
Byzantine Disk Paxos:

Optimal Resilience with Byzantine Shared Memory∗

Ittai Abraham†, Gregory Chockler‡, Idit Keidar§, Dahlia Malkhi†

December 27, 2004

Abstract

We present Byzantine Disk Paxos, an asynchronous shared-memory consensus algorithm that
uses a collection of n > 3t disks, t of which may fail by becoming non-responsive or arbitrarily
corrupted. We give two constructions of this algorithm; that is, we construct two different t-
tolerant building blocks, each of which can be used, along with a leader oracle, to solve consensus.
One building block is a t-tolerant wait-free shared safe register. The second building block is
a t-tolerant regular register that satisfies a weaker termination (liveness) condition than wait
freedom: its write operations are wait-free, whereas its read operations are guaranteed to return
only in executions with a finite number of writes. We call this termination condition finite writes
(FW), and show that t-tolerant wait-free consensus is solvable with FW-terminating registers
and a leader oracle. We construct each of these t-tolerant registers from n > 3t base registers, t
of which can be non-responsive or Byzantine. All the previous t-tolerant wait-free constructions
in this model used at least 4t + 1 fault-prone registers, and we are not familiar with any prior
FW-terminating constructions in this model.

We further show tight lower bounds on the number of invocation rounds required for optimal
resilience reliable register constructions, or more generally, constructions that use less than
4t+1 fault-prone registers. Our lower bounds show that such constructions are inherently more
costly than constructions that use 4t + 1 registers, and that our constructions have optimal
round complexity. Furthermore, our wait-free construction is early-stopping, and it achieves the
optimal round complexity with any number of actual failures.

Keywords: shared-memory emulations, t-tolerant object implementations, Byzantine failures,
wait freedom, consensus, lower bounds.

†School of Computer Science and Engineering, The Hebrew University of Jerusalem.
Email: {ittaia,dalia}@cs.huji.ac.il.

‡Lab for Computer Science and Artificial Intelligence. Massachusetts Institute of Technology.
Email: grishac@theory.lcs.mit.edu.

§Department of Electrical Engineering, The Technion – Israel Institute of Technology.
Email: idish@ee.technion.ac.il.

∗A preliminary version of this paper, by the same authors and with the same title, appears in Proceedings of the
23rd ACM Symposium on Principles of Distributed Computing (PODC ’04), July 2004, pages 226–235.

1 Introduction

We consider an asynchronous system with multiple processes accessing fault-prone shared mem-
ory objects [AMT93, AGM+95, JCT98]. We study implementations of reliable objects from base
objects that may fail by being non-responsive [AMT93, JCT98] or by returning arbitrary val-
ues [AGM+95, JCT98] (i.e., by being Byzantine); this failure model is called non-responsive ar-
bitrary (NR-Arbitrary) faults [JCT98]. We focus on t-tolerant implementations [JCT98], that is,
implementations that are correct as long as up to t base objects fail. In addition to memory failures,
we assume that any number of the processes accessing the shared objects may crash.

This model is important in capturing a fair amount of recent work on Byzantine fault-tolerant
“data centric” replication, which arises in three different application domains: (i) message-passing
client-server systems in which servers store information on behalf of clients and the only communi-
cation is between clients and servers, allowing servers to be modeled as storage components, e.g.,
Fleet [MR00], SBQ-L [MAD02], Agile Store [LAV03], Coca [ZSvR02], and [Baz00]; (ii) Byzantine
fault-tolerant peer-to-peer storage systems, e.g., Rosebud [RL04] and [LQLZ04]; and (iii) storage
area networks, e.g., PASIS [GWGR04]. Since in these settings processes access the shared memory
over a network, such systems typically try to minimize the number of memory access rounds.

Our goal is to enhance this fruitful line of work into a survivable distributed storage system
that tolerates arbitrary corruption and unresponsiveness (i.e., NR-Arbitrary faults) in up to a third
of its disks (or servers) as well as process crashes. (Tolerating NR-Arbitrary faults in a third or
more of the disks is impossible [MAD02]). Although a number of projects have set out to tackle
this problem (e.g., E-vault [GGJR00], Fleet [MR00], Agile Store [LAV03], SBQ-L [MAD02], Coca
[ZSvR02], PASIS [GWGR04], as well as [ABO03] and [Baz00]), to date, this goal has not been
achieved in our setting.

Consensus is a fundamental building block that may be used to realize such distributed storage
systems. For solving consensus with shared disks, we turn to shared memory failure-detector
based consensus algorithms [LH94, GL03], and in particular, the shared-memory version of Disk
Paxos [GL03], which employs shared wait-free single-writer multi-reader (SWMR) regular registers1.
Thus, the problem of solving consensus (assuming a leader oracle) can be reduced to implementing
a wait-free SWMR regular register. When disks are subject to unavailability faults only, such a
register is easily implemented from a collection of 2t + 1 fail-prone registers, each stored on one
disk, by reading and writing from/to a majority of disks [GL03].

Coping with NR-Arbitrary faults is more challenging. Since the introduction of this fail-
ure model, researchers have constructed t-tolerant wait-free shared registers using 4t + 1 [MR98,
GWGR04], 5t + 1 [JCT98], or even 6t + 1 [CMR01] fault-prone base objects. Several works have
achieved better resilience by weakening the model in different ways – by adding synchrony [Baz00];
by storing signed self-verifying data [MR98, MAD02]; or by providing solutions that may block
indefinitely if processes fail [MAD02, ABO03]. However, t < n/4 is the best resilience achieved
thus far by t-tolerant wait-free constructions for the model considered herein.

In contrast, the literature is abundant with message-passing consensus algorithms that tolerate
Byzantine failures of less than a third of the processes. Therefore, an appealing way to go about
searching for a more resilient solution would be to try and adapt the techniques used in those

1A wait-free object is one that is live in the presence of any number of process failures. A regular register guarantees
that every read operation returns the value that was written by a write operation invoked not earlier than the last
write operation that returns before the read is invoked, or the initial value if no value is written before the read.

1

algorithms to our model. (Since our model does not incorporate digital signatures, we restrict our
attention to consensus algorithms that do not use authentication). We observe that this resilience is
achieved by means of echoing (e.g., [BT85, DLS88]). Unfortunately, echoing cannot help us address
the challenge we have set out to solve in this paper. Indeed, if a correct process can correctly echo
information to all other processes, this is essentially like having a wait-free register through which
the process conveys the information to the other processes. And implementing such a register from
fault-prone ones is exactly what we seek to do in this paper.

