase in avail-
able TLP allows much better instruction throughput,
overcoming the large overhead. The multithreaded
version is almost twice as fast (see figure 4). We ex-
pect this optimization to be very useful with other
kinds of loops.

3.2 Loop-carried dependence loops

Loops featuring loop-carried data dependences (Liv-
ermore loops 5, 11, 19, 20, 23) are more difficult to

3.3 Accumulation loops

Livermore kernels no. 3, 4, 6, and 13 are particu-
larly interesting, as they feature some independent

3

G)--€,nomnaizeit completion time
3--a usetut inotrixbone Notched (%)

2 	4 	 6
	 a

Number 01 tlireaCIS

120

100

so

60

40

20

54

Kernel loop no. 3
	

Kernel loop no. 18

Comp Hags -02-DVER2, Seg time 414332
	

compliags: -02. Seq time- 745093

Figure 5: Execution statistics for kernel 3

Number of threads

Figure 6: Execution statistics for kernel 18

computation, followed by accumulation of all the val-
ues. So. one part of the body could be easily paral-
lelized among threads (interleaving), while accumu-
lation was protected by suitable (ordered) locking to
prevent critical races.

To manage these cases, we introduce a technique
called local accumulation. If the accumulation is car-
ried on by an associative and commutative function,
the order is not important: every thread can com-
pute a local summation, which at the end takes part,

in the global sum, performed by one specific thread.
Figure 5 shows typical behavior for this cate-

gory (in this case, loop 3). The two-thread version
presents a boost in performance with respect to se-
quential code (1.6 speedup), but after this, the global
sum introduces sequentiality, which makes further
threads useless. We verified that a tree reduction
for summation is not effective, as its cost overwhelms
the increased ILP.

It. is interesting to note that the optimizations
introduced are effective sometimes even if just one
thread is running. The MT version of kernel 6 with
one thread runs faster than the original sequential
version (see table 1). In this case, we introduced a
temporary variable to store the local summation, the
value of which was then summed to the final results.
This transformation allowed better register allocation
and memory usage even when no actual TLP was ex-
ploited.

3.4 Larger loops

Five of the 24 Livermore loops featured larger, more
complex loops, with complex branching and data-
dependent memory-accesses. In these cases, the gen-
eral technique was to interleave iterations, introduc-
ing ordered locking to protect possible dependences.

We expect that a compiler will not be able to improve
the performance significantly due to the difficulties of
analyzing the complex code. In these cases, the pro-
grannner may be able to give more directions to the
compiler, e.g. by augmenting the code with some
compilation directives.

Nonetheless, some other standard techniques
proved useful in some cases. The three loops com-
posing kernel 18 are just a smart splitting of a larger
loop, to increase ILP. When loops are fused, more op-
portunity for thread-level parallelism emerges, which
is exploited when more threads are used. This so-
lution is not good with few threads, because the in-
creased ILP provided by loop distribution is greater
than the TLP provided by loop fusion.

In figure 6, a comparison between the two ver-
sions (loop fusion and loop distribution) is given.
To achieve the best performance at any number of
threads, the compiler would have to produce multi-
ple versions of the code, which could be selected at
runtime based on the number of hardware contexts
available. This idea is gaining importance for tradi-
tional processors also, under the broader denomina-
tion of feedback-directed optimization [7].

Another note is about kernel 24. This loop scans a
vector looking for the first minimum. It was par-
allelized successfully (see figure 7) considering the
minimum as an accumulation, using local variables
to store the local minimum for each thread. This
type of restructuring can be debatable, as this re-
quires the compiler to recognize that the test x [k] <
x[m] is a way to compute an accumulation function.
but we believe that the usage of a library function
min could make this transformation automatic (some
libraries, such as MPI, feature specific parallel imple-
mentations for the minimum).

4

55

Kernel loop no. 24
Comp flagsl -02, Seq.lime: 225033

2 	 4

Number at threads

Figure 7: Execution statistics for kernel 24

6

166P 	try. 1 2 4 8 be. IPC MT 1PC
1 	IND
2 	LOG
3 	ACC
4 	ACC

100
100
100
100

100
100

55
65

100
100

56
67

100
100

57
72

100
100

55
65

5.32
6.10
2.18
2.40

5.34
6.10
3,94
3.80

5 	DEP
6 	ACC
7 	IND
8 	IND

000
87

100
100

100
68
84

69

100
60
67
47'

100
64
61
37

100
60
61
37

1.22
1.34
462
1 69

1.22
2.25
7.53
4.50

9 	IND 100 98 67 37 ' 37 0.35 0.93
10 	IND 100 91 86 90 86 2.56 2.97
11 	DEP 100 77 60 59 57 1.39 2.42
12 	IND 100 76 76 75 75 4.92 696
13 	ATC-' 100 68 41 39 39 1.53 3.95
14 	LOG 100 100 84 83 82 3.57 386
15 	IND 100 82 76 73 72 4.86 6.72
16 	LOG 100 100 100 100 100 1.21 1.21
17 	IND 100 51 27 25 24 1.68 6.90
1.8 	LOG 100 87 68 64 64 2.68 4.21
19 	DEP 100 100 100 100 100 1.01 1.01
20 	DEP 100 300 100 109 100 0.70 0.70
23 	IND 100 100 97 99 96 6.11 6.37
22 	IND 100 84 72 45 46 2.54 5.57
23 	DEP 100 100 100 100 100 1.26 1.26
24 	LOG 100 93 79 77 74 4.46 6.03
averegC 99 85 76 73 72 2.72 197

lipeeCup % 102.58 117.19 133_28 136 75 138.62

1.4

12

1.0

0.8
0 	 2 	 4

Number of threads

Table 1: Experimental data for the Livermore loops
Speedup

Figure 8: Average speedup for the Livermore loops

3.5 Overall speedup

In most cases, good speedups were achieved by ap-
plying varied optimization techniques appropriate to
each loop. Overall results obtained with these tech-
niques are given in figures 8, where the dashed line
represents the speedup that can be reached choosing
the best number of threads independently for every
kernel. With the techniques discussed here, we were
able to achieve significant speed-up: IPC is increased
on average from 2.72 to 3.97, and completion time
exhibits speedups averaging 1.39.

In this work, we assume a low-cost thread spawning
mechanism, or that, in parallel code, threads avail-
able for parallel execution would be waiting on syn-
chronization variables between parallel loops. This
latter model can be implemented with low overhead,
due to the fast on-chip communication offered by
SMT.

Table 1 shows the results with more details. The
type column represents the category in which the
loop falls: independent iterations (IND), loop-carried

dependences (DEP), accumulation (ACC) and large
loops (LRG). The table reports completion time and
average speedup for the parallel code with 1 2, 4 and
8 threads (results for the other numbers of threads are
not shown for simplicity), normalized with respect to
the sequential time, set equal to 100. We also set
completion time equal to 100 if the MT code was ac-
tually slower, as we can always run sequential code if
needed. The table then reports the completion time
and average speedup reached with the best number
of threads. It shows also IPC for the sequential code
and useful IPC for the best number of threads, that
is computed as:

useful IPC = sequential IPC * speedup

This way, we do not count any overhead introduced
by multi-threading, we measure only how efficiently
the useful instructions of the sequential code were run
by the parallel code. In 7 cases we were able to have
more than 6 useful IPC, out of a total bandwidth
of 8. For instance, while kernel 11 reaches an actual
processor utilization of about 60%, i.e. more than 4.5
IPC, useful IPC is only 2.42.

As the reader can observe, the best performance is
not always reached with eight threads. For accumu-
lation loops, for instance, a few threads are usually
enough. Therefore, it is crucial to be able to deter-
mine the right number of threads to best exploit the
available resources.

There are two reasons to limit thread use to the op-
finial point (or below). In some cases, performance
decreases significantly when more threads are used.
Second, from a system-level view, this presents the
system with more options to use the idle threads for
other purposes. Even if we determine that an applica-
tion will saturate the processor (because it saturates

5

best copies =

CPL * min
1..5 	nunzinstsi

if independent iterations

bandwidth,)

a particular resource, for example the floating point
execution units), system-level performance could still
be improved if other threads are introduced which do
not bottleneck on the same resource. Techniques for
identifying such threads are discussed in [9].

In the next section, we introduce a method that
allows the compiler to determine the optimal number
of threads to use for each loop.

We make the assumption that the best number of
threads is the minimum number that reaches full pro-
cessor utilization before saturating. Keeping the min-
imum number, we have a better utilization of shared
resources. The best number of copies can be com-
puted as:

56

4 Determining the best num-
ber of threads

Let's call critical path length (CPL) the length of the
instruction critical path (longest chain of dependent
instructions) within a basic block. To compute the
CPL, we consider instruction latency. For memory
operations, we use average memory access time as
measured by the simulator on the sequential version
of each kernel.

We wrote a small program that allowed us to col-
lect CPL figures automatically, using Atom [3], a tool
able to augment binary Alpha code with analysis rou-
tines. Atom is also used to determine which are the
most stressed basic blocks, in the discussion that fol-
lows.

If the block represents a loop body, a single itera-
tion will take at least CPL cycles. Not all the func-
tional units will typically be used in this time: many
of them may remain empty due to low ILP. We can
have a performance gain if we can squeeze another
copy of the loop body into the schedule, filling the
empty slots.

A higher number of threads does not in general
guarantee higher performance. Further performance
improvement is limited if one of the functional units
is saturated. In our terminology, this means that the
number of instructions of a given type cannot be ex-
ecuted within CPL cycles by the available resources.
In particular, we track the number of integer, load-
store, synchronization and floating point functional
units, as well as total issue bandwidth (five different
counts). If a functional unit. is not saturated, more
copies of the body loop can run together as different
SNIT threads, as long as iterations can be executed
partially or fully in parallel.

saturation, if nurninsts, > CPL * band width,

where bandwidth, is the bandwidth (available func-
tional units) of instructions of type i, and nurninsts,
the count of instruction of type i. In this case, we
break all instructions into the 5 categories just de-
scribed.

1 	if dependent iterations

This approach has been tried, with the results
shown in table 2.

Refinement of this model to have a more precise
approximation of the best number of threads is a con-
tinuing direction of this research, but we are encour-
aged by the success of the initial techniques. Also,
the current model manages only those loops (14 out
of 24) for which one single basic block is responsible
for most of the running time (>80%). Despite its
current simplicity, the presented model still enables
the following observations:

• For kernels featuring loop-carried dependences,
adding more threads is not useful when naive
parallelization is used.

• Very high expected values describe a situation
in which increasing the number of threads is use-
ful; particularly interesting is kernel no. 9, which
scales up to 16 threads (see figure 2): the model
says that it would scale well even to a really
higher number of threads.

• Low expected values can be observed when the
processor-utilization curve features a minimum;
these situations require careful tuning of the
number of threads.

The most unexpected result is given by kernel no.
6, which does not scale beyond 4 threads. Its low per-
formance is mostly determined by a very high mem-
ory latency, the effects of which are hidden by fewer
threads than expected by the model.

Giving the compiler control over the number of
threads created, as well as the tools to choose the
right number, can enable significantly higher perfor-
mance than naïvely creating the maximum number of
threads. This maximizes both per-application per-
formance and system-level performance (not shown
directly in this work) when the other thread contexts
are made available for other purposes. This ability
is maximized if the processor has the ability to dy-
namically allocate and deallocate threads during the
execution of the program without high overhead.

6

Kernel 1 3 4 5 6 7 8
Actual 8 2 2 1 4 7 8
Expect. 8.8 5.1 5.1 1 17.4 6.3 5.5 '

Kernel 9 10 11 12 13 21 23
Actual 8(16) 7 1 2 5 3 1
Expect. 35.3 9.2 1 4 3.3 6.0 1

Table 2: Actual best number of threads compared
with expected best number of copies

In this direction, we believe that this model can be
used to predict symbiosis [8] effects. The model can
tell which units are saturated and which are not, and
how many threads are best if the available resources
are reduced, in a certain sense predicting the inter-
action of two multi-threaded programs. If the two
programs have different requests and they can run at
their best with a limited number of threads, we can
expect them to run together effectively. This will be
an interesting topic of future research.

5 Conclusion and Future Work

We have shown that standard and ad-hoc paralleliza-
tion techniques can improve significantly the perfor-
mance of loops on an SMT processor: IPC increasead
on average from 2.72 to 3.97, and completion time
achieves an average speedup of 1.39 over the sequen-
tial version, using up to eight threads.

The demonstrated optimizations should be within
the capabilities of a reasonable compiler. The Cray
MTA compiler already does some of these optimiza-
tions for that architecture.

We have also shown a model to determine the best
number of threads for a given loop. We were able
to make predictions about the number that offered
the best performance for specific loops, using com-
pile time information. We believe that a compiler
featuring such a model can boost the performance by
running each loop with the most appropriate num-
ber of threads. We also believe that the model can
improve system-level performance, predicting which
programs can run together with good symbiotic ef-
fect.

Future work will be in the direction of developing
and implementing an advanced parallelizing compiler
for the SMT. This will require support of automatic
rewriting for loops, using techniques such as those
shown here, and a performance model that best ex-
ploits the TLP features of the architecture.

Acknowledgements

The authors would like to thank the reviewers for
their useful comments. This work was funded in part
by NSF Career award MIP-9701708 and equipment
grants from Compaq Computer Corporation.

References

[1] R. Alverson, D. Callahan, D. Cummings, and
B. Koblenz. The tera computer system. 1990
International Conference on Supercomputing,
September 1990.

[2] J. D. Collins, H. Wang, D. M. Tullsen, C. J.
Hughes, Y. Lee, D. Lavery, and J. P. Shen. Spec-
ulative precomputation: Long-range prefetching
of delinquent loads. 28th International Sympo-
sium on Computer Architecture, 2001.

[3] Compaq. Alpha c compiler libraries: Atom. On-
line documentation.

[4] P. M. Kogge and H. S. Stone. A parallel algo-
rithm for the efficient solution of a general class
of recurrence equations. IEEE Transactions on
Computers, C-22(8):786-793, August 1973.

[5] J. L. Lo, S. J. Eggers, H. M. Levy, S. S. Parekh,
and D. M. Tullsen. Tuning compiler optimiza-
tions for simultaneous multithreading. 30th An-
nual International Symposium on Microarchitec-
ture (Micro-30), December 1997.

[6] N. Mitchell, L. Carter, J. Ferrante, and
D. Tullsen. lip versus tip on smt. Supercom-
puting '99, November 1999.

[7] M. D. Smith. Overcoming the challenges to
feedback-directed optimization. ACM SIG-
PLAN Workshop on Dynamic and Adaptive
Compilation and Optimization (Dynamo 00),
Boston, MA, January 2000.

[8] A. Snavely, N. Mitchell, L. Carter, J. Ferrante,
and D. Tullsen. Explorations in symbiosis on two
multithreaded architectures. Workshop on Mul-
tithreaded Execution, Architecture, and Compi-
lation, January 1999.

