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1 Introduction

The field of Pairing-Based Cryptography has exploded over the past 3 years [cry, DBS04].
The central idea is the construction of a mapping between two useful cryptographic groups
which allows for new cryptographic schemes based on the reduction of one problem in one
group to a different, usually easier problem in the other group.

In many research papers, the first of these two groups is referred to as a Gap Group,
where the Decisional Diffie-Helman problem [Bon98] is easy (because it reduces to an easy
problem in the second group), but the Computational Diffie-Helman problem remains hard.

The known implementations of these pairings – the Weil and Tate pairings – involve
fairly complex mathematics. Fortunately, they can be dealt with abstractly, using only the
group structure and mapping properties. Many interesting schemes have been built based
purely on abstract bilinear maps.

2 Bilinear Maps

The major pairing-based construct is the bilinear map. Consider two groups G1 and G2 of
prime order q. For clarity, we denote G1 using additive notation and G2 using multiplica-
tive notation, even though the group operations in G1 and G2 may well be very different
from the well-known arithmetic addition and multiplication. (Sometimes G1 is also written
multiplicatively in the literature.)

We consider P and Q two generators of G1, and we write

a times

aP =
︷ ︸︸ ︷
P + P + . . . + P

We now consider the mapping e as follows:

e : G1 ×G1 → G2

(Note that we do not know how to build a self-bilinear map, G1×G1 → G1. This would
be quite powerful.)

Useful bilinear maps have three properties:

Bilinearity
∀P,Q ∈ G1,∀a, b ∈ Z∗

q ,

e(aP, bQ) = e(P,Q)ab
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Non-Degeneracy If everything maps to the identity, that’s obviously not interesting:

∀P ∈ G1, P 6= 0 ⇒ 〈e(P, P )〉 = G2 (e(P, P ) generates G2)

In other words:

P 6= 0 ⇒ e(P, P ) 6= 1

Computability e is efficiently computable.

We can find G1 and G2 where these properties hold: the Weil and Tate pairings prove
the existence of such constructions. Typically, G1 is an elliptic-curve group and G2 is a
finite field.

3 Complexity Implications

The construction of a bilinear map comes with a number of complexity implications.

Theorem 1 The Discrete Log Problem in G1 is no harder than the Discrete Log Problem
in G2.

Proof 1 Consider Q = aP (still using additive notation), though a is unknown. Solving
the Discrete Log Problem involves discovering a for a given P and a random Q.

We note:

e(P,Q) = e(P, aP )
= e(P, P )a

Thus, we can reduce the Discrete Log Problem in G1 to the Discrete Log Problem in G2.
Given P ∈ G1 and a random Q ∈ G1, and noting that the mapping e is easily computable,
we can compute logP (Q) as follows:

1. determine P ′ = e(P, P )
2. determine Q′ = e(P,Q)
3. determine a = logP ′(Q′) in G2.
4. a is also logP (Q).

Theorem 2 The Decisional Diffie-Helman [Bon98] is easy in G1.

Proof 2 Solving the DDH problem involves distinguishing:

〈P, aP, bP, cP 〉 with a, b, c ∈R Z
∗
q, and

〈P, aP, bP, abP 〉 with a, b ∈R Z
∗
q

If we define P,A, B, C as the four values given to the distinguisher, the distinguisher
functions as follows:
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1. Determine v1 = e(A,B) and v2 = e(P,C)

2. If v1 = v2, then the tuple is of the type 〈P, aP, bP, abP 〉.

Indeed, assume C = abP , then:

e(A,B) = e(aP, bP )
= e(P, P )ab

= e(P, abP )
= e(P,C)

Since we know the mapping e is non-degenerate, the equality e(A,B) = e(P,C) is equivalent
to c = ab. The distinguisher can gain a significant advantage in deciding DDH given the
mapping e.

4 Cryptographic Schemes

The application of bilinear maps leads to numerous interesting cryptographic schemes.

4.1 One-Round, 3-party Key Agreement Scheme

In 2000, Joux introduced a scheme for one-round, 3-party key agreement based on bilinear
maps [Jou00]. Key agreement schemes based on Diffie-Helman [DH76] are well known, but
all require more than one round of exchanged data.

In the Joux scheme, assume the above notation and existence of a bilinear map between
groups G1 and G2 with P a generator of G1. Three parties A,B, C respectively have secrets
a, b, c ∈ Z∗

q . The protocol functions as follows:

1. A −→ B,C: aP
2. B −→ A,C: bP
3. C −→ A,B: cP
4. Note that steps 1, 2, 3 are done in one round of parallel message exchanges.
5. A computes e(bP, cP )a = e(P, P )abc.
6. B computes e(aP, cP )b = e(P, P )abc.
7. C computes e(aP, bP )c = e(P, P )abc.
8. Note that steps 5, 6, 7 are done in parallel.
9. All parties have the same shared key K = e(P, P )abc ∈ G2.

This protocol is contingent on the BDH assumption.
Definition The Bilinear Diffie-Helman (BDH) Assumption considers the computation of

e(P, P )abc given 〈P, aP, bP, cP 〉 to be hard.

4.2 Identity-Based Encryption

In 1984, Shamir imagined a public-key encryption scheme where any publicy-known string
(e.g. someone’s email address) could be used as a public key [Sha85]. In this scheme,

17-3



the corresponding private key is delivered to the proper owner of this string (e.g. the
recipient of the email address) by a trusted private key generator. This key generator must
verify the user’s identity before delivering a private key, of course, though this verification
is essentially the same as that required for issuing a certificate in a typical Public Key
Infrastructure (PKI). Thus, an Identity-Based Encryption Scheme enables the deployment
of a public-key cryptosystem without the prior setup of a PKI: a user proves his identity in
a lazy way, only once he needs his private key to decrypt a message sent to him.

In 2001, Boneh and Franklin devised the first practical implementation of such an
Identity-Based Encryption scheme [BF01]. Their approach uses bilinear maps and relies
on the BDH Assumption and the Random Oracle model.

Setup

• the usual G1 and G2 with a bilinear mapping e : G1 ×G1 −→ G2 and P a generator
• a system-wide secret key s ∈R Z

∗
q .

• a corresponding system-wide public key Ppub = sP .

Encrypt We want to encrypt a message m to public key A using the system-wide settings
from above. The encryption function is:

Enc(Ppub, A, m) = 〈rP,M ⊕H2(gr
A)〉, r ∈R Z

∗
q

gA = e(QA, Ppub)
QA = H1(A)

H1 : {0, 1}∗ −→ G1, a random oracle
H2 : G2 −→ {0, 1}∗, a random oracle

Decrypt We want to decrypt a ciphertext c = (u, v) encrypted with public-key string
A. The secret key is delivered to the owner of A as dA = sQA, with QA defined as above:
QA = H1(A). We define:

Dec(u, v, dA) = v ⊕H2(e(dA, u))
= v ⊕H2(e(sH1(A), rP ))
= v ⊕H2(e(H1(A), P )rs)
= v ⊕H2(e(QA, sP )r)
= v ⊕H2(e(QA, Ppub)r)
= v ⊕H2(gr

A)
= (m⊕H2(gr

A))⊕H2(gr
A)

= m
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This scheme is not CCA2-secure, but can be made so with the Fujisaki-Okamoto con-
struction [FO99], which assumes the Random Oracle model — nothing further than what
we already assume.
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