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Abstract 

We introduce a simple notion of layering that provides a tool 
for defining submodels of a given model of distributed com- 
putation. We describe two layerings, the synchronic and the 
permutation layering, and show that they induce appropriate 
submodels of several asynchronous models of computation. 
The synchronic layering applies to the synchronous model 
too. 

We perform a model-independent analysis of the con- 
sensus problem in terms of abstract connectivity properties 
of layering functions. By defining particular layerings in 
specific models, we derive several popular (and some new) 
lower bounds and impossibility results for consensus in var- 
ious classical models. These results are often stronger in 
the sense that they apply to the subrnodel induced by the 
layering. The proofs obtained in this way are also simpler 
and more direct than existing ones. Moreover, the analysis 
is done in a uniform fashion and demonstrates the funda- 
mental common structure of the consensus problem in the 
presence of failures. 

The analysis is then extended to general decision prob- 
lems (l-resilient in the asynchronous models, t-rounds in the 
t-resilient synchronous model), providing a characterization 
of solvability of decision problems in the style of [8] which, 
for some of the models, is given for the first time. 

1 introduction 

For almost two decades now, the consensus problem has 
played a central role in the study of fault-tolerant distributed 
computing, e.g. 123, 13, 12, 10, 14, 20, 16, 8, 91. It has 
clearly received the greatest amount of attention in the the- 
oretical literature on distributed computing, and has been 
studied in a large variety of models and under many types 
of failure assumptions. Work on different variants often in- 
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volved related notions, especially when proving impossibil- 
ity results; mainly a notion of some form of connectivity 
defined in terms of a relation on pairs of states that are in- 
distinguishable to some of the processes. However, proofs for 
different models are often based on distinct and somewhat 
ad hoc techniques. In particular, there have been consid- 
erable differences between the study of consensus in asyn- 
chronous models, and its study in synchronous and partially 
synchronous ones. 

In order to cope with the proliferation of distributed 
computing models, researchers have proposed a variety of 
simulations between models. The aim is to establish a rela- 
tion (often of equivalence) between the possibility of solving 
problems of certain types in different models. This is used 
to establish impossibility results in particular models, or to 
provide a systematic way to transform protocols written in 
one model into protocols for another model. Various such 
simulations have been given, e.g. between shared memory 
and message passing [3]; between snapshot shared mem- 
ory and read/write shared memory [2], or between imme- 
diate snapshot shared memory and read/write shared mem- 
ory [5, 61; between synchronous and asynchronous message 
passing [l]; between two shared memory models of different 
resilience [5]. 

This paper attempts to present a uniform approach to 
study solvability of consensus arid other decision problems 
in various models of computation, where crash failure behav- 
ior is possible (e.g., sending omissions or Byzantine failures: 
A faulty processor can fail to send messages altogether from 
some point on, and thus behave as if it has crashed). We 
start by considering an abstract model based on the runs of 
a distributed system, and a failure model. Then we intro- 
duce the notion of layering which allows to focus only on 
interesting states among a subset of the runs. We think of 
a “layer” as a set of (not necessarily immediate) successor 
states of a given state. 

Roughly, we use layering in the following sense. Given 
a model of distributed computation, we identify particular 
legal sequences of actions for the scheduler, which we think 
of as generating a “layer”. We require that performing such 
layers repeatedly starting from a legal initial state will re- 
sult in a legal run in the model. Thus, in a precise sense, 
such a layering can be viewed as defining a submodel of the 
original model.’ Any protocol for the original model trans- 
lates directly to one in the submodel. Moreover, the model 

*Layering saves us the trouble of explicitly defining the sub- 
model as a model of computation with a new transition function, 
new actions, etc. 
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and submodel generally share mauy features. In particular, 
lower bounds and impossibility results proven for the sub- 
model typically translate directly into the original model. 
The use of layerings facilitates performing round-by-round 
analysis: Almost all of our results regarding consensus will 
follow from analyzing a single layer of computation. The 
benefit of working in a submodel with a simpler structure 
than that of the original model is well known; some recent 
examples are [4, 5, 6, 8, 19, 251. 

In the maiu part of the paper we concentrate ou the con- 
sensus problem. First, we perform an abstract aud model- 
independent analysis of consensus using layering. Based 
on this analysis, implications for specific models are ob- 
tained by demonstrating that appropriate layerings cau be 
dehned in the model. We exemplify the approach 011 the 
following l-resilient models: asynchronous shared memory, 
asynchronous message passing, mobile failures, and in the 
t-resilient synchronous message passing model. 

We describe two specific layerings: the synchronac and 
the permutation layering, and show that they apply to the 
first three models. The synchronic layering defiues a sub- 
model of the asynchronous models that is very close in struc- 
ture to being synchronous. Indeed, we show that the syn- 
chronic layering applies to the synchronous message passing 
model too. The permutation layering is inspired by the im- 
mediate snapshot wait-free model of [5], although we define 
it both for the message passing and for the shared memory 
models, l-resilient. This appears to be the first variant of the 
immediate snapshot model suggested for a message-passing 
model. 

Regarding consensus, we provide: 

l New, simple and uniform lower bound and impossi- 
bility proofs for the standard synchronous and asyn- 
chronous models. In particular, we show a bivaleuce- 
based proof for the synchronous case, and a direct 
round-by-round coustruction of a bivalent run (not 
employing a critical state argument) in asynchronous 
cases. 

l Stronger impossibility results with respect to submod- 
els of the full asynchronous models, in which there is 
only a small degree of asynchrony. These demonstrate 
how little asynchrony is needed to make consensus UII- 
solvable. 

l Finally, we show that the asynchronous models are 
equivalent in terms of the l-resilient solvability of de- 
cision tasks. In particular, the slightly asynchronous 
submodels are 110 more powerful than the fully asyn- 
chronous ones. Moreover, in the full paper we show 
that in a sense, they are strictly stronger than what 
cax~ be done t-resiliently in t rounds of the standard 
synchronous model. Thus, our results can be viewed 
as providing characterizations of solvability of decision 
problems in the style of [8] which, for the mobile failure 
and synchronous models, are new. 

We consider the layering technique to be useful in a num- 
ber of ways: 

l It provides a tool for performing model-independent 
round-by-round analysis of decision tasks and related 
problems. 

l Results are obtained directly, and not by means of spe- 
cially tailored reductions. 

Popular topological treatments (e.g. [18, 25, 5, 41) fo- 
cus ou the local final states of processes. We consider 
states at intermediate stages of the computation as 
well. Moreover, the global state also takes into account 
the state of the environment, and can therefore treat 
both shared memory and message-passing models. 

We make use of a novel notion of valence connectiv- 
ity of a set of states, whose definition depends on the 
decisions takeu by the protocol in the possible futures 
of these states. In addition we use the more tradi- 
tional notion of counectivity based 011 indistinguisha- 
bility. The combined used of the two notions proved 
very useful for unifying the analysis of consensus in the 
synchronous and asynchronous models. 