[9] A. Snavely and D. Tullsen. Symbiotic job-
scheduling for a simultaneous multithreading
processor. Architectural Support for Program-
ming Languages and Operating Systems, pages
234-244, November 2000.

57

7

[10] K. Sundaramoorthy, Z. Purser, and E. Roten-
berg. Slipstream processors: Improving both
performance and fault tolerance. Architectural
Support for Programming Languages and Oper-
ating Systems, pages 257-268, November 2000.

[11] D. M. TulLsen, S. J. Eggers, J. S. Emer, H. M.
Levy, J. L. Lo, and R. L. Stamm. Exploiting
choice: Instruction fetch and issue on an imple-
mentable simultaneous multithreading proces-
sor. 23rd Annual International Symposium on
Computer Architecture, Philadelphia, PA, May
1996. Reprinted in Readings in Computer Ar-
chitecture.

[12] D. M. Tullsen, S. J. Eggers, and H. M. Levy.
Simultaneous multithreading: Maximizing on-
chip parallelism. 22nd Annual International
Symposium on Computer Architecture, Santa
Margherita Ligure, Italy, June 1995. Reprinted
in 25 Years of the International Symposia on
Computer Architecture: Selected Papers, 1998.

[13] D. M. Tullsen, J. L. Lo, S. J. Eggers, and H. M.
Levy. Supporting fine-grained synchronization
on a simultaneous multithreading processor. 5th
International Symposium on High Performance
Computer Architecture, January 1999.

[14] C. Zilles and G. Sohi. Execution-based predic-
tion using speculative slices. 28th International
Symposium on Computer Architecture, 2001.

8

Speculative Multithreading: from Multiscalar to MSSP

Gun i Sohi

My research group at Wisconsin has been working on speculative multithreading
techniques for over a decade. This talk will overview some of what we have learned over
the years. We will start with our early work on multiscalar, continue with data-driven
multithreading and speculative slices, and then on to our most recent work on master-
slave speculative parallelization.

Bio:

Gun i Sohi teaches computer architecture at the University of Wisconsin-Madison. He
joined the Wisconsin faculty after receiving his Ph.D from the University of Illinois in
1985, and is currently a Professor in both the Computer Sciences and Electrical
and Computer Engineering departments. Sohi's research has been in the area of
architectural and microarchitectural techniques for high-performance microprocessors,
including instruction-level parallelism, out-of-order execution with precise exceptions,
non-blocking caches, decentralized microarchitectures, speculative multithreading, and
memory dependence speculation. He received the 1999 ACM SIGARCH Maurice
Wilkes award for contributions in the areas of high issue rate processors and instruction
level parallelism.

59

60 -

Branch-Prediction in a Speculative Dataflow Processor*

Bradley C. Kuszmault and Dana S. Henrys

61

Abstract

A processor with an explicit dataflow instruction-set architec-
ture may be able to achieve performance comparable to a su-
perscalar RISC processor, even on serial code. To achieve this,
the dataflow processor must support speculative operation, es-
pecially speculative branches, and a pipeline with bypassing
for serial code. This paper outlines a set of mechanisms to im-
plement speculative operation with a bypassing pipeline, in a
paper design called the Speculative Dataflow Processor (SDP).

The SDP uses several novel ideas as compared to tradi-
tional dataflow processors. Branches are predicted and specu-
lated using a new branch firing rule. Several branch statements
are grouped together so that they use a single branch predic-
tion. The scheduling and bypass logic is similar to, but simpler
and faster than, the corresponding logic in a superscalar RISC
processor.

Speculation introduces some new compiler issues. Addi-
tional care must be taken by the compiler to prevent specula-
tive tokens from Iteration i + 1 from overrunning the nonspec-
ulative tokens from Iteration i of a loop.

1 Introduction

Processors with explicit dataflow instruction-set architectures
(for example 1PC90, GKW85J) have generally not been as fast
as contemporary von Neumann processors. They have per-
formed especially poorly on programs that have little paral-
lelism. One approach to solve this problem is to design proces-
sors that are a hybrid of dataflow and traditional RISC proces-
sors to obtain the best of both worlds, executing both serial and
parallel code efficiently. (See for example P-RISC (NA88) and
simultaneous multithreading 1TEL95) at the RISC end of the
spectrum and EM-5 [SKY91] and the Tera MTA 1ACC+95] at
the dataflow end.) This paper argues that a "pure" dataflow
processor can also compete effectively if two problems are
solved: It must have speculative branch execution, and the
pipeline must be very efficient for serial code. We present here
a paper design of a processor, called the Speculative Dataflow
Processor (SDP), that we believe will work reasonably well
based on our analysis and also on the intution we have gained
from several compiler and processor VLSI projects. We have
not yet implemented a compiler, simulator, or a circuit design
for SDP, although we are working on the compiler and simu-
lator.

Our goal is to design a dataflow processor that competes
effectively with a superscalar microprocessor. This means that
we are not interested in high processor utilization, for
Contrast this approach with, for example, the Tera MTA archi-
tecture [ACC+ 95]), which attempts to achieve high processor

This research was partially supported by NSF CAREER Grant 9702980
(Kuszmaul) and NSF CAREER Grant 9702281 (Henry.)

t A kamai Technologies and Yale University. h t tp : / / eec s . ya 1 e edu /
-bradley

Yale University. ht tp / / eec s ya 1 e edu / de na

utilization and is willing to use a very expensive memory sys-
tem to achieve it. A processor does not need to achieve high
utilization of its ALU or VLSI, since VLSI is cheap. Since
the memory system dominates the cost of a high-performance
machine, it would suffice to achieve high memory-subsystem
utilization.

In addition to branch prediction, a dataflow processor
should speculate on load/store conflicts, but there is not space
here to discuss that mechanism.

Figure 1 illustrates the mechanisms needed to implement
branch speculation in our dataflow architecture. (Here we are
describing the state of the machine with tokens drawn on arcs,
but as we shall see later, we use an explicit-token store de-
sign in which the tokens correspond to entries in an activation
frame.) Figure 1(a) shows a C code segment that we compiled
to the dataflow graph in Figure 1(b). The graph contains arith-
metic operators, such as "+", together with switch operators
(which implement branches), identified by diamonds. Switch
operators have two inputs: a predicate (shown entering from
the left of the diamond) and a datum (shown entering from
above the diamond.)

Several switches may share the same predicate. In Fig-
ure 1(b), two switches share the same predicate, "<". To help
remind the reader that the switches are related we draw the
switches with the same shared predicate on the same horizon-
tal row. In our implementation, we will take advantage of their
shared predicate to reduce their speculation costs. We distin-
guish between switches and branches as follows: A switch can
route a single token according to a predicate. A branch is the
collection of switches that implement a single branch in the
original program. That is, a branch is the set of switches shar-
ing the same predicate.

Except for switches, each operator in Figure 1(b) uses
the traditional dataflow tiring rule—the operator fires once a
value, called token, arrives at each input. Switch operators
may fire twice, however. A switch can fire whenever its data
token (vertical input) arrives. If the switch's predicate token
(left input) has not yet arrived, the switch may predict the pred-
icate's value and passes the data token to the T output or the F

output accordingly. The switch fires again once the predicate
token arrives. If the predicate token's value does not agree
with the prediction, the switch initiates branch recovery.

To illustrate how a switch recovers from misprediction,
Figure 1(b) and Figure 1(c) show the runtime state immedi-
ately before and after a misprediction. We assume that, ini-
tially, one input token was inserted along each input arch x,
y, z, and w. Solid tokens within each graph indicate data
that has not yet been consumed. In Figure 1(b), the compar-
ison operators, "<" and ">2", have not yet consumed their
input tokens. At the same time, however, all switches have al-
ready predicted their outcomes. The predicted outcomes are
shown in bold inside each diamond. Based on these predic-
tions, tokens have already propagated all the way to the multi-
ply operation.

To enable recovery from misprediction, we must remem-

62

if (x > y) {
t = x;
x = y;
y = t;

if (y > 2)
y = y + z;
y = y - w;

X W Z W

X X

0

(a) C Code 	 (b) Speculative Execution 	 (c) Speculation resolved

Figure 1: An example of how speculation works. (a) A fragment of C code. (b) The runtime state with the "<" test predicted tnie,
and the ">2" test predicted false. (c) The restored graph after the "<" test resolves to false.

ber some tokens even after they have been consumed. These
tokens are illustrated with dashed lines in Figure 1(b). The
dashed lines show the input tokens of every operator that has
fired speculatively. We keep track of which operators have
fired speculatively by marking each token with the list of pred-
icates on which it is speculating. For example, we remember
the input tokens of the "+" operator because the operator's left
input token is speculating on the outcome of both predicates.

Figure 1(c) illustrates recovery from misprediction. In this
example, the "<" operator has resolved to False; the affected
switches have fired again and detected a misprediction. As
a result, every operator that speculated on the predicate "<"
undoes its computation, restoring any input token that it shonld
not have consumed.

The rest of this paper is organized as follows. Sec-
tion 2 describes the SDP instruction-set architecture. Section 3
sketches how to implement branch speculation in SDP. Sec-
tion 4 argues that SDP should compare well to a superscalar
processor. Section 5 discusses compilation issues raised by
speculation. Section 6 shows how to support provably effi-

cient multithreaded scheduling, and Section 7 concludes with
a discussion of related and future work.

2 	Instruction Architecture

Having outlined the idea behind the mechanism in Section 1,
in this section we describe the instruction set architecture
(ISA) for the SDP. The rest of the paper will then describe
the implementation issues for this ISA.

Except for switches, the SDP processor's instruction set ar-
chitecture is analogous to the explicit token store architecture
pioneered by Monsoon [PC90]. Figure 2 illustrates the archi-
tected state using the code segment and execution graph front
Figure I. The state consists of set of frames, such as the one
shown in Figure 2(a), and instruction memory The instruction
memory holds the static information about the program (the
"text" of the program), whereas the frames hold dynamic in-
fonnation for the procedure's outstanding instructions. Each
frame corresponds to one procedure invocation or one thread,

framemask •ITIFI 	1 	1

nextreadyframe:...

nextdeferredreadyframe:...

ndeferredready:0

LT... 	OLIIII@LLLL1

1,1-) iiii BR... 	 - t 	III

1:7-) 1 BR... 	j) Iiii 	I 	I 	I 	I

',--i) MV... 	11 	I 	1

>2... 	0 111 If
_

i\-3) BR... 	 IT] 	I 	I 	I _
(.-- ,

1.-3) ADD... 	ITIFI 	I 	di) 	1IIII

SUB... 	:4) rriEl 	I 	I:5-) 1 	1 	1 	1 	1

muLT...0 ITIFI I i 	C) iTtl 1 1

dO:

dl:

f9

flO

fll

f12

f13

f14

f15

f42

Op Offset 1st-output
	

2nd-output b

LT f8 	(+1,f9,L) 	(+2,f10,L)
BR f8 	(+1,f9,L) 	(+2,f10,L) 0
BR flO 	(+99,f42,L)(+1,f11,) 0
MV fll 	(+1,f12,) 	(+2,f13,R)
>2 f12 	(+1,f13,L)
BR f13 	(+96,f42,R)(+1,f14,L) 1
ADD f14 	(+1,f15,L)
SUB f15 	(+94,f42,R)

MULT f42 	—.

0:

92990:
92991:
92992:
92993:
92994:
92995:
92996:
92996:

93092:

63

(a) One frame (of many.)
	

(b) Instruction Memory.

Figure 2: Architected State.

typically.

2.1 	The Frame

A frame is a contiguous region of memory which is used as the
backing store for state that is normally kept in the processor
core. When there are many active frames, the processor will
need to move some of the frame state out of the core to the
memory.

The frame includes

• a f ramemask which is used in branch speculation.

• a collection of frame entries (f 0, f 1. (dots),

• fields to implement ready-to-execute instructions, and

• fields to implement another set of deferred instructions.

Each of these are described below.

The Frame Mask

The framemask keeps track of all of the outstanding unre-
solved branches for a frame. Switches that use the same predi-
cate share one branch-mask entry. In Figure 2, the first entry in

the mask lists the prediction made by the "<" predictor in Fig-
ure 1; the second entry in the mask lists the prediction made
by the "> 2" predictor in Figure 1.

The frame mask is part of the architected state because
the compiler must manage the allocation of the frame mask
entries.

The Frame Entries

For each instruction that has a token on one of its inputs, the
frame keeps track of the instructions arguments and state. In
Figure 2(a), arguments that have not yet been consumed ap-
pear inside a shaded token, and arguments that have been spec-
ulatively consumed appear inside a dashed token. There is
an additional argument mask stored with each argument token
which is part of our impleentation and will be described in the
following section.

The Ready-to-Execute Set

Each frame keeps in its state the set of all instructions that are
ready fire. More than one frame may have instructions which
are ready to execute, however. The frame provides storage,
called nextreadyf rame, to build a linked list of all such
frames.

The Deferred Set

Another set of instructions, called the deferred set, is also
kept by the system. In the frame the nextdef erre-
dreadyf rame, ndef erredready, and di locations store
a per-frame list of deferred instrutions. This deferred set
supports a provably efficient scheduler for multithreaded pro-
grams, and its rationale and behavior is described below in
Section 6.

2.2 The Instruction Memory

The assembly format of an arithmetic instruction consists of:

address: opcode f (ii, him) (i2, f2,p2)

where address is the instruction's address in instruction
memory, f is an index into the frame, i is an offset in instruc-
tion memory starting from the current instruction, and p is an
instruction's input port (Right or Left.) The individual instruc-
tion fields are

opcode: the operation.

f: the index of the instruction's frame entry,

address + 	the address of the first output's instruction,

: the index of the first output frame entry.

pi : the input port of the first output,

and similarly for the second output's address, index, and port.
In addition, switch instructions name an entry, b, in the

branch mask that holds their prediction while they speculate:

address: 	BR f (it, ft,P1) (i2!f2,p2) b.

Branches that share the same predictor share the same mask
entry. In addition. static switches that never dynamically co-
exist within the frame may also name the same mask entry.

3 	Implementing Branch Speculation

Section 2 described the SDP instruction set architecture (ISA),
which is the programmer-visible behavior of the machine.
This section sketches an implementation, and Section 4 argues
that the implementation should be at least as fast as a super-
scalar pipeline.

To implement branch speculation, we added a n-bit frame
mask register to the frame. The register uses 2-bits to encode
the state of each entry in the frame mask. There are three
states, which we notate as

CI: the entry is not in use,
: the entry's predicate is predicted taken, and

CI: the entry's predicate is predicted not-taken.

Each entry's value is set the first time a switch fires speculating
on the entry's predicate. Each entry's value is cleared when-
ever a switch fires for the second time. confirming or refuting
that prediction.

We also maintain a n-bit argument mask with each argu-
ment field in the frame. Each argument mask lists a subset
of the frame mask on which the corresponding argument is
speculating. Figure 2 shows the setting of all the argument
masks for the program state described in Figure 1(b). For ex-
ample, the ADD instruction's left argument is speculating on

both predicates from Figure 1 while its right argument is not
speculating on either.

