
Shared Memory vs. Message Passing

Objectives:

What is the weakest failure detector
to emulate a shared memory?

Model:
● Message passing system with reliable channels
● Crash failures

Shared Memory vs. Message Passing

Why important?:

Can find the weakest failure detector

to implement consensus with a majority of

faulty process

Shared Memory vs. Message Passing

Why important?:

Can find the weakest failure detector

to implement consensus with a majority of

faulty process (up to n-1)

Ω(◊S) S
Can tolerate n-1 failures Can tolerate n/2 failures

≥

Shared Memory vs. Message Passing

Why important?:

Can find the weakest failure detector

to implement consensus with a majority of

faulty process (up to n-1)

Ω(◊S) S
Can tolerate n-1 failures Can tolerate n/2 failures

?≥ ≥
Can tolerate n-1 failures

Shared Memory vs. Message Passing

weakest failure detector:

If we can find the weakest failure detector to

emulate registers, say F, then the failure detector

class F x Ω is the weakest for consensus.

Shared Memory vs. Message Passing

weakest failure detector:

If we can find the weakest failure detector to

emulate registers, say F, then the failure detector

class F x Ω is the weakest for consensus.

Consensus can be implemented using registers and Ω,
in every environment (tolerate up to n-1 failures)

Implementing consensus

Shared Memory vs. Message Passing

weakest failure detector:

If we can find the weakest failure detector to

emulate registers, say F, then the failure detector

class F x Ω is the weakest for consensus.

For any failure detector class D that implements
consensus, 1). D ≥ Ω (proved in the class)

Using consensus as a building block, we can

implement register by D. Thus 2). D ≥ F.

Weakest?

Shared Memory vs. Message Passing

Quorum failure detector, ∑:

Outputs a list of trusted processes

Properties satisfied with ∑:

1. Intersection:
Any two outputs at any time, for any process

includes at least one same process.

2. Completeness:
Eventually no faulty process is ever trusted

by any correct process.

Shared Memory vs. Message Passing

Emulate SWSR register using ∑:

Atomic actions in the model:

1. Receive from other processes

2. Query the failure detector

3. State change and send to other processes

Local vars for each process

current : current value of emulated register

last_write : keep track of the time stamp for

the current value (initially set to -1)

Shared Memory vs. Message Passing

Emulate SWSR register using ∑:

Initially seq = 0

Pw
(Write, v, seq)

P1

P2

Pn

:
:

Shared Memory vs. Message Passing

Emulate SWSR register using ∑:

Initially seq = 0

Pw
(Write, v, seq)

P1

P2

Pn

:
:

If seq >= last_write then
current:=v
last_write:=seq
send (ACK_WRITE,seq)

Shared Memory vs. Message Passing

Emulate SWSR register using ∑:

Initially seq = 0

Pw
(Write, v, seq) P1

P2

Pn

:
:

If seq > last_write then
current:=v
last_write:=seq
send (ACK_WRITE,seq)

Wait until it receives ACK

from all trusted processes,

and seq++

Trusted processes would change before
write terminates

Shared Memory vs. Message Passing

Emulate SWSR register using ∑:

Initially rc = 0 (read counter)

Pr
(Read, rc) P1

P2

Pn

:
:

send (ACK_READ,
last_write, current, rc)

rc:=rc+1

Shared Memory vs. Message Passing

Emulate SWSR register using ∑:

Initially rc = 0 (read counter)

Pr
(Read, rc) P1

P2

Pn

:
:

send (ACK_READ,
last_write, current, rc)

rc:=rc+1

Wait until it receives ACK

from all trusted processes,

mlw=(max of second field of ACK)

if mlw>last_write then

current := (third field of ACK)

last_write := mlw

return current

Shared Memory vs. Message Passing

Correctness:

Termination for write

from completeness of ∑

Eventually, ∑ outputs only correct processes.

From assertion 1, all correct processes

acknowledge.

Termination for read is similar.

Assertion 1.

if Pw has not finished its k-th writing, then

for all processes, last_write <= k

Shared Memory vs. Message Passing

Correctness:

Validity

Have to show: every read operation returns either

the value written by the last write that precedes it,

or a value written concurrently with this read.

(If there is no overlapping read/write, read should

return the last value written.)

Assertion 2.

If any process sends (ACK_READ, s, v, *),

then v is the value of the s-th write operation.

Shared Memory vs. Message Passing

Validity

j-th READ

k-th WRITE (k+1)-th WRITE

Waited for Lw

Waited for Lr

Pi is in Lw Lr because of
the intersection property of ∑

U

Shared Memory vs. Message Passing

Validity

j-th READ

k-th WRITE (k+1)-th WRITE

Waited for Lw

Waited for Lr

Pi is in Lw Lr because of
the intersection property of ∑

U

(ACK_WRITE, k) by i

(ACK_READ, s, *, j) by i

Shared Memory vs. Message Passing

Validity

j-th READ

k-th WRITE (k+1)-th WRITE

Waited for Lw

Waited for Lr

Pi is in Lw Lr because of
the intersection property of ∑

U

(ACK_WRITE, k) by i

(ACK_READ, s, *, j) by i

s >= k

Shared Memory vs. Message Passing

Validity

j-th READ

k-th WRITE (k+1)-th WRITE

Waited for Lw

Waited for Lr

Pi is in Lw Lr because of
the intersection property of ∑

U

(ACK_WRITE, k) by i

(ACK_READ, s, *, j) by i

s >= k

mlw >= s >= k

Shared Memory vs. Message Passing

Validity

j-th READ

k-th WRITE

Waited for Lw

Waited for Lr

Pi is in Lw Lr because of
the intersection property of ∑

U

(ACK_WRITE, k) by i

(ACK_READ, s, *, j) by i

s >= k

mlw

mlw >= k

Shared Memory vs. Message Passing

Validity

j-th READ

k-th WRITE

Waited for Lw

Waited for Lr

Pi is in Lw Lr because of
the intersection property of ∑

U

(ACK_WRITE, k) by i

(ACK_READ, s, *, j) by i

s >= k

mlw

mlw >= k

If the k+1th write has not
started, then all processes
have a last_write <= k

=> for any (ACK_READ, x, *, j),
x <= k

Shared Memory vs. Message Passing

Validity

j-th READ

k-th WRITE

Waited for Lw

Waited for Lr

Pi is in Lw Lr because of
the intersection property of ∑

U

(ACK_WRITE, k) by i

(ACK_READ, s, *, j) by i

s >= k

mlw

mlw >= k

=> mlw=k, which implies
j-th read returns the value
written by the k-th write

If the k+1th write has not
started, then all processes
have a last_write <= k

=> for any (ACK_READ, x, *, j),
x <= k

Shared Memory vs. Message Passing

Correctness:

Ordering:

Have to show : if a read operation r precedes a read

operation r', then r' cannot return a value written

before the value returned by r.

Proof sketch:

last_write for a reader makes sure consistency.

Shared Memory vs. Message Passing

Have to show that ∑ is the weakest.

=> have to emulate ∑ using a failure detector

that implements register.

Shared Memory vs. Message Passing

Have to show that ∑ is the weakest.

=> have to emulate ∑ using a failure detector

that implements register.

Proof: not for this time...

Summary: we showed ∑ is weakest failure
detector to implement register.

Ω(◊S) S
Can tolerate n-1 failures Can tolerate n/2 failures

≥ ≥
Can tolerate n-1 failures

Ωx∑

