
The Unified Structure of Consensus:
a Layered Analysis Approach

Yoram Moses*
Department of Applied Math and CS,

The Weizmann Institute of Science,
Rehovot, 76100 Israel.

Email: yoram@cs.weizmann.ac.il

Sergio Rajsbaumt
Instituto de Matemgticas, UNAM,

Ciudad Universitaria, D.F. 04510, Mkxico.
Email: rajsbaum@servidor.unam.mx

Abstract

We introduce a simple notion of layering that provides a tool
for defining submodels of a given model of distributed com-
putation. We describe two layerings, the synchronic and the
permutation layering, and show that they induce appropriate
submodels of several asynchronous models of computation.
The synchronic layering applies to the synchronous model
too.

We perform a model-independent analysis of the con-
sensus problem in terms of abstract connectivity properties
of layering functions. By defining particular layerings in
specific models, we derive several popular (and some new)
lower bounds and impossibility results for consensus in var-
ious classical models. These results are often stronger in
the sense that they apply to the subrnodel induced by the
layering. The proofs obtained in this way are also simpler
and more direct than existing ones. Moreover, the analysis
is done in a uniform fashion and demonstrates the funda-
mental common structure of the consensus problem in the
presence of failures.

The analysis is then extended to general decision prob-
lems (l-resilient in the asynchronous models, t-rounds in the
t-resilient synchronous model), providing a characterization
of solvability of decision problems in the style of [8] which,
for some of the models, is given for the first time.

1 introduction

For almost two decades now, the consensus problem has
played a central role in the study of fault-tolerant distributed
computing, e.g. 123, 13, 12, 10, 14, 20, 16, 8, 91. It has
clearly received the greatest amount of attention in the the-
oretical literature on distributed computing, and has been
studied in a large variety of models and under many types
of failure assumptions. Work on different variants often in-

*This work has been supported by a Helen and Milton A. Kim-
melman career development chair.

tPart of this work was done while visiting the Weizmann In-
stitute of Science. Partially supported by Conacyt and DGAPA-
UNAM Projects.

Permission to make digital or hard copies of all or part oftbis work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
POLXJ 98 Puerto Vakuta Mexico
Copytight ACM 1998 O-89791-977-7/98/ 6...$5.00

volved related notions, especially when proving impossibil-
ity results; mainly a notion of some form of connectivity
defined in terms of a relation on pairs of states that are in-
distinguishable to some of the processes. However, proofs for
different models are often based on distinct and somewhat
ad hoc techniques. In particular, there have been consid-
erable differences between the study of consensus in asyn-
chronous models, and its study in synchronous and partially
synchronous ones.

In order to cope with the proliferation of distributed
computing models, researchers have proposed a variety of
simulations between models. The aim is to establish a rela-
tion (often of equivalence) between the possibility of solving
problems of certain types in different models. This is used
to establish impossibility results in particular models, or to
provide a systematic way to transform protocols written in
one model into protocols for another model. Various such
simulations have been given, e.g. between shared memory
and message passing [3]; between snapshot shared mem-
ory and read/write shared memory [2], or between imme-
diate snapshot shared memory and read/write shared mem-
ory [5, 61; between synchronous and asynchronous message
passing [l]; between two shared memory models of different
resilience [5].

This paper attempts to present a uniform approach to
study solvability of consensus arid other decision problems
in various models of computation, where crash failure behav-
ior is possible (e.g., sending omissions or Byzantine failures:
A faulty processor can fail to send messages altogether from
some point on, and thus behave as if it has crashed). We
start by considering an abstract model based on the runs of
a distributed system, and a failure model. Then we intro-
duce the notion of layering which allows to focus only on
interesting states among a subset of the runs. We think of
a “layer” as a set of (not necessarily immediate) successor
states of a given state.

Roughly, we use layering in the following sense. Given
a model of distributed computation, we identify particular
legal sequences of actions for the scheduler, which we think
of as generating a “layer”. We require that performing such
layers repeatedly starting from a legal initial state will re-
sult in a legal run in the model. Thus, in a precise sense,
such a layering can be viewed as defining a submodel of the
original model.’ Any protocol for the original model trans-
lates directly to one in the submodel. Moreover, the model

*Layering saves us the trouble of explicitly defining the sub-
model as a model of computation with a new transition function,
new actions, etc.

123

and submodel generally share mauy features. In particular,
lower bounds and impossibility results proven for the sub-
model typically translate directly into the original model.
The use of layerings facilitates performing round-by-round
analysis: Almost all of our results regarding consensus will
follow from analyzing a single layer of computation. The
benefit of working in a submodel with a simpler structure
than that of the original model is well known; some recent
examples are [4, 5, 6, 8, 19, 251.

In the maiu part of the paper we concentrate ou the con-
sensus problem. First, we perform an abstract aud model-
independent analysis of consensus using layering. Based
on this analysis, implications for specific models are ob-
tained by demonstrating that appropriate layerings cau be
dehned in the model. We exemplify the approach 011 the
following l-resilient models: asynchronous shared memory,
asynchronous message passing, mobile failures, and in the
t-resilient synchronous message passing model.

We describe two specific layerings: the synchronac and
the permutation layering, and show that they apply to the
first three models. The synchronic layering defiues a sub-
model of the asynchronous models that is very close in struc-
ture to being synchronous. Indeed, we show that the syn-
chronic layering applies to the synchronous message passing
model too. The permutation layering is inspired by the im-
mediate snapshot wait-free model of [5], although we define
it both for the message passing and for the shared memory
models, l-resilient. This appears to be the first variant of the
immediate snapshot model suggested for a message-passing
model.

Regarding consensus, we provide:

l New, simple and uniform lower bound and impossi-
bility proofs for the standard synchronous and asyn-
chronous models. In particular, we show a bivaleuce-
based proof for the synchronous case, and a direct
round-by-round coustruction of a bivalent run (not
employing a critical state argument) in asynchronous
cases.

l Stronger impossibility results with respect to submod-
els of the full asynchronous models, in which there is
only a small degree of asynchrony. These demonstrate
how little asynchrony is needed to make consensus UII-
solvable.

l Finally, we show that the asynchronous models are
equivalent in terms of the l-resilient solvability of de-
cision tasks. In particular, the slightly asynchronous
submodels are 110 more powerful than the fully asyn-
chronous ones. Moreover, in the full paper we show
that in a sense, they are strictly stronger than what
cax~ be done t-resiliently in t rounds of the standard
synchronous model. Thus, our results can be viewed
as providing characterizations of solvability of decision
problems in the style of [8] which, for the mobile failure
and synchronous models, are new.

We consider the layering technique to be useful in a num-
ber of ways:

l It provides a tool for performing model-independent
round-by-round analysis of decision tasks and related
problems.

l Results are obtained directly, and not by means of spe-
cially tailored reductions.

Popular topological treatments (e.g. [18, 25, 5, 41) fo-
cus ou the local final states of processes. We consider
states at intermediate stages of the computation as
well. Moreover, the global state also takes into account
the state of the environment, and can therefore treat
both shared memory and message-passing models.

We make use of a novel notion of valence connectiv-
ity of a set of states, whose definition depends on the
decisions takeu by the protocol in the possible futures
of these states. In addition we use the more tradi-
tional notion of counectivity based 011 indistinguisha-
bility. The combined used of the two notions proved
very useful for unifying the analysis of consensus in the
synchronous and asynchronous models.