A dedicated n-bit broadcast bus ties the frame mask to
the argument masks. Whenever a predicate resolves, the bus
communicates the resolved value to each argument mask. If
the predicate was correctly predicted, each dependent argu-
ment simply clears the predicate's entry in its mask since it is
no longer speculating on that predicate. If the predicate was
incorrectly predicted, each dependent argument deletes itself
and possibly reinstates its sibling to implement branch recov-
ery.

We considered using a scheme in which mispredicted
branches create "kill tokens" that follow the paths of the orig-
inal speculated tokens, but we were concerned that the kill
tokens might not catch up in time to avoid certain race con-
ditions. In fact, under some conditions the kill tokens might
never catch up with the tokens that they are trying to kill.

4 Performance: SDP vs. Superscalar

Now that we have discussed the implementation of branch
speculation in the SDP, in this section we argue that the SDP
pipeline should be as fast as a superscalar pipeline. In Sec-
tion 5 we will discuss compilation issues. In this section, we
describe briefly the rest of the SDP core and argue that the SDP
circuitry is no more difficult to implement than a standard su-
perscalar processor's circuitry with some parts of the circuitry
simpler and faster than superscalar's. The key observation is
that each entry in the SDP's frame corresponds is a superset of
an entry in the superscalar's reordering buffer.

Unlike a superscalar processor, the SDP explicitly names
the children of each instruction in the frame. As a result, the
SDP does not have to broadcast each result to the entire frame.
Instead, it can directly write each result into each child's frame
entry. This optimization replaces area-intensive associative
writes into the superscalar reordering buffer with faster and
smaller direct writes into the SDP's frame.

However, explicitly naming each instruction's children
also has its costs. If there are many destinations for an instruc-
tion, and the instruction has limited fan-out, then extra fanout
instructions will be needed. In our architecture, we used in-
structions with fanout of two, but it may make sense to use
instructions with a fanout of three or four to reduce the need
for extra fanout instructions.

Also appearing in a frame entry but not in a reordering
buffer entry is the argument mask described in the previous
section. This mask supports selective recovery from mispre-
diction in the SDP. Unlike a traditional superscalar processor,
the SDP can back out of exactly those instructions that depend
on a mispredicted branch. In contrast, a superscalar undoes
all instructions following a mispredicted branch, whether they
actually depend on the mispredicted branch or not.

The SDP does not need renaming logic since the compiler
explicitly manages the reuse of frame entries. Explicitly man-
aging storage reuse puts pressure on the size of the frame,
however. It remains to be seen how large a frame is needed
to achieve good performance.

The critical-path length of a program may be longer us-
ing SDP than using a serial instruction set, because in a su-
perscalar, correctly predicted branches do not appear in the
critical path of the program at all. In the SDP. even correctly
predicted branches add the cost of the switch instruction to the
critical path. The number of instructions can be greater in SDP
than in superscalar processors as well, since a single branch in

X

65

while (x > i) {
= i+1;

x = x/2;

(a) C code. 	 (b) Compiled for traditional firing rule. 	 (c) Compiled for speculation.

Figure 3: Loop barrier example. This code computes i+=lg (x) ; x=1.

a superscalar may correspond to many switch instructions in
SDP.

In other aspects. the SDP is essentially identical to a super-
scalar reordering buffer entry, and executes in the same way.
For example, the same bypassing techniques used by the su-
perscalar processor can be used in the SDP.

5 Compiler Support

This section discusses compiler issues for SDP, which are im-
portant even for serial programs. The next section will dis-
cuss the hardware support needed for highly concurrent mul-
tithreaded programs. In addition to the hardware issues de-
scribed in Sections 3 and 4, the compiler needs to take extra
care when compiling for a speculative dataflow processor.

First, as we saw in Figure 1, the compiler must group to-
gether switches that use the same predicate. Such grouping
reduces the number of outstanding predictions to the number
of unresolved predicates rather than unresolved switches. In
addition, the compiler must understand our new firing rule for
switches. Without the compiler's cooperation, the speculative
firing of a switch could yield multiple tokens along one arch
in violation of our explicit-token-store dataflow architecture.

Figure 3 illustrates the effect of the new switch firing rule.
It shows a simple serial C code loop compiled with the tradi-
tional single-firing rule (Figure 3(b)) and with our new spec-
ulative firing rule for switches (Figure 3(c)). In Figure 3(b)
the compiler has used the traditional rule, assuming that each
switch will fire only once, after both inputs have arrived. Un-
der this assumption, all initial inputs to the loop will be con-
sumed before the next iteration's inputs are generated. If the
switches were to fire speculatively instead, without waiting for
their predicate tokens, the program would fail. As Figure 3(b)

illustrates, the next speculative value of x could reach the pred-
icate operator ">" before the first value has been consumed.

To avoid multiple tokens along the input arch to the pred-
icate operator, the compiler must introduce explicit specula-
tion barrier instructions as in Figure 3(c). We have shown
the branches with branch masks ("b=0"), and the speculatiion
barrier is denoted by -wait b= O." A speculation barrier will
not fire until the branch mask mentioned has resolved.

One optimization for this kind of code would be to unroll
the loop. Figure 4(a) shows the code unrolled once by hand,
and Figure 4(b) shows the resulting code. Note that the first set
of wait instructions waits on the second branch to resolve, and
the second set of wait instructions waits on the first branch
to resolve. (Initially both branches start in a resolved state,
which gets the loop started.) This means that the first iteration
and the second (of the original loop) can execute concurrently.
And then when the first iteration finishes, the third iteration
can start and run concurrently with the second. Then when the
second iteration finishes, the fourth iteration can start, running
concurrently with the third. Thus, if the compiler unrolls k it-
erations of the loop, every contiguous sequence of k iterations
will be able to run concurrently, even if they do not align with
the unrolling.

6 Support for Parallel Programs

So far we have explained how to run serial programs on a spec-
ulative dataflow processor, taking advantage of the parallelism
within one subroutine of an otherwise serial program. This
section outlines how a dataflow processor can be designed
to support provably efficient scheduling of highly concurrent
multithreaded programs. Section 7 will then discuss the re-
lated and future work.

while (x > i) 1
i = i+1;
x = x/2;
if (l (x > i)) break;
i = i+1;
x = x/2;

The SDP can support highly concurrent programs by exe-
cuting several frames concurrently. One of the problems with
such programs is that if the call tree is expanded breadth-first
or randomly, then the system can run out of memory eas-
ily. Many Monsoon programs had this difficulty: either they
would run too slowly because they lacked parallelism, or they
had plenty of parallelism but needed huge amounts of mem-
ory, and it was very difficult to tweak the program to get it to
run "just right."

Our approach is to provide support for a provably efficient
scheduler, such as the one used in Cilk [BJ10- 95]. To be con-
crete, we will discuss the support needed for the Cilk sched-
uler.

The trick is to prevent the system from allocating new
frames when there are already enough frames to keep the pro-
cessor busy. Figure 5 shows an example of this idea at work.
A Cilk program that spawns a total of eight children (the root
node spawns two children, each of which spawn to grandchil-
dren, each of which spawn two great grandchildren) could re-
quire up to 15 frames to run if the frame allocation is not con-
strained. A better situation is shown We in Figure 5(c), in
which part of the tree has been completed, and part of the tree
is waiting to be spawned, and part of the tree is begin worked
on. The part of the tree that is being worked on has at most 2
active leaves in this case, and the part of the tree that is waiting
to be spawned is deferred.

To be more specific about the allocation rule, we provide
here a brief review of the Cilk system, from the perspective of
a multithreaded processor architect. In Cilk, the computation
is structured into a call tree, in which a vertex corresponds to a
subroutine instance, and in which certain subtrees can execute
in parallel. To execute several subtrees in parallel, the pro-
grammer writes a collection of "spawn" procedure calls, and
then a "sync" operation that waits for all the children to com-
plete. An ordinary procedure call is simply a spawn of a single
subtree, followed by a sync.

Cilk achieves optimal time and space bounds simultane-
ously. The time bounds are expressed using the time to exe-
cute on one processor, T1, and the critical path length of the
program, T., which is the time it would take to run on an in-
finite number of processors. On P processors, Cilk can run a
program in time that is T11 P +0(T.). If the space bound on
one processor is SI , then the space bound on P processors is
P • S. These bounds are optimal under certain assumptions.

Cilk programs must be strict in order for the scheduler to
achieve these bounds. Informally, a strict program is one in
which, once a subtree starts, it is able to finish without waiting
for other subtrees to finish.

Cilk achieves these time and space bounds by guaranteeing
that at most P "leaves" of the call tree exist at any given time.
Another way to say this is that in the tree, at most P forks are
expanded at any glen time.

When the system has fewer than P leaves running, every
spawn actually starts up a new subtree in parallel. When the
system has P leaves active, then no new subtrees are spawned.
That is, the system runs in a serial, depth-first, order on each
of the extant branches of the tree. That means that only one
spawned child of a frame is actually started at a time. The
others wait until the first one completes, and then another
spawned child can run.

For the discussion here, we are interested in supporting
Cilk on a single speculative dataflow processor that may have
a limited number of frames. So P, instead of referring to the
number of processors, refers to the number of leaf frames we
can support in the processor core. The speedup bounds work

66

(a) C code unrolled once.

X

(b) Compiled for speculation

Figure 4: An unrolled version of the code from Figure 3.
When we unroll the loop we can use split-phase speculation
barriers so that the two iterations of the loop can run concur-
rently..

deferred

int recurse (int n) {
if (n==0) serially_work() ;
else {

spawn recurse (n-l) ;
spawn recurse (n-l) ;
sync;

67

A 	finished

deferred

active leaves

(a) The program. (b) The entire call tree for 	(c) Only two leaves are al-
recurse (3) ; 	 lowed to exist at a time.

Figure 5: In Cilk, a limited number of forks in the dynamic call tree are allowed. Each node of the call tree shown in (b) represents
one invocation of the procedure named recurse. The whole call tree includes eight leaf nodes, but if on a two-processor system
we only want there to be two leaves enabled. Parts of the tree have already finished executing, and so their frame memory is
deallocated, and part of the tree is waiting to execute, but we do not actually allocate memory until one of the leaves finishes.

out differently as well, since there are not actually P ALUs
and other computational units, but the system still has a sound
theoretical basis.

Thus, to make this dataflow-oriented Cilk work requires
that the runtime system be able to distinguish between two
cases when spawning a child. The "serial case" is when a child
is being spawned and there are no other children currently in
existance. The "parallel case" is when there is already a child
running for a particular frame, and we must be careful not to
start another child unless there are idle processing resources.

Most of the support for Cilk-scheduling within the SDP
can be implemented in software, with a very small amount
of hardware support. The system must maintain a separate
"deferred" execution queue for the instructions that allocate
new frames. Instructions arc executed via the regular window-
scheduling mechanism whenever possible. The rule for when
a deferred frame allocation instruction can run is more com-
plex, however.

The idea is that frame allocation instructions in the de-
ferred queue should not be run if there are too many spawned
children in the system. To make this work the processor keeps
a global count of how many leaf children are running. The pro-
cessor might be designed to allow, say, 16 concurrent leaves in
the call tree to be executing. If the global count is less than
16, then the processor executes a frame allocation instruction
Out of the deferred queue (putting the resulting tokens into the
regular execution pipeline) and increments the global counter.
If the global count is greater than 16, then the processor does
not execute instructions from the deferred queue.

Here is how the system can compute how many active
leaves exist in the call tree. In software, a Cilk program sets
up a counter in the activation frame to keep track of how many
children are running (the "active-child count.") Initially the
counter is set to zero. When spawning a child subroutine, if the
active-child count is zero, the spawn is treated like a serial call
(the frae allocation instruction is executed normally), and the
local counter is incremented. If the active-child count is pos-
itive, then the token that starts the frame allocation is placed
into the deferred queue, and the count is not incremented.

When a forked child completes, the system must decre-
ment the parent frame's counter, and if that goes from two to
one, it must decrement the global leaf counter, which will then
allow some deferred instruction (if there is one) to run, allo-
cating a new frame.

The effect of all this is to implement a provably efficient
scheduler by providing the mechanisms needed to prove the
Cilk results for SDP.

We could have taken the decision to perform Cilk-style
scheduling in software, but we wanted to be able to write
Cilk-style programs in which the spawn and procedure call
instruction-sequence are the same. We wanted the "serial
case" to run as fast as possible, and so we provide hardware
support for the Cilk-style scheduling.

7 Related and Future Work

The biggest difference between our machine and previous
pure dataflow machines, such as Monsoon [PC901 and the
Manchester dataflow machine [GKW851 is that we make ex-
tensive use of speculation to achieve high performance on
single-threaded code. In contrast Monsoon could only use
one eighth of a single processor's cycles on single threaded
code. The speculation we propose is possible because of ad-
vances in VLSI technology since the previous generation of
pure dataflow machines.

Among the hybrids, the two machines that look the most
like our proposed machine are the Tera (now known as Cray)
MTA, and the EM-5. Beyond the fact that our machine is a
pure dataflow machine, and makes extensive use of specula-
tion their are some other interesting differences.

The Tera MTA [ACC+95] allows very restricted out-of-
order execution within a single thread (called a stream). Each
instruction specifies how many successive instructions can be
issued before this instruction completes, and this is limited by
7. So in effect, a single stream has a window size of 8 or less.
The pipeline depth for the MTA is about 70 clock ticks, and
so at least 9 streams are required to achieve 100% processor

utilization. The MTA relies on the compiler detecting many
streams of parallel instructions (of the order of a few tens per
processor) to get high throughput. In contrast, our approach
is to implement bypasses so that, a dependant instruction can
run on the next cycle immediately after the completion of its
predecessor. Even so, our processor would require high par-
allelism to achieve 100% utilization because some operations.
such as memory. take a long time, and that would require a
highly parallel memory subsystem. which seems infeasible for
a microprocessor using today's memory technology.

In the EM-5 [SKY91]. the scheduling unit is a "strongly-
connected component", which may be one or more instruc-
tions. The instructions within a component are executed in
sequence. Instructions in the same strongly-connected com-
ponent can be run in successive cycles, but dependent instruc-
tions in different components cannot.

We are currently building a C compiler and simulator for
the SDP. Several other researchers have shown that it is pos-
sible to systematically compile serial programs for dataflow
machines [B P89. NHSB94, WA95). Given that it is possible to
compile serial programs. our compiler work is directed to sup-
porting the thesis that a pure dataflow processor can compete
with a von Neumann processor. We hope to soon have results
about the effectiveness of our branch prediction scheme and of
our fetch prediction scheme, and of the SDP in general.

As a possible improvement to the ideas of the SDP, we
are considering a dataflow processor with a very different ap-
proach to managing data and tokens. Instead of using tokens
that carry data, we are considering a dataflow processor that
uses explicit registers, and in which the tokens carry only syn-
chronization information. This would reduce the number of
switches to be comparable to a superscalar processor. Instead
of one switch for every data value, it would be more like one
switch per branch. That would allow us to remove the branch
masks from the ISA because the branch masks can be dynam-
ically assigned to the instructions. This approach would also
reduce the number of instructions in the code.