Our aualysis in this paper concentrates on the consen- 
sus problem and 011 l-resilient solvability. By focusing on 
these “basic” cases we obtain a direct and uniform aualy- 
sis of these questions in simple arid elementary terms. The 
proofs of all of our results are short, which suggests that 
the notions we use are fairly natural. We believe that, with 
small modifications, the same type of analysis and style of 
reasoning can be applied to study more general problems 
involving higher levels of topological connectivity. 

Two other papers that attempt to unify syuchronous and 
asynchronous models in a round by round style are: [15] via 
failure detectors in shared memory, and [17] using topolog- 
ical techniques in synchronous, asynchronous and partially 
synchronous message passing systems, with applications to 
set-consensus. A different abstract model based on the runs 
of a distributed system is proposed in [21]. 

For lack of space, some of the proofs are omitted or just 
sketched in this extended abstract. 

2 Definitions 

In this paper we wish to present au approach that is relevant 
in a number of different models. We therefore start out by 
defining those aspects of the models that the technique will 
use, then follow it by presenting the basic approach in these 
more general terms, and differ some issues to be discussed 
ody when we come to applications in concrete models. 

Systems 

Throughout the paper we will assume there is a fixed finite 
set of n > 2 processes, which we shall deuote by 1,2,. . . ,r~, 
and an environment, denoted by e, which is responsible for 
everything else that happens. 

The (global) state of a system consists of a local state 
for each one of the processes, as well as a local state for the 
environment, which captures all else that is relevant to the 
operation of the system. Thus, aspects such as messages 
in transit, or the values of shared variables, will typically 
be represented in the environment’s state. More formally, 
for every i E {e, 1,2, . . , n}, we assume there is a set Li ” 
consisting of all possible local states for i. The set of global 
states, which we will simply call states, will consist of 

6 = L, x L, x ... x L,. 

If CC is a state, then we denote by z:i the local state of i in 
the state x. We say that two states x and y agree module j 
if zre = ye and xi = yi for all processes i # j. 

A run over 0 is a function T from the non-negative inte- 
gers to G defining an infinite sequence of states of E. The 
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state r(0) is called the initial state of T. AD execution is a 
finite or infinite subinterval of a run. 

A system R is a set of runs. With respect to such a 
system, a state y is said to extend the state x if there is a 
finite execution that starts in 3: and ends in y. By definition, 
x extends z for every state z of the system. An infinite 
execution extending z is the suihx starting at 2 of a run in 
which x appears. 

Finally, we will usually be interested in systems that are 
in a precise sense derived from some automaton whose states 
are the states that appear in the runs of our system. Intu- 
itively, this means that all aspects of the run up to a given 
state that may affect the future of the run are somehow 
captured in the state. Formally, we will capture this by ss- 
suming such a property directly. We say that a system R 
is admissible if it satisfies the following pasting condition: 
For every state x, if there are runs T,T’ E R and indices 
m, m’ 2 0 such that r(m) = I’ = x, then there is a run 
P E R such that 

for k 5 m, and 
for k > m. 

All systems we consider in this paper will be assumed to be 
admissible. 

Failures 

A large variety of types of faulty behavior have been pro- 
posed and studied in the literature. In order to avoid the 
need to commit to particular types of failures, we identify 
two abstract properties about models allowing crash failures, 
which are all that we need for our analysis. One assumption 
will involve a notion of independence of failures, while the 
other will capture an observable aspect of crash failures. 

For every system R appearing in this paper, we assume 
that there is an associated function Faulty : (1,. . . , n} x 
R + {Yes, No} that, given a process name i and a run T, 
will say whether or not i is faulty in T’.~ A function Faulty 
defked for a system R induces a notion of who is jailed at a 
state (with respect to R). We say that a process i is failed 
at state z if i is faulty in all runs of R in which z appears. 
Otherwise i is non-jailed at x. The one property we require 
of such a function Faulty is 
Fault Independence: For every state x of R there is a 
run r’ E 72 in which x appears, such that the only processes 
that fail in rx are those that are already failed at x. For- 
mally, this is captured by Vi. [Faulty(i, T”) iff i is failed at x]. 
When modelled in an appropriate way, all failure models we 
are aware of satisfy this condition. 

Intuitively, ouce a process has crashed, it’s state and be- 
havior can no longer affect the state of the rest of the system. 
Motivated by this, the following definition captures an ab- 
stract property of crash failures. We say that a system ‘&! 
displays an arbitrary crash failure with respect to a set X 
of states of R if the following condition holds. For every 
x, y E X and process j if x and y agree modulo j, then 
there exist in R runs P and 9 and times m,, my 2 0 such 
that (i) I” = x and rY(my) = y, (ii) rz(mz + k) and 
@(my + k) agree modulo j for all k 2 0, and (iii) Every 
process i # j that is not failed in x aud in y is nonfaulty 
in rz and in 9. 

2The function Faulty determines who is faulty in a run as a 
function of the whole infinite run. Obviously, in some models it 
is possible to determine that a process is faulty by considering 
only a prefix of the run, sometimes even a single state. In other 
cases, however, it is impossible to determine this after a finite 
amount of time. (See, e.g., the asynchronous systems in [14].) 

3 Consensus and Connectivity 

In the classical biuary consensus problem [23], processes 
start with binary values and have to decide on binary val- 
ues satisfying three conditions. Decision, requires that ev- 
ery nonfaulty process eventually decides; Agreement requires 
that the decisious are identical; and Validity requires that 
each decision was somebody’s input. A decision is assumed 
written into a write-once variable di ever-present, and iui- 
tially undefined, in i’s local state. The 2” possible ixxitial 
states for consensus are defined formally, and the set of these 
states is denoted by Cone. We defer this formalization to the 
full version. 

In the sequel, we shall focus on systems that are com- 
patible with the consensus problem. We call a system R 
a system for consensus if (i) the set of initial states in R 
consists exactly of Cone, (ii) the local state x; of every pro- 
cess i in a state x of R contains the variable di, and the runs 
all satisfy that di is write-once, and (iii) in the associated 
Faulty function for R no process is failed at an initial state 
of a run of R. In Sections 3-6, all systems referred to will 
be assumed to be systems for consensus. 

Decisions and valence 

It has long been recognized [14] that considering what the 
possible decisions in the future of a given state are can be a 
useful tool for analyzing the structure of the consensus prob- 
lem. This gives rise to the following notions of the valence 
of a state. With respect to a given system R, we define a 
state x in R to be w-valent if there is au execution of R ex- 
tending t in which at least one nonfaulty process decides u. 
The state x will be called v-univalent if it is v-valent and, 
for all v’ # v, it is not v’-valent. Since we are considering 
only binary decisis,rs, we say that x is bivalent if it is both 
0-valent and 1-valent. One useful consequence of the agree- 
ment property is captured in the following lemma. We say 
that a process i has decided by x if in the state x we have 
that di # 1. 