Our aualysis in this paper concentrates on the consen-
sus problem and 011 l-resilient solvability. By focusing on
these “basic” cases we obtain a direct and uniform aualy-
sis of these questions in simple arid elementary terms. The
proofs of all of our results are short, which suggests that
the notions we use are fairly natural. We believe that, with
small modifications, the same type of analysis and style of
reasoning can be applied to study more general problems
involving higher levels of topological connectivity.

Two other papers that attempt to unify syuchronous and
asynchronous models in a round by round style are: [15] via
failure detectors in shared memory, and [17] using topolog-
ical techniques in synchronous, asynchronous and partially
synchronous message passing systems, with applications to
set-consensus. A different abstract model based on the runs
of a distributed system is proposed in [21].

For lack of space, some of the proofs are omitted or just
sketched in this extended abstract.

2 Definitions

In this paper we wish to present au approach that is relevant
in a number of different models. We therefore start out by
defining those aspects of the models that the technique will
use, then follow it by presenting the basic approach in these
more general terms, and differ some issues to be discussed
ody when we come to applications in concrete models.

Systems

Throughout the paper we will assume there is a fixed finite
set of n > 2 processes, which we shall deuote by 1,2,. . . ,r~,
and an environment, denoted by e, which is responsible for
everything else that happens.

The (global) state of a system consists of a local state
for each one of the processes, as well as a local state for the
environment, which captures all else that is relevant to the
operation of the system. Thus, aspects such as messages
in transit, or the values of shared variables, will typically
be represented in the environment’s state. More formally,
for every i E {e, 1,2, . . , n}, we assume there is a set Li ”
consisting of all possible local states for i. The set of global
states, which we will simply call states, will consist of

6 = L, x L, x ... x L,.

If CC is a state, then we denote by z:i the local state of i in
the state x. We say that two states x and y agree module j
if zre = ye and xi = yi for all processes i # j.

A run over 0 is a function T from the non-negative inte-
gers to G defining an infinite sequence of states of E. The

124

state r(0) is called the initial state of T. AD execution is a
finite or infinite subinterval of a run.

A system R is a set of runs. With respect to such a
system, a state y is said to extend the state x if there is a
finite execution that starts in 3: and ends in y. By definition,
x extends z for every state z of the system. An infinite
execution extending z is the suihx starting at 2 of a run in
which x appears.

Finally, we will usually be interested in systems that are
in a precise sense derived from some automaton whose states
are the states that appear in the runs of our system. Intu-
itively, this means that all aspects of the run up to a given
state that may affect the future of the run are somehow
captured in the state. Formally, we will capture this by ss-
suming such a property directly. We say that a system R
is admissible if it satisfies the following pasting condition:
For every state x, if there are runs T,T’ E R and indices
m, m’ 2 0 such that r(m) = I’ = x, then there is a run
P E R such that

for k 5 m, and
for k > m.

All systems we consider in this paper will be assumed to be
admissible.

Failures

A large variety of types of faulty behavior have been pro-
posed and studied in the literature. In order to avoid the
need to commit to particular types of failures, we identify
two abstract properties about models allowing crash failures,
which are all that we need for our analysis. One assumption
will involve a notion of independence of failures, while the
other will capture an observable aspect of crash failures.

For every system R appearing in this paper, we assume
that there is an associated function Faulty : (1,. . . , n} x
R + {Yes, No} that, given a process name i and a run T,
will say whether or not i is faulty in T’.~ A function Faulty
defked for a system R induces a notion of who is jailed at a
state (with respect to R). We say that a process i is failed
at state z if i is faulty in all runs of R in which z appears.
Otherwise i is non-jailed at x. The one property we require
of such a function Faulty is
Fault Independence: For every state x of R there is a
run r’ E 72 in which x appears, such that the only processes
that fail in rx are those that are already failed at x. For-
mally, this is captured by Vi. [Faulty(i, T”) iff i is failed at x].
When modelled in an appropriate way, all failure models we
are aware of satisfy this condition.

Intuitively, ouce a process has crashed, it’s state and be-
havior can no longer affect the state of the rest of the system.
Motivated by this, the following definition captures an ab-
stract property of crash failures. We say that a system ‘&!
displays an arbitrary crash failure with respect to a set X
of states of R if the following condition holds. For every
x, y E X and process j if x and y agree modulo j, then
there exist in R runs P and 9 and times m,, my 2 0 such
that (i) I” = x and rY(my) = y, (ii) rz(mz + k) and
@(my + k) agree modulo j for all k 2 0, and (iii) Every
process i # j that is not failed in x aud in y is nonfaulty
in rz and in 9.

2The function Faulty determines who is faulty in a run as a
function of the whole infinite run. Obviously, in some models it
is possible to determine that a process is faulty by considering
only a prefix of the run, sometimes even a single state. In other
cases, however, it is impossible to determine this after a finite
amount of time. (See, e.g., the asynchronous systems in [14].)

3 Consensus and Connectivity

In the classical biuary consensus problem [23], processes
start with binary values and have to decide on binary val-
ues satisfying three conditions. Decision, requires that ev-
ery nonfaulty process eventually decides; Agreement requires
that the decisious are identical; and Validity requires that
each decision was somebody’s input. A decision is assumed
written into a write-once variable di ever-present, and iui-
tially undefined, in i’s local state. The 2” possible ixxitial
states for consensus are defined formally, and the set of these
states is denoted by Cone. We defer this formalization to the
full version.

In the sequel, we shall focus on systems that are com-
patible with the consensus problem. We call a system R
a system for consensus if (i) the set of initial states in R
consists exactly of Cone, (ii) the local state x; of every pro-
cess i in a state x of R contains the variable di, and the runs
all satisfy that di is write-once, and (iii) in the associated
Faulty function for R no process is failed at an initial state
of a run of R. In Sections 3-6, all systems referred to will
be assumed to be systems for consensus.

Decisions and valence

It has long been recognized [14] that considering what the
possible decisions in the future of a given state are can be a
useful tool for analyzing the structure of the consensus prob-
lem. This gives rise to the following notions of the valence
of a state. With respect to a given system R, we define a
state x in R to be w-valent if there is au execution of R ex-
tending t in which at least one nonfaulty process decides u.
The state x will be called v-univalent if it is v-valent and,
for all v’ # v, it is not v’-valent. Since we are considering
only binary decisis,rs, we say that x is bivalent if it is both
0-valent and 1-valent. One useful consequence of the agree-
ment property is captured in the following lemma. We say
that a process i has decided by x if in the state x we have
that di # 1.

Lemma 3.1 Let R be a system satisfying the agreement re-
quirement and assume that no more than t < n processes
fail an runs of R. If x ds a bivalent state of R then at least
n - t non-failed processes at x have not decided by x.