Acknowledgments

Yale graduate student Rahul Sami helped with the analysis of
the related work, and has been examining the problem of com-
piling C for a dataflow machine.

References

[ACC+95] Robert Alverson, David Callahan, Daniel Cum-
mings. Brian Koblenz, Allan Porterfield, and Burton Smith.
The Tera Computer System. ftp: / vrolvi net-serve.com/
tera/arch.ps gz. 1995.

IBIK+95] Robert D. Blurnofe. Christopher F. Joerg. Brad-
ley C. Kuszmaul. Charles E. Leiserson, Keith H. Randall,
and Yuli Zhou. Cilk: An efficient multithreaded runtime
system. In Proceedings of the Fifth ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Programming
(PPoPP '95), pages 207-216, Santa Barbara, California, July
1995. (http://theory.lcs.mit.edu/pub/cilk/PPoPP95

[BP89) Micah Beck and Keshav Pingali. From control flow
to dataflow. Technical Report TR 89-1050, Department of
Computer Science, Cornell University, Ithaca, NY 14853-
7501. October 1989.

[GKW85] J. R. Gurd, C. C. Kirkham. and I. Watson. The
manchester prototype dataflow computer. Communications
of the CACM, 28(1):34-52, January 1985.

[NA881 Rishiyur S. Nikhil and Arvind. Can dataflow sub-
sume von Neumann computing? CSG Memo 292, MIT Lab-
oratory for Computer Science, November 1988. See [NA89].

[NA89] Rishiyur S. Nikhil and Arvind. Can dataflow sub-
sume von Neumann computing? In The 16th Annual Inter-
national Symposium on Computer Architecture, pages 262-
272. Jerusalem, Israel, May 1989. ACM S1GARCH Com-
puter Architecture News, Volume 17, Number 3. June 1989.

[NHSB94] Mark H. Nodine, James E. Hicks, Cotton Seed,
and Michael J. Beckerle. Generating parallelism profiles
from C programs. Technical Report MCRC-TR-43, Motorola
Cambridge Research Center, One Kendall Square, Building
200; Cambridge, MA 02139, September 1994. (Available
as http://csg-www.lcs.mit.edu:8001/mcrctr/tr43/ppg

[PC9OJ Gregory M. Papadopoulos and David E. Culler. Mon-
soon: An explicit token store architecture. In Proc. 171h. Intl.
Symp. on Computer Architecture. Seattle. WA, May 1990.

[SKY91] Shuichi Sakai, Yuetsu Kodama, and Yoshinori Ya-
maguchi. Architectural design of a parallel supercomputer
em-5. In Proc. Japan Soc. Parallel Proc., Kobe Japan, pages
149-156, May 14-16 1991.

[TEL95] Dean M. Tullsen, Susan J. Eggers, and Henry M.
Levy. Simultaneous multithreading: Maximizing on-chip
parallelism. In Proceedings of the 22nd Annual International
Symposium on Computer Architecture (ISCA '95), pages
392-403, Santa Margherita Ligure, Italy, 22-24 June 1995.
Computer Architecture News, 23(2), May 1994.

[WA95] S. F. Wail and D. Abramson. Can dataflow ma-
chines be programmed with an imperative language. In
G. Gao, L. Bic, and J.-L. Gaudiot, editors, Advanced Topics
in Dataflow Computing and Multithreading, pages 229-265.
IEEE Computer Society Press, 1995.

68

A Study of Compiler-Directed Multithreading for Embedded
Applications

69

Anasua Bhowmik
Computer Sciences

Department
University of Maryland

College Park, MD 20742

anasua@cs.umd.edu

Manoj Franklin
ECE Department and UMIACS

University of Maryland
College Park, MD 20742

manoj@eng.umd.edu

Quang Trinh
ECE Department

University of Maryland
College Park, MD 20742

trinh@eng.umd.edu

ABSTRACT
Growing demand for high performance in embedded sys-
tems is creating new opportunities to leverage techniques
such as pipelining and instruction-level parallel processing,
which were originally developed for general-purpose pro-
cessors. In this paper, we investigate the applicability of
compiler-directed multithreading in speeding up embedded
applications. In particular, we take programs from the Pow-
erstone benchmark suite—a collection of programs from the
embedded applications area—and use our compiler-directed
multithreading framework to partition them into multiple
threads. 'While performing the partitioning, the compiler
not only considers data dependence information, but also
considers control independence information and profile-based
information on the most likely control flow paths. Our
compiler framework is implemented on the SUIF-NIachSUIF
platform. The average code expansion due to the introduc-
tion of thread information is only 0.82%, but, the perfor-
mance potential is quite substantial. The effect of different
criteria on our thread partitioning technique is evaluated us-
ing a trace-driven, multithreaded processor simulator. Our
measurements indicate that future embedded processors can
speed up the execution of sequential programs with low de-
grees of multithreading.

Keywords
Branch prediction, control dependence, Powerstone bench-
marks, profiling, speculative execution, thread-level paral-
lelism (TLP)

1. INTRODUCTION
Improving the execution speed of embedded applications

is becoming an important problem. Any serious attempts
at solving this problem should carefully consider the trends
in technology. In spite of the severe power consumption
requirements, the number of transistors in embedded pro-
cessors has been rising, primarily due to advances
technology. This ongoing explosion in device technology is
complemented by a similar increase in clock speed. This
situation is complicated by a constraint that is germane to
embedded processors—low power consumption. Designers
of embedded processors have been utilizing the increasing
transistor budget to incorporate special features that speed
up some aspects of embedded computing. But today em-
bedded processors are being used for a wide variety of ap-

plications, and embedded processor designers have begun
to include features that are traditionally found in general-
purpose processors [16].

Recent studies on multithreading confirm that there is
significant performance potential in executing a small num-
ber of threads in parallel. Furthermore, the use of multiple
hardware sequencers or processing elements (to fetch and ex-
ecute multiple threads)—besides making judicious use of the
available transistor budget increase—fits very nicely with
the goal of decentralization, which is very important to deal
with on-chip wire delays. Using the increased device count
to build additional processing elements (PEs) is indeed a
very credible option [2] [5] [13] [14]. The primary means
of increasing processor performance, besides increasing the
clock speed and reducing the memory latency, has always
been the exploitation of the inherent parallelism present in
programs, with the use of a combination of software and
hardware techniques. Although the majority of previous re-
search in embedded processors focused on a single thread
of execution, a more effective increase of parallelism can be
achieved from the execution of multiple threads belonging
to the same program'.

This paper investigates the potential of software (compiler-
based) techniques to partition sequential embedded programs
into multiple threads that the hardware can execute in par-
allel. Because the compiler has an overall view of the pro-
gram, it can find the control independent points in the pro-
gram and partition the sequential program into multiple
threads. It can also determine data dependences between
distant code. We use both of these features, along with
profile-based data on likely control flow paths, to partition
sequential programs into multiple threads. Thus, our com-
piler based thread partitioning algorithm takes into account
both control and data independence to do effective thread
partitioning. From the hardware side, data value predic-
tion is incorporated to reduce the effect of inter-thread data
dependences.

Our studies with embedded applications have led to the
following observations:

• The performance potential of single-threaded proces-
sors is fairly limited.

'The term "thread" has different meanings in different con-
texts; our notion of threads is finer than the coarse-grain
OS-level threads, and comprise of tens to hundreds of in-
structions.

• Compiler-directed speculative multithreading, along with
data value speculation, has good potential to speed up
embedded applications

• Some embedded programs benefit from the use of non-
loop threads

The rest of this paper is organized as follows. Section 2
provides background information on multi-threading for em-
bedded systems applications. Section 3 presents an overview
of our multi-threading compiler framework. Section 4 presents
an experimental evaluation of the compiler-generated threads
for the Powerstone benchmarks. Section 5 presents a sum-
mary and the major conclusions of this paper.

2. MULTITHREADING FOR EMBEDDED
APPLICATIONS

2.1 	Constraints for Embedded Processors
Embedded processors currently form an important sector

of the processor market. They are particularly used in many
applications in the communications and mobile computing
area. Although the basic tenets of computing in the em-
bedded systems world are the same as those in the general-
purpose computing world, there are some additional con-
straints to be considered while designing embedded proces-
sors. The constraints concern primarily with power dissi-
pation, code size, and die size. Many embedded processors
are used in applications such as cellular phones where the
power supply is derived from a battery. For such applica-
tions, it is very important that the power consumption of the
processor is as low as possible. Many embedded systems are
also constrained by memory size and die size limitations.
Limited memory size implies that the code size should be
as small as possible. In spite of these special constraints for
embedded systems, the demands on the processing power
for embedded applications has been steadily rising.

1./ 	Parallelism in Powerstone Benchmark Pro-
grams

It is worthwhile to characterize embedded applications.
In particular, we like to know how much parallelism exists,
what kind of branch prediction accuracies we can obtain, etc.
To that end, we measure the available parallelism (under
different machine models) present in the Powerstone bench-
mark, a collection of embedded application programs in-
cluding automobile control, signal processing, graphics and
fax applications. A description of the benchmarks is given
in Table 1. These portable and embedded benchmarks are
used to make design trade-offs in the architecture and the
compiler of the Motorola low power M-CORE processor
[161. For this study, we use a software tool called TAPE
(Tool for Available Parallelism Estimation) [3]. TAPE per-
forms trace-based simulation, and performs a parallelism
limit study by constructing a dynamic dependence graph
(DDG) based on the different kinds of dependences present
among the instructions of the trace. TAPE allows different
models for handling control dependences: realistic branch
prediction, realistic branch prediction augmented with ex-
ploitation of control independences, and perfect branch pre-
diction.

Let us take a quick look at the amount of parallelism
available in the Powerstone benchmarks under the differ-

Benchmark Description

auto Automobile control application
bffo
bilv Shift, AND, OR operation
blit Graphics application

compress A Unix utility
des Data Encryption standard

firint
g3fax Group three fax decode

(Single level image decompression)
ucbqsort U.C.B. Quicksort

Table 1: Powerstone benchmark suite

ent control flow models. Table 2 presents the available par-
allelism obtained for 3 abstract machine models (given in 3
columns): (i) an execution model in which control specu-
lation is employed within a window of 32 instructions, but
control independence is not utilized, (ii) an execution model
in which control speculation is employed, and control in-
dependence is utilized whenever a branch is mispredicted
within a window of 256 instructions, and (iii) an execution
model that utilizes perfect branch prediction and a window
size of 256 instructions. The first case indicates a limit of
what can be achieved by ILP (instruction-level parallelism)
techniques, and the second indicates the potential of pursu-
ing multiple threads. These measurements were done with
the Alpha instruction set architecture.

Table 2 also presents the branch prediction accuracies ob-
tained for the benchmarks. Whereas many of the bench-
marks obtain very high prediction accuracies, in the range
96%-99.9%, there are a few that obtain substantially low
prediction accuracies—compress (91.0%), ucbqsort (81.06%),
and des (75.42%). The parallelism obtained by branch pre-
diction alone is naturally low for these three benchmarks
(around 5). The column that is of particular interest to us
is the penultimate one, because it shows the potential of
multithreading to improve performance. On looking at this
column, we can see that except for auto, des, and g3f ax,
the others can obtain reasonable performance enhancements
by small-scale multithreading.

This characterization also indicates that for most of the
programs in the Powerstone benchmark suite, instruction-
level parallelism (ILP) techniques can capture only a limited
amount of parallelism.

2.3 Speculative Multi-threading for Embed-
ded Processors

Many of the embedded applications are non-numeric in
nature. In particular, in such applications memory addresses
are difficult (if not impossible) to statically predict—in part
because they often depend on run-time inputs and behavior—
that makes it extremely difficult for the compiler to stti-
cally prove whether or not potential threads are indepen-
dent. To deal with these difficulties, the speculative mul-
tithreading (SpMT) model has been found to be more ef-
fective [8] [15]. This model is particularly important to deal
with the complex control flow present in typical non-numeric
programs. In this model, threads are extracted from sequen-
tial code and run in parallel, without violating the sequen-
tial program semantics. This means that inter-thread corn-

70

Table 2: Available Parallelism with Different Control Flow Models

Benchmark
Branch

prediction
accuracy

Available parallelism with 	 '
No utilization of

control
independence

Utilization of
control

independence

Perfect
branch

prediction
auto 99.8670 6.67 6.77 6.77
bffo 99.23% 10.00 20.59 20.60
bilv 97.14% 12.16 15.89 15.89
blit 99.90% 9.99 10.22 10.22
compress 91.00% 5.44 10.25 14.93
des 75.42% 4.44 8.52 9.27
firint 97.09% 10.18 19.45 19.56
g3fax 96.09% ' 5.70 7.51 7.84
ucbqsort 81.06% 5.65 10.78 15.73 	'

71

munication between any two threads (if any) is strictly in
one direction, as dictated by the sequential thread ordering.
Thus, no explicit synchronization operations are necessary,
as the sequential semantics of the threads guarantee proper
synchronization. Program correctness will not be violated
if at rim time there is a true data dependence between two
threads. The purpose of identifying threads in such a model
is to indicate that those threads are good candidates for
parallel execution.

3. COMPILER BASED THREAD PARTITION-
ING

In this section we provide a brief description of our com-
piler framework for thread partitioning. A detailed descrip-
tion is beyond the scope of this paper; the objective of this
paper is to study the effectiveness of multithreading for em-
bedded applications.

3.1 	Multi-threaded Architectural Model
The multi-threaded architectural model assumes that the

program has been partitioned into a collection of threads.
Each thread can spawn any arbitrary number of threads. A
particular thread can also be spawned from different places.
Threads can be spawned speculatively if required; i.e., a
thread can be spawned before knowing for sure that control
flow will reach that thread. If it is found that the con-
trol speculation was wrong, then the speculative thread is
squashed from its PE. But other threads spawned by this
speculative thread will be aborted, only if those threads are
also control dependent on the same branch. If they are con-
trol independent of that branch they can continue execution.

In its general form, this multi-threaded processor hard-
ware consists of a number of processing elements (PEs).
Each PE has its own program counter, fetch unit, decode
unit, and execution unit, so as to fetch and execute instruc-
tions from the thread currently assigned to it. The PEs are
connected together by an interconnection network.

3.2 Compiler Framework
In this subsection we briefly describe our compiler frame-

work for thread partitioning. The layout of our overall sys-
tem is shown in Figure 1.

While partitioning the program into threads, the compiler
has to consider three mutually independent factors-data
dependence, control dependence, and thread size-together,

to decide a good partitioning. Partitioning programs into
threads for non strict languages (like C) such that total
execution time is minimized, is an NP-Complete problem.
So we formulate some metrics and use them to find a good
solution of the partitioning problem.

