
Early Stopping in Byzantine Agreement

DANNY DOLEV

Hebrew University, Jerusalem, Israel, and IBM Research, Almaden Research Center, San Jose,
California

RUEDIGER REISCHUK

Institut fuer Theoretische Informatik, Technische Hochschule Darmstadt, Darmstadt, West Germany

AND

H. RAYMOND STRONG

IBM Research, Almaden Research Center, San Jose, Caltfornia

Abstract. Two different kinds of Byzantine Agreement for distributed systems with processor faults are
defined and compared. The first is required when coordinated actions may be performed by each
participant at different times. This kind of agreement is called Eventual Byzantine Agreement (EBA).
The second is needed for coordinated actions that must be performed by all participants at the same
time. This kind is called Simultaneous Byzantine Agreement (SBA).

This paper deals with the number of rounds of message exchange required to reach Byzantine
Agreement of either kind (BA). If an algorithm allows its participants to reach Byzantine agreement in
every execution in which at most t participants are faulty, then the algorithm is said to tolerate t faults.
It is well known that any BA algorithm that tolerates t faults (with t < n - 1 where n denotes the total
number of processors) must run at least t + 1 rounds in some execution. However, it might be supposed
that in executions where the number f of actual faults is small compared to t, the number of rounds
could be correspondingly small. A corollary of our first result states that (when t < n - 1) any algorithm
for SBA must run t + 1 rounds in some execution where there are no faults. For EBA (with t < n - 1),
a lower bound of min(t + 1, f + 2) rounds is proved. Finally, an algorithm for EBA is presented that
achieves the lower bound, provided that t is on the order of the square root of the total number of
processors.

Categories and Subject Descriptors: C.2.4 [Computer-Communication Networks]: Distributed Systems-
distributed applications; distributed databases; network operating systems; C.4 [Performance of Sys-
tems]: reliability, availability, and serviceability; F. 1.2 [Computation by Abstract Devices]: Modes of
Computation-parallelism; H.2.4 [Database Management]: Systems-distributed systems

General Terms: Algorithms, Reliability, Theory, Verification

Additional Key Words and Phrases: Agreement problem, asynchronous system, Byzantine Generals
problem, commit problem, consensus problem, distributed computing, early stopping, fault tolerance,
reliability

Some parts of the paper are extended and improved versions of parts of papers that appeared in the
Proceedings of the 22nd IEEE Symposium on Foundations of Computer Science [8] and in the
Proceedings of the 2nd International Symposium on Distributed Data Bases [111.

Authors’ addresses: D. Dolev, Hebrew University, 9 1904 Jerusalem, Israel; R. Reischuk, Institut fuer
Theoretische Informatik Technische Hochschule Dannstadt, 6100 Darmstadt, West Germany; H. R.
Strong, IBM Research, Almaden Research Center, 650 Harry Road, San Jose, CA 95 120.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission.
0 1990 ACM 0004-541 l/90/1000-0720 $01.50

JOUmal of the Association for Computing Machinery. Vol. 37, No. 4, Octrokr 1990, pp. 7X-741.

Early Stopping in Byzantine Agreement 721

1. Introduction

In this paper, we discuss two closely-related types of agreement that can be reached
in a distributed system in the presence of undetected processor faults. One type is
called Simultaneous Byzantine Agreement (SBA) and the other Eventual Byzantine
Agreement (EBA). Corresponding to these two types of agreement are two distinct
problems in coordination among multiple processors in a distributed system. One
problem is synchronization: Processors may be required to perform some action
at the same time, immediately after reaching agreement on that action [181. The
other is consistency as required, for example, in the atomic commitment of a
distributed database transaction. The participants in the transaction commit pro-
tocol must agree on whether or not the transaction is to be committed. In this case,
it is enough to know that the choice will eventually be the choice of all other parties
to the agreement [lo]. (Note that the atomic commit problem that implies BA is
the problem of nonblocking atomic commit with guaranteed communication. In
this problem, correct participants must reach a decision in spite of the failure of
any other participants or coordinators and without waiting for the recovery of
others.)

It is the purpose of this paper to explore the difference between these two
problems and the consequent differences in requirements for their solution. Because
SBA implies EBA within our model, EBA can always be reached as early as SBA.
We show that EBA can often be reached earlier than SBA.

The context for our study is a network of n processors that are able to conduct
synchronized rounds of information exchange, each round consisting of message
transmission, message receipt and processing. In the following, n will always denote
the number of processors. We assume that the network is completely connected
and that only processors can fail. The reader may be interested in exploring models
with weaker assumptions in the following related references: [2], [4], [lo], [17],
and [23]. The reader might also like to explore earlier related work in [5], [6], [7],
[141, [161, and [191. In the Byzantine fault case, no assumption is made about the
behavior of faulty processors. During an execution of an algorithm, a processor is
said to be correct if it follows the specifications of the algorithm; otherwise, it is
said to be faulty.

We assume that the agreement to be reached concerns a single value that is
initially given as input to one processor, called the origin. This value is taken from
a known set of values. All processors are assumed to know when the input is given
to the origin. Each processor is to give exactly one output value after some number
of rounds of information exchange with the other participating processors. The
processors are said to have reached agreement when the following two conditions
hold:

(i) all correct processors have given the same value as output, and
(ii) if the origin is correct, then all correct processors have given the input value

as output.

Byzantine agreement was originally defined in [2 I] using these two conditions. We
call such a state eventual agreement, emphasizing the fact that nothing is assumed
about the relative times at which the correct processors give their output values.
We say that the agreement is simultaneous if

(iii) all correct processors give their outputs at the same round.

When no assumption is made about the behavior of the faulty processors, we
modify the term agreement with the adjective Byzantine. Thus, we have the terms

722 D. DOLEV ET AL.

eventual Byzantine agreement (EBA) and simultaneous Byzantine agreement
(SBA). A protocol or algorithm guarantees (Byzantine) agreement in some set of
executions if, in each execution of the set, all correct processors reach a (Byzantine)
agreement.

Note that a processor may give its output in one round and also continue to
send messages to other processors in that and subsequent rounds. In this case, the
processor has not finished all rounds of message exchange required by its algorithm
when it gives its output. A processor is said to have stopped in round r, if it has
given its output by round r + 1, and otherwise sends no messages in any round
after r. In an execution of an algorithm for reaching agreement, we count the
number of rounds between initial input and final stopping of all correct processors
as the number of rounds required by the algorithm.

If an algorithm allows its participants to reach Byzantine agreement in every
execution in which at most t participants are faulty, then the algorithm is said to
tolerate t faults. In this paper, we investigate the number of rounds required to
reach agreement as a function of the number of actual faults and the number of
faults to be tolerated. Suppose A is an algorithm that tolerates n - 2 faults, requiring
a maximum of k rounds. Let A ’ be the algorithm obtained by modifying A so that,
no matter what happens, each processor stops after k rounds, the origin always
gives as output its input value, and each other processor gives as output the value
A would give, if any, or a default value, otherwise. Inspection of the definition of
agreement shows that A’ tolerates any number of faults. Hence, we assume
t < II - 1, unless otherwise indicated. The initial work of Pease et al. [21] showed
that agreement in the presence of up to t faults could be reached by round t + 1,
provided the number of processors was sufficiently large. Later, t + 1 was shown
to be a lower bound on the number of rounds required in the worst case [3, 9, 151.
A natural question arises from this worst case bound: Can an algorithm for
agreement be constructed to handle up to t faults so that whenever the number f
of actual faults is smaller than t, the number of rounds required to reach agreement
is smaller than t + I? Sections 2 and 3 present lower bounds for this problem.

First, in Section 2, we generalize a previous result [9] to show that t + 1 is a
general lower bound for SBA for any f I t. More formally, we show that for any
protocol that guarantees SBA in the presence of up to t faults, and for any number
f I t, there exist executions of that protocol with only f actual faults in which
correct processors send messages to other processors in round t + 1. In particular,
whenever there are no actual faults, an SBA algorithm must run at least t + 1
rounds.