Having ruled out the use of standard techniques to improve the resilience threshold, we pro-
ceed to examine whether there exist inherent limitations that prevent algorithms in our model
from achieving better resilience. We observe that all existing algorithms for fault-prone shared
memory models (e.g., [MR98, MAD02, Baz00, JCT98, ABO03, GWGR04]) implement (emulate)
write operations in a single round; that is, they invoke one write operation on each base object.
Moreover, all the solutions that assume t < n/4, also implement read operations in a single round
(e.g., [MR98, Baz00, JCT98, GWGR04]). In Section 7, we show that such good performance is not
attainable by optimal-resilience solutions. Specifically, Section 7.1 proves that if t ≥ n/4, then it
is impossible to emulate the write operations of a t-tolerant wait-free register by invoking a single
round of operations on base objects. Our proof applies to emulations of all meaningful register
types, as it is proven for a binary single-writer single-reader safe register2 [Lam86]. We further
show, in Section 7.2, that if n = 3t+1, then any algorithm in which the reader does not modify the
base objects’ states may need to invoke as many as t + 1 rounds of read operations on base objects
in order to emulate a single read operation of a t-tolerant single-writer single-reader safe register.
More generally, for any 0 ≤ f ≤ t, there is an execution in which f objects are Byzantine faulty in
which the algorithm invokes min(t + 1, f + 2) rounds of base object operations. We further conjec-
ture that even if readers can modify the base objects, then it still holds that either the read or the
write emulation must take min(t + 1, f + 2) rounds. Our bounds explain why previous algorithms,
which did not perform more than one round of operations, and did not have readers modify base
objects, could not have achieved optimal resilience.

In Section 5, we present, for the first time, a t-tolerant wait-free SWMR register construction
that uses as little as 3t + 1 base registers that may suffer arbitrary corruption. As dictated by the
lower bounds of Section 7, we implement (emulate) write operations in two rounds, that is, our
emulation invokes two operations on some of the base objects. Our read emulation is early-stopping,
and it incurs the optimal min(f +2, t+1) rounds, where f is the actual number of Byzantine faults
in the given execution. Specifically, we construct a t-tolerant wait-free SWMR safe register. Using
known reductions from regular to safe registers (see e.g., [Lam86] and a survey in [HV02]), we can
thus achieve a t-tolerant wait-free regular register, which in turn, can be used to solve consensus
with a leader oracle [LH94, GL03]. Nevertheless, it is worth noting that implementing a regular
register using safe ones requires additional space (as multiple safe registers are used to construct a
single regular one), induces additional rounds of memory access, and adds additional complexity,
as most existing constructions are fairly elaborate.

We therefore further seek a simpler, self-contained, and efficient implementation of a regular
register. The key to such a solution is a very simple yet surprisingly powerful shift of paradigm: we
weaken the termination condition the register is required to satisfy. Specifically, we define a new

2A safe register guarantees that every read operation that does not overlap any write operation returns the latest
written value, or the initial value if no value was written; the result of a read operation that does overlap a write
operation may be arbitrary.

2

termination condition called finite writes termination (FW-termination), which guarantees progress
only in executions with a finite number of writes. In other words, write operations always terminate,
whereas read operations are guaranteed to terminate whenever they occur in parallel with a finite
number of writes. In order for FW-terminating registers to guarantee progress for the readers, a
contention management mechanism is required, so as to limit the number of writes occurring in
parallel with read operations. Nevertheless, we observe that in the context of consensus, this can
be provided by a leader oracle, which is necessary for consensus anyway [LH94, DFG02, CHT96].

Indeed, this leads us to implement a t-tolerant FW-terminating reliable regular register out of
ones that can suffer NR-Arbitrary faults, and to use such registers for implementing consensus.
The result is a simple, efficient, and self-contained adaptation of Disk Paxos, which tolerates NR-
Arbitrary faults of up to a third of the disks. As our FW-terminating construction is simpler than
the wait-free one, we present it first in the paper, in Section 4.

From a formal perspective, solving wait-free consensus with shared objects that are not wait-
free is in itself a contribution. In [LH94, GL03, DFG02], it was shown that wait-free consensus is
possible with wait-free read/write registers and a leader oracle. We show, for the first time, that
registers satisfying a weaker progress condition (i.e., have more allowable behaviors) suffice. This
approach integrates well with the Paxos general philosophy, which decomposes consensus into a
safety building block (called Synod in [Lam98]) and a progress component (leader election). In
shared memory this deconstruction was substantiated in [BDFG03, CM02], where coarse-grained
shared objects encapsulating the Synod algorithm were identified. In this paper, the approach of
separating safety requirements from liveness ones is applied right down to the lowest level objects
of which Paxos is constructed: the read/write registers.

Contributions and road map. Section 2 presents the formal system model and defines the
register types considered in this paper. Section 3 provides informal intuition for the formal results
presented later in the paper: it discusses previous register emulations in the NR-Arbitrary fault
model, illustrates the challenges in working with optimal resilience, and exemplifies our results
(lower bounds and upper bounds). We then turn to introduce Byzantine Disk Paxos, the first
shared-memory consensus algorithm to tolerate NR-Arbitrary faults of up to a third of the system.
We present two constructions of Byzantine Disk Paxos. In Section 4, we present a direct construc-
tion of a t-tolerant FW-terminating regular register from Byzantine shared memory. Section 6
identifies such registers as building blocks for consensus. In Section 5, we present an emulation of
a t-tolerant wait-free register out of 3t + 1 corruptible ones, which was never before achieved. In
Section 7, we prove tight lower bounds on the round complexity of emulations that use less than
4t + 1 base objects, showing that the construction in Section 5 has optimal round complexity as
well as resilience, and that the write emulation of the FW-terminating register in Section 4 is also
optimal.

2 The System Model

We consider an asynchronous shared memory system consisting of a collection of processes interact-
ing with a finite collection of objects. Objects and processes are modeled as I/O automata [LT89].
An I/O automaton’s state transitions are triggered by actions. Actions are classified as input, out-
put, and internal. The automaton’s interface is determined by its input and output actions, which
are collectively called external actions. An action π of an automaton A is said to be enabled in state
s if A has a state transition of the form (s, π, s′). The transitions triggered by input actions are

3

always enabled, whereas those triggered by output and internal actions, (collectively called locally
controlled actions), depend solely on the automaton’s current state.