Proof: Since x is bivalent, there is a run r” extending x
in which at least one nonfaulty process decides 0. The set
PO of nonfaulty processes in r” consists of at least n - t pro-
cesses, they are all non-failed at x, and by the agreement
property none of them has decided 1 by 2. Using symmetric
reasoning, we obtain the existence of a set Pi of at least n-t
non-failed processes at x that have not decided 0 by x. By
the failure independence property, there is a run P extending
x in which the only processes that fail are the ones that are
already failed at x. All processes in PO U Pi are nonfaulty
in P. By the agreement property, there is at most oxxe value
u E (0, 1) on which nonfaulty processes decide in P. If IIOU-
faulty processes do not decide 0 in C, then no process in PO
has decided by x, and if they do not decide 1 in P, then no
process in Pi has decided by I. In either case, the claim
holds. n

Lemma 3.1 provides us with a tool for showing when a con-
sensus protocol cannot terminate its operation altogether.
This is useful for the study of lower bounds for the syn-
chronous model which we treat in Section 6. III asynchronous
systems it is usually the case that even when a process is

125

faulty, this faultiness cannot be determined in finite time.
We say that a system R displays no finite failure if, for all
states 3: of R, no process is failed at 2. For such systems, a
proof similar to that of Lemma 3.1 in fact shows:

Lemma 3.2 Let R be a system that displays no finite fail-
ure and satisfies the agreement requirement. If the state x
of R is bivalent, then no process has decided by x.

Connectivity

As has been observed by many authors starting with [13],
connectivity plays a central role in the analysis of decision
problems. We use two types of connectivity:

Definition 3.1 Let x and y be states of 72. With respect
to R we define

Similarity: x and y are similar, denoted by x wQ y, if
there exists a process j such that (i) the states x and y
agree module j, and (ii) there exists a process i # j
that is non-failed in both x and y.

Shared valence: x and y have a shared valence, denoted
by x ~~ y, if for some w E (0, 1) both x and y are w-
valent.

A very useful sufficient condition that guarantees that states
have a shared valence is given by:

Lemma 3.3 Let R satisfy the decision requirement, let X
be a set of states of R, and assume that R displays an ar-
bitrary crash failure with respect to X. For all x, y E X, if
x wg y then x wy y.

The argument for this lemma is well known. Intuitively,
if x and y agree modulo j, then by crashing j at both z
and y we obtain runs T’ and ry that are indistinguishable
to the nonfaulty processes, who in turn end up deciding on
the same value v in both runs.

For every set X of states, each of mg and TV is in par-
ticular a binary relation on X. We can thus view (X,N~)
and (X, -v) as the corresponding graphs. The set X is said
to be valence connected if the graph (X,wU) is connected,
and X is said to be similarity connected if (X,--,) is con-
nected. Similarity connecteduess has often been considered
in the literature (see, e.g., 1241). Valence connectedness is, to
the best of our knowledge, new. In general, valence connect-
edness is not a very strong condition. Indeed, X is valence
connected exactly if either (i) for some value u, all states
of X are v-univalent, or (ii) there exists at least one biva-
lent state in X. Thus, valence connectedness can be used to
demonstrate the existence of bivalent states:

Lemma 3.4 Assume R satisfies the decision requirement
and X is valence connected. If X contains both 0-valent
and I-valent states, then there is a bivalent state in X.

Lemma 3.3 directly implies the following.

Lemma 3.5 Let R satisfy the decision requirement and let X
be similarity connected. If I?. displays an arbitrary crash fail-
ure with respect to X, then X is valence connected.

Lemma 3.4 and Lemma 3.5 allow us to reprove in our
setting the well-known fact from [14] that when even a single
process can crash, there must be a bivalent initial state for
consensus.

Lemma 3.6 The set Con0 is similarity connected. More-
over, if R satisfies the decision requirement and displays
an arbitrary crash failure with respect to Cone, then Con0
is also valence connected. Finally, if in addition the valid-
ity requirement holds, then there is a bivalent initial state
in Cone.

Proof: To prove that Con0 is similarity connected we will
show that every two initial states x, y E Con0 are connected
by a sequence of states each pair of which are similarity
connected. Choose 2, y E Cone. For 0 < 1 5 n, define z1 by
setting

xf =
-t

xj for j = e and all j < 1; and
yj for all j > 1.

Clearly, x1 E Cone, and it is easy to check that x0 = x
and zn = y. (Recall that ze = ye by definition of Corm)
Moreover, for every 0 < 1 5 n we have that in x1-l and x1
agree module 1, since the local states of the environment and
of all processes, except possibly that of 1, are equal. Since
n > 2, the states 2 and y are similarity connected. Since R
sa$fies the decision requirement and displays an arbitrary
crash failure with respect to Cone, Lemma 3.5 implies that
Con0 is valence connected. Now, if in addition we have the
validity requirement, then the state x0 E Con0 in which
all processes start with initial value 0 is O-vale& while the
symmetric state x1 in which they all start with value 1 is l-
valent. It now follows by Lemma 3.4 that there is a bivalent
state in Cone. n

4 Layering

In some cases, the set of runs of a given protocol in a par-
ticular model can be very rich. We often want to consider
properties of a model that are already evident in a subset of
the runs of the protocol, in which the environment’s behav-
ior may have a nicer structure. For example, we will later on
consider runs of an asynchronous system that can be divided
into what are approximately synchronous rounds.

Let 0 be a set of states. A function S : P -+ 2” \ (0) is
called a successor function for 6. A run T over 9 is called
an S-run if r(m + 1) E S(r(m)) for all m 2 0. When
focusing on runs compatible with the consensus problem,
we have Con0 c g and we can view a successor function S
as generating a system ‘Rs consisting of the set of all S-
runs with initial state in Cone. The essential property that
will later on yield lower bound and impossibility results in
a variety of models is captured in the following lemma.

Lemma 4.1 Let S be a successor function, and assume Rs
satisfies decision. If x is bivalent in 72s and S(x) is valence
connected, then there exists a bivalent state y E S(x).

Proof: Since 2 is bivalent, at least one of the states in
S(z) is 0-valent and at least one is l-valent. By assumption,
the set S(z) is valence connected. Thus, by Lemma 3.4 we
have that there is a bivalent state y E S(x). n

Given Lemma 4.1, if S(x) is valence connected for ev-
ery x E Rs, then a bivalent initial state in 7Z.s can be ex-
tended into an infinite run all of whose states are bivalent.
We can thus obtain the basic impossibility theorem for con-
sensus in asynchronous models.

Theorem 4.2 Let S be a successor function such that (i)
at most t < n/2 processes fail in runs of Rs, (ii) Rs dis-
plays an arbitrary crash failure with respect to Cone, and (iii)

126

for every state x of 72.~ the set S(x) is valence connected.
Then Rs cannot satisfy all three requirements of consensus.

Proof: Assulne that Rs satisfies the decision and validity
requirements of consensus. These requirements imply to-
gether with Lemma 3.6 that there is an initial bivalent (in
Rs) state, CC’. Applying Lemma 4.1 repeatedly with the de-
cision property, we obtain a run T of Rs starting in x0, all of
whose states are bivalent. Assume by way of contradiction
that 7Z.s satisfies agreement. By Lemma 3.1 we have that
at least n - t > n - n/2 = n/2 > t processes never decide
in T. Since at most t < n/2 processes can be faulty in T, this
contradicts the assumption that Rs satisfies decision. n

Notice that Lemma 3.2 yields a slightly stronger version
of this theorem for systems with 110 finite failure.
Layering functions: A successor fuuctiou S is a layering
of a system R if for every S-run rs starting in au initial
state of R (so that r”(O) = r'(O) for some run T' E R), there
is a run T E R and a monotone mapping D : N --i N with
a(O) = 0 such that r’(m) = ~(~(rn)) for all m 10.