Later, Dwork and Moses extended this bound (first published in [121) by studying
a closely related problem in which each processor has an input [131. A function
from the set of faulty processors to integers that gives the round number at which
each processor failed is called a pattern. Dwork and Moses give a lower bound on
the number of rounds required for their problem as a function of the pattern. Their
bound is easily shown to be a bound for our problem as well by choosing the worst
pattern.

The (t + 1)-lower bound-and also that of Dwork and Moses-hold when the
set of faults to be tolerated is restricted to a very simple type of fault called a crash
fault. When a processor suffers a crash fault, it sends a subset of messages it is
specified to send in one round and simply ceases to operate from then on. However,
Theorem 2.1 even holds if the faulty behavior is further restricted to a class of
faults called orderly crash faults (defined below).

Early Stopping in Byzantine Agreement 723

Extending the proof method of Section 2 we show in Section 3 that EBA requires
at least min(f+ 2, t + 1) rounds. Our proof works only for crash faults and we do
not know how to prove this result for orderly crash faults. Note that we are talking
here about the worst case number of rounds required for any execution with only
ffaulty processors of an EBA protocol that must tolerate t faults. It is important to
notice the difference between the time at which a processor chooses an output
value and the time at which it can cease executing the protocol. For many restricted
fault classes including crash faults, the output value can be obtained by round
f + 1 using a simple diffusion algorithm, but some processors must continue to
send messages through roundf+ 2.

In this paper, we count the number of rounds of information exchange required
to complete the actions specified by the protocol, not the number of rounds
required for all correct processors to have produced an output value. Since giving
its output early cannot help a processor to stop earlier, we assume (for the rest of
this paper) that a processor saves its output until the round after it last sends a
message to another processor. This assumption is a notational convenience and is
made without loss of generality. It is easy to convert any simultaneous agreement
algorithm to one in which all correct processors stop before they give their outputs
and outputs are given no later than in the unconverted algorithm. It is easy to
convert an eventual agreement algorithm so that one round after every correct
processor knows its output value, every correct processor has stopped.

In Section 4, we present an algorithm for EBA that achieves our lower bound,
provided n > max(4t, 2t2 - 2t + 2). This algorithm does not depend on any
authentication protocol. It requires min(f+ 2, t + 1) rounds to reach EBA using a
polynomial (in both n and t) number of bits of information exchange. Previous
early stopping EBA algorithms did not achieve the lower bound but did work for
12 > 3t. We refer the reader to our previous work [8], that of Toueg et al. [24], and
that of Coan [11.

In the remainder of this section, we present the model for execution of an
agreement algorithm that is used in both our lower-bound proofs and in the
presentation of our algorithm. The model we present here is similar to the one
previously given by Dolev and Strong [111. The formal framework represents a
round of an execution as a directed graph with labeled edges and nodes as follows.

Let I’ denote a set of possible values (including the values 0 and 1) and let MSG
denote a set of possible messages. A history is an infinite sequence of rounds. Each
round consists of a directed labeled graph with nodes corresponding to a set P of II
participating processors, together with special source and sink nodes (that are not
in P). There is an edge corresponding to every ordered pair of nodes. Each edge is
labeled by an element of MSG (the message sent), an element of V (a value), or an
empty label (indicating no message). For notational convenience, each history
begins with round 0, in which the edge coming from the source outside P to the
origin is labeled with the input value from V. All other edges have the empty label
at round 0. At any subsequent round, any node may have the edge from it to the
sink node outside P labeled with its output value. During this round and subse-
quently all other edges from this node, carry the empty label. If node p has such
an edge to the sink at round k, then p has stopped (information exchange) at round
k - 1, and its output value is the value on the edge to the sink.

Messages (labels) on edges directed toward p in round k are said to be received
by p at round k. Likewise, messages on edges directed from p in round k are said
to be sent by p at round k. If H is a history we write pH for the view of H according

724 D. DOLEV ET AL.

to p, which consists of the sequence of subgraphs of the rounds of H that have all
the labeled nodes but only the edges that are adjacent to p. We also write Hk and
pHk for the initial sequence of H from its beginning through round k and its view
according to p, respectively.

A protocol (or algorithm) A takes as input an initial subsequence of a view of a
history according to a processor and produces an ordered set of labeled edges
directed from that processor for the next round. Let U(A, t) be the set of all
histories on a fixed set of processors in which all correct processors follow A and
in which at most t processors fail to follow A. (In each section, we restrict U(A, t)
to histories that have only failures of certain types. Also, we write U for
U(A, t) when the arguments A and t are clear from the context.)

A t resilient agreement algorithm is an algorithm A such that in each history of
U(A, t), each correct processor stops in some round and the processors reach
agreement ((i) and (ii) above).

Note that a history includes the names of the processors, and the view of a
history according to one processor is assumed to include the names of all its
neighbors (in the completely connected network), whether they have sent it
messages or not. Thus, an agreement algorithm need not be uniform: the actions
it prescribes can depend on the name of the processor acting and on the names of
its targets.

2. The Lower Bound for SBA

In Sections 2 and 3, we restrict attention to histories in which the only way a
processor can fail to follow its algorithm is to fail to send some or all of its
prescribed messages in one round and remain silent thereafter. This is the notion
of a crash failure defined above. This notion is a close relative of the notion of a
“fail-stop processor” [22]. Note that in the round in which a processor has a crash
failure, it may send any subset of the messages specified to be sent at that round.
It does not send any message at any subsequent round.

In proving the lower bound in this section, we further restrict the failure mode
to order& crash failures in which failing processors must respect the order specified
by the protocol in sending messages to neighbors. (Recall that for each round a
protocol produces an ordered set of labeled outedges that we identify with messages
to be sent.) If a processor fails to send a specified message, it must also fail to send
any message specified to be sent after that message in the protocol ordering.

A processor fails during the first round in which it does not send all messages
required by algorithm A. A processor that fails in round r, sends no messages in
each succeeding round.

Our lower-bound proofs are based on establishing certain equivalences among
histories. The following definitions are crucial in following the proofs. Let A be an
agreement algorithm that guarantees SBA in the presence of at most t orderly crash
faults. Let P be a fixed set of n processors. Recall that U(A, t) is the set of histories
with only orderly crash faults in which algorithm A is employed by all correct
processors, and the number of faulty processors does not exceed t. We introduce
two equivalence relations on the set U(A, t). These equivalences are also defined
for the set of k round initial sequences of such histories, for any k.

The first is witness equivalence. For k round initial sequences, this is the transitive
closure of the relation that holds between Hk and Jk when for some processor p
correct in both, pHk = pJk. Histories H and J are witness equivalent if their k
round initial sequences are witness equivalent for every k. In other words, witness

Early Stopping in Byzantine Agreement 725

equivalence (through round k) is the transitive closure of the relation that holds
between two histories if there is a processor correct in both that cannot distinguish
between the two (through round k).

The second is output equivalence. Here, we take the transitive closure of the
relation that holds between H and J (or Hk and Jk) when some processor correct
in both gives the same output value in both.

A history H is said to be serial if

(I) Hisin U,
(2) for each positive integer k, k 5 t, the number of processors exhibiting faulty

behavior in Hk does not exceed k, and
(3) no processor fails after round t.

Note that each history of U in which there are no faults is a serial history. Recall
that a pattern (for a history) is a function from the set of faulty processors to
integers that gives the round number at which each processor failed. We call one
pattern a subpattern of another if the corresponding history for the first pattern has
as faulty processors only a subset of that of the second and the first pattern is the
corresponding restriction of the second. If a history H in U has a pattern of failures
that is a subpattern of that of a serial history, then H is also a serial history.

If Hk is an initial sequence of a history in U, then the conservative extension of
Hk is the unique history H’ in U such that

(1) H; = Hk, and
(2) no processor fails after round k.

Given a processor p in a history H in U, the silencing of p at round k of H is the
unique history H’ (not necessarily in U) such that

(1) Hi = Hk except that p sends no messages in round k of H’,
(2) no processor (except possibly p) fails after round k,
(3) p sends no messages after round k.