Let A be an I/O automaton. An execution α of A is a (finite or infinite) sequence of alternating
states and actions s0, π1, s1, . . . , where s0 is A’s initial state, and each triple (si−1, πi, si) is a state
transition of A. The trace of an execution α of A is the subsequence of α consisting of the external
actions in α. An infinite execution α of A is fair if every locally controlled action of A either occurs
infinitely often in α or is disabled infinitely often in α. A finite execution α of A is fair if no locally
controlled action of A is enabled at the end of α. A fair trace of A is the trace of a fair execution of
A. An automaton’s external behavior is specified in terms of the properties of its traces. Liveness
properties are required to hold only in fair traces.

An object automaton’s interface is determined by its type, which is a tuple consisting of the
following components: (1) a set faultyV als of values; (2) a set of invocations; (3) a set of responses;
and (4) a sequential specification, which is a function from invocations × V als to responses × V als,
specifying the object’s semantics in sequential executions.

An asynchronous shared memory system is a composition of a (possibly infinite) collection of
process automata P1, P2, . . . and a finite collection of object automata O1, O2, . . . On. Let Oj be
an object of type T , and a (b) be an invocation (resp. response) of T . Process Pi interacts with
Oj using actions of the form ai (resp. bi), where ai is an output of Pi and an input of Oj (resp. bi

is an output of Oj and an input of Pi).
We say that the interaction between a process and an object is well-formed if it consists of

alternating invocations and responses, starting from an invocation. In this paper, we only consider
systems in which the interaction between Pi and Oj is well-formed for all i and j. Well-formedness
allows an invocation occurring in an execution α to be paired with a unique response (when such
exist). If an invocation has a response in α, the invocation is said to be complete; otherwise, it
is incomplete. If two invocations are incomplete after some prefix of α, then they are said to be
overlapping in α. Note that well-formedness does not rule out concurrent operation invocations on
the same object by different processes. Nor does it rule out parallel invocations by the same process
on different objects, which can be performed in separate threads of control.

Objects may suffer NR-Arbitrary failures [JCT98], i.e., may fail to respond to an invocation,
or may respond with an arbitrary value. We consider t-tolerant implementations [JCT98], which
remain correct (in the sense that the emulated object satisfies its specification) whenever at most
t base objects suffer NR-Arbitrary failures.

Any number of the processes may fail by stopping. The failure of a process Pi is modeled using a
special external event stopi. Once stopi occurs, all locally controlled actions of Pi become disabled
indefinitely.

2.1 Registers

A read/write register (or simply, register) type supports an arbitrary set of values, V als, with an
arbitrary initial value v0 ∈ V als. Its invocations are read and write(v), v ∈ V als. Its responses
are v ∈ V als and ack. Its sequential specification, f , requires that every write overwrites the
last value written and returns ack (i.e., f(write(v), w) = (ack, v)), and every read returns the last
value written (i.e., f(read, v) = (v, v)). In this paper, we consider only single-writer registers, i.e.,
registers that can be written by a single pre-designated process. Registers can be either single-writer
multi-reader (SWMR), meaning that they can be read by any number of processes, or single-writer
single-reader (SWSR), in which case only one designated processes can read from them.

4

We now define several register properties. Let σ be a (well-formed) sequence of invocations and
responses of reads and writes.

Safe register. σ is safe [Lam86] if every complete read operation that does not overlap any write
operation returns the register’s value when read was invoked (i.e., the latest written value or
the initial value v0 if no value was written). A register is called safe if it has only safe traces.

Regular register. σ is regular [Lam86] if it is safe, and in addition, a read operation that does
overlap some write operations returns either one of the values written by overlapping writes
or the register’s value before the first overlapping write is invoked. A register is regular if it
has only regular traces.

Wait Freedom. σ satisfies wait freedom if every invocation by a correct process in σ is complete.
A register is wait-free if all its fair traces satisfy wait freedom.

FW-termination. σ satisfies FW-termination if every write invocation by a correct process in
σ is complete, and moreover, either every read invocation by a correct process is complete,
or infinitely many writes are invoked in σ. A register is FW-terminating if all its fair traces
satisfy FW-termination.

Note that our liveness definitions (wait freedom and FW-termination) require operations by
correct process to complete regardless of the number of process failures, since failed processes are
not required to take any steps in fair executions (as their locally controlled actions are all disabled).

We now examine the relationship of FW-termination with previously suggested termination con-
ditions by comparing the sets of behaviors they allow. We observe that the set of FW-terminating
traces is a strict subset of both lock freedom and obstruction freedom [HLM03] (or deterministic
solo termination). An FW-terminating trace is lock-free since progress is always guaranteed: if
there is a write invocation, it is guaranteed to complete, and if there is none, all read invoca-
tions are guaranteed to complete. An FW-terminating trace is also obstruction free, since when
a read invocation is allowed to take steps by itself, in particular, other processes cannot initiate
infinitely many write invocations in parallel with the read, and hence the read must complete.
FW-termination is a strict subset of wait freedom, since a read operation that is concurrent with
infinitely many writes is not required to complete. This relationship is illustrated in Figure 1.

obstruction-freetraces

lock-freetraces

FW-terminating
traces

wait-
free

traces

Figure 1: Relationship among different termination conditions.

5

Finally, although we have defined FW-termination above specifically for read/write registers,
we note that our definition may be extended to model any single-writer multi-reader data structure.

3 Exemplifying the Results

This section provides informal intuition for the lower bounds and algorithms presented in this
paper. Section 3.1 describes previously suggested register emulations from Byzantine storage, and
uses them in order to illustrate the challenge in achieving optimal resilience. Section 3.2 then
intuitively describes the techniques we use in our algorithms.

In order to distinguish between the emulated register’s interface and that of the underlying base
registers, we henceforth denote the emulated read (resp. write) operation as read (resp. write).

3.1 Previous Solutions and Remaining Challenges

Traditionally, in asynchronous algorithms, one waits for at most n − t responses to each re-
quest, since waiting for more objects may violate liveness. Thus, an emulated write(v) op-
eration issues write requests to all base objects, and returns once the lower-level write oper-
ations on n − t of the n base objects return. write operations are implemented exactly in
this manner in all previously suggested constructions tolerating NR-Arbitrary memory faults,
e.g., [MR98, MAD02, JCT98, ABO03, GWGR04]. Note that of the n − t base objects that re-
spond, t may be faulty, whereas the t that have not responded may be simply slow. Thus, when a
write operation completes, there can be t correct base objects that do not store the written value.
Likewise, a read invocation typically sends read requests to all base objects and waits for n − t
responses. If as in [MR98, GWGR04], n > 4t, then the set of n − t read objects includes at least
2t + 1 correct objects, of which at least t + 1 were updated by every complete write. Since no
incorrect value can be read from t + 1 objects, if written values are associated with monotonically
increasing timestamps, read can safely return the highest timestamped value read from t + 1 base
objects [MR98, GWGR04]. Jayanti et al [JCT98] eliminate the need for timestamps by using a
resilience threshold of n > 5t and returning values read from 2t + 1 base objects.