Lemma 3.1 Let R be a system satisfying the agreement re- 
quirement and assume that no more than t < n processes 
fail an runs of R. If x ds a bivalent state of R then at least 
n - t non-failed processes at x have not decided by x. 

Proof: Since x is bivalent, there is a run r” extending x 
in which at least one nonfaulty process decides 0. The set 
PO of nonfaulty processes in r” consists of at least n - t pro- 
cesses, they are all non-failed at x, and by the agreement 
property none of them has decided 1 by 2. Using symmetric 
reasoning, we obtain the existence of a set Pi of at least n-t 
non-failed processes at x that have not decided 0 by x. By 
the failure independence property, there is a run P extending 
x in which the only processes that fail are the ones that are 
already failed at x. All processes in PO U Pi are nonfaulty 
in P. By the agreement property, there is at most oxxe value 
u E (0, 1) on which nonfaulty processes decide in P. If IIOU- 
faulty processes do not decide 0 in C, then no process in PO 
has decided by x, and if they do not decide 1 in P, then no 
process in Pi has decided by I. In either case, the claim 
holds. n 

Lemma 3.1 provides us with a tool for showing when a con- 
sensus protocol cannot terminate its operation altogether. 
This is useful for the study of lower bounds for the syn- 
chronous model which we treat in Section 6. III asynchronous 
systems it is usually the case that even when a process is 
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faulty, this faultiness cannot be determined in finite time. 
We say that a system R displays no finite failure if, for all 
states 3: of R, no process is failed at 2. For such systems, a 
proof similar to that of Lemma 3.1 in fact shows: 

Lemma 3.2 Let R be a system that displays no finite fail- 
ure and satisfies the agreement requirement. If the state x 
of R is bivalent, then no process has decided by x. 

Connectivity 

As has been observed by many authors starting with [13], 
connectivity plays a central role in the analysis of decision 
problems. We use two types of connectivity: 

Definition 3.1 Let x and y be states of 72. With respect 
to R we define 

Similarity: x and y are similar, denoted by x wQ y, if 
there exists a process j such that (i) the states x and y 
agree module j, and (ii) there exists a process i # j 
that is non-failed in both x and y. 

Shared valence: x and y have a shared valence, denoted 
by x ~~ y, if for some w E (0, 1) both x and y are w- 
valent. 

A very useful sufficient condition that guarantees that states 
have a shared valence is given by: 

Lemma 3.3 Let R satisfy the decision requirement, let X 
be a set of states of R, and assume that R displays an ar- 
bitrary crash failure with respect to X. For all x, y E X, if 
x wg y then x wy y. 

The argument for this lemma is well known. Intuitively, 
if x and y agree modulo j, then by crashing j at both z 
and y we obtain runs T’ and ry that are indistinguishable 
to the nonfaulty processes, who in turn end up deciding on 
the same value v in both runs. 

For every set X of states, each of mg and TV is in par- 
ticular a binary relation on X. We can thus view (X,N~) 
and (X, -v) as the corresponding graphs. The set X is said 
to be valence connected if the graph (X,wU) is connected, 
and X is said to be similarity connected if (X,--,) is con- 
nected. Similarity connecteduess has often been considered 
in the literature (see, e.g., 1241). Valence connectedness is, to 
the best of our knowledge, new. In general, valence connect- 
edness is not a very strong condition. Indeed, X is valence 
connected exactly if either (i) for some value u, all states 
of X are v-univalent, or (ii) there exists at least one biva- 
lent state in X. Thus, valence connectedness can be used to 
demonstrate the existence of bivalent states: 

Lemma 3.4 Assume R satisfies the decision requirement 
and X is valence connected. If X contains both 0-valent 
and I-valent states, then there is a bivalent state in X. 

Lemma 3.3 directly implies the following. 

Lemma 3.5 Let R satisfy the decision requirement and let X 
be similarity connected. If I?. displays an arbitrary crash fail- 
ure with respect to X, then X is valence connected. 

Lemma 3.4 and Lemma 3.5 allow us to reprove in our 
setting the well-known fact from [14] that when even a single 
process can crash, there must be a bivalent initial state for 
consensus. 

Lemma 3.6 The set Con0 is similarity connected. More- 
over, if R satisfies the decision requirement and displays 
an arbitrary crash failure with respect to Cone, then Con0 
is also valence connected. Finally, if in addition the valid- 
ity requirement holds, then there is a bivalent initial state 
in Cone. 

Proof: To prove that Con0 is similarity connected we will 
show that every two initial states x, y E Con0 are connected 
by a sequence of states each pair of which are similarity 
connected. Choose 2, y E Cone. For 0 < 1 5 n, define z1 by 
setting 

xf = 
-t 

xj for j = e and all j < 1; and 
yj for all j > 1. 

Clearly, x1 E Cone, and it is easy to check that x0 = x 
and zn = y. (Recall that ze = ye by definition of Corm) 
Moreover, for every 0 < 1 5 n we have that in x1-l and x1 
agree module 1, since the local states of the environment and 
of all processes, except possibly that of 1, are equal. Since 
n > 2, the states 2 and y are similarity connected. Since R 
sa$fies the decision requirement and displays an arbitrary 
crash failure with respect to Cone, Lemma 3.5 implies that 
Con0 is valence connected. Now, if in addition we have the 
validity requirement, then the state x0 E Con0 in which 
all processes start with initial value 0 is O-vale& while the 
symmetric state x1 in which they all start with value 1 is l- 
valent. It now follows by Lemma 3.4 that there is a bivalent 
state in Cone. n 

4 Layering 

In some cases, the set of runs of a given protocol in a par- 
ticular model can be very rich. We often want to consider 
properties of a model that are already evident in a subset of 
the runs of the protocol, in which the environment’s behav- 
ior may have a nicer structure. For example, we will later on 
consider runs of an asynchronous system that can be divided 
into what are approximately synchronous rounds. 

Let 0 be a set of states. A function S : P -+ 2” \ (0) is 
called a successor function for 6. A run T over 9 is called 
an S-run if r(m + 1) E S(r(m)) for all m 2 0. When 
focusing on runs compatible with the consensus problem, 
we have Con0 c g and we can view a successor function S 
as generating a system ‘Rs consisting of the set of all S- 
runs with initial state in Cone. The essential property that 
will later on yield lower bound and impossibility results in 
a variety of models is captured in the following lemma. 

Lemma 4.1 Let S be a successor function, and assume Rs 
satisfies decision. If x is bivalent in 72s and S(x) is valence 
connected, then there exists a bivalent state y E S(x). 

Proof: Since 2 is bivalent, at least one of the states in 
S(z) is 0-valent and at least one is l-valent. By assumption, 
the set S(z) is valence connected. Thus, by Lemma 3.4 we 
have that there is a bivalent state y E S(x). n 

Given Lemma 4.1, if S(x) is valence connected for ev- 
ery x E Rs, then a bivalent initial state in 7Z.s can be ex- 
tended into an infinite run all of whose states are bivalent. 
We can thus obtain the basic impossibility theorem for con- 
sensus in asynchronous models. 