Its uniqueness is guaranteed because conditions (1) and (3) completely determine
the behavior ofp. For the remaining processors, observe that (2) forces all processors
that are correct in Hk to follow A in all subsequent rounds and processors faulty
by round k cannot send any messages after round k (we have restricted to crash
failures). If history H has processors other than p that fail after round k, then H’
resembles the conservative extension of Hk on those processors because they do
not fail in H’. However, the silencing of p at k is not necessarily the conservative
extension of its k round initial sequence because A may not call for p to send any
messages in round k, but it might call for p to send messages later. Since we want
p to remain silent from round k on, we must allow for the possibility that p fails
in some round after round k. Note that if adding p to the set of faulty processors
of H does not raise its cardinality above t, then the silencing of p at round k of H
is in U.

A processor p is said to be a candidate in round i of a history H if p does not fail
before round i and if both H and the silencing of p at round i of H are serial. Note
that if p fails in round i of serial history H, then p is a candidate in round i of H.
However, p can be both correct in H and a candidate in round i of H.

THEOREM 2.1. If agreement algorithm A guarantees SBA for each history with
at most t orderly crash faults, then A requires at least min(n - 1, t + 1) rounds to
reach SBA in any serial history.

726 D. DOLEV ET AL.

PROOF. We base the proof on a sequence of lemmas that contains ideas from
several previous related proofs [8, 1 I, 121. Suppose for the rest of this section that
algorithm A guarantees SBA for each history with at most t orderly crash faults.
Assume that there is a serial history H in which A reaches SBA in fewer than
min(n - 1, t + 1) rounds. If t > n - 2, then A guarantees SBA for each history
with at most t ’ = n - 2 orderly crash faults and A reaches SBA in H in fewer than
y1 - 1 = t ’ + 1 rounds. Thus, a counterexample with t > n - 2 would provide a
counterexample with t ’ = n - 2. Hence, we assume (without loss of generality)
that IZ is at least t + 2.

LEMMA 2.2. Let H and J be histories in U. If A uses k rounds to reach SBA in
J and Hk is witness equivalent to Jk, then A uses k rounds to reach SBA in H, and
H and J are output equivalent.

The following straightforward, but long proof is supplied for completeness. The
technical details would better be left as an exercise to the reader.

PROOF. Recall that witness equivalence is the transitive closure of the relation
that holds between two histories when there is a processor correct in both and with
the same view in both. If pH = pJ and p is correct in both histories, then we call p
a witness to the equivalence of H and J. Since witness equivalence is the transitive
closure of the relation that holds where there is a witness, any two witness-equivalent
histories are related as follows: If H and J are witness equivalent, then there exist
linitesequences(H(i)]l si<m)and(p(i)] 1 cism- l)suchthatH(l)=H,
H(m) = J, and p(i) is a witness to the equivalence of H(i) and H(i + I), for each
i with I 5 i 5 m - 1. We say that H is witness equivalent to J via the sequence
{p(i)] 1 5 i 5 m - 1) of witnesses. This discussion applies equally to witness
equivalence as a relation on initial sequences of histories.

The proof is a straightforward induction on w, the length of a sequence W of
witnesses such that Hk is witness equivalent to Jk via W.

First, let w = 1, and let p be the witness. Let v be the output value that algorithm
A specifies for p in J. Since A uses k rounds to reach SBA in J, v is determined by
pJk. Since the agreement in J is simultaneous, all correct processors stop at round
k in J. Thus, no correct processor sends any message to other processors at round
k + 1 of J. Processors correct through k + 1, just give their output at that round.

Since witness equivalence of Jk and Hk does not give any condition on the
correctness of the witness p in later rounds, one cannot simply compare J and H
(p may become faulty in round k + 1 when it is supposed to give its output).
Instead, let J’ be the history that is identical to J except that, if p does not remain
correct in J at round k + 1, then in J’ p correctly gives its output v in round
k + 1. Obviously, Jk and JL are witness equivalent, since they are identical. The
assumption n > t + 1, implies that there is some q # p that remains correct in J.
History J’ is in U and qJ’ = qJ for any correct q in J with q # p. Since A uses k
rounds to reach SBA in J, q gives its output in round k + 1 of J. Since qJ = qJ’, q
gives the same output in round k + 1 of J’. Thus, J and J’ are output equivalent.
Because J’ is in U, A is guaranteed to reach SBA in J’. Thus, all correct processors
give the same output v in round k + 1 of J’.

Similarly, we define H’ identical to H, except that p remains correct in H’
through round k + 1. Since by assumption Jk and Hk are witness equivalent, so are
J; and H; . Therefore, as in JL, p in Hd gives output v in round k + 1. Since H’
is in U, the argument above shows that all correct processors in H’, give output v
in round k + 1, and that H’ is output equivalent to H. Since p is correct in both

Early Stopping in Byzantine Agreement 127

H’ and J’, we conclude that H’ and J’ are output equivalent. Since n > t + 1,
there is some processor q’ # p that remains correct in H. Since q’ H’ = q’ H, q’
gives output v in round k + 1 of H. Since His in U, A reaches SBA in H. Thus, all
correct processors give output v at round k + 1 of H. This completes the proof of
Lemma 2.2 for w = 1.

Suppose we have proved the lemma for witness equivalence via sequences with
lengths at most w; and suppose that Hk and Jk are witness equivalent via a sequence
of w + 1 witnesses. Then there is a history Kin U such that Kk is witness equivalent
to Jk via a sequence of w witnesses and Hk is witness equivalent to Kk via 1 witness.
By the induction hypothesis, J and K are output equivalent and A uses k rounds
to reach SBA in K. Also by the induction hypothesis, H and K are output equiva-
lent and A uses k rounds to reach SBA in H. This completes the proof of
Lemma 2.2 Cl

In the rest of the proof, we show how to alter serial histories in a way that
preserves witness equivalence, but changes the number of faults and the place of
their occurrence. In any history H of U in which p fails to follow algorithm A,
there is a first message specified by A that p fails to send. Also in any round of H
in U in which p sends any messages, there is a last message sent by p (in the order
specified by A). We call an outedge e of p in a round of a history H significant if
algorithm A specifies a message to travel over that edge and this message is either
the last message sent by p in this round of the history or the first message specified
by A in the entire history that p fails to send. Since we consider only orderly crash
faults, the message on any significant edge is either correct or absent but not both.
We show how to alter the states of messages on selected edges from absent to
correct, or vice versa, producing witness equivalent initial sequences of histories
and eventually producing a desired result. In particular, we are able to correct any
faulty processor or cause any processor to fail in any round that does not violate
the requirement that the resulting history be serial.

LEMMA 2.3. If e is a significant outedge of a candidate p in round k 5 t of a
serial history H, then there is a serial history J such that J, is witness equivalent to
H, and Jk is identical to Hk except that the state of the message at e is altered (from
correct to absent or vice versa).

PROOF. First note that if e is a significant outedge of a candidate p in round k
of history H in U, then the operation of altering the state of the message on e in
Hk and then taking the conservative extension of the altered initial sequence
produces a serial history J. This is true because, by definition S, the silencing of p
at round k of H, is serial and the pattern of J is a subpattern of the pattern of S.
All processors other than p are either correct in both histories or faulty in both. If
p is correct in H until round k, then k becomes faulty both in J and S at that
round; otherwise, p has to become faulty in H in round k by not sending the
appropriate message on e. In that case, p in S becomes faulty in S at round k, too.
Either the same is also true for J or by adding a message to e, p now behaves
correct in round k. Since J gets extended conservatively after that round in this
case, p never gets faulty.

Let e be a significant outedge of candidate p in round k in history H in U. We
prove the lemma by induction on t - k.

In case t - k = 0, in the initial subsequence H, we simply alter e and take the
conservative extension, producing a history J in U identical to H through round
k = t, except for e. Since p is a candidate, J is serial. Note that, except possibly in

728 D. DOLEV ET AI,.

p, the correct processors in H and J are the same. Since n > t + 1 and there are at
most t faulty processors, there is at least one processor q such that q is not the
target of e and q is correct in both histories. Now qH, = qJ, so H, and J, are witness
equivalent. This completes the proof for t - k = 0.

Now assume the lemma holds for all rounds r with (t - r) < (t - k). Let e be a
significant outedge of candidate p in round k of history H in U and assume
k < r 5 t. We next show how to correct all the processors that fail in rounds
k+ 1 totofH.