In the following subsections we discuss how the compiler
takes care of data dependence, control dependence, and the
thread size. The compiler does the program analysis and
partitioning on a high level intermediate representation. The
high level representation retains all the source level pointer
and type information, and hence it is possible to take into
account the dependences due to pointer aliasing and array
references. Hence the compiler is able to extract parallelism
even from pointer intensive programs. We assume that the
multi-threaded architecture can take care of the anti- and
output- register dependences with dynamic register renam-
ing. We have used the profiling information to find out the
most likely path, that the control will take and this infor-
mation is used by the compiler to specify threads that are
to be spawned speculatively.

3.3 	Program Profiling
We have used a separate compiler pass to instrument the

source code and to gather the profiling information. In the
profiling pass, we find out for every basic block, which basic
block is most likely to be visited next. The compiler uses
this to find out the most likely path and also to estimate the
number of instructions that would be executed between two
basic blocks. Furthermore, we find out the number of loop
iterations using the profiling information. The estimate on
the number of loop iterations helps us to decide whether to
execute the loop iterations in parallel even in presence of
available parallelism. We will discuss this in details in the
following subsections.

3.4 Data Dependence
In our framework we formulated a metric called data de-

pendence count to partition the programs such that the data
dependence between threads are minimized.

Our thread partitioning algorithm works in multiple passes.
In the first pass, the compiler builds the CFG and also finds
out the data dependence information. It does the traditional
data flow analysis and calculates the read/write sets [1] for
every instruction. We have implemented an intraprocedu-
ral pointer analysis to have an improved data dependence
information. The pointer analysis helps us in getting more

Profiled Program
Native

Machine Profiler
Profile Information

Dependence

arc

112

No. of Dependence arcs of block B3 = 2

SUM IR form Optimized Code SUIF

Front end

SUIF
Optimizer

Thread
Generator C Program

Alpha
Executable

Alpha

Assembly Code

I

Threaded Code

SPAT

Simulator

Alpha

Linker

MACHSUIF

Back end

Figure 1: The Layout of the Compiler and Simulator Framework

72

precise read/write sets. After calculating the read/write sets
for every instruction, data flow analysis is performed and for
every variable in the read set of an instruction, the set of
reaching definitions [11 are determined.

The data dependence count (DDC) is the weighted count
of the number of data dependence arcs coming into a basic
block from other blocks as shown in Figure 2. This mod-
els the extent of data dependences this block has on other
blocks. If the dependence count is small, then this block
is more or less data independent from other blocks and it
may be beneficial to begin a thread at the beginning of that
basic block. While counting the data dependence arcs, the
compiler gives more weights to the arcs coming from blocks
that belong to the threads closer to the block under consid-
eration. The dependences from distant threads are likely to
be resolved earlier and hence the current thread is less likely
to wait for the data generated in that thread. Moreover, we
give less weightage to the data dependence arcs coming from
the less likely paths. The advantage of using this metric are
twofold. First of all, it is much simple to compute. Also
we found it more accurate than other sequential execution
based modeling in the presence of out-of-order execution in-
side each thread.

3.5 	Program Partitioning
This subsection describes the partitioning algorithm. The

compiler partitions the CFG into multiple threads, and also
specifies the points in the program from which a particular
thread can be initiated. In the partitioning algorithm, I have
used the basic blocks as the granularity of partitioning, i.e.,
either all the instructions inside a basic block are included
in a thread or none of them are included. In other words,
we do not split a basic block across multiple threads. From
every basic block, .4, the compiler looks ahead until the
basic block B. which is control independent of A and decides
which future threads could be initiated from A. Also, at this
point the compiler decides which basic blocks in the path
between .4 and B can be included in the current thread,
i.e. the thread containing A. To maintain load balancing
between the threads, it uses a lower limit and an upper
limit for the number of instructions that can be executed in
one thread. It also selects speculative threads based upon
the profiling data. It selects the most likely path that the
program will take for going from basic block A to its next

BI

Figure 2: The Data Dependence Arcs

control independent point B. The compiler partitions the
program such that the execution in the most likely path
be optimized. The thread will continue execution in the
speculated path and if it finds the speculation to be incorrect
at later point, it will take the correct path. However, there
is no need to abort the threads that are spawned at the
control independent point of this thread.

Several cases may arise when we look inside the most likely
path between the basic blocks A and B. These are shown
in Figure 3. The likely path between the basic blocks A and
B are shown by thick arrow. In Figure 3(a), basic blocks A
and B are not very far and also by including the instructions
executed in the likely path between A and B, (including B)
in thread 1, the size of thread 1 is not going to violate the
upper limit. So the compiler does not spawn a new thread
at B. Rather the compiler includes all blocks between A and
B in thread 1 and looks beyond B to find the next potential
thread starting point. In figure 3 (b), B is not too close to
A and yet not too far from A. So B is a potential thread
starting point. So the compiler marks B as the starting

Thread 1

(a) Basic block B is too close to A

(c) Block B is too tar from Block A

(b) Block B is at an optimum distance from Block A

Figure 3: Different Cases in Program Partitioning

point of thread 2 and forms a thread at B. Now it checks
the data dependence between the thread containing A and
the thread containing B according to the data dependence
distance or the data dependence count. If it is found that
the total completion time of threads 1 and 2 (where thread
2 is spawned from the beginning of B), is less than the com-
pletion time if the two threads are executed sequentially one
after another, then it spawns thread 2 from A.

In figure 3(c), A and B are very far apart, as far as the
most likely path between them are concerned. So, starting a
new thread at B and including all the blocks till B in thread
1 is not efficient. First of all, the size of thread 1 will become
very large and moreover there may exist potential threads
inside the likely path between A and B. So the compiler
looks inside the likely path between A and B and tries to
partition it further. In case of 3(c) it is found that basic
block C is a starting point of thread 2 and this thread is
speculatively spawned from A, before the actual direction
of the branch is resolved. Thread 3, which starts from basic
block B is spawned from somewhere inside thread 2.

The compiler also checks the paths that are not the likely
paths and partitions them as well. If at run-time, control
goes into those unlikely paths, then the threads spawned
speculatively are aborted. But the threads that are not con-
trol dependent on the aborted threads need not be aborted.
For example, consider Figure 3 (c). If from A, instead of
following the most likely path, the control goes to basic
block D, when both threads 2 and and 3 have been spawned,
thread 2, would be aborted, but not thread 3, as B is con-
trol independent of A. Moreover in the path containing D,
there can be spawning of thread 3 as well, and this spawn-
ing should be ignored during execution because thread 3 has
already been spawned.

In our compiler framework, the loops are treated as a
special case of control dependence. For loops the compiler
checks the dependence between two iterations of the loops,
and if it is found that spawning another thread for the next

iteration is profitable, then the thread is spawned. It may
also happen that, instead of spawning from the beginning
of the loop for the next iteration, the compiler spawn the
next iteration from somewhere inside the loop. The large
body of the loops may be further partitioned into multiple
threads as described above. While partitioning the loops,
we use profile information on the number of loop iterations.
Typically the compiler does not want to execute small loop
body in parallel. However, if the number of iterations is large
then the compiler would spawn the iterations as separate
threads. Otherwise the size of the thread will become very
large.

3.6 Implementation in the SUIF Platform
Our thread partitioning algorithm has been implemented

on the SUIF-MachSUIF platform [9]. All of the compiler
analysis and thread partitioning are done at the high-level
intermediate representation (IR) of SUIF. We have chosen
the SUIF platform to implement our compiler system be-
cause it provides a modular and flexible infrastructure to
develop compiler optimizations. SUIF first translates high-
level source code into an IR, and then performs code op-
timization through several independent passes on that IR.
While transforming high-level programs into IR, SUIF re-
tains all of the relevant information from the high level
source program. This is particularly helpful for carrying out
optimization such as profiling and pointer analysis. More-
over, the instructions in the SUIF IR are very close to the as-
sembly level instructions; thus, the estimation of thread sizes
done at the IR level remains valid in the final assembly level
as well. In SUIF, it is possible to annotate the instructions
with necessary information like data dependence, and use
them in separate passes afterwards. Also, the SUIF pack-
age contains many optimization modules, which improve the
quality of the code produced. We have used the MachSUIF
[17] framework to generate Alpha assembly code from the
SUIF IR.

4. EXPERIMENTAL STUDY
In order to see how much of the parallelism measured

in Section 2.2 can potentially be tapped by our compiler-
directed multithreading approach, we enhanced our software
tool (TAPE) along the lines of the simulation environment
used in [15] to study parallelism in general-purpose appli-
cations. The number of PEs, issue size per PE, etc., are
parameterized. It models a perfect instruction cache and
data cache. The code executed in the supervisor mode are
unavailable to the simulator, and are therefore not taken
into account in the measurements. Furthermore, the simu-
lator does not overlap the execution of threads that precede
and succeed a system call. For these measurements, each PE
has an issue width of 4 instructions per cycle, an instruction
window of 32 entries, and can perform out-of-order execu-
tion.

When encountering a conditional branch instruction in
a thread, its PE consults a branch predictor for a predic-
tion. If the prediction is incorrect, the immediate control-
independent point in the program is determined. If this
point is within the thread, then subsequent threads are not
squashed. Branch predictions are done using a 2-level Pap
scheme [20], with a direct-mapped 16K-entry Branch His-
tory Table, a pattern size of 6, and 3-bit saturating counters
in the Pattern History Table entries.

73

PEs

• 4
0 3
• 2
DI

auto bffo bilv 	blit Cm Press des fir_int g3fax ucbqsort

A data value predictor is implemented in the simulator.
This predictor is a hybrid of a stride predictor and a 2-level
predictor 119]. The first level of the predictor has 16K en-
tries, and is direct-mapped. Data value prediction is carried
out only for those instructions that produce a single reg-
ister result. Thus branch instructions, store instructions,
flops, and double-precision instructions are not considered
for data value prediction.

4.1 Code Explosion Due to Thread Informa-
tion

As mentioned earlier, for embedded system applications,
it is important that our thread partitioning does not have
a significant impact on the code size. Table 2 gives the in-
crease in code size because of including thread information
in the program binary. For each benchmark program, the
table provides the number of static instructions for Alpha
ISA, the number of instructions with annotation, and the
percentage of instructions with annotation. From the ta-
ble, we can see that the code size expansion ranges from
0.12% to 2.69%, with an average of 0.82%, which is very
insignificant. The number of instructions that are anno-
tated does not depend on the ISA; rather it depends on the
program characteristics. For annotating an instruction, we
need 16/32 bits to specify an instruction address and 2 bits
to specify the type of annotation. Note that for embedded
processors where memory size is usually smaller, the num-
ber of bits required to specify the instruction address will
be even less. Also, we can use special hardware and have
relative addressing scheme to specify the instruction address
in the annotations, thereby reducing the space requirements
further.

Benchmark
Static

Instruction
Count

Additional Instrs
for Conveying
Thread Info

Code
Expansion

Factor

auto 1359 5 0.37%
bffo 1339 6 0.45%
buy 1671 2 0.12%
blit 1495 8 0.54%

compress 2190 59 2.69%
des 2007 8 0.40%

g3fax 1561 17 1.09%
ucbqsort 1787 16 0.90%

Average 1676.12 i 	15.12 0.82%

Table 3: Increase in code size of the benchmark pro-
grams because of including thread information

4.2 Parallelism Without Data Value Predic-
tion

Our first set of multithreading studies were done with-
-. loying data value prediction. Figure 4 presents the

overall parallelism in terms of instructions per cycle (IPC)
obtained in these experiments, with different number of pro-
cessing elements (PEs). All benchmarks are simulated till
hundred million instructions unless the programs get com-
pleted before that.

From Figure 2, we can see that across all benchmark
programs, there is notable speedup with 4 PEs, except for
bily, blit, g3fax, and ncbqsort. Among these, g3faz did

1'

10

4

Figure 4: Parallelism Results for varying number of
PEs when Data Value Prediction is not Employed

not show any parallelism in the measurements in Section
2. Even for the ones that show promise, the parallelism
saturates when the number of PEs reaches 2 or 3. Thus,
without data value prediction, multithreading has limited
use for these embedded applications.

	

4.3 	Parallelism With Data Value Prediction
Next, we present the parallelism values obtained when

data value prediction was employed in the multithreaded
processor. Figure 5 presents the parallelism values obtained
in these experiments, with data value prediction. For ease of
comparison, the results from Figure 2 are reproduced along-
side.

When data value prediction is employed, two of the four
benchmarks that did not show much parallelism—blit and
ucbqsort —show a marked improvement. In addition, bffo
shows further improvement. The most notable speedup is
seen for blit. On the other extreme, bill/ does not show any
noticeable speedup with multi-threading, even when data
value prediction is employed. Most programs have substan-
tial speedups with multithreading. By and large, incorpo-
rating data value prediction helps to reduce the effects of
inter-thread data dependences, thereby providing notable
speedups. Thus, we can see that multithreading is quite ef-
fective for embedded systems programs when the processor
employs data value prediction, which is quite encouraging.

	

4.4 	Importance of Non-loop Threads
The experimental measurements conducted so far included

threads that are loop-centric (iterations of loops) as well as
non-loops. In the next set of measurements, we measure
the parallelism obtained when only loop-centric threads are
employed. Figure 6 presents these results. For each bench-
mark, two bars are given. The first corresponds to using all
kind of threads, and the second corresponds to using only
loop-centric threads. Among the benclunarks, only a sin-
gle program—bffo—benefits from using only loop-centric
threads. For most of the programs, restricting to loop-
centric threads results in less parallelism being exploited.
This demonstrates the importance of a multithreading frame-

74

16

75

It PEs

16

14

12

PEs

• 4
O 3
• 2
O 1

10 —

;
au o
	

bflo
	

hi Iv
	bid co upfess de, 	fu_ int g3fax ucbqsort

Figure 5: Parallelism Results for varying number of
PEs when Data Value Prediction is Employed

work that supports loop-centric as well as other kind of
threads.

4.5 	Effect of Selective Loop Unrolling
Some of the embedded applications are dominated by very

small loops, whose iterations are fairly independent. If each
iteration of such a loop is partitioned as a single thread,
then each thread becomes very small, and the thread over-
head becomes too much. On the other hand, if the entire
loop is made a single thread, then we fail to exploit the
inter-iteration parallelism present in these loops. In order
to deal with this problem, we experimented with selective
unrolling of loops. Selective unrolling is very important to
keep the code expansion factor low. We introduced a se-
lective unrolling pass in our compiler framework; currently
this pass unrolls simple "for" loops with fixed upper and
lower bounds. The use of selective unrolling showed sub-
stantial potential for 4 of the benchmarks—auto, compress,
f ir_int, and ucbqsort. The code expansion due to se-
lective loop unrolling for these 4 benchmarks were 58.8%,
15.1%, 33.11%, and 7.0%, respectively. The improvements
in thread-level parallelism are shown in Figure 5. For each
of these 4 benchmarks, 2 bars are shown, the first indicating
the parallelism before loop unrolling and the second indicat-
ing the parallelism after loop unrolling. Among these two
benchmarks, auto and fir_int show remarkable improve-
ment due to selective loop unrolling.