Intuitively, a layering of R allows us to focus on “inter-
esting states” within “interesting runs” of R. We think of
such a layering S as defining “layers” in the relevant runs
of R. The initial states of R are states in the initial “layer”,
and each application of S we think of as moving to the next
layer. The next lemma says that if Theorem 4.2 applies
and Rs cannot satisfy the consensus requirements, neither
can 72.

Lemma 4.3 Let R be a system for consensus and let S be
a layering of R. Then Rs is a system for consensus. More-
over, for each req E {decision, agreement, validity}, if all
runs of R satisfy req, then so do all runs of 72s.

5 Impossibility results

Having set the stage, we can 11ow consider applications of
layering to the analysis of consensus in different models.
Throughout the paper, we will focus on deterministic pro-
tocols.

We start with an impossibility for a single mobile failure
in the synchronous model [24]. We are talking about the
standard synchronous model, except that, in every round
there can be at most one process some of whose messages
are lo&. We use the term mobile because the identity of
the process whose messages may be lost can change from
one round to the next. In this model, we can represent
the environment’s action at a state by a pair (j, G), with
G C_ (1,. . . , n}. This action rneaus that all messages sent in
the upcoming round by process j to processes in G are lost.

With respect to a given protocol, we denote by x(j, G)
the state that results from x when the processes follow the
protocol, and the environment performs the action (j, G).3
Notice that the environment here has sufficient power to
silence a single process forever from any state of the compu-
tation. We define Faulty(i, T) to hold in this model exactly
if there is a finite k such that i is silenced in all rounds e 2 Ic
of T. We denote this model by M”‘/.

Fix a protocol A for the processes and let R(d, M’“f) be
the system consisting of all runs of A in M’nf. Moreover,
assume that R(d, Mmf) satisfies the decision requirement.

3The processes’ next state depends on their current local states
and on the environment’s action; it does not depend on the en-
vironment’s local state. In this model, we shall therefore ignore
the environment’s state and think of it as being constant.

We now define a layering function for 7Z(d, iV@). For i =
1,. . , n, let [ICI denote the set (1,. . . , k}. In addition, for
notational convenience we denote the empty set by [O]. For
every state 2 in R(d, M’“), define

S*(x) = {x(j, [k]) : 1 I j < 71, 0 5 k I n}.

Thus, Si (x) contains a successor of 3: for every environment
action of the form (j, [ICI). Let Es, be the corresponding set
of Si-runs.

Lemma 5.1 (i) Si is a layering ojR(d, M’“f);

(ii) Rs, displays an arbitrary crash failure with respect to
every subset X of its states; and

(iii) for every state x of Rs, , the set SI (x) is valence con-
nected.

Proof: Parts (i) and (ii) are straightforward. We sketch
(iii). For every j, j’ we have that z(j, [0]) = z(f, [0]) and
hence also x(j, [0]) wQ x(j’, [O]). Moreover, for every k < n
we have that x(j, [k]) wQ x(j, [k + l]), because the two states
differ only in the state of process k + 1. It follows that
Si (x) is similarity connected for all z. That Si (x) is valence
connected now follows from (ii) by Lemma 3.5. n

Given Lemma 4.3 and Lemma 5.l(iii), Theorem 4.2 11ow
yields

Corollary 5.2 No protocol solves the consensus problem in
the single mobile failure model.

This result is a simple corollary of a theorem of Santoro
and Widmayer in [24]. Their proof is the only one we have
found that uses a bivalence-based argument in the style of
Fischer et al. [14] in the synchronous context.

5.1 Impossibility in Asynchronous Models

The same outline of the impossibility proof for M’” can be
used in the two typical models of asynchronous systems with
a single crash failure [14, 201: message passing and shared
memory. In these models, “slow” behavior of processes can
be used to imitate the omitting behavior in A@. The small
but crucial difference now will be that, in the asynchronous
model, delayed messages will nevertheless need to eventually
be delivered (or, similarly, a slow processes that is about to
write a variable will ultimately write the value). In the syn-
chronous model M’“‘, the lost messages are gone forever.
Hence, to perform a careful analysis of the round by round
evolution, we will need to consider as part of the state (i.e.,
in the environmeut’s local state) the status of the Inessages
in transit or, similarly, of the current values of shared vari-
ables. In this sense, we are going slightly beyond the scope
of most of the recent work on topological approaches.

Shared memory: the synchronic layering

We shall now consider the standard (see for example [22,20])
shared-memory model M“” in which variables are single-
writer multiple-reader. For ease of exposition, we shall ig-
nore the decision and other local actions, as their role is
obvious, and consider only read and write actions explicitly.
The shared variables are assumed to be part of the environ-
ment’s local state. A process crash results in the process
refraining from reading or writing from the state in which it
crashes on. At most one process can crash in a given run.

127

We define a local phase for process i to be a sequence of
actions performed by i with the following form: At most one
writei action, followed by a maximal sequence of readi
actions in which no variable is read more than once. For
every ruu of M“” aud every process i, there is a way to di-
vide i’s local history in r into a sequence of such local phases.
Moreover, there is only one way to do so Intuitively, a lo-
cal phase cau be viewed as an analogue of what a single
process undergoes in one round in the synchronous model.
We will strengthen the analogy, aud define a successor func-
tiou s’” for M’” that will mimic the layering function Si
very closely. We restrict attention to runs in which the pro-
cesses proceed in virtual rounds, in each of which all but at
most one will perform a local phase. A round will consist of
four stages:

Wl, RI, Wz, Rz

Reads and writes are instantaneous, in the seuse that a pro-
cess performing a readi operation will receive the latest
value written into Vj by the period in which it is being read.
By varying wheu in a rouud processes will write and when
they read, we can imitate (at least temporarily) the loss
(or omission) of messages in a given round. More formal15
we assume that the enviromnent has actions of two types:
(j, A), arid (j, k) where 1 5 j 5 n is a process name, and
0 5 k 5 n. The process j specified in the enviroumeut’s ac-
tion is considered the slow process in the layer, aud the oth-
ers we call proper. When the environment’s action is (j, A)
the proper processes all write their values in phase WI and
read in phase RI, while process j neither writes uor reads
(the A stands for absent). When the euvironmeut’s action
is (j, k) the proper processes all write their values in phase
W1, while j writes in phase W2. The proper processes i 2 k
read in phase RI, while process j and the proper processes
i’ > k read in phase R2. We remark that the state result-
ing from the actiou (j, 0) applied in a state 2 depends on z
but is indepeudent of j, siuce every process performs writes
based on its local state in 2, and all reads occur after all
writes are completed. With respect to a fixed determiuistic
protocol A for M’“, we define the successor function s’”
by:

S-(x) = {x(j,k): l<j<n, O<k<n}u

{x(.i A) : 15 j I n)

Whereas in the synchronous case, the states in Si(z)
were indeed immediate successors of x acaording to the model
Mmf, this is clearly not the case for s’“. In fact, S’” has
an important property which will prove very useful: Every
SW-run is fair, in the sense that all processes except at
most one perform actions infinitely often. As a result, given
a protocol A satisfying decision, S’” will generate a layer-
ing of R(d, M”“). We will hence avoid some of the trouble
involved in proviug liveness in FLP-like prooI% here. We can
now show:

Lemma 5.3 The analogue of Lemma 5.1 holds for S’” and
M““.