Theorem 4.2 Let S be a successor function such that (i) 
at most t < n/2 processes fail in runs of Rs, (ii) Rs dis- 
plays an arbitrary crash failure with respect to Cone, and (iii) 
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for every state x of 72.~ the set S(x) is valence connected. 
Then Rs cannot satisfy all three requirements of consensus. 

Proof: Assulne that Rs satisfies the decision and validity 
requirements of consensus. These requirements imply to- 
gether with Lemma 3.6 that there is an initial bivalent (in 
Rs) state, CC’. Applying Lemma 4.1 repeatedly with the de- 
cision property, we obtain a run T of Rs starting in x0, all of 
whose states are bivalent. Assume by way of contradiction 
that 7Z.s satisfies agreement. By Lemma 3.1 we have that 
at least n - t > n - n/2 = n/2 > t processes never decide 
in T. Since at most t < n/2 processes can be faulty in T, this 
contradicts the assumption that Rs satisfies decision. n 

Notice that Lemma 3.2 yields a slightly stronger version 
of this theorem for systems with 110 finite failure. 
Layering functions: A successor fuuctiou S is a layering 
of a system R if for every S-run rs starting in au initial 
state of R (so that r”(O) = r'(O) for some run T' E R), there 
is a run T E R and a monotone mapping D : N --i N with 
a(O) = 0 such that r’(m) = ~(~(rn)) for all m 10. 

Intuitively, a layering of R allows us to focus on “inter- 
esting states” within “interesting runs” of R. We think of 
such a layering S as defining “layers” in the relevant runs 
of R. The initial states of R are states in the initial “layer”, 
and each application of S we think of as moving to the next 
layer. The next lemma says that if Theorem 4.2 applies 
and Rs cannot satisfy the consensus requirements, neither 
can 72. 

Lemma 4.3 Let R be a system for consensus and let S be 
a layering of R. Then Rs is a system for consensus. More- 
over, for each req E {decision, agreement, validity}, if all 
runs of R satisfy req, then so do all runs of 72s. 

5 Impossibility results 

Having set the stage, we can 11ow consider applications of 
layering to the analysis of consensus in different models. 
Throughout the paper, we will focus on deterministic pro- 
tocols. 

We start with an impossibility for a single mobile failure 
in the synchronous model [24]. We are talking about the 
standard synchronous model, except that, in every round 
there can be at most one process some of whose messages 
are lo&. We use the term mobile because the identity of 
the process whose messages may be lost can change from 
one round to the next. In this model, we can represent 
the environment’s action at a state by a pair (j, G), with 
G C_ (1,. . . , n}. This action rneaus that all messages sent in 
the upcoming round by process j to processes in G are lost. 

With respect to a given protocol, we denote by x(j, G) 
the state that results from x when the processes follow the 
protocol, and the environment performs the action (j, G).3 
Notice that the environment here has sufficient power to 
silence a single process forever from any state of the compu- 
tation. We define Faulty(i, T) to hold in this model exactly 
if there is a finite k such that i is silenced in all rounds e 2 Ic 
of T. We denote this model by M”‘/. 

Fix a protocol A for the processes and let R(d, M’“f) be 
the system consisting of all runs of A in M’nf. Moreover, 
assume that R(d, Mmf) satisfies the decision requirement. 

3The processes’ next state depends on their current local states 
and on the environment’s action; it does not depend on the en- 
vironment’s local state. In this model, we shall therefore ignore 
the environment’s state and think of it as being constant. 

We now define a layering function for 7Z(d, iV@). For i = 
1,. . , n, let [ICI denote the set (1,. . . , k}. In addition, for 
notational convenience we denote the empty set by [O]. For 
every state 2 in R(d, M’“), define 

S*(x) = {x(j, [k]) : 1 I j < 71, 0 5 k I n}. 

Thus, Si (x) contains a successor of 3: for every environment 
action of the form (j, [ICI). Let Es, be the corresponding set 
of Si-runs. 

Lemma 5.1 (i) Si is a layering ojR(d, M’“f); 

(ii) Rs, displays an arbitrary crash failure with respect to 
every subset X of its states; and 

(iii) for every state x of Rs, , the set SI (x) is valence con- 
nected. 

Proof: Parts (i) and (ii) are straightforward. We sketch 
(iii). For every j, j’ we have that z(j, [0]) = z(f, [0]) and 
hence also x(j, [0]) wQ x(j’, [O]). Moreover, for every k < n 
we have that x(j, [k]) wQ x(j, [k + l]), because the two states 
differ only in the state of process k + 1. It follows that 
Si (x) is similarity connected for all z. That Si (x) is valence 
connected now follows from (ii) by Lemma 3.5. n 

Given Lemma 4.3 and Lemma 5.l(iii), Theorem 4.2 11ow 
yields 

Corollary 5.2 No protocol solves the consensus problem in 
the single mobile failure model. 

This result is a simple corollary of a theorem of Santoro 
and Widmayer in [24]. Their proof is the only one we have 
found that uses a bivalence-based argument in the style of 
Fischer et al. [14] in the synchronous context. 

5.1 Impossibility in Asynchronous Models 

The same outline of the impossibility proof for M’” can be 
used in the two typical models of asynchronous systems with 
a single crash failure [14, 201: message passing and shared 
memory. In these models, “slow” behavior of processes can 
be used to imitate the omitting behavior in A@. The small 
but crucial difference now will be that, in the asynchronous 
model, delayed messages will nevertheless need to eventually 
be delivered (or, similarly, a slow processes that is about to 
write a variable will ultimately write the value). In the syn- 
chronous model M’“‘, the lost messages are gone forever. 
Hence, to perform a careful analysis of the round by round 
evolution, we will need to consider as part of the state (i.e., 
in the environmeut’s local state) the status of the Inessages 
in transit or, similarly, of the current values of shared vari- 
ables. In this sense, we are going slightly beyond the scope 
of most of the recent work on topological approaches. 