However, working with n ≤ 4t is more challenging. Let us examine the special case that t = 1
and resilience is optimal, i.e., n = 4. In this case, after write(v) completes, it is possible that
only 2 correct base objects have stored v. Safety mandates that if a read operation is invoked
after write(v) returns, and no further write operations are invoked, then the read must return
v. The read operation probes the base objects and waits for responses from n− t = 3 of them (in
order to ensure liveness). The responses may be as follows: one correct object that did not store v
returns an old value s0, one incorrect object also returns s0, and only one correct object returns v.
(This scenario is illustrated in Figure 8(c) in Section 7.1, where we formally prove our lower bound
on write emulations). The reader has no way of distinguishing this situation from one where v
was never written and is returned by a faulty object. Therefore, the reader cannot return.

One may attempt to overcome this situation by simply waiting for more responses. In the above
scenario, the reader can in fact wait for an additional response, since it has already heard from the
only faulty object, and the fourth object is correct and will eventually respond as well. However,
the reader cannot distinguish the scenario above from a situation in which write(v) is in progress
during the read, and all three responses are from correct objects. In this case, the reader cannot
wait for a response from the fourth object, which may be faulty. Since the reader can neither safely

6

return any value nor wait for an additional response, it must invoke another round of base object
read operations. More generally, in Section 7.2, we formally prove that if the reader does not write
to the base objects, there are executions in which read must invoke at least t + 1 rounds of read
operations on base objects.

If one assumes that processes cannot fail, then the write(v) operation (implemented by writing
to 3 base objects, as described above) eventually completes. If no further writes occur and read

continues to initiate additional read rounds, then eventually, 2 correct objects return v in some
read round and another object returns a value with a smaller timestamp, and read can return
safely v. This is the approach taken by Attiya and Bar-Or [ABO03], where read operations are
guaranteed to eventually terminate assuming that processes do not fail and a finite number of
writes are invoked. A similar approach is implemented by Martin et al. [MAD02], where the
shared objects reside on servers that implement a subscription model and push all register updates
to the subscribed clients instead of having the clients continuously issue read rounds. (Note that
this model is different from the shared memory model we consider in this paper.) By allowing this
additional functionality at the servers, Martin et al. guarantee termination even when there are
infinitely many writes.

Unfortunately, if processes can fail, the above approach violates liveness. If a writer fails
(crashes) in the course of the write(v) invocation, then the system can permanently remain in
a state where exactly one correct object has stored v (see Figure 8(b)). In this situation, even if
the reader continues to initiate read rounds and no other processes take steps, the reader will not
be able to complete the read. In Section 7.1 we formally prove that, indeed, in order to tolerate
process failures, write must invoke two operations on some correct base objects.

3.2 Intuitive Description of Our Algorithms

We now illustrate the general idea behind our optimal-resilience algorithms for the special case that
n = 4 and t = 1.

As dictated by the lower bound described above, our algorithms emulate write by invoking two
rounds of operations on base objects. Each base object (register) stores two values. The emulation
of write(v) first performs a pre-write phase, in which v is written to the base registers’ first field,
pw. After getting acks from n − t base objects that have stored v, the write phase writes v to
n − t registers’ second field, w. This solves the problem described above, since if the writer fails
before finishing the pre-write phase, v does not appear in any register’s w field, and eventually,
all 3 correct registers will attest to the fact that v was never fully written, whereas if the writer
fails after completing the pre-write phase, then v is stored in 2 correct registers’ pw fields, and
the reader can therefore know that write(v) was indeed invoked. Finally, if the reader reads two
values, v and s0, each from 2 objects, then read must return the later one. To this end, each value
is written along with a monotonically increasing timestamp. Our FW-terminating read emulation
(presented in the next section) continuously invokes read rounds until there is a value that appears
in the pw fields of 2 registers (or more generally, t + 1 registers), and for every higher timestamped
read value v′, there are at least 3 registers (more generally, 2t + 1) that do not return v ′ in their w
fields. The number of rounds initiated by this algorithm is unbounded, by design, but the algorithm
is guaranteed to terminate in executions with a finite number of writes, even if the writer fails.

In Section 5, we present a t-tolerant wait-free safe register construction that bounds the number
of read rounds. In the special case that t = 1, our t-tolerant wait-free read emulation invokes at
most two read rounds. In the first read round, read reads from 3 registers, and collects candidate

7

return values— these are the values that are read from w fields. It then issues a second read round.
Since this algorithm implements a safe register, it can return an arbitrary value when a write

overlaps the read. If no write overlaps the read, then the latest written value is stored at at
least 2 correct registers’ w fields throughout the read. Therefore, if there is any candidate value
v such that 3 registers respond without v in their w fields, then v can be removed from the set of
candidates. If the set of candidates is empty, there must be a write overlapping the read, and
any value can be returned. Otherwise, consider the highest timestamped candidate v. If 2 registers
respond with v or higher timestamped values, then v is a valid return value. This is because at least
one of these registers is correct, implying that either v was indeed written, or write(v’) occurred
for some higher timestamped value v′, which is not a candidate. In the latter case, since v′ is not
a candidate, write(v’) overlaps the read. Thus, either way, v can be returned.

In order for read to return, we thus need to ensure that eventually, each candidate is either
missing from 3 responses, or there are 2 responses that include v or a higher timestamped value.
When t = 1, two read rounds suffice to ensure this. To see why, consider a candidate value v:

1. First, if v was concocted by a faulty register in the first round, then there is an additional
correct register that did not yet respond in the first round, and will eventually respond. Once
this register responds, there will be 4 responses in the first read round, ensuring that every
value either occurs in 2 of them or does not occur in 3 of them.

2. Otherwise, v was read from the w field of a correct register in the first round, implying that
its pre-write phase has completed before it was read. The pre-write could have taken place
concurrently with the first read round, but since the second read round causally follows the
first, the pre-write must have completed and stored v at 2 correct registers before the second
read round. Thus, at least 2 correct registers will eventually respond to the second round
with either v or a later value in their pw field.