5. DISCUSSION AND CONCLUSIONS
Embedded processor designs are constrained by power

consumption, code size, and die size limitations. Neverthe-
less, the performance expected from them has been steadily
increasin;,-. Today's embedded processors incorporate a vari-
ety of techniques that are used for general-purpose processor
design.

To obtain high performance in embedded system appli-
cations, it is important to handle both loop-terminating
branches and other conditional branches in an efficient man-
ner. Although traditional branch prediction provides some-

14

12

10

k 8

4

2

auto 	bfto 	bivblit co npress des 	hr_int g3tax

Figure 6: Parallelism Results for varying number of
PEs when Using Different Types of Threads

what reasonable prediction accuracies for embedded sys-
tem application programs, a substantial increase in per-
formance for next-generation systems requires more effec-
tive ways of dealing with conditional branches. Recognizing
control-independent regions, and performing speculative ex-
ecution along multiple (independent) flows of control have
the potential to extract the large amounts of parallelism
that are available at a distance. Given the increasing in-
terest in multithreading for general-purpose processors, we
expect that future embedded processors will also attempt to
execute multiple threads in one way or another.

This paper investigated the applicability of multithread-
ing in embedded system applications. We partitioned pro-
grams from the Powerstone benchmark suite, a collection
of programs from the embedded systems area, into multi-
ple threads. While performing the partitioning, the com-
piler not only considers control independence information,
but also considers data dependence information and profile-
based information on the most likely control flow paths.
We performed several measurements with these compiler-
generated threads. Our measurements show that a major-
ity of the benchmarks programs are able to get substan-
tial increase in parallelism when up to 4 threads are exe-
cuted in parallel, provided data value speculation is used
to break inter-thread data dependences. Our measurements
also show that most of the benchmark programs require non-
loop threads also, in addition to loop-centric threads. Re-
sults from these simulations indicate that future processors
can speed up the execution of embedded system program by
using multithreading.

A major advantage of speculative multithreading multi-
threading is backward compatibility with existing proces-
sors. That is, an existing executable program for the origi-
nal (single-threaded) embedded processor forms legal single-
thread code for a multithreading embedded processor. This
feature is very important from the commercial point of view,
because of customers' strong preference to have the abil-
ity to run the old binaries in the new machine (although
those binaries can not benefit from the new machine's mul-
tithreading features).

• 4
O 3
• 2
D l

;

111

N PEs

• 4
O 3
• 2
D l

-1

-^

a:110
	 compress
	

fir_int
	

urNisort

16

14

12

10

Figure 7: Parallelism Results for varying number of
PEs when Selective Loop Unrolling is Employed

Acknowledgements
This work was supported by the U.S. National Science Foun-
dation (NSF) through a CAREER grant (MIP 9702569),
a regular grant (CCR 0073582), and an REU grant (EIA
9912218).

6. REFERENCES
[1] A. Aho. R. Sethi, and J. Ullman. Compilers:

Principles, Techniques. and Tools. Addison-Wesley,
Reading, MA, 1986.

[2] H. E. Bal and M. Haines, "Approaches for Integrating
Task and Data Parallelism," IEEE Concurrency,
July-September 1998.

[3] A. Bhowmik and M. Franklin, "A Characterization of
Control Independence in Programs," Proceedings of
Workshop on Workload Characterization, 1999.

[4] R. Cytron, J Ferrante, B. Rosen, M. Wegman, and F.
Zadeck, "Efficiently Computing Static Single
Assignment Form and the Control Dependence Graph,"
ACM Transactions on Programming Languages and
Systems. Vol. 13, No. 4, pp. 451-490, October 1991.

[5] W. J. Dally and S. Lacy, "VLSI Architecture: Past,
Present, and Future," Proceedings of Advanced
Research in VLSI Conference, 1999.

[6] P. Dubey, K. O'Brien, K. M. O'Brien, and C. Barton,
"Single-Program Speculative Multithreading (SPSM)
Architecture: Compiler-assisted Fine-Grained
Multithreading," Proc. International Conference on
Parallel Architecture and Compilation Techniques
(PACT '95), 1995.

[7] M. Emami, "A Practical Interprocedural Alias Analysis
For an Optimizing/Parallelizing C Compiler," Masters
Thesis, School of Computer Science. McGill University,
Montreal, 1993.

[8] M. Franklin, "The NIultiscalar Architecture," Ph.D.
Thesis, Technical Report 1196, Computer Sciences

Department, University of Wisconsin-Madison, 1993.
[9] M. W. Hall, J. M. Anderson, S. P. Amarasinghe, B. R.

Murphy, S. W. Liao, E. Bugnion, and M. S. Lam,
"Maximizing Multiprocessor Performance with the
SUIF Compiler," IEEE Computer, December 1996.

[10] P. Y. T. Hsu and E. S. Davidson, "Highly Concurrent
Scalar Processing," Proc. 13th Annual International
Symposium on Computer Architecture, pp. 386-395,
1986.

[11] M. S. Lam and R. P. Wilson, "Limits of Control Flow
on Parallelism," Proc. 19th Annual International
Symposium on Computer Architecture, pp. 46-57, 1992.

[12) S. A. NIahlke, R. E. Hank, R. A. Bringmann, J. C.
Gyllenhaal, D. M. Gallagher, and W. W. Hwu,
"Characterizing the Impact of Predicated Execution on
Branch Prediction," Proc. 27th International
Symposium on Microarchitecture, pp. 217-227, 1994.

[13] 0. C. Nlaquelin, H. H. J. Hum, and G. R. Gao, "Costs
and Benefits of Multithreading with Off-the-Shelf RISC
Processors," Proceedings of the First International
EURO-PAR Conference (Seif Haridi, Khayri Ali, and
Peter Magnusson, eds.), no. 966 in Lecture Notes in
Computer Science, Stockholm, Sweden, pp. 117-128,
Springer-Verlag, August 29-31, 1995.

[14] K. Olukotun, et al, "A Chip-Multiprocessor
Architecture with Speculative Multithreading," IEEE
Transactions on Computers, September 1999.

[15] J. Oplinger and D. Heine and M. S. Lam. In Search of
Speculative Thread-Level Parallelism. Proc.
International Conference on Parallel Architectures and
Compilation Techniques (PACT), 1989.

[16] J. Scott, L. H. Lee, A. Chin, J. Arencls, and B. Moyer,
"Designing the MCORE M3 CPU Architecture," Proc.
International Conference on Computer Design (ICCD),
1999.

[17] M. D. Smith, G. Holloway, "An Introduction to
Machine SUIF and Its Portable Libraries for Analysis
and Optimization".

[18] K. B. Theobald, G. R. Gao, and L. J. Hendren, "On
the Limits of Program Parallelism and its
Smoothability," Proc. 25th Annual International
Symposium on Microarchitecture (MICRO-25), pp.
10-19, 1992.

[19] K. Wang and M. Franklin, "Highly Accurate Data
Value Prediction using Hybrid Predictors", Proceedings
of 13th 1EEE/ACM International Symposium on
Microarchitecture, pp. 281-90, Dec. 1997.

[20] T-Y. Yeh and Y. N. Patt, "Alternative
Implementations of Two-Level Adaptive Branch
Prediction," Proc. 19th Annual International
Symposium on Computer .Architecture, pp. 124-134,
1992.

76

Prefetching in an Intelligent Memory Architecture Using a Helper Thread *

Yan Solihint, Jaejin Lees, and Josep Torrellast
tUniversity of Illinois at Urbana-Champaign

tMichigan State University
{ soli hin,torrellas} @cs.uiLic.edu

jlee@cse.msu.edu
http://iacoma.cs.uiuc.edufilexram

77

Abstract

Data prefetching is a popular technique for tolerating long
memory access latencies. In this paper, we introduce a novel
type of prefetching: memory-side correlation prefetching im-
plemented in a user-level thread. The prefetching thread runs
on a general-purpose processor embedded in the main mem-
ory. By allocating the correlation table in main memory, we
can afford the large space required by the table. In addition,
the scheme can be supported with few modifications to the
L2 cache and no modification to the main processor core. We
introduce a new organization of the correlation table and a
new prefetching algorithm that enable fast and accurate far-
ahead prefetching with high coverage. Overall, our evalua-
tion shows that the algorithm effectively prefetches irregular
applications, speeding up three applications by an average of
1.28. Furthermore, our scheme can work synergistically with
a conventional processor-side prefetcher to deliver an average
speedup of 1.36.

1 Introduction
Data prefetching is a popular technique to tolerate long mem-
ory access latencies. There have been many proposals using
a helper thread to help prefetching for the main thread, such
as [12, 151. These proposals have focused on either SMT
or CMI' platforms. In this paper, we propose a prefetching
thread scheme that is suitable for implementation in an In-
telligent Memory Architecture (IMA). In IMA, the memory
system is augmented with one or more memory processors.
The nature of the problems in IMA is quite different than in
SMT or CMP platforms. First, in SMT/CMP, Processor-Side
prefetching is used, while in IMA, Memory-Side prefetching
is used, because prefetch requests are generated by the pro-
cessor in the main memory. Secondly, communication be-
tween the threads is cheap in SMT/CMP, wi ;lc it : xpen-
sive in IMA. Thus, a suitable prefetching scheme is one that
operates autonomously and that can be effective with coarse-
grain communication between the prefetching and the main

This work was supported in part by the National Science Foundation
under grants CCR-9970488. EIA-0081307, and EIA-0072102, by DARPA
under grant F30602-01-C-0078, and by NCSA, Michigan State University,
and gifts from IBM and Intel.

threads. In this work, we implement the prefetcher as a user-
level thread that can prefetch irregular applications effectively
using correlation prefetching algorithms. The only commu-
nication needed by the prefetching thread is the miss address
stream of the main thread.

Memory-side prefetching is attractive for several reasons.
First, it eliminates the overheads that prefetch requests and
state bookkeeping introduce in the paths between the main
processor and its caches. Secondly, it can be supported with
very few modifications to the L2 cache and no modification
to the main processor core. Thirdly, the prefetcher can exploit
its proximity to the memory to its advantage. Memory-side
prefetching has the additional attraction of riding the tech-
nology trend of increased chip integration. Indeed, popular
platforms like PCs are being equipped with graphics engines
in the memory system [16]. Some chipsets, like NVIDIA's
riForce [13] even integrate a powerful processor in the North
Bridge chip. Similar engines can be provided for prefetching,
or existing graphics processors can be reused for prefetching
when under-utilized. Moreover, there are proposals to inte-
grate processing logic in DRAM chips, such as IRAM [8].

Using an engine for memory-side prefetching has been
proposed elsewhere [1, 2, 4, 13, 14, 16, 18]. However, in
most cases, these engines perform either very simple opera-
tions or highly-specific operations, such as prefetching linked
data structures [4, 181. Instead, what we would like, is a very
flexible, general-purpose prefetcher.

While a memory-side prefetcher can support a variety of
prefetching algorithms, one type that is particularly suitable
is Correlation Prefetching [1, 3, 5, 11]. Correlation prefetch-
ing relies on correlation of miss addresses to predict and
prefetch future misses based on the current state. Because
the only information the prefetch thread needs is the miss ad-
dress stream, correlation prefetching is suitable for an IMA
platform.

In the past, general correlation prefetching has been sup-
ported by hardware controllers that require a large dedicated
hardware table structure [1, 3, 5, 11]. In all but one case, these
controllers have been placed between the Li and L2 caches
or between the Li and the processor. While effective, the ap-
proach has a very high hardware cost. Furthermore, it does
not prefetch far enough and tends to have a low coverage.

3: Prefetch j, k

1: Miss i

2: Lookup
Main Memory System,

(b)

This paper introduces a novel prefetching scheme where
memory-side correlation prefetching algorithms are imple-
mented in software by using a user-level thread. The algo-
rithms run on a general-purpose processor in the main mem-
ory system. The scheme allows prefetching algorithms to
evolve with the applications, even after the computer system
is shipped. In addition, the system can be supported with few
modifications to the L2 cache, and no modifications to the
main processor core.

We introduce a new organization of the correlation table
and a new correlation prefetching algorithm that enable fast
and far-ahead prefetching, with high coverage and accuracy.
By allocating the correlation table in main memory, we can
afford the large space required by the table. We demonstrate
that the software algorithm can effectively prefetch data for
irregular applications. Indeed, our scheme speeds up three
SPECInt2000 applications by an average of 1.28. We also
show that our scheme can work synergistically with a conven-
tional processor-side prefetcher to deliver an average speedup
of 1.36.

The rest of the paper is organized as follows: Section 2 dis-
cusses memory-side prefetching and correlation prefetching;
Section 3 presents our design; Section 4 discusses our eval-
uation setup: Section 5 evaluates our design; and Section 6
concludes.

2 Related Issues

2.1 	Memory-Side Prefetching
Memory-Side prefetching occurs when prefetching is initi-
ated by one or a set of engines that reside in or beside the main
memory (definitely beyond any memory bus). Chip man-
ufacturers have integrated hardwired controllers that prob-
ably recognize very simple sequences like strides, such as
NVIDIA's DASP engine in the North Bridge chip [13] and
Intel's prefetch cache in its i860 chipset.

In this paper, we propose to use a simple general-purpose
memory processor for memory-side prefetching. Although
this idea is applicable to a generic memory system, we will
illustrate it on a PC-like memory system depicted in Figure 1-
(a). The memory processor can be placed in several places,
such as in the North Bridge (Memory Controller) chip (1), or
in the DRAM chips (2). The advantages of the first case are
that it is simple to support, because the DRAM interface is not
modified, and that the memory processor can be employed
for other uses, such as a graphics engine. The second case,
although more complicated to support, has the advantage of
lower memory access latency and higher memory bandwidth
due to higher integration. In this paper, we study the perfor-
mance potential of the DRAM case.

Memory- and processor-side prefetching are not the same
as Push and Pull (or on-demand) prefetching [18], respec-
tively. Push prefetch occurs when prefetched data is sent
to a cache or processor that has not requested it, while pull
prefetch is the opposite. Clearly, a memory prefetcher can act
as a pull prefetcher, by simply storing the prefetched data in

(a)

Figure 1: Architecture of the system (a), and actions of the

prefetches (b).

a local buffer and supplying it to the processor on demand.
In general, however, memory-side prefetching is most inter-
esting when it performs push prefetching to the caches of the
processor, because it can hide a larger fraction of memory
access latency.

In our system, the memory processor observes the requests
from the main processor that reach main memory. Based on
them, and after examining some internal state, the memory
processor prefetches other lines that it expects the main pro-
cessor to need in the future (Figure 1-(b)).

In this paper, we concentrate on push prefetching into the
L2 cache. Since the memory processor only sees L2 cache
miss streams, it aims to eliminate L2 cache misses by pushing
the prefetched data into the L2 cache. L2 cache miss penalty
is the largest component of memory access latency, and it is
the hardest to hide, even by an out-of-order processor.