Let q be any processor that fails in round r of serial history K in U. Then q is a
candidate in round r of K. By successive application of the induction hypothesis to
significant outedges of q with missing messages, there is a serial history L such that
L, is identical to K, except for outedges of q in round r, L, is a witness equivalent
to K,, and q is correct in L,. Let L’ be the conservative extension of L, . Then L’
is a serial history with Z,: witness equivalent to K,, LL identical to K, except for
outedges of q in round r, and q correct throughout L’. Thus, by successive
application of this principle to processors that fail after round k in H, there is a
serial history A4 in U such that M, is witness equivalent to H1 and A4 is the
conservative extension of Hk.

Since k < t and M has no failures after round k, any processor correct in A4 is a
candidate in round k + 1 of M. Let q be the target of e. If q fails in some round of
A4 and N is the conservative extension of Hk with e altered, then for any correct
q’ # p in M, q’A4 = q’N, so A4 and N are witness equivalent and N is the desired
history. Otherwise, assume q is correct in M. By successive application of the
induction hypothesis to any significant outedges from q in rounds from k + 1 to t
of M, there is a serial history G such that G, is witness equivalent to M, , Gk+, is
identical to Mk+, except for outedges of q in round k + 1, and q sends no messages
in rounds from k + 1 to t of G. If p fails in round k of H, then p sends no messages
after round k of G, so altering the state of the message on the edge from a to k in
round k of G produces the desired history.

The case left to check is the one in which p does not fail in round k of H. In this
case, p does not fail in round k of G and G k+, has at most k faulty processors
including q. Thus, p is a candidate in round k + 1 of G.

By successive application of the induction hypothesis to any significant outedges
of p in rounds from k + 1 to t of G, there is a serial history Fin U that is witness
equivalent to G through round t, identical to G through round k, and has no
messages from p or q in rounds from k + 1 to t. Let E be the conservative extension
of the result of altering the state of the message on edge e (the edge from p to q) in
round k of F, . The only possible changes to the pattern of F are moving the failure
of p as early as round k and the failure of q as early as round k + 1. We have
already established that this pattern is that of serial history so E is serial. Since
n > t, there is a processor q’ other than p or q correct in both E and F. For such a
processor, q’ El = q’F(, so E, is witness equivalent to Ft. Finally, Ek is identical to
Hk except for the state of the message on e. Thus, E is the desired history. This
completes the proof of the lemma. Cl

LEMMA 2.4. If H and J are serial histories, then H, is witness equivalent to J, .

PROOF. Let H be a serial history. By successive applications of Lemma 2.3 to
significant outedges with missing messages from faulty processors of H, there is a
serial history H’ such that H,’ is witness equivalent to H, and H’ has no faulty
processors. By successive applications of Lemma 2.3 to significant outedges of the
origin in round 1 of H’, H: is witness equivalent to Nt where N is the silencing of

Early Stopping in Byzantine Agreement 729

the origin in round 1. Likewise, any other serial history J is witness equivalent
through round t to N,. q

To finish the proof of Theorem 2.1, consider the assumed history H, in which A
reaches SBA in t or fewer rounds. Let v be the output value of the correct processors
in H, let v’ be a value different from v, and let J be the fault free (serial) history
with input v’. By the agreement condition, all processors have to output v’ in J.
On the other hand, by Lemma 2.4, H, and JI are witness equivalent. By
Lemma 2.2, H and J are output equivalent. This means that in J all processors
had to output v, a contradiction. 0

COROLLARY 2.5. Algorithm A requires at least min(n - 1, t + 1) rounds to reach
SBA when there are actually no faults.

3. A Lower Bound for EBA

Next, we consider the question of early stopping for EBA and prove a lower bound
similar to, though stronger than, the one in [111. In this section, we restrict attention
to histories in which all failures are crash failures. Let A be a t-resilient agreement
algorithm that is supposed to guarantee EBA in U(A, t). Note that U(A, t) has a
different definition in this section: faults in histories of U(A, t) may be crash faults
rather than the orderly crash faults of Section 2. When we refer to a conservative
extension in this section, we mean a history defined as in the previous section but
with respect to the current U.

An edge e in round k of history H is critical if there is a history J in U such that

(1) J is not output equivalent to H,
(2) J is identical to H through round k except for edge e, and
(3) J is the conservative extension of Jk.

In other words, an edge is critical if altering the state of its message and taking
the conservative extension alters the output value of correct processors. Note that
A must specify a message for any critical edge.

For this section, we require versions of the notions of serial and candidate that
are parameterized by J A history H is said to be f-serial if H is in U, H has no
more than f faults, for each positive integer k 5 f + 1, the number of processors
exhibiting faulty behavior in Hk does not exceed k, and no processor fails in H
after round f+ 1. A processor p is said to be an f-candidate in round i of history
H if p does not fail before round i, and if both H and the silencing of p in round i
of H are f-serial.

THEOREM 3.1. Let A be an agreement algorithm that reaches EBA in histories
of U(A, t). Then there is a history in U(A, t) with only ffaults in which A requires
at least min(r2 - 1, t + 1, f + 2) rounds to reach EBA.

PROOF. As we argued in the proof of Theorem 2.1, a counterexample with
t > n - 2 would provide a counterexample with t = n - 2. Thus, we assume
(without loss of generality) that t < n - 1. Suppose that algorithm A reaches EBA
within min(t, f + 1) rounds in every history of U with at most f faults.

First, we give a straightforward derivation of a contradiction in the case f = 0.
Assume A is a t-resilient agreement algorithm that uses only min(t, 1) rounds to
reach EBA in any history of U with no faults. If t = 0, then processors send no
messages to other processors; otherwise, when there are no faults, processors send
messages to other processors only in round 1 and all processors give the input
value as output in round 2. Let HO be the preliminary round that gives input 0 to

730 D. DOLEV ET AL.

the origin and let H be its conservative extension. Each correct processor of H
must give output 0 in round min(t + 1, 2). Let K0 be the preliminary round that
gives input 1 to the origin and let K be its conservative extension. Each correct
processor of K must give output 1 in round min(t + 1,2). In at least one of H and
K the origin must send at least one message in round 1, for otherwise any processor
except the origin would have identical views in the two histories. Thus, t must be
greater than 0. Without loss of generality, assume that the origin sends a message
to processor p in round 1 of H.

Let Jr be identical to H, except that the origin fails in Jr after sending only its
message to p and let J be the conservative extension of J, . (If the origin sends only
one message in round 1 of H, then let J = H.) Then, J has at most one crash fault
and is a history in U. Now pHI = pJ, so p gives output 0 in round 2 of both H and
J. Thus, any correct processor in J must eventually give output 0. Since t > 0 and
y1 - 1 > t, we have n > 2. Hence, there is a processor q that is neither the origin
nor p. If the origin sent no message to q in round 1 of K, then we would have
qK, = qJ,. But q gives output 1 in round 2 of K and q gives output 0 in some
round of J. Therefore, the origin must send a message to q in round 1 of K.
Let L, be identical to K, except that the origin fails in round 1 by sending only its
message to p (if any), and let L be the conservative extension of L,. Then L has
one crash fault and is a history in U. Since pK, = pL,, p gives output 1 in round 2
of K and L, so any correct processor of L must eventually give output 1. Since p
sends no messages to other processors after round 1 in any of the histories H, J, K,
and L, we have qJ = qL. But this contradicts the fact that q must output 0 in J
and 1 in L.

Now we assume f 2 1. Since we assume y1- 1 > t, there are at least two correct
processors in any history of U. In any history of U with at mostffaults, there can
be no critical edge in round min(t, f + l), because all correct processors have
stopped by round min(t, f + 1) (giving their outputs by min(t + 1, f + 2)) and
changing a value over any single edge cannot affect the output of more than a
single correct processor. We first show that in anyf-serial history, there is no critical
edge in roundffrom a processor that is anf-candidate in roundf: Then, we show
that allf-serial histories, including all histories with no faults, are output equivalent.
As in the proof of Theorem 2.1, we then argue that histories with distinct inputs
and no faults must have the same outputs, contradicting part (ii) of the definition
of agreement. This contradiction will complete the proof. Cl

LEMMA 3.2. Let H be an f-serial history. Then there is no critical edge in round
ffrom a processor that is an f-candidate in round f of H.