Shared memory: the synchronic layering 

We shall now consider the standard (see for example [22,20]) 
shared-memory model M“” in which variables are single- 
writer multiple-reader. For ease of exposition, we shall ig- 
nore the decision and other local actions, as their role is 
obvious, and consider only read and write actions explicitly. 
The shared variables are assumed to be part of the environ- 
ment’s local state. A process crash results in the process 
refraining from reading or writing from the state in which it 
crashes on. At most one process can crash in a given run. 
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We define a local phase for process i to be a sequence of 
actions performed by i with the following form: At most one 
writei action, followed by a maximal sequence of readi 
actions in which no variable is read more than once. For 
every ruu of M“” aud every process i, there is a way to di- 
vide i’s local history in r into a sequence of such local phases. 
Moreover, there is only one way to do so Intuitively, a lo- 
cal phase cau be viewed as an analogue of what a single 
process undergoes in one round in the synchronous model. 
We will strengthen the analogy, aud define a successor func- 
tiou s’” for M’” that will mimic the layering function Si 
very closely. We restrict attention to runs in which the pro- 
cesses proceed in virtual rounds, in each of which all but at 
most one will perform a local phase. A round will consist of 
four stages: 

Wl, RI, Wz, Rz 

Reads and writes are instantaneous, in the seuse that a pro- 
cess performing a readi operation will receive the latest 
value written into Vj by the period in which it is being read. 
By varying wheu in a rouud processes will write and when 
they read, we can imitate (at least temporarily) the loss 
(or omission) of messages in a given round. More formal15 
we assume that the enviromnent has actions of two types: 
(j, A), arid (j, k) where 1 5 j 5 n is a process name, and 
0 5 k 5 n. The process j specified in the enviroumeut’s ac- 
tion is considered the slow process in the layer, aud the oth- 
ers we call proper. When the environment’s action is (j, A) 
the proper processes all write their values in phase WI and 
read in phase RI, while process j neither writes uor reads 
(the A stands for absent). When the euvironmeut’s action 
is (j, k) the proper processes all write their values in phase 
W1, while j writes in phase W2. The proper processes i 2 k 
read in phase RI, while process j and the proper processes 
i’ > k read in phase R2. We remark that the state result- 
ing from the actiou (j, 0) applied in a state 2 depends on z 
but is indepeudent of j, siuce every process performs writes 
based on its local state in 2, and all reads occur after all 
writes are completed. With respect to a fixed determiuistic 
protocol A for M’“, we define the successor function s’” 
by: 

S-(x) = {x(j,k): l<j<n, O<k<n}u 

{x(.i A) : 15 j I n) 

Whereas in the synchronous case, the states in Si(z) 
were indeed immediate successors of x acaording to the model 
Mmf, this is clearly not the case for s’“. In fact, S’” has 
an important property which will prove very useful: Every 
SW-run is fair, in the sense that all processes except at 
most one perform actions infinitely often. As a result, given 
a protocol A satisfying decision, S’” will generate a layer- 
ing of R(d, M”“). We will hence avoid some of the trouble 
involved in proviug liveness in FLP-like prooI% here. We can 
now show: 

Lemma 5.3 The analogue of Lemma 5.1 holds for S’” and 
M““. 

Proof: Part (i) and (ii) are again straightforward. The 
proof of part (iii), stating that S’“(x) is valence connected, 
proceeds in two steps. In the first, the same proof as applied 
for Lemma 5.1 shows that the subset Y af S”“‘(z) consisting 
of the states z(j, k) with k # A is valence connected. As 

4Notice that we are making no simplifying assumptions re- 
garding the form of the protocols used; only the actions of the 
environment, or the scheduler, are being restricted. 

before, Y is similarity connected, and because of part (ii) 
it is valence connected by Lemma 3.5. We complete the 
argument by showing that every state in S“‘(z) \ Y has a 
shared valence with a state in Y, and we thus obtain that 
S”‘(x) is valence connected. Specifically, we will show that 
4% n) N,, z(j, A) for all j. In s(j, n) process j had a chance 
to write into Vj (although nobody managed to read it yet) 
in the round followiug z, while in x(j, A) it did not. It is 
not hard to see, however, that y = z(j, n)(j, A) and v’ = 
z(j, A)(j, 0) agree modulo j. The only value written by j 
after x (if at all) is the same in both cases, and can be seen 
by all processes only in the second round. Thus, the values 
of all shared variables and all local states other than j’s are 
the same, and y mg y’. By part (ii) and Lemma 3.3 we 
obtain that y +, y’, aud hence x(j,n) wy z(j,A) and we 
are done. n 

As for Mmf , Theorem 4.2, Lemma 4.3 and Lemma 5.l(iii) 
now yield the impossibility result [20]: 

Corollary 5.4 No protocol solves the consensus problem in 
the asynchronous r/w shared memory model while tolerating 
one crash failure. 

We remark that a completely analogous impossibility 
proof can be given for asynchronous message passing as well. 
The structure of the layering function, and the reasoning un- 
derlying the results remain unchanged. 

Our development leading to Corollary 5.4 can reason- 
ably be viewed as reproving the impossibility result for Mrw 
given in [20] by Loui and Abu-Amara. Indeed, we hope the 
reader finds this version to be somewhat more concise and 
perhaps easier to digest. We believe, however, that our re- 
sult can be interpreted as saying quite a bit more. Techni- 
cally, we have shown that consensus is unsolvable even in the 
submodel defined by s’“. This is a model that is very close 
to being synchronous: In every round, at least n- 1 processes 
get to write their variables and read at least n - 1 newly writ- 
ten variables. By employing a full-information protocol, for 
example, at least n - 1 processes will know what the round 
number is, and will have a view almost identical to what 
they would have in the synchronous case. So we have in fact 
shown that even with the very restricted degree of asyn- 
chrouy inherent in the model defined by the actions in S’“‘, 
consensus is impossible. This is perhaps the strongest ex- 
plicit version so far of an FLP-like impossibility theorem. 
The same comments will apply in the asynchronous message 
passing case, where the model defined by the analogous lay- 
ering function is even closer to the synchronous models that 
are popular in the literature. 

Message passing: the permutation layering 

We have just used a layering function for asynchronous sys- 
tems iu which a layer very closely resembles a round in the 
synchronous model. To illustrate the flexibility of the layer- 
ing approach, we now use a very different layering, called the 
pernautation layering, to present a very simple FLP-style im- 
possibility proof. As for the synchronic layering, essentially 
the same proof will work in both the shared memory and 
the message passing models. We shall present this proof 
with respect to the asynchronous message passing model 
1141, to provide a direct and simple proof in this model too. 
The permutation layering is inspired by wait-free immediate 
snapshot executions in shared memory [5, 25, 41, and pro- 
vides au analogue of these executions for message passing.5 

5We are not aware of an analogne of immediate snapshots that 
has previously been suggested for message passing. 
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III this case, in a local phase for process i, first all out- 
standing messages that have been sent to i are delivered, 
and then process i sends messages (according to its proto- 
col) to a maximal set of distinct destinations. (That is, in 
a single local phase process i sends at most one message to 
every other process.) Roughly speaking, rather than imitat- 
ing a synchronous round, we will now have virtual rounds 
in which processes perform their local phases one, or infre- 
quently two, at a time. We consider environment actions 
(consisting of scheduling sequences) of three types: 

l [Pl,... ,pn-I], and 

l [pl,. . . ,pk-1, {pk,Pk+l},Pk+2r.. ,Pn] with k < 72. 