As noted above, when t > 1, two read rounds do not always suffice, and the general algorithm is
quite a bit more complex.

4 t-Tolerant FW-Terminating Regular Register Emulation

In this section, we construct a t-tolerant FW-terminating SWMR regular register in a shared mem-
ory system consisting of any number of processes and n > 3t SWMR fault-prone FW-terminating
regular registers, x1 . . . xn. The register emulation is presented in Section 4.1. Its correctness is
proven in Section 4.2, and its efficiency is discussed in Section 4.3.

4.1 Register Emulation

Each base register, xi, stores a pair of values, each associated with a timestamp, taken from a totally
ordered set TS, with the minimum element ts0. The shared registers are defined in Figure 2.

The emulation of the FW-terminating register’s write operation appears in Figure 3. As
dictated by the lower bound of Section 7.1, the write emulation consists of two rounds: First, the
pre-write phase writes the value to the base registers’ pw fields, and then, the write phase writes
the new value to both the registers’ fields. Each value is written together with a monotonically
increasing timestamp. Since the underlying registers can be non-responsive, the process must invoke
operations to different registers in parallel in separate threads, so as to avoid blocking forever when

8

Types:
TSV als = TS × V als, with selectors ts, val;

Shared regular registers xi ∈ TSV als× TSV als, 1 ≤ i ≤ n, with selectors pw, w,
initially, 〈〈ts0, v0〉, 〈ts0, v0〉〉 for all 1 ≤ i ≤ n;

Figure 2: Base registers used in register constructions.

waiting for a faulty register to respond. Each phase (write and pre-write) is complete once n − t
of the registers (threads) respond. Threads that do not respond by the time write is complete
remain active (pending) after it returns.

In order to ensure well-formedness, (i.e., that at any instant, the writer has at most one incom-
plete invocation on each register), subsequent instances of write must refrain from invoking new
operations on registers whose threads are still pending. To this end, we track the status of each base
register xi using two bits. The pending[i] bit indicates whether an invocation on xi is in progress.
To initiate an invocation on xi, the main thread sets enabled[i] to true, and then repeatedly calls
the procedure check in order to invoke write operations on the base registers for which an invoca-
tion is enabled and none is pending, and to check when these invocations are complete. When an
operation on xi is invoked, check sets enabled[i] to false. Thus, a repeat-check-until loop never
invokes more than one operation on each base objects. Once invocations on n − t registers have
responded (i.e., are neither enabled nor pending), the phase is complete.

The notation invoke write(xi, v), (resp., invoke tmp ← read(xi,)) means that a new thread
is spawned to perform a write(v) on register xi (resp., a read of register xi whose response will
be stored in local variable tmp). The notation xi responded means that the last thread created
by an invoke operation on register xi has completed its execution. Note that since we maintain
well-formedness, at any given instant of time, there is at most one incomplete operation invoked
on register xi. Hence, the notation xi responded is well-defined.

The read emulation appears in Figure 4. It repeatedly invokes rounds of read operations on
base registers, until it finds a value that it can safely return. For each register xi, w[i] and pw[i]
hold the latest value read from xi.w and xi.pw, resp. Like the write emulation, read uses the
pending[i] and enabled[i] bits in order to track the status of active invocations to xi and ensure
well-formedness. Each read round is invoked by setting all the enabled bits to true (line 4), and
repeatedly calling the procedure check until n− t registers respond (lines 5–7). As in the write

emulation, check invokes enabled base register operations and checks the status of pending ones.
Recall that threads invoked in one instance of read may remain active after that instance returns.
In this situation, subsequent reads must ignore the return values of such old threads, so as not to
violate safety. To this end, the old[i] bit is used. When read is invoked (line 1), this bit is set for
registers that have pending invocations from previous reads. When old threads return, their data
is discarded.

read defines a number of predicates in order to determine which value is safe to return. The
readFrom(c, i) predicate is true if the value-timestamp pair c ∈ TSV als was read from xi, either
from the w or from the pw field, by the latest read operation invoked on xi. In order to ensure that
read does not return a value concocted by faulty registers, the return value must be read from at
least t + 1 registers. This condition is captured by the predicate safe.

In order to ensure regularity, read must not return old values written before the last write

9

Local variables:
Boolean arrays enabled[n], pending[n], initially false for all 1 ≤ i ≤ n;
pw, w ∈ TSV als, initially 〈ts0, v0〉;
ts ∈ TS;

write(v):
choose ts ∈ TS larger than previously used;

/* Pre-write phase */
pw ← 〈ts, v〉;
for 1 ≤ i ≤ n, enabled[i]← true;
repeat

check;
until |{i : ¬enabled[i] ∧ ¬pending[i]}| ≥ n− t;

/* Write phase */
w ← 〈ts, v〉;
for 1 ≤ i ≤ n, enabled[i]← true;
repeat

check;
until |{i : ¬enabled[i] ∧ ¬pending[i]}| ≥ n− t;

return ack;

check:

for 1 ≤ i ≤ n
if (enabled[i] ∧ ¬pending[i]) then
〈enabled[i], pending[i]〉 ← 〈false,true〉;
invoke write(xi, 〈pw, w〉);

if (xi responded) then
pending[i]← false;

Figure 3: Emulation of write operations.

10

Local variables:
Boolean arrays enabled[n], pending[n], old[n], initially false for all 1 ≤ i ≤ n;
Arrays pw[n], w[n], tmpPW [n], tmpW [n] with elements in TSV als ∪ {⊥};
C ⊆ TSV als;

Predicate definitions:

readFrom(c, i) , c ∈ TSV als ∧ (pw[i] = c ∨ w[i] = c)

safe(c) , | {i : readFrom(c, i)}| ≥ t + 1

invalid(c) , | {i : ∃c′ : readFrom(c′, i) ∧ c′.ts < c.ts ∨ (c′.ts = c.ts ∧ c′.v 6= c.v)} | ≥ 2t + 1

highestValid(c) , ∀c′∀i : (readFrom(c′, i) ∧ c′.ts ≥ c.ts ∧ c′ 6= c)→ invalid(c′)

read():
1: for 1 ≤ i ≤ n, if(pending[i]) then old[i]← true;
2: for 1 ≤ i ≤ n, pw[i], w[i]← ⊥;
3: repeat
4: for 1 ≤ i ≤ n, enabled[i]← true;
5: repeat
6: check;
7: until |{i : ¬enabled[i] ∧ ¬pending[i]}| ≥ n− t;
8: C ← {c : safe(c) ∧ highestValid(c)};
9: until (C 6= ∅);
10: return c.val : c ∈ C;

check:

for 1 ≤ i ≤ n
if (enabled[i] ∧ ¬pending[i]) then
〈enabled[i], pending[i]〉 ← 〈false,true〉;
invoke 〈tmpPW [i], tmpW [i]〉 ← read(xi);

if (xi responded) then
if (¬old[i]) then

pw[i]← tmpPW [i];
w[i]← tmpW [i];

pending[i]← false;
old[i]← false;

Figure 4: Emulation of read operations of the t-tolerant FW-terminating regular register.