Proof: Part (i) and (ii) are again straightforward. The
proof of part (iii), stating that S’“(x) is valence connected,
proceeds in two steps. In the first, the same proof as applied
for Lemma 5.1 shows that the subset Y af S”“‘(z) consisting
of the states z(j, k) with k # A is valence connected. As

4Notice that we are making no simplifying assumptions re-
garding the form of the protocols used; only the actions of the
environment, or the scheduler, are being restricted.

before, Y is similarity connected, and because of part (ii)
it is valence connected by Lemma 3.5. We complete the
argument by showing that every state in S“‘(z) \ Y has a
shared valence with a state in Y, and we thus obtain that
S”‘(x) is valence connected. Specifically, we will show that
4% n) N,, z(j, A) for all j. In s(j, n) process j had a chance
to write into Vj (although nobody managed to read it yet)
in the round followiug z, while in x(j, A) it did not. It is
not hard to see, however, that y = z(j, n)(j, A) and v’ =
z(j, A)(j, 0) agree modulo j. The only value written by j
after x (if at all) is the same in both cases, and can be seen
by all processes only in the second round. Thus, the values
of all shared variables and all local states other than j’s are
the same, and y mg y’. By part (ii) and Lemma 3.3 we
obtain that y +, y’, aud hence x(j,n) wy z(j,A) and we
are done. n

As for Mmf , Theorem 4.2, Lemma 4.3 and Lemma 5.l(iii)
now yield the impossibility result [20]:

Corollary 5.4 No protocol solves the consensus problem in
the asynchronous r/w shared memory model while tolerating
one crash failure.

We remark that a completely analogous impossibility
proof can be given for asynchronous message passing as well.
The structure of the layering function, and the reasoning un-
derlying the results remain unchanged.

Our development leading to Corollary 5.4 can reason-
ably be viewed as reproving the impossibility result for Mrw
given in [20] by Loui and Abu-Amara. Indeed, we hope the
reader finds this version to be somewhat more concise and
perhaps easier to digest. We believe, however, that our re-
sult can be interpreted as saying quite a bit more. Techni-
cally, we have shown that consensus is unsolvable even in the
submodel defined by s’“. This is a model that is very close
to being synchronous: In every round, at least n- 1 processes
get to write their variables and read at least n - 1 newly writ-
ten variables. By employing a full-information protocol, for
example, at least n - 1 processes will know what the round
number is, and will have a view almost identical to what
they would have in the synchronous case. So we have in fact
shown that even with the very restricted degree of asyn-
chrouy inherent in the model defined by the actions in S’“‘,
consensus is impossible. This is perhaps the strongest ex-
plicit version so far of an FLP-like impossibility theorem.
The same comments will apply in the asynchronous message
passing case, where the model defined by the analogous lay-
ering function is even closer to the synchronous models that
are popular in the literature.

Message passing: the permutation layering

We have just used a layering function for asynchronous sys-
tems iu which a layer very closely resembles a round in the
synchronous model. To illustrate the flexibility of the layer-
ing approach, we now use a very different layering, called the
pernautation layering, to present a very simple FLP-style im-
possibility proof. As for the synchronic layering, essentially
the same proof will work in both the shared memory and
the message passing models. We shall present this proof
with respect to the asynchronous message passing model
1141, to provide a direct and simple proof in this model too.
The permutation layering is inspired by wait-free immediate
snapshot executions in shared memory [5, 25, 41, and pro-
vides au analogue of these executions for message passing.5

5We are not aware of an analogne of immediate snapshots that
has previously been suggested for message passing.

128

III this case, in a local phase for process i, first all out-
standing messages that have been sent to i are delivered,
and then process i sends messages (according to its proto-
col) to a maximal set of distinct destinations. (That is, in
a single local phase process i sends at most one message to
every other process.) Roughly speaking, rather than imitat-
ing a synchronous round, we will now have virtual rounds
in which processes perform their local phases one, or infre-
quently two, at a time. We consider environment actions
(consisting of scheduling sequences) of three types:

l [Pl,... ,pn-I], and

l [pl,. . . ,pk-1, {pk,Pk+l},Pk+2r.. ,Pn] with k < 72.

III all cases, the process names Pi in an action are pairwise
distinct elements of (1,. . , n}. Actions of the first and sec-
ond type specify a linear order in which processes are to
perform local phases. An action of the third type is simi-
lar, except that processes Pk and Pk+i perform their local
phases concurrently: first both of them receive their incom-
ing messages, and each of them sends his messages only
after the other has received its current phase messages. Fix
a protocol A satisfying the decision requirement. We define
SPe’(z) to be all states obtainable from z via one of these
three actions. We call actions of the first and third type full,
because they involve every process taking steps. As in the
case of S’“, we now have that every 9” run has all but at
most one process moving infinitely often. Moreover, RSW

clearly displays an arbitrary crash failure wrt all subsets X.
The proof that SPer(zc) is valence connected is slightly sim-
pler than before. It is easy to check that

d,Pl,...,P~l -8 ~[pl,...,{pk,~k+l}r...,~rr]
-3 x[PI,...,pk+l,pk,pk+z... 1 ,Pn 7

which implies that two states that result from performing
at 2 actions defined by permutations that differ in a single
transposition are similarity connected. By transitivity of
connectivity and the fact that transpositions span all per-
mutations over (1,. . . , n}, we obtain that the set of suc-
cessors of 2 obtained from z via a full action is similarity
connected (and hence valence connected). Finally, we show
that z[pi ,...,P+l,P,l Y, z:[pi , . , P,- i] by demonstrating
that they have a common successor y. Whatever valence y
has is a shared valence for both states. The state T/ is given
by:

Y = X[pI,... ,Pn-l,Pnl[Pl,P2,.~~,pn-l]
= 4P1,. . ,Pn-1][pn,p1, Pz,. . ,P,-I].

Equality holds because in both cases the exact same se-
quence of basic actions happens in the two rounds follow-
ing 2. Here the FLP diamond argument is reduced to its
bare minimum. Notice that we do not have z[pr , . . , p,-, , pn]
-s x [PI , . . . ,p,-11 because the two states can differ both in
the state of pn and in the state of the environment: in the
former case P, has sent messages (in ~74’” it could have writ-
ten into Vn), while in the latter p, has not done so. This
pinpoints the reason why the dianrond argument, and in-
deed reasoning about valence, are useful in the asynchronous
models.

6 The Synchronous Lower Bound

The analysis we performed for the mobile failure model M’“f
in the synchronous case should, intuitively, apply equally

well to the standard t-resilient case in the synchronous model,
where there is a bound of t 011 the total number of processes
who may fail in the run, and a process some of whose mes-
sages are lost is considered faulty. The well-known lower
bound for this case (due originally to [13, lo]) states that
every consensus protocol must require at least t + 1 rounds
in its worst case run. 111 this model, the environment can
use one failure in every round for t to simulate a prefix of
an Si-run for t rounds. One could hope to show that there
will exist a bivalent state at the end of round t, and thus
derive the t + l-round lower bound directly from our analy-
sis for iVf’“‘. A close inspection, however, shows that things
are not that simple. There will typically not need to be a
bivalent state at the end of round t. But the essence of this
idea still works.

