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Constructing Reliable Objects 
From Unreliable Components

Our Goal

• Given n components (disks, registers, etc) 
prone to Byzantine failures, construct a 
reliable object (disk, register, etc), which 
can tolerate up to t (3t < n) failures among 
its components

Some Definitions

Safe SWMR Register
• Every complete read operation that does not 

overlap any write operation returns the 
register’s value (i.e., the value of the last 
write)

• Otherwise the read operation returns an 
arbitrary value

Some Definitions

Regular SWMR Register
• Same as safe SWMR register, with one 

difference:
• When write operations overlap the read 

operation, the latter returns one of the 
values being written, or the last value of the 
register (before the overlapping writes)

Some Definitions

Wait Free Register
• All operations complete

Finite Writes Terminating Register
• All write operations complete
• Read operations complete, provided that 

there are finite number of write operations

Sufficiency of FW-Termination
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FW-Terminating Regular 
Register Emulation

• We are given n SWMR FW-Terminating 
regular registers, up to t of which may fail 
arbitrarily (3t < n)

• We want to emulate a reliable (t-resilient) 
SWMR FW-Terminating regular register

<TimeStamp, Value> Pairs

• We have a single writer, hence we can use 
time stamps

• From now on, all records in the registers 
will be <TimeStamp, Value> pairs (TSVals 
for short)

• Two records in each register: pw and w
(because we will have a two-phase write op)

Intuition

• Two phases: pre-write and write, each 
writing to n - t registers

• t + 1 pw records for a value testify that a 
write for that value has actually began

• 2t + 1 lower-timestamped w records 
different from a given value means that the 
value’s write phase did not complete

Intuition

• Hence the read operation looks for the value 
with the highest timestamp, among those 
written to at least t + 1 registers without 
being “testified against” by more than 2t
registers

Note: “testimony” above means having a 
lower-timestamped record.

Going Over The Code…

In the CHECK subroutine of the WRITE 
operation we use the following notation for 
the low-level operations:

• enabled[i] means the register has not been 
contacted on this round yet

• pending[i] means the register has been 
contacted, but it hasn’t responded yet

Going Over The Code…
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Going Over The Code… Going Over The Code…

In the READ operation we also define:
• pw[i], w[i], tmpPW[i] and tmpW[i] contain 

the values read from the corresponding 
register

• old[i] specifies whether the pending read 
was invoked in a previous execution of the 
READ operation

Going Over The Code… Going Over The Code…

We also define the following predicates:

Going Over The Code… Proving Regularity

• The returned value c is safe, hence there 
was indeed a WRITE invocation for it

• Assume our construction is not regular: then 
c must have been written before the last 
completed WRITE operation (let’s denote it 
by WRITE(v))
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Proving Regularity

• After this last WRITE(v) no more than t
registers remained with a timestamp less 
than that of v

• Hence, v cannot be marked as invalid, 
because no more than 2t registers would 
report a smaller timestamp

Proving Regularity

• We assumed c has a smaller timestamp than 
v, hence c would not pass the highestValid
test because of v

• Hence, c could not get to the set C and thus 
cannot be returned by the READ operation 
=> contradiction

Proving FW-Termination

• WRITE operations always complete (as n - t
registers always respond)

• Similarly READ operations never get stuck 
in the inner (lines 5-7) loop, waiting for 
responses.

Proving FW-Termination

• If we have finite number of writes, then 
there exists a time T when all writes have 
completed (and all correct registers have 
returned, as they satisfy FW-Termination)

• Let’s consider an execution of the outer 
loop of a READ operation at time T

Proving FW-Termination

• Consider the last WRITE operation, which 
has completed its pre-write phase (let’s 
denote it WRITE(v))

• We have two cases. In case WRITE(v) did 
not complete its write (second) phase, then 
the Writer must have crashed

Proving FW-Termination

• In that case the v holds at least t+1 pw
records of correct registers, hence it is safe

• Also, none of the n-t (which is at least 2t+1) 
correct registers holds a timestamp greater 
than that of v, hence v will not be judged 
invalid, while all other records with higher 
timestamps will (as they could exist only in 
faulty registers)
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Proving FW-Termination

• In the second case WRITE(v) has 
completed its write (second) phase and 
since no later write has completed its pre-
write phase, v holds the w records of all n-t
correct registers, which are at least 2t+1

• This makes all higher time-stamped records 
invalid and keeps v from invalidation too

Proving FW-Termination

• In both cases the READ operation, executed 
at time T returns v, hence our algorithm 
satisfies FW-Termination.

Wait-free Safe Register 
Emulation

• We are given n SWMR wait-free safe 
registers, up to t of which may fail 
arbitrarily (3t < n)

• We want to emulate a reliable (t-resilient) 
SWMR wait-free safe register

• Note: we have to bound the number of read 
rounds in order to be wait-free

Intuition

• WRITE operation is the same as in the 
previous algorithm

• The READ operation for t = 1 returns after 
2 read rounds

• We are forced to return a particular value 
only if a WRITE operation does not overlap 
with our READ operation

Intuition

• Hence it makes sense only to return values 
that have been written during the last 
WRITE. Such values certainly occupy at 
least 2 correct registers’ w records.