PROOF. We argued above that there could be no critical edge in round
min(t, f + 1); so we can assume, without loss of generality, that f c t. Suppose there
were a critical edge e in round f from a processor p that is an f-candidate in round
f: Let q be the target of e. Let J be the conservative extension of the result of
altering e in Hf. By the definition of critical edge, J is not output equivalent to H.
Since p is an f-candidate in round f of H, and since H is f-serial, J isf-serial. Thus,
J has no more than f faults and J is in U. Since we have assumed A reaches EBA
within min(t, f + 1) rounds in every history of U with at most f faults, J reaches
EBA by round f + 1.

Since f + 3 I t + 2 5 n, we can find processors r and s correct in both H and J
and not equal to q. Let H’ be the conservative extension of the result of removing
any message from q to r in round f + 1 of H I+, . Let J’ be the conservative extension
of the result of removing any message from q to r in round f + 1 of Jf+, . Now H’

Early Stopping in Byzantine Agreement 731

and J’ each have at most t faults so that Algorithm A eventually reaches EBA in
both. But each correct processor except r has the same view in H’ as in H through
f+ 1 and is stopped at f+ 1. By the view of s, SHY+, = sH/+, and therefore H and
H’ are output equivalent. Since H’ is a conservative extension of anf+ 1 round
initial sequence, no processor fails after round f + 1 and no processor except r
sends a message to another processor after round f + 1. Likewise, each correct
processor except r has the same view in J’ as in J through f + 1 and is stopped by
f+ 1. Since sJ/t-, = sJf:, , J and J’ are output equivalent. Since J’ is a conservative
extension of an f + 1 round initial sequence, no processor fails after round J + 1
and no processor except r sends a message to another processor after round f + 1.
Thus, rH’ = rJ’ and r must have the same output value in both, contradicting the
assumption that H is not output equivalent to J. Cl

LEMMA 3.3. If A reaches EBA for all histories with at most t faults and if A
reaches EBA within min(t, f + 1) rounds for all histories with at most t faults, then
all f-serial histories are output equivalent.

PROOF. Here we use the proof technique developed for Theorem 2.1. First, we
show that if e is an outedge of an f-candidate p in round k 5 min(t, f + 1) of
f-serial history H, and if A specifies a message for e, then there is an f-serial history
J output equivalent to H and identical to H through round k, except that the state
of the message at e is altered (from correct to absent or vice versa). As in the proof
of Lemma 2.3, this is proved by induction onf+ 1 - k. Note that if e, H, and k
are as above, then the conservative extension of the result of altering the state of
the message on e in round k of Hk is an f-serial history and satisfies all requirements
for J unless e is critical.

First, assume f + 1 - k = 0, that is, k = f+ 1. Let e be as above in round f+ 1
off-serial history H. Since there are no critical edges in roundf+ 1, the appropriate
conservative extension is the desired output equivalent history.

Next assume f + 1 - k = 1, that is, k = f: Again the appropriate conservative
extension is the desired output equivalent history by Lemma 3.2.

Finally, assume that we can obtain the desired output equivalent history for such
edges in rounds r with r > k and assume k < 1: By successive application of the
induction hypothesis to outedges from processors that fail in rounds after round k,
we can obtain anf-serial history K that is output equivalent to H such that K is the
conservative extension of Hk, Since k cfand K is f-serial, any correct processor of
K is an f-candidate in round k + 1 of K. Now either the target q of e fails by round
k or it is correct in K. If it is correct in K, then the silencing of q in round k + 1 of
K is also f-serial and can be shown to be output equivalent to K by successive
applications of the induction hypothesis to the outedges of q. Thus, in any case
there is an f-serial history K’ that is identical to H through round k, is output
equivalent to H, and has no messages from q after round k. Let J be the conservative
extension of the result of altering the state of the message on e in K;. Then, J is
output equivalent to K’ because rJ = rK’ for any correct r in both J and K’ and
some such r exists because the source of e is the only possible additional fault in J
over those in K’. Thus, J is the desired f-serial history output equivalent to H and
identical to H through round k except for the state of the message on e.

The output equivalence of all&serial histories follows easily by application of a
proof analogous to that of Lemma 2.4. Let H be the f-serial history with input 0
and no faults. Let J be the f-serial history with input 1 and no faults. We have
shown that H and J must be output equivalent, contradicting part (ii) of the

732 D. DOLEV ET AL.

definition of agreement, Thus, A cannot reach EBA within min(t, f + 1)
rounds in every history of U with at most Jfaults. This completes the proof of
Theorem 3.1. Cl

4. An EBA Algorithm

In this section, we describe an algorithm for eventual Byzantine agreement that
achieves the lower bounds of the previous sections, provided that 12 is sufficiently
larger than t. The algorithm will tolerate up to t Byzantine faults. (We no longer
restrict attention to crash faults.) The key to understanding this algorithm is the
notion of separation, which will be described more formally below. Informally,
when a faulty processor sends different information to two subsets of correct
processors, it separates one set from another. The algorithm keeps track of two
rounds of information exchange at a time, so a fault that separates large enough
sets of correct processors from each other in one round will be discovered by all
correct processors in the next round. In order to avoid discovery by all correct
processors, a fault may only separate from others a set of the size of the number of
unknown potential faults that must be tolerated. Thus, t faults cannot separate
more than t ’ correct processors from other correct processors without at least one
of them being discovered. The idea behind the algorithm is that when n is larger
than max(4t, 2t * - 2t + 2), our algorithm will allow correct processors to obtain
the agreement value at the end of any round in which no fault gives itself away
and to stop within one additional round.

Recall that we count only the rounds of information exchange among the
processors. The preliminary input and final output rounds are only used to simplify
the description of the algorithm.

We use the following notation:

P denotes the set of names of participating processors,
s the name of the origin,
X a symbol not in P and
V the set of possible input values.
Let 0 be an element of V, let * a special value not in V (representing “undefined”),

and let I/’ be the union of V and 1 * 1.

To run the algorithm, each processor maintains a data structure consisting of
two types of variables: variables containing values from the set V’, and variables
containing sets of processor names. For each of the strings s, ps, and pqs, where p
and q run over all the elements of P, we associate a variable of the first type. The
values stored in these variables will be interpreted as representing information
received from the appropriate processors. Thus, for example, the value stored in s
will be interpreted as the value sent by the origin of the agreement. The value
stored in qs will be interpreted as the value q said that s sent to it. Finally, the value
stored in pqs will be interpreted as the value p said that q said that s sent to it.
Notice that s denotes both the origin and the variable associated with it. The
pseudocode of the algorithm uses s only as a variable and not as a name for the
origin.

With the string X and with strings pX, for every p in P, we associate a variable
of the second type. Values stored in strings ending in X will be interpreted as
representing information received from the processors about faults. Thus, the set

Early Stopping in Byzantine Agreement 733

stored in X will be a set of processors known to be faulty. The set stored in qX will
be the set of processors q claims to be faulty.

We refer to the variables as strings.

Strings ending in s will be initialized to value 0.
Strings ending in X will all be initialized to the empty set.

We use the following convention for naming sets of strings:

Let Q be any subset of P, let p be in P, and let R be any name for a set according
to this convention. Then

Qs= {qslqisin Q),
QX= {qX(qisin Ql,
pR = (pr 1 r is in R), and
QR = 1 qr 1 q is in Q and r is in R).

Thus, for example, Ps is the set of strings of length 2 that end with s, and pPs is
the set of strings of length 3 that begin with p and end with s.

Here, we introduce a simple one round process that is the heart of many
agreement algorithms. We give this process the name ROUND. Each processor
executes ROUND during every round from round 3 until it stops. We also
introduce a variant of ROUND called ROUND2 that is executed in round 2 and
collects the original information in Ps. ROUND has two functions: (1) to exchange
information on Ps with all other processors to produce values for PPs that are then
reduced to values for Ps; and (2) to exchange information on X with all other
processors to produce values for PX and to use PPs and PX to discover faults. It is
expected to operate synchronously with all participating processors sending infor-
mation to all and then receiving information from all. If two processors are correct,
it is assumed that their information is correctly exchanged. It uses two auxiliary
processors, DETECT and REDUCE, which are defined below. We assume that a
processors sends messages to itself and processes them as part of all the messages
it receives.