III all cases, the process names Pi in an action are pairwise 
distinct elements of (1,. . , n}. Actions of the first and sec- 
ond type specify a linear order in which processes are to 
perform local phases. An action of the third type is simi- 
lar, except that processes Pk and Pk+i perform their local 
phases concurrently: first both of them receive their incom- 
ing messages, and each of them sends his messages only 
after the other has received its current phase messages. Fix 
a protocol A satisfying the decision requirement. We define 
SPe’(z) to be all states obtainable from z via one of these 
three actions. We call actions of the first and third type full, 
because they involve every process taking steps. As in the 
case of S’“, we now have that every 9” run has all but at 
most one process moving infinitely often. Moreover, RSW 

clearly displays an arbitrary crash failure wrt all subsets X. 
The proof that SPer(zc) is valence connected is slightly sim- 
pler than before. It is easy to check that 

d,Pl,...,P~l -8 ~[pl,...,{pk,~k+l}r...,~rr] 
-3 x[PI,...,pk+l,pk,pk+z... 1 ,Pn 7 

which implies that two states that result from performing 
at 2 actions defined by permutations that differ in a single 
transposition are similarity connected. By transitivity of 
connectivity and the fact that transpositions span all per- 
mutations over (1,. . . , n}, we obtain that the set of suc- 
cessors of 2 obtained from z via a full action is similarity 
connected (and hence valence connected). Finally, we show 
that z[pi ,...,P+l,P,l Y, z:[pi , . , P,- i] by demonstrating 
that they have a common successor y. Whatever valence y 
has is a shared valence for both states. The state T/ is given 
by: 

Y = X[pI,... ,Pn-l,Pnl[Pl,P2,.~~,pn-l] 
= 4P1,. . ,Pn-1][pn,p1, Pz,. . ,P,-I]. 

Equality holds because in both cases the exact same se- 
quence of basic actions happens in the two rounds follow- 
ing 2. Here the FLP diamond argument is reduced to its 
bare minimum. Notice that we do not have z[pr , . . , p,-, , pn] 
-s x [PI , . . . ,p,-11 because the two states can differ both in 
the state of pn and in the state of the environment: in the 
former case P, has sent messages (in ~74’” it could have writ- 
ten into Vn), while in the latter p, has not done so. This 
pinpoints the reason why the dianrond argument, and in- 
deed reasoning about valence, are useful in the asynchronous 
models. 

6 The Synchronous Lower Bound 

The analysis we performed for the mobile failure model M’“f 
in the synchronous case should, intuitively, apply equally 

well to the standard t-resilient case in the synchronous model, 
where there is a bound of t 011 the total number of processes 
who may fail in the run, and a process some of whose mes- 
sages are lost is considered faulty. The well-known lower 
bound for this case (due originally to [13, lo]) states that 
every consensus protocol must require at least t + 1 rounds 
in its worst case run. 111 this model, the environment can 
use one failure in every round for t to simulate a prefix of 
an Si-run for t rounds. One could hope to show that there 
will exist a bivalent state at the end of round t, and thus 
derive the t + l-round lower bound directly from our analy- 
sis for iVf’“‘. A close inspection, however, shows that things 
are not that simple. There will typically not need to be a 
bivalent state at the end of round t. But the essence of this 
idea still works. 

We assume 1 < t 5 n - 2, and hence n 1 3. About the 
failure model we assume (i) that in the first round in which 
a process fails the environment can block the delivery of an 
arbitrary subset of its messages, (ii) that the environment 
can silence a faulty processor forever in all rounds after the 
first one in which it fails, and (iii) the environment’s local 
state keeps track of the processes that have failed. For this 
model, given a t-resilient consensus protocol A we de6ne a 
layering function St by 

if fewer than t are failed at x, and 
St(z) = { z[!yb]) otherwise. 

Recall that x(1, [0]) is a successor of x in which 110 process 
fails. Thus, in an St layer at most one process performs an 
omitting failure (and then is recorded as having failed and 
is silenced forever after) so long as fewer than t processes 
have already failed. Once t processes fail, no more failures 
happen. Thus, clearly, Rst displays an arbitrary crash fail- 
ure with respect to every set X of states in which fewer 
than t failures are recorded. And as in the case of M’“f, it is 
straightforward to verify that St is a layering function for d 
in a synchronous model of this type. The valence connect- 
edness property of Si stated in Lemma 5.1 (iii) holds in this 
model as well. We xlow have: 

Lemma 6.1 Let x0 be a bivalent state of I?+ in which 
no more than f processes are failed. Then there is an St- 
execution x0,x1,. . . , xt-f-l of A, such that xtefF1 is biva- 
lent and no more than t - 1 processes are failed in xtefpl. 

Proof: We prove by induction 011 m, for 0 6 m 5 t - 
f - 1, that an execution of the desired form exists, with x’” 
bivalent and where 110 more than m + f processes are failed 
in zTn. The basis m = 0 holds by assumption. Assume 
inductively that the claim holds for m < t - f - 1. Thus, we 
have that m + f < t - 1 processes are failed in x’~. Recall 
that if fewer than t - 1 processes are failed in a state x 
then (i) St(x) = Sl(x) and (ii) Rst displays an arbitrary 
crash failure with respect to St(z). Thus, Lemina 5.1 (in 
its version for this model, and assuming n 2 3) implies 
that St (2’“) is valence connected. It follows from Lemma 4.1 
that there is a bivalent state xPn+r E St(x”j., By definition 
of St, the number of failed processes in z’~+ IS at most f + 
m+ 1. n 

The existence of a bivalent initial state with f = 0 failed 
processes, Lemma 6.1 immediately implies the existence of a 
bivalent state xt-’ at the end of round t - 1. By Lemma 3.1, 
this gives us a t-round lower bound for consensus. The 
true (t + l)-round lower bound is obtained by showing that 
two rounds are still necessary after a bivalent state: 



Lemma 6.2 Assume that A is a protocol for consensus. 
Let 5 be a bivalent state of Ii,, If 2 is bivalent, then there 
is a state y E St(P) in which at least on& non-failed process 
has not decided. 

Proof: Notice that a state x with t failed processes must 
be univalent, since there is a unique h$nite St extension 
starting at x. Hence, to be bivalent, the itate f can have no 
more than f, f 5 t - 1, failed processes. Since f 2 t - 1, 
we have from the definition of St that $t(?) = S*(f), aud 
the proof of Lemma 5.1 (in its version fbr this model, aud 
assuming n 2 3) states that St(P) = Sl(f) is similarity 
connected. Since f is bivalent, there are states y”, y1 E St(P) 
such that y” is 0-valent and y1 is 1-valent. The similarity 
connectivity of St (2) implies the existence of states z”, z1 E 
St(f) (not necessarily distinct) satisfyin z” wg z1 and that 
are 0- and 1-valent, respectively. Recall that all states of 
l&t have at most t faulty processes. Since t 2 n - 2 and z” 
and z’ agree module j for some j, it fc$lows that there is 
at least one process i # j that is not f$led in both states 
such that I: = z:. Assume for contradiction that every non 

failed process is decided in both z” and ,zl. In particular, i 
is decided, say with value U. Agreement itnplies that in both 
states, every uonfaulty process decides v,, and hence both .z” 
and z’ are v-univalent. n 

We cau now put the two results togetlher and obtain the 
desired lower bound: 

Corollary 6.3 Every t-resilient protocd for consensus in 
the synchronous model where faulty processes cm crash has 
a run in which decision requires at least t + 1 rounds. 