Our scheme is inexpensive to support. The main processor
core does not need to be modified at all. The L2 cache needs
to have the following supports. First, as in many other sys-
tems [4, 71, the L2 cache controller has to be able to accept
lines from the memory system that it has not requested. To
do so, the L2 has to assign unused Miss Status Handling Reg-
isters (MSHRs) [10] to such lines. Secondly, if the L2 has
a pending request for the same line when a prefetch arrives,
the prefetch simply steals the MSHR and updates the cache
as if it were the reply. Finally, a prefetched line arriving at
L2 is dropped in the following cases: the L2 cache already
has a copy of the line, the write back queue has a copy of the
line because the L2 is trying to write it back to memory, all
MSHRs are full, or all the lines in the set where the prefetch
line wants to go are in pending state.

2.2 Correlation Prefetching
Correlation Prefetching uses the current state of the refer-
ence or miss stream to predict and prefetch future misses.
Two popular correlation schemes are the Stride-Based and
Pair-Based schemes. The former tries to find a stride pattern
in the miss stream and prefetch all the locations that would
be accessed if the pattern continues in the future. The lat-

78

CPU

Li $

L2 $

North
Bridge
Chip

DRAM
Memory

ter tries to identify a correlation between pairs of misses, for
example between a miss and its immediate successor. It ba-
sically records a sequence of miss addresses in a table, and
later when it encounters the head of the sequence, it looks
up the table and prefetches the rest of the sequence. What
makes pair-based schemes attractive is their general applica-
bility, i.e. they work for any miss sequences that repeat. This
is true for regular applications and for a wide range of irregu-
lar applications such as those that operate on sparse matrices
and linked data structures. Furthermore, the schemes can be
employed without any compiler support or changes in the ap-
plication binaries.

Pair-based correlation prefetching has only been studied
using a hardware implementation of prefetch engines [1, 3, 5,
11, 171, usually by placing the engine between the Li and L2
cache [3, 5, 11, 17]. These studies have demonstrated the ap-
plicability of pair-based correlation prefetching on a wide va-
riety of applications. However, they also reveal shortcomings
of the approach. One critical problem is that to be effective, it
needs large storage space to match the footprints of the appli-
cations. One and two Megabytes of dedicated on-chip SRAM
tables have been proposed [5, 11], while some applications
with larger footprints even need a 7.6 MB off-chip SRAM
table [11]. Furthermore, it does not prefetch far enough and
has low coverage (unless it is tightly coupled to the main pro-
cessor and uses more fine grain information [11]). For exam-
ple, for each miss, Joseph and Grunwald only store inunedi-
ate successors [5]. The coverage is low because it needs one
miss to trigger the prefetcher to prefetch the successor of the
miss. At best only half of the misses can be eliminated. This
scheme uses a wide table that stores many successors per miss
and continuously rebuilds the table to increase the coverage.
However, it causes excessive useless prefetches.

3 Proposed Scheme
Pair-based correlation prefetching is suitable for our memory-
side prefetching system to support because it has general ap-
plicability and can be supported inexpensively. We show that
shortcomings of the current correlation prefetching schemes
can be eliminated by improving the correlation algorithms
and implementing them in software. The algorithms de-
scribed are implemented in a prefetching thread running on
the memory processor. The code for the prefetching thread
is written in C and hand-optimized for minimal prefetch re-
sponse and occupancy time.

In the following sections, we discuss the concepts (Sec-
tion 3.1), the architecture (Section 3.2), pair-based correla-
tion prefetching algorithms (Section 3.3), and conventional
processor-side prefetching (Section 3.4).

3.1 Concepts
Prefetching algorithms are implemented as a user-level helper
thread that we call prefetching thread. The actions of the
memory processor are determined by the behavior of the
prefetching thread that we implement. The operation of

the prefetching thread can be conceptually divided into two
phases: learning and prefetching. In the learning phase, the
prefetching thread records the L2 read and write miss patterns
that it observes in a correlation table, one miss at a time. In
the prefetching phase, every time that the prefetching thread
sees a miss, it looks up the correlation table and prefetches
several memory lines to the L2 cache of the main proces-
sor. No action is taken on a write-back memory access. In
practice, as in [5], we found that combining the learning and
prefetching phases enables the correlation table to quickly
learn new patterns and provides the best performance in most
cases (Figure 2).

Miss address 	 Prefetch addresses 	 Handier finishes
available 	 avaiiable 	 processing

Prefeiching phase
	

Learning phase

Response Time

Occupancy Time

Figure 2: Timing of the prefetching thread.

The prefetching algorithm can be characterized by its re-
sponse time and occupancy time (Figure 2). The response
time is defined as the time beginning when the prefetching
thread obtains a miss address until the prefetching thread pro-
duces the prefetch addresses. The occupancy time is the time
the prefetching thread is busy and cannot process another
miss address. As can be seen in the figure, the prefetching
phase is always executed before the learning phase to mini-
mize the response time. For the software implementation to
be viable, the occupancy time has to be smaller than the av-
erage time between two consecutive L2 cache misses. Also,
for best performance, the response time needs to be as small
as possible.

By using a prefetching thread that stores the correlation
table in the main memory, we eliminate the high hardware
cost required by the table in the traditional implementation.
We further address the inadequacies of traditional correla-
tion prefetching, namely low prefetching coverage, and not
prefetching far enough, by improving the correlation algo-
rithms (Section 3.3).

3.2 	Architecture of the System
When we integrate the memory processor in the DRAM
chips, the DRAM chips and possibly the DRAM interface
need to be modified. Extra complexities in handling multi-
ple DRAM chips must also be addressed. Our goal in this
paper is to study the performance potential of this case. Con-
sequently, we abstract away the implementation complexity
of integrating the processor in the DRAM by assuming a sin-
gle chip main memory with a single memory processor in it
(Figure 3).

The key communication occurs through queues /, 2, and
3. Miss requests from the main processor are deposited in
queues / and then in 2. In the learning phase, the memory
processor uses the entries in queue 2 to build its state. In the
prefetching phase, the memory processor uses the entries in
queue 2 and its state to generate addresses to prefetch. The

79

Other

Units

DRAM chip

2
t

Memo'
Processor

Cache

— DRAM —
cells —

Row Buffer
Memory

Controller

4

Main Processor

North
Bnizige
Chip

Bus
Interface

Figure 3: Microarchitecure a DRAM chip that includes a
memory processor used for con-elation prefetching.

lines prefetched are deposited in queue 3. If the memory pro-
cessor suffers a cache miss on its correlation table structure, it
accesses the DRAM directly. Queue 4 is in the replying path
from memory to the main processor.

3.3 Pair-Based Correlation Algorithms
We now discuss the pair-based correlation prefetching algo-
rithms. We consider two different organizations for the cor-
relation table: a basic one that does not allow data replication
and a more advanced one that allows replication. Their use
gives rise to different algorithms. We consider them in turn.

Pair-Based Algorithms with Basic Table Organization

Each row in this table stores the tag of the miss address, and
the addresses of a set of immediate successor misses stored in
MRU order. We consider two algorithms that use this basic
organization: Base and Chain.

Base follows the scheme proposed by Joseph and Grun-
wald [5]. For any given miss, Base is only interested in
prefetching immediate successor misses. The parameters of
the algorithm are the number of immediate successors pre-
dicted (NumSucc), the number of misses that the con-elation
table can store predictions for (NumRows), and the associa-
tivity of the con-elation table (Assoc).

Base is illustrated in Figure 4-(a). It shows two snapshots
of the correlation table at the point that the corresponding
miss trace has been consumed (i and ii). In the example,
NumSucc is 2. NumRows is 4, and Assoc is 1. Within a row,
successors are replaced using LRU replacement policy. As in
Joseph and Grunwald's study [5], we find that LRU replace-
ment policy for the successors in each row works best. The
figures show the successors in MRU order from left to right.
In the learning phase, the processor keeps a pointer to the row
of the last miss observed. When a miss occurs, its address is
placed as one of the immediate successors of the last miss,
and a new row is allocated for the new miss unless an en-
try for the address already exists. In the prefetching phase
(iii), when a miss is observed, the processor finds the cor-
responding row and prefetches all the NumSucc immediate
successors, starting from the MRU one.

Since Base only prefetches immediate successors, its cov-
erage and latency hiding capabilities are limited. To improve

this, we propose the Chain algorithm, which for every miss
prefetches multiple levels of successors. The algorithm takes
one extra parameter called NumLevels, which is the number
of levels of successors prefetched. The algorithm is illustrated
in Figure 4-(b).

In the learning phase. Chain is identical to Base (i and ii).
However, Chain does more work in the prefetching phase
(iii). After prefetching the row of immediate successors, it
takes the most recently-used successor among them and in-
dexes the correlation table with its address. If the entry is
found, it prefetches all NumSucc successors there. Then, it
takes the most recently used successor in that row and repeats
the process for IsiumLevels-I times. As an example, suppose
that a miss on line a occurs (iii). The memory processor first
prefetches d and b. Then, it takes the MRU entry d, looks-up
the table, and prefetches ds successor, c.

While improving the coverage and far-ahead prefetching
capability over Base, Chain has two limitations. One limita-
tion is that the response time of the algorithm is high. To issue
prefetches in response to a miss, it needs to make Nun:Levels
accesses to different rows in the table, each possibly involv-
ing a low-associative search and potentially causing a cache
miss. The second limitation is that it does not prefetch the
correct MRU successors of each level of successors. Instead,
it only prefetches successors found along the MRU path.

Pair-Based Algorithms with Replicated Table Organiza-
tion

Each row in this table stores the tag of the miss address, and
NumLeveis levels of successors. Each level contains Num-
Succ addresses, which are MRU-ordered.

We propose a a new algorithm called Replicated that ex-
ploits this table organization. Replicated takes the same pa-
rameters as Chain. In the learning phase, Nun:Levels pointers
to the table are kept for efficient access, pointing to the rows
for the address of the last miss, second last, and so on. When
a miss occurs, its address is recorded in the correct position of
MRU successors of the last few misses by using these point-
ers. Figures 4-(c) illustrates the algorithm. In the example,
NumSucc is 2, NumRows is 4, Assoc is 1, and NumLevels is
2. The figure shows two snapshots of the correlation table in
the learning phase at the point where the corresponding miss
trace has been consumed (i and ii). The figure also shows the
position of the two pointers, and the algorithm in prefetching
phase (iii).

Note that this organization solves the two problems of
Chain. First, the response time is much shorter. We can
prefetch several levels of successors with a single row access,
possibly with only one cache miss. In fact, we shift some
computation from the prefetching phase. which is the critical
phase, to the learning phase. Now the learning phase needs
to update several rows in the table. However, the rows are
most likely still in the cache and, since we keep the point-
ers to the entries of last few miss addresses, the associative
search is avoided. Secondly, by grouping together all the suc-
cessors from a given level, we can identify the correct MRU
successors from that level, yielding higher accuracy.

80

81

current miss

a,b,c,a,d,c,...

Software
Correlation Table

current miss

1
a,b,c,a,d,c,...

(trace of misses)

NurnRows=4

(i) Software
Correlation Table

NumRows=4

current miss
SecondLast

Last
a,b,c,a,d,c,...

(trace of misses)

(i) NumLevels=2

NumSucc=2

a

a

a

C
a

(a) (b)

NumSucc=2

current miss

a,b,c,a,d,c,...

NumSucc=2

current miss

a,b,c,a,d,c,. .

(iii)
on miss a prefetch d, b

(iii)
on miss a

follow link
NumLevels=2

current miss

a,b,c,a,d,c,...

prefetch d,b,c

Last

SecondLast

(c)

Figure 4: Pair-based correlation algorithms: Base (a), Chain (b), and Replicated (c).

Characteristics Base Chain Replicated

Levels of successors prefetched
Full l'ARI.J ordering for each level?
Num. row accesses in the prefetching phase (SEARCH)
Num. row accesses in the learning phase (NO SEARCH)
Response Time
Space requirement (for constant number of prefetches)

1
Yes

1
1

Low
_ 	x

NumLevels
No

Num Levels
I

High
_ 	x

NumLevels
Yes

1
NumLevels

Low
NumLevels x

Table 1: Comparing the different pair-based algorithms.

cept that the prefetch lines are put directly in the Li cache.

In our system, we assume that the memory controller
can distinguish the prefetches issued by the processor-side
prefetcher from regular misses. The memory controller
chooses not to pass such prefetches to the memory processor.
As a result, in general, the processor-side prefetcher targets
the regular misses while the memory-side prefetcher targets
the irregular ones.

Algorithm Comparison
Table 1 compares the three pair-based schemes. From the
table, we see that Replicated algorithm tries to solve prob-
lems in current correlation prefetching algorithms: it looks far
ahead by prefetching several levels of successors, thereby im-
proving coverage, while keeping high accuracy by prefetch-
ing the correct MRU successors in each level. Its only short-
coming is its high space requirements for the correlation ta-
ble. Fortunately, this is a minor issue, since the table is allo-
cated in the main memory.

The response time is better with the Replicated algorithm
than with the Chain algorithm. The handler in Replicated
runs very efficiently because cache lines are well utilized.
Note that all the correlation algorithms could be implemented
in hardware. However, Replicated is very suitable for a soft-
ware implementation because it has a low response time, far-
ahead prefetching capability, and uses cache lines well.

3.4 Conventional Prefetching
Previous studies found that placing a stride-based prefetcher
as a front end of a pair-based prefetcher makes pair-based
prefetching more effective [3, 171. We exploit this finding by
including processor-side prefetching in the form of a hard-
ware multi-stream sequential prefetcher at the Li cache. The
prefetcher has similar capabilities to stream buffers [6], ex-

4 Evaluation Environment
Applications. To evaluate our prefetching scheme, we use
three mostly irregular memory-intensive applications from
the SPECInt2000 suite. Irregular applications are hardly
amenable to compiler-based prefetching. Consequently, they
are the obvious target for the type of prefetching that we pro-
pose. We choose Gap, Mcf, and Parser. Gap uses a subset of
the test input set, Mcf uses the test input set, and Parser uses
a subset of the train input set.

Simulation Environment. The evaluation is performed us-
ing execution-driven simulation. Our environment is based
on an extension to MINT that supports dynamic superscalar
processor models with register renaming, branch prediction,
and non-blocking memory operations [9].

The architecture modeled is that of a high-end PC with a

0 Sect 1 • Seq4 	IIBase leSeq4+Base Main Proc

' Mesa Prx in DRAM

6-issue dynamic, 1.6 CU t. Int. fp, 'dist FU: 4.4.2.
Pending !dist: 8/16. Branch penalty: 12 cycles. LI
data: write-back. 16 KB, 2 way. 32-B line, 3-cycle
hit RT. 12 data: write-back, 512 KB, 4 way, 64-B
line. 19-cycle hit RT. RT memory latency: 243 cy-
cles (row miss). 208 cycles (row hit). Main mem-
ory bus: split-transaction. 8-B wide, 400 Mllz. 3.2
GB/sec peak.

-.