Note that in ROUND2 each processor sends the value it has stored in s and
receives the corresponding values from all processors. It stores the value received
from processor p in ps. Thus, ROUND2 has the instruction “RECEIVE ps from
each p in P.”

The action of each participating processor executing ROUND2 is as follows:

ROUND2: /* for round 2 */
begin;

SEND s to all processors;
RECEIVE ps from each p in P;

if ps is not received from p then set ps := s)
if Ps does not contain at least n - t identical values then put the origin in X;

end ROUND2.

Note that in ROUND each processor sends the values it has stored in Ps and X
to all processors and then receives corresponding values from every processor. The
values received for Ps and X from processor p are stored in pPs and pX, respectively.
Thus, ROUND has the instruction, “RECEIVE pPs, pX from each p in P.”

734 D. DOLEV ET AL.

The action of each participating processor executing ROUND is as follows:

ROUND: /* for rounds after round 2 * /
begin;

SEND Ps, X to all processors;
RECEIVE pPs, pX from each p in P;

(if p is already in X
then default its values for pPs to 0)

(if p is not already in X but it does not send pPs and pX
then for each q in P set pqs : = * and leave pX unchanged)

DETECT;
for each p and q in P if pqs = * then set pqs : = s;
REDUCE;

end ROUND.

A correct processor may put the name of the origin in X during the execution of
ROUND2, but only if Ps does not contain y1- t identical values so that the origin
must be faulty. In later rounds, the process DETECT is the only way correct
processors add names to the set of known faulty processors kept in X. DETECT is
designed so that correct processors will never add names of correct processors to
X, and therefore, at any time the largest possible number of faulty processors that
a given correct processors has not discovered is t - 1 X 1.

Since correct processors may stop at different times-the difference can be at
most one round as will be seen later-one has to take care that a correct processor
that has already stopped and therefore does not send messages anymore is not
considered to be faulty. This is achieved by first setting variables pqs for which no
value from p has been received to the undefined value “*“. Ifp is not found faulty
by DETECT, then pqs will later be set to the actual value of s.

If more than t - 1 X 1 processors claim that they have put processor q in their set
of known faulty processors, then any correct processor can safely put q in X (some
other correct processor put q in its X first).

In our algorithm, correct processors send identical data to all participants. A
property that will be preserved by REDUCE is that if p, q, and r are correct
processors, then the values stored in pqs and rqs by any correct processor will be
identical. Thus, if the multiset of values stored in (P - X)qs does not have at least
y1- t identical values, then q must be faulty.

The action of each participating processor executing DETECT is as follows:

DETECT:
begin;

for each q in P - X;
if({pIpisinP-XandqisinpX)I>t-IX1

or P - X contains two sets A and B each of cardinality 2 t
such that Aqs and Bqs both have only values in V,
but no value occurs in both Aqs and Bqs

then add q to X and default the values of qPs to 0;
end for each q ;

end DETECT.

The process REDUCE uses values of PPs to update the values of Ps using a
majority vote. Let g be the smallest integer greater than n/2. In order to obtain the
new value for string ps, a majority vote is taken over the values of the strings pPs.
Note that all these values are obtained directly from p. There is no voting by others
here on what p said as it is done by DETECT for q. If p is correct, then it sends
the same data (Ps) to each participant; all correct participants will have the same
value for ps after REDUCE. These values ps determine the further action to be

Early Stopping in Byzantine Agreement 735

taken by each processor. If correct processors all have the same set Ps, then they
behave identically and reach agreement very quickly.

The action of each participating processor executing REDUCE is as follows:

REDUCE:
begin;

for each p in P;
if pPs has at least g strings with value v

then ps := v
else ps := 0;

end for each p;
end REDUCE.

For the remainder of this section, we assume that

n > max(4t, 2(t + (t - I)‘)),

so that the following properties are true of the majority threshold g:

(1) a> n;
(2) n-2trg;
(3) n-t-(t- l)%g.

We use these properties of g to show that undetected faults cannot cause correct
processors to reach different values for S.

The algorithm will be called EAGREE. It takes a value as input in round 0. Only
the origin is given a value. If no value is received, the string s is left with its initial
value 0. We use the existence of a value other than 0 stored in s in round 0 to
indicate that the processor executing the code is the origin. All processors execute
the same code. If a processor has a value other than 0 stored in s at the end of
round 0, then it sends that value to all processors in round 1. We assume that no
processor except the origin can have a value stored in s other than 0. If the input
value is 0, the origin acts just like the other participants and sends nothing.
Receiving nothing from the origin in the first round is interpreted as receiving 0
from the origin. This is just a convenience, all processors know the name (s) of the
origin. This simply allows us to write EAGREE in a uniform way without
mentioning explicitly the name of the processor executing the code. Correct
processors ignore any values received from processors other than the origin in
round 1. Correct processors using EAGREE reach EBA by round min(f+ 2, t +
1). At the end of the algorithm, the variable s at each correct processor will hold
the output value. Note that round 0 and the output round involve no information
exchange among the processors and are not counted when we discuss the number
of rounds required to reach agreement.

The action of each participating processor executing EAGREE is as follows:

EAGREE:
begin;
i := 0. /* round O--the input round */

REi=EIVE s AS INPUT;
(if nothing is received, leave s unchanged)

i:= 1; /* round 1 */
ifs # 0 then SEND s to all processors;
RECEIVE s;

(if nothing is received from the origin, leave s unchanged)
doi:=2tof+ 1;

if i = 2 then ROUND2 else ROUND;

736 D. DOLEV ET AL.

if Ps has at least g identical values v
thens:= v;
elses:=O;

if Ps has at least n - t identical values
then leave this do loop;

end do;
i:=i+l; /* output round for this processor */

OUTPUT s;
end EAGREE.

Recall that 2g > n so that this algorithm is well defined.

THEOREM 4.1. Execution ofEAGREE by n > max(4t, 2(t + (t - 1)‘)) processors
results in EBA within min(f + 2, t + 1) rounds, wheref; the actual number offaults,
does not exceed t.

The proof of the theorem will be provided in the following series of lemmas.

LEMMA 4.2. Suppose no correct processor is stopped at round i - 1 and let p, q,
and r be correct processors. Then, at the end of round i, no correct processor has
the name of a correct processor in X, every correct processor has pqs = rqs, and all
correct processors share the same value for qs.

PROOF. Suppose otherwise and let i be the first round in which the above
conditions are violated in some execution of EAGREE. Since X and Ps are
unchanged until round 2 and PPs is unchanged until round 3, it must be that
i L 2. If i = 2 and some correct processor put the name of the origin in X, then
this processor must not have received n - t identical values in round 2. But if the
origin had correctly either remained silent or sent identical values to all correct
processors in round 1, then each correct processor would have received at least
n - t identical values in round 2. Thus, in this case, the origin must have been
faulty. In round 2, only the origin can be put in X. Hence, no correct processor
put the name of a correct processor in X in round 2. Each correct processor sends
identical data to every processor, so if q is correct, each correct processor shares
the value for qs in round 1. Moreover, in round 2, no correct processor will change
the variables PPs from their initial value 0, hence i 2 3.