This result was first proved for crash failures by Dolev 
and Strong [lo], and the latest version of the proof is in 
[ll]. Our proof here is the first one wei are aware of that 
is in the style and spirit of the impossibility proofs for the 
asynchronous case. Moreover, we feel that it is even sim- 
pler than the oue of [ll]. In addition to generalizing the 
lower bound for t-resilient consensus, wee feel that our proof 
provides further insight into the structude of consensus pro- 
tocols in this model. Let us briefly consilder an example. It 
is well-known [23] that there a,re t-resiliellt consensus proto- 
cols that are guaranteed to decide in preicisely t + 1 rounds. 
Thus, the worst-case lower bouud of Dblev and Strong is 
tight. Let us call a protocol in which dousensus is always 
reached in at most t + 1 rouuds fast. W& can now show 

Lemma 6.4 Let A be a fast t-resilient ‘consensus protocol. 
For every execution x0,x1,. , xk,xk+l of A, if at most k 
processes have failed by xk, 
free, then xk+’ 

and the k+ 1st round is failure- 
must be univalent. 

Proof: By assumption, ouly Ic processe$ have failed by zk+‘. 
If xk+’ is bivalent, then by Lemma 6.1 it cau be extended 
to a run with a bivalent state zt at the end of t rounds. By 
Lemma 6.2, two more rounds are necessary for agreement in 
the worst case, contradicting the assurn&ion that A is fast. 

Clearly, Lemma 6.1 also partially describes the situation 
in runs in which potentially more than olle process can crash 
in a giveu round. It matches the upper (aud lower) bouuds 
given in [ll], which show roughly that if in solne execution 
k+w crashes are detected by the end of round k, then agree- 
lnent can be secured by the end of round t + 1 - w. Hence, 
by allowing k+w crashes by the end of rdund k, the environ- 
ment has essentially “wasted” w faults ip its quest to delay 

agreement. Lemma 6.1 guarantees that the environmeuf has 
not lost more than w rounds in this case. 

7 Decision Problems 

We briefly describe how the techniques developed for con- 

sensus apply also to general decision problems. Due to lack 
of space, we defer a more complete discussion to the full 
paper. 

For the purpose of this paper, a vertex is a pair (i, v), 
consisting of a process id i E (1,. . , n} and a value u from 
some range V. A simplex is a set of vertices in which all 
process id’s are distinct. Thus, a simplex can cousist of at 
most n vertices. A k-size-simplex is one that contains k ver- 
tices. In a given ruu, an input simplex is a simplex describing 
the initial inputs of the processes, and itll output simplex is 
one that describes the decisions taken by a set of processes. 
A complex is a set of simplexes that is closed under contain- 
ment. In an n-size-complex the maximal simplexes have n 
elements. 

The consensus problem is au example of a decision prob- 
lem (e.g. [7]). Roughly, these are problems where processes 
start with input values, communicate with each other, and 
decide ou output values according to the problem specifi- 
cation. More precisely, a decision problem D = (Z,O, A) 
consists of an input complex, 1, il~l output complex, (3, and 
a mapping A : Z -+ 2O. The environment is in the same lo- 
cal state in all initial states, and we denote this set of initial 
states for 2) by DO. The decision problem for a model M is 
to design a protocol A for M, such that every run T of A 
in M satisfies two conditions: Decision, requiring that every 
nonfaulty process eventually decides, and Validity, requiring 
that the decisions made in a run starting in an input simplex 
s form a simplex in A(s). Thus, to solve a decision prob- 
lem V it is enough to solve a subproblem, 2)’ = (1, C?, A’), 
where A’(s) C A(s) for every input simplex s. 

Our purpose is to relate the solvability of general decision 
problems to that of consensus. To this end, we say that a 
pair 01,02 of n-size complexes is a covering of a set of 
runs R if (i) every decided output simplex of a run of R 
is in one or both of the complexes, and (ii) each of 00, U1 
contains at least one decided output simplex of a ruu of R. 
Intuitively, the two parts of a covering can be thought of as 
defining “decision values” to be chosen by the run. This is 
captured as follows. 
Generalized Valence. With respect to a set of runs R 
and a covering C&,01 of R, we define a state x in R to be 
v-valent, 2, E (0, l), if there is a run r of R extedillg x such 
that the simplex describing the decisions made by uoufaulty 
processes in T is a simplex of (3,. The notions of univalence 
aud bivalence are defined based on v-valence as in the case 
of cousensus. 

We remark that the sets R that will be of interest to us 
will typically have a particular form: They will consists of 
the set of all runs of a system R in which states of a set X 
appear. We denote such a set by R(X). 
Generalized Connectivity. The uotion of similarity 
between states is unchanged, and for the generalized no- 
tion of valence, we define shared valence with respect to a 
covering C&,01 as in Definition 3.1, and maintain the corre- 
sponding connectivity definitions. It turns out that we may 
be interested in many possible coverings. Giveu a system R, 
we say that a set X of states of R is always valence con- 
nected if it is valence connected w.r.t. every covering (30, Ul 
of R(X). 

Always valence connectedness will now play a role anal- 
ogous to that played by valence connectedness in the case 
of consensus. Variants of Lemmas 3.3 aud 3.4 in which va- 
lence connected is replaced by always valence connected still 
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hold, and their proofs do not change, and hence so do the 
corresponding versions of Lemma 3.5 and Lemma 4.1. 

The following is a more general version of Theorem 4.2, 
but the proof is almost the same. 

Lemma 7.1 Assume that (i) Rs satisfies decision and (ii) 
for every state x of Rs the set S(x) is always valence con- 
nected. Let I be a similarity connected set of initial states 
such that ‘Rs displays an a~bitII%Ty crash failure with respect 
to I, and let 00, (31 be a covering of %&(I). Then there is 
a Tun rb E ‘l&(I) all of whose states are bivalent. 