We assume 1 < t 5 n - 2, and hence n 1 3. About the
failure model we assume (i) that in the first round in which
a process fails the environment can block the delivery of an
arbitrary subset of its messages, (ii) that the environment
can silence a faulty processor forever in all rounds after the
first one in which it fails, and (iii) the environment’s local
state keeps track of the processes that have failed. For this
model, given a t-resilient consensus protocol A we de6ne a
layering function St by

if fewer than t are failed at x, and
St(z) = { z[!yb]) otherwise.

Recall that x(1, [0]) is a successor of x in which 110 process
fails. Thus, in an St layer at most one process performs an
omitting failure (and then is recorded as having failed and
is silenced forever after) so long as fewer than t processes
have already failed. Once t processes fail, no more failures
happen. Thus, clearly, Rst displays an arbitrary crash fail-
ure with respect to every set X of states in which fewer
than t failures are recorded. And as in the case of M’“f, it is
straightforward to verify that St is a layering function for d
in a synchronous model of this type. The valence connect-
edness property of Si stated in Lemma 5.1 (iii) holds in this
model as well. We xlow have:

Lemma 6.1 Let x0 be a bivalent state of I?+ in which
no more than f processes are failed. Then there is an St-
execution x0,x1,. . . , xt-f-l of A, such that xtefF1 is biva-
lent and no more than t - 1 processes are failed in xtefpl.

Proof: We prove by induction 011 m, for 0 6 m 5 t -
f - 1, that an execution of the desired form exists, with x’”
bivalent and where 110 more than m + f processes are failed
in zTn. The basis m = 0 holds by assumption. Assume
inductively that the claim holds for m < t - f - 1. Thus, we
have that m + f < t - 1 processes are failed in x’~. Recall
that if fewer than t - 1 processes are failed in a state x
then (i) St(x) = Sl(x) and (ii) Rst displays an arbitrary
crash failure with respect to St(z). Thus, Lemina 5.1 (in
its version for this model, and assuming n 2 3) implies
that St (2’“) is valence connected. It follows from Lemma 4.1
that there is a bivalent state xPn+r E St(x”j., By definition
of St, the number of failed processes in z’~+ IS at most f +
m+ 1. n

The existence of a bivalent initial state with f = 0 failed
processes, Lemma 6.1 immediately implies the existence of a
bivalent state xt-’ at the end of round t - 1. By Lemma 3.1,
this gives us a t-round lower bound for consensus. The
true (t + l)-round lower bound is obtained by showing that
two rounds are still necessary after a bivalent state:

Lemma 6.2 Assume that A is a protocol for consensus.
Let 5 be a bivalent state of Ii,, If 2 is bivalent, then there
is a state y E St(P) in which at least on& non-failed process
has not decided.

Proof: Notice that a state x with t failed processes must
be univalent, since there is a unique h$nite St extension
starting at x. Hence, to be bivalent, the itate f can have no
more than f, f 5 t - 1, failed processes. Since f 2 t - 1,
we have from the definition of St that $t(?) = S*(f), aud
the proof of Lemma 5.1 (in its version fbr this model, aud
assuming n 2 3) states that St(P) = Sl(f) is similarity
connected. Since f is bivalent, there are states y”, y1 E St(P)
such that y” is 0-valent and y1 is 1-valent. The similarity
connectivity of St (2) implies the existence of states z”, z1 E
St(f) (not necessarily distinct) satisfyin z” wg z1 and that
are 0- and 1-valent, respectively. Recall that all states of
l&t have at most t faulty processes. Since t 2 n - 2 and z”
and z’ agree module j for some j, it fc$lows that there is
at least one process i # j that is not f$led in both states
such that I: = z:. Assume for contradiction that every non

failed process is decided in both z” and ,zl. In particular, i
is decided, say with value U. Agreement itnplies that in both
states, every uonfaulty process decides v,, and hence both .z”
and z’ are v-univalent. n

We cau now put the two results togetlher and obtain the
desired lower bound:

Corollary 6.3 Every t-resilient protocd for consensus in
the synchronous model where faulty processes cm crash has
a run in which decision requires at least t + 1 rounds.

This result was first proved for crash failures by Dolev
and Strong [lo], and the latest version of the proof is in
[ll]. Our proof here is the first one wei are aware of that
is in the style and spirit of the impossibility proofs for the
asynchronous case. Moreover, we feel that it is even sim-
pler than the oue of [ll]. In addition to generalizing the
lower bound for t-resilient consensus, wee feel that our proof
provides further insight into the structude of consensus pro-
tocols in this model. Let us briefly consilder an example. It
is well-known [23] that there a,re t-resiliellt consensus proto-
cols that are guaranteed to decide in preicisely t + 1 rounds.
Thus, the worst-case lower bouud of Dblev and Strong is
tight. Let us call a protocol in which dousensus is always
reached in at most t + 1 rouuds fast. W& can now show

Lemma 6.4 Let A be a fast t-resilient ‘consensus protocol.
For every execution x0,x1,. , xk,xk+l of A, if at most k
processes have failed by xk,
free, then xk+’

and the k+ 1st round is failure-
must be univalent.

Proof: By assumption, ouly Ic processe$ have failed by zk+‘.
If xk+’ is bivalent, then by Lemma 6.1 it cau be extended
to a run with a bivalent state zt at the end of t rounds. By
Lemma 6.2, two more rounds are necessary for agreement in
the worst case, contradicting the assurn&ion that A is fast.

Clearly, Lemma 6.1 also partially describes the situation
in runs in which potentially more than olle process can crash
in a giveu round. It matches the upper (aud lower) bouuds
given in [ll], which show roughly that if in solne execution
k+w crashes are detected by the end of round k, then agree-
lnent can be secured by the end of round t + 1 - w. Hence,
by allowing k+w crashes by the end of rdund k, the environ-
ment has essentially “wasted” w faults ip its quest to delay

agreement. Lemma 6.1 guarantees that the environmeuf has
not lost more than w rounds in this case.

7 Decision Problems

We briefly describe how the techniques developed for con-

sensus apply also to general decision problems. Due to lack
of space, we defer a more complete discussion to the full
paper.

For the purpose of this paper, a vertex is a pair (i, v),
consisting of a process id i E (1,. . , n} and a value u from
some range V. A simplex is a set of vertices in which all
process id’s are distinct. Thus, a simplex can cousist of at
most n vertices. A k-size-simplex is one that contains k ver-
tices. In a given ruu, an input simplex is a simplex describing
the initial inputs of the processes, and itll output simplex is
one that describes the decisions taken by a set of processes.
A complex is a set of simplexes that is closed under contain-
ment. In an n-size-complex the maximal simplexes have n
elements.

The consensus problem is au example of a decision prob-
lem (e.g. [7]). Roughly, these are problems where processes
start with input values, communicate with each other, and
decide ou output values according to the problem specifi-
cation. More precisely, a decision problem D = (Z,O, A)
consists of an input complex, 1, il~l output complex, (3, and
a mapping A : Z -+ 2O. The environment is in the same lo-
cal state in all initial states, and we denote this set of initial
states for 2) by DO. The decision problem for a model M is
to design a protocol A for M, such that every run T of A
in M satisfies two conditions: Decision, requiring that every
nonfaulty process eventually decides, and Validity, requiring
that the decisions made in a run starting in an input simplex
s form a simplex in A(s). Thus, to solve a decision prob-
lem V it is enough to solve a subproblem, 2)’ = (1, C?, A’),
where A’(s) C A(s) for every input simplex s.