Processors p and r receive the same set of values from a correct processor q in
each round j 5 i, since by assumption no correct processor stops before round i.
Further, we have supposed that no correct processor has the name of a correct
processor in X at the end of round i -1, thus neither p nor r will default the
corresponding variables for q. Therefore, they share qPs at the beginning of the
execution of DETECT in round i. Moreover, any correct processor not stopped at
round 2 has the origin in X. Thus, for any processor not stopped at round i - 1,
any subset of P - X of cardinality 21 contains the name of at least one correct
processor. There are two ways a correct processor adds a name to X in round
i > 2. Both happen only during execution of DETECT. Since no correct processor
had the name of a correct processor in X at the end of round i - 1, the first method
(based on other processors claiming to have put the name in X) cannot introduce
the name of a correct processor in round i. The second method for putting q in X
requires correct processors p and r not stopped at round i - 1 with pqs # rqs. But
this condition cannot hold for a correct q at the beginning of the execution of
DETECT in round i. Thus, DETECT cannot have caused the failure of our
conditions in round i. This means that no names of correct processors are included
in X and that no correct processors q have their values for qPs defaulted to 0 at the

Early Stopping in Byzantine Agreement 737

beginning of the execution of REDUCE in round i. Since REDUCE does not alter
the values of PPs, and since all correct processors share their values for qPs for
each correct q, the conditions cannot have been violated. Cl

We say that value v is persistent at round i, if at least g correct processors have v
stored in s at the end of round i. Recall that a processor is said to stop in round i
if the only action it takes in round i + 1 is to output its value. We say that a
processor is convinced in round i if it has at least n - t identical values stored in
Ps at the end of round i. Note that if a correct processor is convinced in round i,
then it stops in round i. Also, if a correct processor stops in round i < t + 1, then
it is convinced in round i. However, a processor may stop in round t + 1 without
being convinced. In this case, it gives its value for s as output without having
n - t identical values in Ps.

LEMMA 4.3. If a correct processor is convinced at round i 5 t + 1, then the value
it has for s must have become persistent by round i - 1.

PROOF. Assume i is the first round at which some correct processor p is
convinced, let us say of value V. Processor p must have at least n - 2t strings qs
with value v such that q is a correct processor. Let q be any such processor. By
Lemma 4.2, q cannot be in X for p at round i. If i = 2, then q actually sent v to p
in round i, so q had value v for s at the end of round i - 1. Since this holds for at
least n - 2t 2 g correct processors, v is persistent at round 1.

Assume now i > 2: Then before executing REDUCE in round i, p had values
qPs such that either at least a majority (g) were v or there was no majority value
implying v = 0. Processor q actually sent the values for qPs to p. These were the
values q had for Ps at the end of round i - 1 and q sets s to v at this round. In any
case, at least n - 2t correct processors q had value v for s at the end of round
i - 1; therefore, v became persistent. Cl

LEMMA 4.4. If a value becomes persistent before round t + 1, then it remains
persistent throughout the execution of the algorithm and is given as output by each
correct processor. If a value becomes persistent before round t, then all correct
processors are convinced at most two rounds later.

PROOF. Consider the first round i at which any value v becomes persistent.
Suppose i < t + 1. By Lemma 4.3, no correct processor stopped at round i. Let G
be a set of at least g correct processors, each of which associates v with s after round
i. By Lemma 4.2, no correct processor has any element of G in X at the end of
round i + 1. Thus, at the end of round i + 1, each correct processor has each string
of Gs valued v; so each correct processor has s valued v. If correct p and r are not
stopped at round i + 1, then they send the same value for qs, for each correct q, in
round i + 2. Thus, no correct processor adds the name of a correct processor q to
X in round i + 2.

If any correct processor q ’ stops at round i + 1, then any correct processor not
stopped at round i + 1, sets each string of q ’ Ps to v just before the REDUCE of
round i + 2. Thus, each correct processor not stopped at round i + 1 has at least
n - t strings of Ps valued v and is convinced at the end of round i + 2. Each correct
processor either stops at round i + 1 or round i + 2 and each gives output v.

For the second claim, suppose value v first becomes persistent at round i < t. By
Lemma 4.3, no correct processor stops before round i + 1. As argued above, every
correct processor has s = v at round i + 1. Any correct processor not stopped at
round i + 1 will see n - t values v in Ps and will be convinced at round i + 2

738 D. DOLEV ET AL.

because the strings of stopped processors default to s = v. We have already noted
that if a correct processor stops at a round before round t + 1, then it is convinced
at that round. Thus, each correct processor is either convinced at round i + 1 or
at round i + 2. Cl

LEMMA 4.5. If the origin is correct, then all correct processors will output its
value.

PROOF. If the origin is correct, then its value becomes persistent at round 1 and
all correct processors output its value by Lemma 4.4. Cl

In order to keep any value from becoming persistent in a round, the faults must
send distinct sets of values Ps to different sets of the correct processors. In fact,
these sets Ps must reduce to distinct values. We say that a fault p separates sets n
and B of correct processors if it sends them sets Ps so that after REDUCE, no
member of A has a value stored in ps that is the same as that of a member of B.
We call any set of correct processors a witness set if its cardinality is at least t and
at most n - 2t.

LEMMA 4.6. Iffor some i, 2 I i 5 t, a fault p separates a witness set from all
other correct processors at round i, and tf some correct processor is not convinced
by round min(i + 2, t + I), then there are correct processors that do not havep in
their set X by the end of round i, but by round i + 1 each correct processor will have
p in X and set values pPs and ps to the default value 0.

PROOF. Since some correct processor was not convinced by min(i + 2, t + l),
no value was persistent at round 1 by Lemma 4.4. Since g + t 5 y1 - t, no correct
processor could have n - t identical values in Ps during the execution of ROUND2;
so all correct processors put the origin in X at round 2. Thus for each correct
processor, the origin is in X by the beginning of round i + 1. Note that, by Lemmas
4.3 and 4.4, no correct processor stopped at round i. Let A be the witness set
separated from the rest of the correct processors by p in round i. Let B be the rest
of the correct processors, which will be of size at least t. In round i + 1 before
DETECT, each correct processor has values in Aps different from any values it has
in Bps. Also, by Lemma 4.2, each correct processor has A and B as subsets of
P - X. Thus, if p is not already in X, DETECT will add p to X and set pPs to 0,
and REDUCE will then set ps to 0. But if p is in X for some member of A at the
end of round i, then p is not in X for any member of B at the end of round i; so
some correct processors do not have p in X at the end of round i. 0

LEMMA 4.7. If there is a correct processor that is not convinced by round i + 2
with 1 % i 5 t - 1, then there is a set {pj 1 1 I j 5 i) of i distinct faulty processors
such that, for each j, each correct processor has pj in X and value pjs defaulted to 0
by the end of round j + 1 (and in each succeeding round).

PROOF. The proof is by induction on i. In case i = 1, let the origin be pl. If
some correct processor is not convinced by round 3, then, by Lemma 4.4, no value
was persistent in round 1. As we argued in the proof of Lemma 4.6, each correct
processor has pI in X and pI s defaulted to 0 by the end of round 2. Once a
processor p is in X, its values for pPs are defaulted to 0 in ROUND so REDUCE
keeps the value 0 in ps. Thus, p1 remains in X and p1 s remains defaulted to 0 after
round 2.

Assume that the result has been shown for i - 1, with 2 I i I t - 1 and assume
that some correct processor is not convinced by round i + 2. By the induction

Early Stopping in Byzantine Agreement 739

hypothesis, there are i - 1 distinct processors pj for 1 5 j 4 i - 1 such that every
correct processor has pj in X and PjS defaulted to 0 by the end of round j + 1 and
in every succeeding round. It suffices to show that there is a processor pi such that
pi is distinct from pj for j < i and each correct processor has pi in X and PiS defaulted
to 0 by the end of round i + 1. (The argument above shows that these conditions
continue to hold thereafter.) By Lemma 4.4, no value was persistent by round i.

If at round i, p separates a witness set from all other correct processors, then, by
Lemma 4.6, at round i + 1 for each correct processor, p will be added to X and its
values pF’s and ps will be set to the default value 0. Note that no pj with j < i can
separate correct processors at round i, since all of its values are defaulted to 0.

Suppose no fault separates a witness set from the other correct processors. Then,
each of the at most t - 1 faults (not counting the origin) can separate at most
t- 1 correct processors from the other correct processors. Hence, there would
be a set of correct processors of size at least n - t - (t - 1)’ I g that agreed
on s after round i and their value would be persistent. Thus, some fault separated
a witness set from other correct processors at round i and this fault can be taken
to bepi. q

LEMMA 4.8. Zf there are only f < t faults, then all correct processors are convinced
by round f + 2.