• Hence if 3 registers respond without a given 
value in their w records, the value is out of 
consideration

Intuition

• Also, if the highest time-stamped value v
still in consideration has at least two records 
that contain v or a higher time-stamped 
value, then v is safe to return (as this either 
guarantees that v was indeed written in a 
correct register, or it shows that there’s an 
overlapping WRITE and thus we’re free to 
return an arbitrary value, including v)
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Intuition

• Hence for each remaining return value 
candidate c, we have to close the gap and 
either find 3 registers that do not have a 
record for c, or find 2 registers that do.

• We can do that in just one additional read 
round by considering two cases:

Intuition

• If c was reported by a faulty register, then 
there is a correct register that hasn’t 
responded in the first round. Whenever its 
response arrives we’ll be able to close the 
gap and return.

Intuition

• If c was reported by a correct register 
(remember: in its w record) this means that 
the pre-writing of c has been completed. 
Thus on the next round there will be at least 
two correct registers reporting either c or a 
higher time-stamped value in their pw
record, which is exactly what we needed.

Going Over The Code…

• For each TSVal v we denote the set of 
registers in whose w records it occurs by 
ReadW(v). Similarly we use ReadPW(v) for 
the pw records and prevReadW(v) for the 
ReadW(v) set on the previous round.

• This implies some changes in the CHECK 
subroutine

Going Over The Code… Going Over The Code…

• We also add a set C containing the return value 
candidates and we define the following predicates:
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Going Over The Code… Proving Safety

• If there are concurrent writes with the 
READ, all return values are correct.

• Otherwise let’s denote the value of the last 
WRITE with v. In this case we have to 
guarantee that we return no other value than 
v.

Proving Safety

• Since v’s write has completed, it is written 
in the w record of at least n-t registers, at 
least n-2t of which are correct. Hence, v
becomes a candidate right after the first read 
round and never ceases to be.

• Also, no other candidate can get returned, as 
no correct register would return a value with 
a greater timestamp than v

Proving Wait-freedom

• Since at least n-t registers are correct, our 
algorithm always exists the loop between 
lines 4 and 6 and the first condition on line 
13 is always eventually satisfied.

• All we have to do is prove that the second 
condition on line 13 eventually gets 
satisfied. In order to do that we consider 
two cases.

Proving Wait-freedom

• Case 1: At least one register in PrevW(c) is 
correct. This means the pre-write phase of 
WRITE(c) has been completed, which 
means that at least t+1 correct registers have 
had c in their pw record => they’ll 
eventually respond with c or a higher time-
stamped value, which is guaranteed to make 
c safe

Proving Wait-freedom

• Case 2: All registers in PrevW(c) are faulty, 
hence at least n-t other registers will 
respond, which will meet the second OR
clause of the condition we want to satisfy.

• Hence the loop on lines 11-13 always exits. 
Now let’s consider the loop on lines 8-14.
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Proving Wait-freedom

• For every candidate c after each round 
(iteration) of the 8-14 loop there are three 
cases:

• Case 1: c becomes safe hence it doesn’t 
obstruct the condition on line 8 anymore.

• Case 2: None of the n-t register mentions c, 
hence c gets excluded from C, as n-t > 2t

Proving Wait-freedom

• Case 3: Some of the n-t registers mentions c
and hence ReadW(c) grows.

This case can be exercised at most t+1 
times, as when the size of Read(c) grows to 
t+1 it becomes safe. Hence there are at most 
t+1 iterations (read rounds) of the 8-14 loop

Early Stopping

• In fact, the algorithm is early stopping in the 
sense that it takes min(t+1, f+2) read rounds

• Intuition: Only case 3 (previous slide) leads 
to additional rounds and it needs a new 
faulty register to be added to ReadW(c) at 
each of those rounds.

Lower Bound on Write Rounds

• We consider constructing a SWSR FW-
Terminating binary safe register (weakest 
possible) out of n < 4t+1 base registers

• Obviously we need at least one round of 
writes to our base registers, as otherwise the 
next READ would not be able to distinguish 
whether the WRITE occurred or not.

Lower Bound on Write Rounds

• Now we’ll prove the need for at least two 
write rounds on some base register.

• Assume the contrary: i.e., that one round of 
writes is enough. Then divide the base 
registers into four groups: S1, S2, S3 and S4, 
each of which consisting of no more than t
base registers. Assume w.l.o.g. that the 
writer writes to them in order S1, S2, S3, S4

Lower Bound on Write Rounds
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Lower Bound on Read Rounds

• There is also a lower bound on the number 
of read rounds required for n = 3t+1, which 
is min(t+1, f+2), equal to what our 
algorithm takes.

• Intuition: We need one more round to 
resolve the ambiguity arising from each 
faulty register.

Lower Bound on Read Rounds

• Both the algorithm and the lower bound 
generalize to min([t/k]+1, [f/k]+2), where 
n_=_3t + k

• Proof left as a mental exercise for (optional) 
homework ☺

Thank  you!