Our purpose is to relate the solvability of general decision
problems to that of consensus. To this end, we say that a
pair 01,02 of n-size complexes is a covering of a set of
runs R if (i) every decided output simplex of a run of R
is in one or both of the complexes, and (ii) each of 00, U1
contains at least one decided output simplex of a ruu of R.
Intuitively, the two parts of a covering can be thought of as
defining “decision values” to be chosen by the run. This is
captured as follows.
Generalized Valence. With respect to a set of runs R
and a covering C&,01 of R, we define a state x in R to be
v-valent, 2, E (0, l), if there is a run r of R extedillg x such
that the simplex describing the decisions made by uoufaulty
processes in T is a simplex of (3,. The notions of univalence
aud bivalence are defined based on v-valence as in the case
of cousensus.

We remark that the sets R that will be of interest to us
will typically have a particular form: They will consists of
the set of all runs of a system R in which states of a set X
appear. We denote such a set by R(X).
Generalized Connectivity. The uotion of similarity
between states is unchanged, and for the generalized no-
tion of valence, we define shared valence with respect to a
covering C&,01 as in Definition 3.1, and maintain the corre-
sponding connectivity definitions. It turns out that we may
be interested in many possible coverings. Giveu a system R,
we say that a set X of states of R is always valence con-
nected if it is valence connected w.r.t. every covering (30, Ul
of R(X).

Always valence connectedness will now play a role anal-
ogous to that played by valence connectedness in the case
of consensus. Variants of Lemmas 3.3 aud 3.4 in which va-
lence connected is replaced by always valence connected still

130

hold, and their proofs do not change, and hence so do the
corresponding versions of Lemma 3.5 and Lemma 4.1.

The following is a more general version of Theorem 4.2,
but the proof is almost the same.

Lemma 7.1 Assume that (i) Rs satisfies decision and (ii)
for every state x of Rs the set S(x) is always valence con-
nected. Let I be a similarity connected set of initial states
such that ‘Rs displays an a~bitII%Ty crash failure with respect
to I, and let 00, (31 be a covering of %&(I). Then there is
a Tun rb E ‘l&(I) all of whose states are bivalent.

Proof: Since I is similarity connected, Rs satisfies deci-
sion, and Es(I) displays an arbitrary crash failure with re-
spect to I, we have by Lemmas 3.3 and 3.5 that I is always
valence connected. In particular, I is valence connected with
respect to (30,Ol. Since 00, (31 is a covering of l&(I), there
exist at least one O-valent and one 1-valent state in I. It
follows from Lemma 3.4 that there is a state x0 E I that is
bivalent with respect to (30,Q. Assume inductivel{ that we
have constructed an S-execution z”, . , xk with x E I and
where all states are bivalent. We claim that 00, (31 is a cov-
ering of Rs(S(z”)). Clearly, Rs(S(x’)) C ‘&(I), so that
every decided output simplex of Rs(S(x”)) is one of Rs(1)
as well, and hence appears in 00 U (31. Moreover, because
xk is bivalent, each of 00, O1 contains at least one decided
output simplex of a run of Rs(S(xk)) and the claim follows.
By assumption, S(xk) is always valence connected, and thus
valence connected with respect to 00, 01. By Lemma 4.1
there is a state y E S(x’) that is bivalent with respect to
00,01. Define xk+’ = y to be the next state in the exe-
cution. The run rb = x0,. . , xk,xkfl,. . . obtained by this
construction is a run of Rs all of whose states are bivalent.

n

Notice that if 7?s satisfies decision, then the simplex de-
scribing the decided outputs in the run rb constructed in
Lemma 7.1 would be in the intersection 00 n (31. There is
a precise sense in which this shows that the covering does
not divide the set of output simplexes into two disconnected
parts. Since the conditions of the lemma are met in the
presence of a potential crash and similarity connectedness
of the inputs, the lemma can be used to characterize the
set of decision problems solvable in many models of inter-
est. We start with a slightly technical characterization of a
necessary condition for solvability.

An n-size-complex C is k-thick-connected if for every pair
~1, s2 of n-size-simplexes in C there exists a sequence of n-
size-simplexes leading from one to the other in which every
two consecutive n-size-simplexes contain in their intersec-
tion a~1 (n - k)-size-simplex. For the purposes of the next
theorem, for a set 1 of initial states, we deiine C*(l) to be
the complex generated by the set {A(s) : s is the input sin-
plex of a state in I}. Finally, we say that a decision problem
2, = (Z,O,A) is k-thick connected if there is a subproblem
D’ = (Z, 0, A’) of D such that for every similarity connected
set I E Do of initial states of D, the complex Car(l) is k-
thick-connected. We can now show

Theorem 7.2 Let 2) = (1, (3, A) and let S and Rs satisfy
(i) Rs displays an a~bihWy crash failure with respect to ‘Do,
(ii) no Tun of ‘Rs contains moTe than one faulty process, and
(iii) for every state x of Rs the set S(x) is always valence
connected. If Rs satisfies decision and validity then D is
l-thick connected.

This theorem provides a necessary condition for solvabil-
ity for each one of the models in which we showed consen-
sus not to be solvable l-resiliently (the single mobile failure
model, the r/w shared memory model and the asynchronous
message passing model, as well as the submodels defined by
the layerings we provided for them): A decision problem
D = (1, 0, A) is solvable l-resiliently exactly if 2, is l-thick
connected. This condition essentially coincides with the one
in [7]. Since in [7] the condition was shown to be also suffi-
cient, then it is also sufficient in the submodels that we have
presented. That is, in all these models, the same problems
are solvable l-resiliently. Formally, we are able to show

Corollary 7.3 For each of the following models, a decision
problem V is solvable if and only if it is l-thick connected:

l l-resilient T/W shared memory M““,

l l-resilient message passing,

l the submodels of the above defined by the synchronic
and the permutation layerings, and

l the single mobile failure model Mmf.

111 the full paper we use the same techniques to extend the
equivalence to snapshot shared memory [a], iterated innne-
diate snapshot [6], and related models.

The Synchronous Model

We now consider decision problems in the t-resilient syn-
chronous model of computation of Section 6. It is well-
known that COIIS~I~SUS and a large class of decision problems
are solvable in t + 1 rounds in the synchronous model. What
we have seen in Section 6 is that at least in the case of COII-
sensus, there is a close connection between the first t rounds
in the synchronous model and the popular asynchronous
models. Here we present a necessary condition for solvabil-
ity by t rounds. Although the condition is similar to the
one for the asynchronous systems, it is stronger: There are
problems that are solvable l-resiliently in the asynchronous
models we considered, that are not solvable in t rounds of
the synchronous model (cf. [S]).

Fix an arbitrary algorithm A that runs for at most t
rounds, and the layering function St. We have the general-
ized version of Lemmas 6.1 and 6.2:

Lemma 7.4 Let I be a similarity connected set of initial
states, and let Uo,Ul be a covering of T&(I). If l&t
satisfies decision then there is a run r of Rst with prejix
x0,x1,.,.,x t-1 ,xt, where x0 E I and for every m, 0 5 m <
t the state xm is bivalent and no more than m processes are
failed in xIn.

We can now obtain a necessary condition for solvability
by t rounds, as in Theorem 7.2:

Lemma 7.5 AssumeRst satisfies decision and validity w.r.t.
D, and that in all Tuns of Rst all decisions are made within
t rounds. Then ZY is t-thick connected.