11

that precedes the read. Enforcing this condition is more subtle: although returning the highest
timestamped read value would ensure this, this value cannot be returned unless it is safe. Simply
waiting for the highest timestamped value to become safe may violate liveness, because this value
may come from a faulty register. To overcome this difficulty, we introduce the predicate invalid. This
predicate ascertains that a given value-timestamp pair was not written before read was invoked,
and can therefore be safely excluded from the set of potential return values. A value-timestamp
pair is deemed invalid if 2t+1 of the registers either return values with lower timestamps or return a
different value with the same timestamp. The algorithm then waits for the highest timestamp-value
pair that is not invalid to become safe, and returns this value. The predicate highestValid(c) holds
for a timestamp-value pair c if all the other read values with a timestamp greater than or equal to
c’s are invalid.

The set C holds value-timestamp pairs that are safe, and for which all the pairs with a higher
timestamp or with the same timestamp and a different value are invalid (line 8). Once C 6= ∅, read

terminates (line 9) and returns some value in C (line 10). This guarantees regularity, as proven in
Lemma 4.1 below. The emulation is also FW-terminating, since once no more write invocations
occur, the latest written value eventually becomes safe, and higher timestamped values from faulty
registers are eventually invalidated. This is proven in Lemma 4.2 below.

Note that even if we use wait-free base registers, the register implementation in Figures 3 and 4
is not wait-free. Even with infinitely many write invocations, a reader may never return even in a
fault-free execution. This is because in each read round, one new (concurrently-written) candidate
value may be observed in both the pw and w fields of one base register, while the other correct
registers respond with older values due to asynchrony. The new candidate value is neither safe nor
invalid.

4.2 Correctness

Lemma 4.1 (Regularity). The register whose write emulation appears in Figure 3 and whose
read emulation appears in Figure 4 is regular.

Proof. We prove that the algorithm has only regular traces. First, observe that if read returns a
value c.val, then safe(c) holds. Thus, at least t + 1 registers respond with c, and at least one of
these is correct. Therefore, c has either been written by write(c.val) or is 〈ts0, v0〉. It is left to
show that read does not return older values than the one written by the latest complete write

before the read.
If no write completes before read is invoked, then we are done. Otherwise, let r be a read

invocation and w = write(v) be the last write that completes before r is invoked. Let ts be the
timestamp written with v. We need to show that r does not return an older value, i.e., that any
return value c.val is not associated with a timestamp c.ts < ts (as timestamps are monotonically
increasing). That is, we need to show that if c.val is returned, then c.ts ≥ ts.

Since the write phase of w completes before r is invoked, 〈ts, v〉 is written to the pw and
w fields of at least t + 1 correct registers before the read. Since the base registers are regular,
each of these t + 1 correct registers responds to each read operation of r with a pair 〈pw, w〉
such that pw.ts ≥ ts ∧ w.ts ≥ ts. Consider the reader’s state after line 8 (in any iteration) of
r. As n − t responses are awaited in line 7, at least one of the responders is among the correct
registers updated by w. Denote this register as xi. Hence, pw[i].ts ≥ ts ∧ w[i].ts ≥ ts. Let c be
the smallest timestamped pair returned by a correct register xk (either in its pw or w field) for

12

which c.ts ≥ ts. We prove that c is not invalid. Assume the contrary. By definition of invalid, at
least 2t + 1 registers must have responded with values c′ (in either their pw or w fields) such that
c′.ts < c.ts ∨ (c′.ts = c.ts ∧ c′.val 6= c.val). Thus, at least one of these responses must be from a
correct register xj that was updated by w. Therefore, pw[j].ts ≥ ts ∧ w[j].ts ≥ ts. By choice of
c, either pw[j].ts = c.ts ∧ pw[j].val 6= c.val, or w[j].ts = c.ts ∧ w[j].val 6= c.val. Since xj and xk

are both correct, two different values were written with the same timestamp, which by the write

code is impossible. A contradiction.
We have proven that whenever line 8 is executed, there is a timestamp-value c such that

readFrom(c, k) and c.ts ≥ ts and ¬invalid(c). Therefore, no c′ such that c′.ts < ts can satisfy
the highestValid predicate, and no value with a timestamp smaller than ts can be included in C in
line 8 or returned in line 10. Hence, regularity is satisfied.

Lemma 4.2 (FW-Termination). The register emulated by the write code in Figure 3 and the
read code in Figure 4 is FW-terminating.

Proof. Since at most t registers are faulty, by FW-termination, in every fair execution, at least
n − t correct registers respond to every write invocation. Since no more than n − t responses are
awaited in either phase of any write invocation, every write invoked by a correct process in a
fair execution completes.

Let α be a fair execution in which a finite number of write invocations occur. We now prove
that every read invocation by a correct process in α completes. Since as argued above, the write

invocations all complete, and since the read emulation does not invoke write operations on base
registers, there is a point in α after which no write operations on base registers are invoked, and
by FW-termination of the base registers, a later point τ , by which all write operations invoked on
correct registers are complete.

We first note that read is not stuck forever in the repeat-until loop in lines (5–7), since n− t
responses are awaited in each iteration, at most t registers can be non-responsive, and the correct
registers all respond by FW-termination (since a finite number of writes are invoked on base registers
in α). Therefore, read continues to issue new read rounds as long as it does not return a value.
Assume by contradiction that read never returns, then it invokes read operations on all correct
registers after time τ . Let τ ′ > τ be a point in α by which every correct register has responded to
at least one read invocation that was initiated after point τ .