PROOF. Assume to the contrary that there is a correct processor not stopped by
round f + 2. By Lemma 4.7, there is a set (pi 1 1 I j 5 f) off distinct faulty
processors such that, for each j, each correct processor has pj in X and value pjs
defaulted to 0 from round j + 1 on. Since there are exactly f faults, each fault is in
X for each correct processor by the end of round f + 1. By Lemmas 4.3 and 4.4,
no correct processor is stopped by round f + 1. But no fault is left to separate any
correct processors, so each correct processor has identical values for PPs after
round f + 1. Thus, in round f + 2 all correct processors send identical values for
Ps and, by the end of round f + 2, all correct processors have at least n - t identical
values in Ps and stop. This contradicts the assumption that there is a processor not
convinced by round f + 2. Cl

LEMMA 4.9. All correct processors have the same value stored in s by round
t+ 1.

PROOF. Recall that all processors stop by round t + 1 and give their outputs
by round t + 2. If any correct processor is convinced by round t + 1, then by
Lemmas 4.3 and 4.4, all correct processors output the same value by round
t + 2. Since each correct processor gives as output the value it has stored in s in
the round in which it stops, in this case, all correct processors must have stored the
same (final) value in s by round t + 1.

Assume not all correct processors have the same value stored in s by round
t + 1. Then no correct processor is convinced by round t + I, and, by Lemma 4.4,
no value is persistent by round t. By Lemma 4.7, there is at most one fault not
discovered by all correct processors by the end of round t. Also no correct processor
stopped by round t. At round t, the one undiscovered fault must separate a witness
set to prevent g correct processors from storing the same value in s, for otherwise
that value would be persistent at round t. By Lemma 4.6, this undiscovered fault
is put in X in round t + 1 by every correct processor. Since each correct processor
defaults values corresponding to all faulty processors to 0, all correct processors
agree on Ps and hence s at the end of round t + 1. This contradiction of our
original assumption completes the proof. Cl

740 D. DOLEV ET AL.

If n > max(4t, 2(t + (t - 1)2)), then using EAGREE the correct processors reach
eventual agreement by Lemma 4.9 (condition (i)) and Lemma 4.5 (condition (ii)).
By Lemma 4.8 and its specification EAGREE requires at most min(f+ 2, t + I)
rounds of information exchange. This completes the proof of Theorem 4.1. Cl

5. Open Problems

Several unauthenticated deterministic EBA algorithms are known; but none attains
the lower bounds of Sections 2 and 3 for all n and t with n > 3t [1, 8, 20, 231. The
question even remains open for authenticated algorithms: Is there a deterministic
EBA algorithm that attains the lower bounds for all n and t with n > 3t when the
faults are restricted not to corrupt a given authentication protocol? Wheh the faults
are restricted to crash, however, the lower bounds are known to be attainable:
Fischer and Lamport provide a simple algorithm for EBA that achieves early
stopping by roundf+ 2 (M. Fischer and L. Lamport, private communications).

ACKNOWLEDGMENTS. The authors would like to thank Amotz Bar-Noy and the
referees for helpful comments on earlier versions of this work.

REFERENCES

1. COAN, B. A communication-efficient canonical form for fault-tolerant distributed protocols. In
Proceedings of the 5th Annual ACM Symposium on Principles of Distributed Computing (Calgary,
Canada). ACM, New York, 1986, pp. 63-72.

2. CRISTIAN, F., AGHILI, H., STRONG, R., AND ~%LEV, D. Atomic broadcast: from simple message
diffusion to Byzantine agreement. In Proceedings of of the 15th International Conference on Fault
Tolerant Computing (June). 1985, pp. l-7.

3. DEMILLO, R. A., LYNCH, N. A., AND MERRIT, M. J. Cryptographic protocols. In Proceedings of
the 14th ACM SIGACT Symposium on Theory of Computing (San Francisco, Calif., May 5-7).
ACM, New York, 1982, pp. 383-400.

4. DOLEV, D. Unanimity in an unknown and unreliable environment. In Proceedings ofthe 22nd
IEEE Annual Symposium on Foundations of Computer Science. IEEE, New York, 1981,
pp. 159-168.

5. DOLEV, D. The Byzantine generals strike again. J. Algor. 3 (1982), 14-30.
6. ~XLEV, D., FISCHER, M., FOWLER, R., LYNCH, N., AND STRONG, R. An efficient algorithm for

Byzantine agreement without authentication. Inf Control 3 (1983), 257-274.
7. DOLEV, D., AND REISCHUK, R. Bounds on information exchange for Byzantine agreement.

J. ACM32, 1 (Jan. 1985), 191-204.
8. DOLEV, D., RIESCHUK, R., AND STRONG, R. ‘Eventual’ is earlier than ‘Immediate’. In Proceedings

of the 23rd IEEE Annual Symposium on Foundations of Computer Science. IEEE, New York, 1982,
pp. 196-203.

9. DOLEV, D., AND STRONG, H. R. Polynomial algorithms for multiple processor agreement. In
Proceedings of the 14th ACM SIGACT Symposium on Theory of Computing (San Francisco, Calif,
May 5-7). ACM, New York, 1982, pp. 401-407.

10. DOLEV, D., AND STRONG, H. R. Distributed commit with bounded waiting. In Proceedings of the
2nd Symposium on Reliability in Distributed Software and Database Systems (Pittsburgh, Pa.,
July). 1982, pp. 53-60.

11. DOLEV, D., AND STRONG, H. R. Requirements for agreement in a distributed system. In
Proceedings of the 2nd International Symposium on Distributed Data Bases (Sept.). 1982, pp.
115-129.

12. DOLEV, D., AND STRONG, H. R. Authenticated algorithms for Byzantine agreement. SIAM I.
Comput. 12 (1983), 656-666.

13. DWORK, C., AND Mosns, Y. Knowledge and common knowledge in a Byzantine environment I:
Crash failures. In J. Halpem, ed., Theoretical Aspects of Reasoning about KnowIedge (Monterey,
Calif., Mar. 19-22). Morgan Kaufman, San Mateo, Calif., 1986, pp. 149-170.

14. FISCHER, M., FOWLER, R., AND LYNCH, N. A simple and efficient Byzantine generals algorithm.
In Proceedings of the 2nd Symposium on Reliability in Distributed Software and Database Systems
(Pittsburgh, Pa., July). 1982, pp. 46-52.

Early Stopping in Byzantine Agreement 741

IS. FISCHER, M., AND LYNCH, N. A lower bound for the time to assure interactive consistency. In:
Process. Lett. 14 (1982), 183-186.

16. LAMPORT, L. The weak Byzantine generals problem. J. ACM 30,4 (Oct. 1983), 668-676.
17. LAMPORT, L. Using time instead of timeout for fault-tolerant distributed systems. ACM Trans.

Progr. Lang. Syst. 6, 2 (Apr. 1984), 254-280.
18. LAMPORT, L., AND MELLIAR-SMITH, P. M. Synchronizing clocks in the presence of faults. J. ACM

32, 1 (Jan. 1985), 52-78.
19. LAMPORT, L., SHOSTAK, R., AND PEASE, M. The Byzantine generals problem. ACM Trans. Prog.

Lung. Syst. 4, 3 (July 1982), 382-401.
20. MOSES, Y., AND WAARTS, 0. Coordinated traversal: (t + I)-round Byzantine agreement in

polynomial time. In Proceedings of the 29th Annual Symposium on Foundations of Computer
Science. IEEE, New York, 1988.

21. PEASE, M., SHOSTAK, R., AND LAMPORT, L. Reaching agreements in the presence of faults.
J. ACM 27,2 (Apr. 1980), 228-234.

22. SCHNEIDER, F. Byzantine generals in action: Implementing fail-stop processors. ACM Trans.
Comput. Syst. 2,2 (May 1984), 146-154.

23. SRIKANTH, T., AND TOUEG, S. Byzantine agreement made simple: Simulating authentication
without signatures. Dist. Comput. 2 (1987), 80-94.

24. TOUEG, S., PERRY, K., AND SRIKANTH, T. Fast distributed agreement. SIAM J. Comput. 16 (1987),
445-457.

RECEIVED JUNE 1983; REVISED JANUARY 1987, JANUARY AND NOVEMBER 1988, AND JULY AND

NOVEMBER 1989; ACCEPTED NOVEMBER 1989

Journal of the Association for Computing Machinery, Vol. 37. No. 4, October 1990.