2-issue dynamic, SOO MHz. In. fp. Id/st FU: 2,2,1.
Pending Id/st: 4/4. 	Branch penalty: 6 cycles. 	LI
data. write-back, 32 KB, 2 way. 32-B line, 4-cycle
hit RT. RT memory latency: 56 cycles (row miss).
21 cycles (row hit). Internal DRAM data bus: 32-B
wide, 800 MHz, 2.5.6 GB/sec.

DRAM parameters Dual channel. each channel 2-B wide, 800 MHz;
total 3.2 GB/sec peak. Random access time (IRAC)
45 ns: from Mem Controller (rSysrem) 60 ns.

- Other Depth of queues ! through 4: 16.

Table 2: Parameters of the simulated architecture. Laten-
cies correspond to contention-free conditions. RT stands for
round-trip from the processor. All cycles are 1.6 GHz cycles.
512-KB L2 cache is chosen for the main processor because
we run small inputs for the applications.

memory processor that is integrated in the DRAM, follow-
ing the microarchitecture of Figure 3. Table 2 shows the pa-
rameters used for each component of the architecture. The
architecture is modeled cycle by cycle, including contention
effects.

In the simulation. both the application thread and the
prefetching thread are run simultaneously. We model the
contention between the two threads on memory subsystems
that are shared (memory controller, DRAM channels, DRAM
banks, etc.). The simulation includes all overheads incurred
by running the two threads on different processors.

Algorithm Parameters. Table 3 shows the default param-
eter values that we use for the algorithms described in Sec-
tion 12. For the Base algorithm, we use the values similar to
what Joseph and Grunwald use for their system [51 to make
the comparison easier. For all the algorithms, we use Nun-
Rows = K. which results in a table of size 1.3 MBytes, 0.66
MBytes, and 1.8 MBytes for Base, Chain, and Repl, respec-
tively. These sizes are very tolerable, since the table is a plain
software data structure that is stored in main memory, is dy-
namically allocated, and is cached by the memory processor.

The conventional prefetching discussed in Section 3.4
takes two parameters: the number of streams it is able
to prefetch simultaneously (NumSeq) and the number of
prefetches that it issues per miss in a sequence observed
(NumPrej). We implement this algorithm in hardware in
the LI cache (Conven4) and also in software running on the
memory processor (Seq 1 and Seq4).

fi Algorithm
	

Labe Parameter Values

Base
Chain
	

Chain
Replicated
	

Repi
Conventional I-Stream
	

Seq 1
Conventional 4-Stream 5-

NumSucc = 4, Assoc. = 4
NumSucc =2. Assoc =2, NumLeveis = 3
NumSucc = 2, Assoc = 2. NumLevels = 3
NumSeq = I. NumPref = 6
.NumSeq = 4, NurnPref = 6

Conventional 4-Stream 	Conven4 NumSeq = 3. NumP ref = 6

Table 3: Parameter values used in the algorithms.

Gap
	

Mcf
	

Parser 	 Average

Figure 5: Characterizing the predictability of misses.

5 Evaluation
To evaluate our prefetching scheme, we first characterize the
behavior of applications (Section 5.1) and then compare the
performance of different algorithms (Section 5.2).

5.1 	Characterizing Application Behavior
For memory-side correlation prefetching to be effective, the
miss address streams have to be predictable. In this experi-
ment, we record the fraction of L2 cache misses that are cor-
rectly predicted. For a sequential scheme, this means that the
upcoming address exactly matches the one predicted, while
for a pair-based scheme, the upcoming address matches one
of the predicted successors. The thread does not perform
prefetching here and it only observes the addresses of all L2
cache misses.

In our experiments, shown in Figure 5, we record the frac-
tion of L2 cache misses that are correctly predicted. We try
stride-based schemes that detect up to one stream (Seql) and
four streams (Seq4), the Base algorithm, and the combination.

The figure shows that the miss stream is largely pre-
dictable, with Seq4, Base, and Seq4+Base correctly predict-
ing roughly 40%, 70%, and 80% of the misses on average,
respectively. However, the predictability of each applica-
tion differs. For example, Mcf does not have sequential pat-
terns, while Parser has mostly sequential patterns, and Gap
is mixed.

Lid
	

Ponies'
	

Avenge

Figure 6: Characterizing the time between consecutive
misses.

Seq4 always outperform Seq I , indicating that multiple

82

1.1
1.0

V= 0.9
g 0.8
'3'. 0.7

0.6
Li/ 0.5

0.4
'',15 0.3
E 0.2
2 0.1

0.0
.c

Gap

C
on

v
e

n4
+R

ep
l

Parser

C
o
n
v
en

4
+

R
ep

i

I I

Average

C
o

nv
en

4
+

R
ep

l

Busy
	

L1toL2
	

•PastL2

83

Figure 7: Execution time of the different algorithms.

stream support is necessary for a sequential scheme. The fig-
ure shows that in all applications, Base is almost as good as
the combination Seq4+Base. This is because a correlation ta-
ble is able to detect both sequential and irregular patterns, as
long as the patterns repeat. Once the table learns a pattern, it
can predict it effectively. However, it is still beneficial to have
a multi-stream sequential prefetcher at the processor-side for
several reasons: it does not need learning, it can be cheaply
implemented, and it can hide the full memory latency if in-
tegrated with the Li cache. Furthermore, it splits the misses
into regular and irregular streams, and by tackling the regular
one, it removes some load from the memory prefetcher.

We now consider the time between misses. Figure 6 classi-
fies the misses according to the number of cycles between two
consecutive misses arriving at the memory. The misses are
grouped in bins corresponding to [0,80) 1.6 GHz processor
cycles, [80,200), etc. The most significant bins in the figure
are [200,280), [280,00), and [0,80), which contribute on aver-
age to 54%, 28%, and 18% of all miss distances. The misses
with distances between 200 and 280 are critical as they are
both frequent and hard to hide even with out-of-order pro-
cessors. Furthermore, since the round-trip memory latency
is between 208 and 243 cycles, dependent misses are likely
to fall in this bin. This characterization suggests that, to be
on the safe side, occupancy time of the prefetching algorithm
should be less than 200 cycles.

The [0,80) bin contains misses that may not give enough
time for our prefetching thread to respond. Fortunately, these
misses are not frequent and are likely to be overlapped with
each other or with computation. Thus, they harm the perfor-
mance much less than the bin size implies.

5.2 Comparing the Different Algorithms
Figure 7 compares the execution time of the applications in
different cases: no prefetching (NoPre!), hardware processor-
side LI prefetching as shown in Table 3 (Conven4), different
software memory-side prefetching schemes as shown in Ta-
ble 3 (Base, Chain, and Rep!), and the combination of Con-

vetz4 and Rep! (Conven4+Repl). For each application and the
average, the bars are normalized to NoPref They are broken
down into miss stall time past the L2 cache (PastL2), miss
stall time between the Li and L2 caches (LI toL2), and the
remaining time (Busy) that represents processor computation
plus various pipeline stalls.

On average, the PastL2 time is the most significant com-
ponent of the execution time, contributing about 40%, while
Busy and LI toL2 follow with 35% and 25%, respectively.
Thus, although our software scheme can only target L2 cache
misses, we are targeting the main performance bottleneck.

The conventional scheme (Conven4) performs well on ap-
plications with some sequential patterns, such as Gap and
Parser, but is ineffective in the application that has purely
irregular patterns (Mcf). On average, Conven4 reduces the
execution time by 10%.

The pair-based schemes show mixed performance. The
Base scheme, modeled after Joseph and Grunwald's, shows
limited speedups because it does not prefetch far enough.
Chain performs slightly better than Base, but is limited by
inaccuracy and high response time. Repl is able to reduce the
execution time significantly. It outperforms both Base and
Chain in all applications. Its impact comes from the nice
properties of the Replicated algorithm, as discussed in Sec-
tion 3.

The combined scheme (Conven4+Repl) performs the best.
Its impact is significant: it removes on average 60% of PastL2
stall time, providing an average speedup of 1.36. Compared
to processor-side prefetching only (Conven4) with an average
speedup of 1.11, and memory-side prefetching only (Rep!)
with an average speedup of 1.28, there is a clear synergis-
tic effect in the combined scheme. Memory-side prefetching
helps processor-side prefetching in irregular patterns, while
processor-side prefetching helps in regular patterns.

Workload of the Prefetching Thread
We can gain further insight by examining the work load of
the prefetching thread. Figure 8 shows the average response

120 	
5

100 —

time and occupancy of the prefetching thread for each of the
memory-side prefetching algorithm. The latencies are shown
in 1.6 GHz cycles and correspond to the average of all ap-
plications. Each bar is broken down into computation time
(Busy) and memory stall time (Mem). The numbers on top of
each bar show the average [PC of the prefetching thread. The
IPC is calculated as the number of instructions divided by the
number of memory processor cycles.

The figure shows that for all the algorithms, the occupancy
time is less than 200 cycles, showing the viability of the soft-
ware implementation. Chain and Repl have the lowest occu-
pancy time. Due to the fewer associative searches and the bet-
ter cache use, Repl has only slightly higher occupancy time
compared to Chain, despite performing more table updates.

The response time is very important for prefetching effec-
tiveness. The figure shows that Rep! has the lowest response
time. its value is around 30 cycles.

220
— —

• Mom 1 40

ea. 	Cr.IP 	Rev'
	

Bide 	crtakn 	Re?'

Response Time 	 Occupancy Time

Figure 8: Response and occupancy time of the prefetching
thread for each of the prefetching algorithm.

6 Conclusions
This paper introduced memory-side correlation-based
prefetching implemented in a user-level thread. The scheme
runs on a general-purpose processor in the main memory.
The scheme can be supported with few modifications to the
L2 cache and no modification to the main processor. We
introduced a new organization of the correlation table and a
new correlation prefetching algorithm that enable fast and
accurate far-ahead prefetching with high coverage. Overall,
our scheme effectively prefetched irregular applications,
speeding up three SPECInt2000 applications by an average
of 1.28. Furthermore, our scheme can work synergistically
with a conventional processor-side prefetcher to deliver an
average speedup of 1.36.

Acknowledgement

We thank James Tuck, Jose F. Martinez, Jose Renau, and
Michael Huang for contributions to this work.

References
[1] T. Alexander and G. Kedem. Distributed Predictive Cache Design for

High Performance Memory Systems. In Proceedings of the 2nd liPCA,
Feb 1996.

J.B. Carter, W.C. Hsieh, L.B. Stoller, M.R. Swanson, L. Zhang.
E.L. Brunvand, A. Davis, C.-C. Kuo, R. Kuramkote. M.A. Parker,
L. Schaelicke, and T. Tateyama. Impulse: Building a Smarter Mem-
ory Controller, In Proceedings the 5th HPCA, January 1999.

M.J. Chamey and A.P.Reeves. Generalized Correlation Based Hard-
ware Prefetching. Technical Report EE-CEG-95-I. Cornell University,
Feb 1995.

C.J. Hughes. 	Prefetching Linked Data Structures in Sys-
tems with Merged DRAM-Logic. 	Master's thesis. Univer-
sity of Illinois at Urbana-Champaign, May 2000. 	URL:
h ttp://rs m. c s. ui uc. ed 	h u ghe s/cj hughes ms the s is.pdf.

D. Joseph and D. Grunwald. Prefetching Using Markov Predictors. In
Proceedings of the 24th ISCA, June 1997.

N.P. Jouppi. Improving Direct-Mapped Cache Performance by the Ad-
dition of a Small Fully-Associative Cache and Prefetch Buffers. In
Proceedings of the 17th ISCA, pages 388-397,1990.

D. Koufary and J. Torrellas. Comparing Data Forwarding and Prefetch-
ing for Communication-Induced Misses in Shared-Memory MPs. In
Proceedings of the ICS, July 1998.

C. Kozyrakis, S. Perissakis, D. Patterson, "F. Anderson. K. Asanovic,
N. Cardwell, R. Fromm, J. Golbus, B. Gribstad, K. Keeton. R. Thomas,
N. Treuhaft, and K. Yelick. Scalable Processors in the Billion-
Transistor Era: IRAM. IEEE Computer, September 1997.

V. Krishnan and J. Torrellas. An Execution-Driven Framework for
Fast and Accurate Simulation of Superscalar Processors. In Inter-
national Conference on Parallel Architectures and Compilation Tech-
niques (PACT), October 1998.

D. Kroft. Lockup-free Instruction Fetch/Prefetch Cache Organization.
in Proceedings of the 8th ISCA, pages 87-85,1981.

A.-C. Lai, C. Fide, and B. Falsafi. Dead-Block Prediction and Dead-
Block Correlating Prefetchers. In Proceedings of the 28th !SCA, 2001.

C.-K. Luk. Tolerating Memory Latency through Software-Controlled
Pre-Execution in Simultaneous Multithreading Processors. In Proceed-
ings of the 28th ISCA, 2001.

NVID1A. http://www.nvidia.corn.

R. Cooksey, D. Colarelli. and D. Grunwald. Content-based Prefetch-
ing: Initial Results. In The 2nd Workshop on Intelligent Memory Sys-
tems, Nov 2000.

A. Roth and G.S. Sohi. Speculative Data-Driven Multithreading. In
Proceedings of the 7th HPCA, pages 37-48, Jan 2001.

Sony Computer Entertainment Inc. hup://www.sony.com.

T. Sherwood, S. Sair, and B. Calder. Predictor-Directed Stream
Buffers. In Proceedings of the 33th MICRO, Dec 2000.

C.-L. Yang and A.R.Lebeck. Push vs. Pull: Data Movement for Linked
Data Structures. In Proceedings of the 2000 ICS, May 2000.

84

[2]

[31

[4)

[51

[6]

[7)

[8]

[91

[10]

[II]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

Multi-Threading For Latency

John P. Shen

It looks like multithreading is here to stay with the recent introduction of the "Hyper-
Threading" technology by Intel for Xeon family server processors. This talk will start
with Intel's Hyper-Threading technology and move on to cover ongoing research
activities in Intel Labs related to Hyper-Threading. More specifically, the focus is on
Speculative Precomputation techniques for both Itanium and IA32 machines, and how to
leverage multithreading resources to achieve better latency for single-threaded
applications. This talk concludes by suggesting a paradigm of leveraging TLP to achieve
better MLP in order to realize a new form of ILP.

Bio:

John P. Shen is the Director of the Microarchitecture Lab at Intel, whose mission is to
develop new and innovative microarchitecture techniques for possible adoption by future
Itanium and IA32 microprocessor products. This lab has researchers located in Santa
Clara CA, Hillsboro OR, and Austin TX, and works closely with product groups. Prior to
joining Intel in 2000, for over 18 years John Shen was on the faculty of the Electrical and
Computer Engineering Department of Carnegie Mellon University, where he headed up
the Carnegie Mellon Microarchitecture Research Team (CMuART). He is currently
writing a textbook on "Fundamentals of Superscalar Processor Design" which will be
published by McGraw-Hill in 2002.

85

86 -

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86