Let 〈ts, v〉 be the value-timestamp pair written in the last complete write invocation in α, or
〈ts0, v0〉 if there is none. We consider two cases: First, if no later (incomplete) write completes
the pre-write phase (either no later write is invoked, or one is invoked but the writer fails before
completing the pre-write phase), then from point τ ′ onward, (1) 〈ts, v〉 appears at least t + 1 times
in w[∗], and is therefore safe; and (2) there are at least 2t + 1 responses in w[∗] (from the correct
registers) with either 〈ts, v〉 or with a timestamp smaller than ts. Therefore, every value-timestamp
pair c such that c.ts > ts ∨ (c.ts = ts ∧ c.val 6= v) is invalid. Thus, at the end of the next iteration
of line 8, 〈ts, v〉 ∈ C. Hence, the termination condition in line 9 is satisfied and read returns, a
contradiction.

Second, suppose that an incomplete write invocation w
′ = write(〈ts′, v′〉) occurs, and the

pre-write phase of w
′ completes. Then after τ ′, 〈ts′, v′〉 appears at least t+1 times in pw[∗], and is

therefore safe. Moreover, since no value-timestamp pair c such that c.ts > ts′∨ (c.ts = ts′∧ c.val 6=
v′) is ever written, there are at least 2t+1 responses with either 〈ts′, v′〉 or a smaller timestamp than
ts′. Thus, highestValid(〈ts′, v′〉) holds, and after the next iteration of line 8, 〈ts′, v′〉 ∈ C. Hence,

13

the termination condition in line 9 is satisfied and, again, read returns. A contradiction.

We have proven the following:

Theorem 4.3 (FW-Terminating Register Emulation). The algorithm consisting of the write

emulation in Figure 3 and the read emulation in Figure 4 implements a t-tolerant SWMR FW-
terminating regular register using n > 3t SWMR FW-terminating regular registers up to t of which
can suffer NR-arbitrary failures.

4.3 Efficiency

Note that although we have proven that the read emulation terminates in a finite number of rounds
whenever there is a finite number of writes, there is no upper bound on the number of rounds
it can take in asynchronous executions. The proof of Lemma 4.2 implies that in executions with
a finite number of writes, read always terminates once it gathers responses that follow the last
write from all correct registers. In particular, in an execution without any write invocations,
read terminates once all correct registers respond to its first round of invocations. However,
since a new read round is initiated whenever n − t responses for the previous round arrive, faulty
registers responding much faster than slow correct ones may cause the read emulation to invoke an
unbounded number of rounds of operations on the fast base registers before all the correct registers
respond to the first round of invocations.

Nevertheless, we informally observe that in a synchronous execution without a concurrent
write, read always takes a single round. In order to formally make such a claim, one needs
to consider an eventually synchronous (or timed-asynchronous) model [DLS88, CF99]. In such
models, there is an expected response time ∆, such that in periods when the system is synchronous
(stable), responses from correct registers always arrive within ∆ time. In order to exploit eventual
synchrony, the reader should wait for responses in each round at least ∆ time before moving to the
next round, even after n − t responses are gathered. That is, the pseudo-code in Figure 4 should
be changed as follows: before line 5, a timer should be set to expire ∆ time later, and the waiting
condition in line 7 should be changed as follows:

7: until |{i : ¬enabled[i] ∧ ¬pending[i]}| ≥ n− t ∧ timer expired;

In synchronous (stable) executions, responses from correct registers always arrive by this time-
out, and read thus invokes a single round of operations on base registers whenever there is no
overlapping write. Moreover, in synchronous executions with overlapping writes, once all the
lower level write operations invoked by these writes on correct registers are complete, it takes
at most one round for all the pending lower level read operations to return, and then one more
round of read operations for read to complete. Examining the number of rounds invoked in
synchronous executions is significant, since synchronous executions are common in practice, and
therefore achieving good performance in such executions is important.

At the same time, it is important to note that eventual synchrony is not a condition for liveness:
even in asynchronous executions, the algorithm satisfies FW-termination, as proven above.

5 t-Tolerant Wait-free Safe Register Emulation

We now proceed to construct a t-tolerant SWMR wait-free safe register out of n ≥ 3t + 1 wait-free
regular base registers. Note that the register constructed in this section only provides safe semantics,

14

and is not regular. In order to obtain a regular register, as required, e.g., for consensus algorithms,
standard constructions from the literature can be used (see e.g., [Lam86] and a survey in [HV02]).
The register emulation is presented in Section 5.1. Its correctness is proven in Section 5.2, and its
round complexity is discussed in Section 5.3.

5.1 Register Emulation

The t-tolerant wait-free safe register’s implementation uses the same base registers as the FW-
terminating register implementation (see Figure 2), except that it requires wait-free base registers
rather than FW-terminating ones. The write operation is emulated exactly the same way as that
of the FW-terminating register (see Figure 3). The read implementation is presented in Figure 5.

The partial function ReadW (ReadPW) maps every read timestamp-value pair to all the registers
from which this pair was read from the w (resp. pw) field in the current invocation of read.
prevReadW holds a copy of ReadW from the end of the previous read round (line 9). The macro
Responded returns the set of registers that responded to read requests thus far.

The algorithm first invokes a round of read operations on all base registers, and awaits n − t
responses (lines 4–6). It then invokes additional rounds of base register operations (lines 8–14),
until it finds a value that it can safely return, as will be explained shortly.

The set C holds candidate return values. After the first round, C consists of values c that were
read from base registers’ w fields such that at most 2t registers responded without c (line 7). Any
value that is not included in C is missing from 2t + 1 registers’ w fields, which means that it was
either not completely written before the read began (its write could have begun but could not
have completed), or was already over-written (the write phase of a subsequent write has begun).
In subsequent rounds, if for some candidate c ∈ C, there are 2t + 1 registers that responded but
never with c in their w field, then c is removed from C (line 14) for the same reason.

We now explain the termination condition of the while loop (line 8). First, if C = ∅, then it
must be the case that a write invocation overlaps the read, since there is no value that appears
in the w fields of more than t registers throughout the read, and every write always writes to
t + 1 correct registers. In this case, every return value is safe. The algorithm then breaks from the
loop and returns an arbitrary value, v0 (line 17).

If C is not empty, then the leading candidate to return is the one associated with the highest
timestamp, because if several values were completely written before read began, then the latest
one should be returned. This is captured by the predicate highCand(c).