Proof: Since I is similarity connected, Rs satisfies deci- 
sion, and Es(I) displays an arbitrary crash failure with re- 
spect to I, we have by Lemmas 3.3 and 3.5 that I is always 
valence connected. In particular, I is valence connected with 
respect to (30,Ol. Since 00, (31 is a covering of l&(I), there 
exist at least one O-valent and one 1-valent state in I. It 
follows from Lemma 3.4 that there is a state x0 E I that is 
bivalent with respect to (30,Q. Assume inductivel{ that we 
have constructed an S-execution z”, . , xk with x E I and 
where all states are bivalent. We claim that 00, (31 is a cov- 
ering of Rs(S(z”)). Clearly, Rs(S(x’)) C ‘&(I), so that 
every decided output simplex of Rs(S(x”)) is one of Rs(1) 
as well, and hence appears in 00 U (31. Moreover, because 
xk is bivalent, each of 00, O1 contains at least one decided 
output simplex of a run of Rs(S(xk)) and the claim follows. 
By assumption, S(xk) is always valence connected, and thus 
valence connected with respect to 00, 01. By Lemma 4.1 
there is a state y E S(x’) that is bivalent with respect to 
00,01. Define xk+’ = y to be the next state in the exe- 
cution. The run rb = x0,. . , xk,xkfl,. . . obtained by this 
construction is a run of Rs all of whose states are bivalent. 

n 

Notice that if 7?s satisfies decision, then the simplex de- 
scribing the decided outputs in the run rb constructed in 
Lemma 7.1 would be in the intersection 00 n (31. There is 
a precise sense in which this shows that the covering does 
not divide the set of output simplexes into two disconnected 
parts. Since the conditions of the lemma are met in the 
presence of a potential crash and similarity connectedness 
of the inputs, the lemma can be used to characterize the 
set of decision problems solvable in many models of inter- 
est. We start with a slightly technical characterization of a 
necessary condition for solvability. 

An n-size-complex C is k-thick-connected if for every pair 
~1, s2 of n-size-simplexes in C there exists a sequence of n- 
size-simplexes leading from one to the other in which every 
two consecutive n-size-simplexes contain in their intersec- 
tion a~1 (n - k)-size-simplex. For the purposes of the next 
theorem, for a set 1 of initial states, we deiine C*(l) to be 
the complex generated by the set {A(s) : s is the input sin- 
plex of a state in I}. Finally, we say that a decision problem 
2, = (Z,O,A) is k-thick connected if there is a subproblem 
D’ = (Z, 0, A’) of D such that for every similarity connected 
set I E Do of initial states of D, the complex Car(l) is k- 
thick-connected. We can now show 

Theorem 7.2 Let 2) = (1, (3, A) and let S and Rs satisfy 
(i) Rs displays an a~bihWy crash failure with respect to ‘Do, 
(ii) no Tun of ‘Rs contains moTe than one faulty process, and 
(iii) for every state x of Rs the set S(x) is always valence 
connected. If Rs satisfies decision and validity then D is 
l-thick connected. 

This theorem provides a necessary condition for solvabil- 
ity for each one of the models in which we showed consen- 
sus not to be solvable l-resiliently (the single mobile failure 
model, the r/w shared memory model and the asynchronous 
message passing model, as well as the submodels defined by 
the layerings we provided for them): A decision problem 
D = (1, 0, A) is solvable l-resiliently exactly if 2, is l-thick 
connected. This condition essentially coincides with the one 
in [7]. Since in [7] the condition was shown to be also suffi- 
cient, then it is also sufficient in the submodels that we have 
presented. That is, in all these models, the same problems 
are solvable l-resiliently. Formally, we are able to show 

Corollary 7.3 For each of the following models, a decision 
problem V is solvable if and only if it is l-thick connected: 

l l-resilient T/W shared memory M““, 

l l-resilient message passing, 

l the submodels of the above defined by the synchronic 
and the permutation layerings, and 

l the single mobile failure model Mmf. 

111 the full paper we use the same techniques to extend the 
equivalence to snapshot shared memory [a], iterated innne- 
diate snapshot [6], and related models. 

The Synchronous Model 

We now consider decision problems in the t-resilient syn- 
chronous model of computation of Section 6. It is well- 
known that COIIS~I~SUS and a large class of decision problems 
are solvable in t + 1 rounds in the synchronous model. What 
we have seen in Section 6 is that at least in the case of COII- 
sensus, there is a close connection between the first t rounds 
in the synchronous model and the popular asynchronous 
models. Here we present a necessary condition for solvabil- 
ity by t rounds. Although the condition is similar to the 
one for the asynchronous systems, it is stronger: There are 
problems that are solvable l-resiliently in the asynchronous 
models we considered, that are not solvable in t rounds of 
the synchronous model (cf. [S]). 

Fix an arbitrary algorithm A that runs for at most t 
rounds, and the layering function St. We have the general- 
ized version of Lemmas 6.1 and 6.2: 

Lemma 7.4 Let I be a similarity connected set of initial 
states, and let Uo,Ul be a covering of T&(I). If l&t 
satisfies decision then there is a run r of Rst with prejix 
x0,x1,.,.,x t-1 ,xt, where x0 E I and for every m, 0 5 m < 
t the state xm is bivalent and no more than m processes are 
failed in xIn. 

We can now obtain a necessary condition for solvability 
by t rounds, as in Theorem 7.2: 

Lemma 7.5 AssumeRst satisfies decision and validity w.r.t. 
D, and that in all Tuns of Rst all decisions are made within 
t rounds. Then ZY is t-thick connected. 

This necessary condition is not sufficient for solvability 
by t rounds. We now prove a stronger necessary condition, 
which proves that there are decision problems that are solv- 
able l-resiliently in the asynchronous models and are not 
solvable in t rounds of the synchronous model. The addi- 
tional condition (in the style of [S]) bounds the diameter of 
A’(s), for any input simplex s. Formally, we define the s- 
diameter of a set of states X to be the diameter of the graph 
(X, wQ) induced by the similarity relation on X. 
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Lemma 7.6 Let S be a successor function such that (i) Rs 
displays an arbitrary crash failure with respect to a set of 
states X, (ii) X is s-connected, and (iii) for every state x E 
X the set S(x) is s-connected. Then S(X) is s-connected. 
Moreover, if the s-diameter of X is dx and the s-diameter 
of S(x), x E X, is at most dy, then the s-diameter of S(X) 
is at most dxdy + dx + dy 

For the next theorem we apply Lernina 7.6 repeatedly 
with St. We cau show that d;” = 2(n-m) is an upper bound 
on the diameter of St(x) for states 2 at the end of round m. 
Deuote by d’,” the diameter of the set of states at the end 
of round m (d: = d(I)). Theu d;” = d;dF + 8; + d;“, 
using Lernrna 7.6 aud the delinitiou of St. We get the desired 
necessary condition. 

Theorem 7.7 Let D = (Z,O, A) and assume Rst satis- 
fies decision and validity, and that all decisions in ‘Rst are 
made within the jirst t rounds. Then there is a subproblem 
D’ = (1, U, a’) of D such that for every similarity connected 
set I c DO of initial states of D we have (i) the complex 
CA,(I) is k-thick-connected, and (ii) the diameter of Car(I) 
is at most d$. 

Acknowledgments: We would like to thank Juan Garay 
for poiuting to us the mobile failure rnodel aud the related 
reference [24]. 
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