This necessary condition is not sufficient for solvability
by t rounds. We now prove a stronger necessary condition,
which proves that there are decision problems that are solv-
able l-resiliently in the asynchronous models and are not
solvable in t rounds of the synchronous model. The addi-
tional condition (in the style of [S]) bounds the diameter of
A’(s), for any input simplex s. Formally, we define the s-
diameter of a set of states X to be the diameter of the graph
(X, wQ) induced by the similarity relation on X.

131

Lemma 7.6 Let S be a successor function such that (i) Rs
displays an arbitrary crash failure with respect to a set of
states X, (ii) X is s-connected, and (iii) for every state x E
X the set S(x) is s-connected. Then S(X) is s-connected.
Moreover, if the s-diameter of X is dx and the s-diameter
of S(x), x E X, is at most dy, then the s-diameter of S(X)
is at most dxdy + dx + dy

For the next theorem we apply Lernina 7.6 repeatedly
with St. We cau show that d;” = 2(n-m) is an upper bound
on the diameter of St(x) for states 2 at the end of round m.
Deuote by d’,” the diameter of the set of states at the end
of round m (d: = d(I)). Theu d;” = d;dF + 8; + d;“,
using Lernrna 7.6 aud the delinitiou of St. We get the desired
necessary condition.

Theorem 7.7 Let D = (Z,O, A) and assume Rst satis-
fies decision and validity, and that all decisions in ‘Rst are
made within the jirst t rounds. Then there is a subproblem
D’ = (1, U, a’) of D such that for every similarity connected
set I c DO of initial states of D we have (i) the complex
CA,(I) is k-thick-connected, and (ii) the diameter of Car(I)
is at most d$.

Acknowledgments: We would like to thank Juan Garay
for poiuting to us the mobile failure rnodel aud the related
reference [24].

References

[I] Baruch Awerbuch, “Complexity of Network Synchro-
nization,” Journal of the ACM, Vol. 32, No. 4, Oct.
1985, pp. 804-823.

[2] Y. Afek, H. Attiya, D. Dolev, E. Gafrii, M. Merritt, N.
Shavit, “Atomic suapshots of shared mexnory,” Journal
of the ACM, Vol. 40, No. 4, (September 1993), pp. 873-
890.

[3] H. Attiya, A. Bar-Noy aud D. Dolev, “Sharing Memory
Robustly in Message-Passing Systems,” Journal of the
ACM, Vol. 42, No. 1 (Jauuary 1995), pp. 124-142.

[4] Hagit Attiya arid Sergio Rajsbaum, “The Corn-
biuatorial Structure of Wait-free Solvable Tasks,”
10th International Workshop on Distributed Algo-
rithms (WDAG), October 1996, (0. Babaoglu aud
K. Marzullo, Eds.), pp. 321-343. Lecture Notes in Com-
puter Science #1151, Springer-Verlag.

[5] E. Borowsky aud E. Gafni, “Generalized FLP irnpossi-
bility result for t-resilient asynchronous computations,”
in Proceedings of the 1993 ACM Symposium on Theory
of Computing, May 1993.

[6] E. Borowsky aud E. Gafni, “A simple algorithmically
reasoned characterization of wait-free computations,”
in Proceedings of the 16th Annual ACM Symposium
on Principles of Distributed Computing, pages 189198,
1997.

[7] 0. Biran, S. Moran, S. Zaks, “A cornbiuatorial charac-
terization of the distributed l-solvable tasks,” Journal
of Algorithms, Vol. 11 (1990), pp. 420-440.

[8] 0. Birari, S. Moran and S. Zaks, “Tight Bounds on the
Round Complexity of Distributed l-solvable Tasks,”
Theoretical Computer Science, Vol. 145 (1995) pp. 271-
290.

[9] T. Chaudra aud S. Toueg, “Unreliable failure detectors
for asynchronous systems,“. in Proceedings of the 10th
Annual ACM Symposium on Principles of Distributed
computing, pages 257-272, 1991.

[lo] D. Dolev, H.R. Strong, “ Polyuornial algorithms for
multiple processor agreement,” in Proceedings of the
14th Annual ACM Symposium on Theory of Comput-
ing, pp. 401-407, May 1982.

[ll] C. Dwork, Y. Moses, “Knowledge and common knowl-
edge in a byzautine environment: crash failures,” In-
formation and Computation, vol. 8, no. 2, pp. 156-186,
October 1990.

[12] M. Fischer, “The conseusus problem in unreliable dis-
tributed systems (a brief survey),” Research Report
YALE/DCS/RR-273, Yale University, Department of
Computer Science, New Haven, Coun., June 1983.

[13] M.J. Fischer, N.A. Lynch, “A lower bound for the time
to assure iuteractive consistency,” Information Process-
ing Letters, vol. 14, no. 4, pp. 183-186, Juue 1982.

[14] M. Fischer, N.A. Lynch, aud MS. Paterson, “Inrpossi-
bility of distributed cornnrit with one faulty process,”
Journal of the ACM, 32(2), April 1985.

[15] E. Gafni, “Round-by-round fault detectors: unifying
synchrony and asynchrony,” these proceedings.

[16] M.P. Herlihy, “Wait-Free Synchronization,” ACM
Transactions on Programming Languages and Systems,
vol. 13, no. 1, pp. 123-149, January 1991.

[17] M.P. Herlihy, S. Rajsbaum, M. R. Tuttle, “Unifying
synchrouous aud asynchrouous message-passing mod-
els,” these proceedings.

[18] M.P. Herlihy aud N. Shavit, “The asynchronous corn-
putability theorem for t-resilient tasks,” In Proceedings
of the 1993 ACM Symposium on Theory of Computing,
May 1993.

[19] Gumar Hoest arid Nir Shavit, “Towards a topological
characterization of asyuchrouous complexity,” Proc. of
the 16th Annual ACM Symposium on Principles of Dis-
tributed Computing, Sauta Barbara, 1997, pp. 199208.

[20] M. C. Loui and H.H. Abu-Amara, “Memory require-
rneuts for agreement ainoug uureliable asyuchrouous
processes,” In Parallel and Distributed Computing,
F. P. Preparata, editor, vol. 4 of Advances in Com-
puting Research, pages 163-183. JAI Press, 1987.

[21] Ronit Lubitch and Shlorno Moran, “Closed schedulers:
a novel technique for aualyzing asynchronous proto-
cols,” Distributed Computing, Vol. 8, 1995, pp. 203-210.

[22] N.A. Lynch, Distributed Algorithms, Morgan Kauf-
rnaun Publishers, Inc. 1996.

[23] M., Pease, R. Shostak and L. Larnport, “Reaching
agreement in the presence of faults,” Journal of the
ACM, Vol. 27, No. 2, pp. 228-234.

[24] N. Sautoro and P. Widmayer, “Time is riot a healer ” In
Proc. 6th Annual Symp. Theor. Aspects of Computer
Science, Paderborn, Gerrnauy, February 1989. Spriuger
Verlag LNCS Vol. 349 pp. 304-313.

[25] M. Saks arid F. Zaharoglou, “Wait-free k-set agreement
is impossible: The topology of public knowledge,” In
Proceedings of the 1993 ACM Symposium on Theory of

Computing, May 1993.

132