Let c be a candidate for which highCand(c) is true. It is safe to return c if t + 1 registers have
responded either with c or with later values in their pw field. This is because at least one of these
registers must be correct. If that register responds with c, then c was indeed written, and is a
correct return value. Otherwise, the correct register returns a value, c′, which was written later
than c. Since highCand(c) is true, c′ is not in C, implying that its write did not complete before
the read. In other words, a write operation (of c′) is occurring concurrently with the read, in
which case a safe register is allowed to return any value. This condition is captured by the predicate
safe. Once there is a candidate c ∈ C such that highCand(c) ∧ safe(c), read breaks from the while
loop (line 8) and returns c.val (line 16).

Unlike the FW-terminating implementation, the number of read rounds invoked by the algo-
rithm is bounded, even in the presence of an unbounded number of concurrent writes. We now
explain how we limit the number of rounds executed by the algorithm. In order for a return value
to become safe, the algorithm needs to gather responses from the t+1 correct registers at which the

15

Local variables:
Boolean arrays enabled[n], pending[n], old[n], initially false for all 1 ≤ i ≤ n;
Arrays pw[n], w[n] with elements in TSV als;
ReadW, ReadPW, prevReadW, partial functions from TSvals to P({1 . . . n}), initially ∅;
C ⊆ TSV als, initially ∅ /* Candidate values to return */

Predicate and macro definitions:

Responded , {i : ∃〈w, i〉 ∈ ReadW}

highCand(〈ts, v〉) , 〈ts, v〉 ∈ C ∧ (ts = max{ts′ : 〈ts′, v′〉 ∈ C})

safe(c) , |ReadW(c) ∪ ReadPW(c)∪
⋃

c′.ts>c.ts(ReadW(c′) ∪ ReadPW(c′))| ≥ t + 1

read():
1: for 1 ≤ i ≤ n, if(pending[i]) then old[i]← true;
2: ReadPW,ReadW← ∅;
/* Round 1 */

3: for 1 ≤ i ≤ n, enabled[i]← true;
4: repeat
5: check;
6: until |{i : ¬enabled[i] ∧ ¬pending[i]}| ≥ n− t;
7: C ← {w[i] : |Responded \ ReadW(w[i])| < 2t + 1};
/* Rounds 2 . . . */

8: while (C 6= ∅ ∧ (¬∃c ∈ C : highCand(c) ∧ safe(c))) do
9: prevReadW← ReadW;
10: for 1 ≤ i ≤ n, enabled[i]← true;
11: repeat
12: check;
13: until |{i : ¬enabled[i] ∧ ¬pending[i]}| ≥ n− t ∧

∀c ∈ C : (safe(c) ∨ |Responded \ prevReadW(c)| ≥ n− t);
14: C ← {c ∈ C : |Responded \ ReadW(c)| < 2t + 1};
15: if (C 6= ∅) then
16: return c.val : highCand(c) ∧ safe(c);
17: return v0;

check:

for 1 ≤ i ≤ n
if (enabled[i] ∧ ¬pending[i]) then

〈enabled[i], pending[i]〉 ← 〈false,true〉;
invoke 〈pw[i], w[i]〉 ← read(xi);

if (xi responded) then
if (¬old[i]) then

ReadPW(pw[i])← ReadPW(pw[i]) ∪ {i};
ReadW(w[i])← ReadW(w[i]) ∪ {i};

pending[i]← false;
old[i]← false;

Figure 5: t-tolerant wait-free safe register read emulation.

16

value was written. Although these registers eventually respond to every read round, their responses
may be arbitrarily slow. As explained in Section 4.3 above, if exactly n − t responses are awaited
in each round, then in asynchronous executions, the faulty registers may respond much faster than
t slow correct ones, causing the algorithm to initiate an unbounded number of rounds before the
required t + 1 correct ones respond. The key to limiting the number of rounds the algorithm takes
is therefore waiting for more than n− t responses. Of course, this must be done with care, because
up to t faulty registers may never respond.

In addition to waiting for n − t responses, the repeat loop in lines 11–13 continues to await
responses until for every candidate c in C, either c becomes safe or there are n− t responses from
registers that did not return c in previous rounds. This does not violate progress, because if c
was read from a correct register in previous rounds, it will eventually become safe, and otherwise,
there are n− t correct registers that did not respond with c in previous rounds. (This is formally
proven in Lemma 5.2 below). This mechanism ensures that while there are candidates that are not
safe, every read round gathers responses from at least one additional register, and thus, after at
most t + 1 rounds, responses from all the registers are gathered, and every candidate value either
becomes safe or is removed from C (see Lemma 5.3).

5.2 Correctness

We begin by proving safety.

Lemma 5.1 (Safety). The register whose write emulation appears in Figure 3 and whose read

emulation appears in Figure 5 is safe.

Proof. We prove that all the traces of the algorithm are safe. Let r be a read invocation. If some
write operation overlaps r, then r is allowed to return any value, and the lemma vacuously holds.
We therefore assume that no write overlaps r. Let 〈ts, v〉 be the value-timestamp pair written
in the latest write invocation that returns before r is invoked, or 〈ts0, v0〉 if no write completes
before r. We need to show that r does not return a value other than v.

If ts = ts0, then 〈ts0, v0〉 appears in both the w and pw fields of all correct registers throughout
the duration of r. Otherwise, by the write implementation, 〈ts, v〉 is both pre-written and written
to at least n − t base registers before write returns. Therefore, both of the following conditions
hold throughout the duration of r: (1) there are at least t + 1 correct registers that have 〈ts, v〉
in their w and pw fields; and (2) there are at most 2t base registers (t of which were not updated
by the last preceding write and the remaining t of which are Byzantine) that can respond without
〈ts, v〉. By the read code, responses from at least n − t registers are awaited in lines 6 and 13.
Therefore, by (1), 〈ts, v〉 is included in C in line 7. Moreover, by (2), 〈ts, v〉 is never excluded from
C in line 14. Hence, C 6= ∅ from the first time line 7 is executed onward, and the algorithm does
not return in line 17. Finally, observe that no 〈ts′, v′〉 6= 〈ts, v〉 can be highCand and safe, because
no correct register returns a value with ts′ > ts or ts′ = ts ∧ v′ 6= v. Hence, no value other than v
is returned in line 16.

We now turn to discuss liveness. We first show that every read round eventually terminates.
That is, the algorithm is never stuck forever in a repeat-until loop (lines 4–6 and lines 11–13).

Lemma 5.2 (Non-Blocking). The read emulation never remains indefinitely in the repeat-until
loops in lines 4–6 and 11–13.

17

Proof. First note that in each round, at least n− t responses are awaited (lines 6 and 13). This is
always eventually satisfied, since there are at least n− t wait-free correct base registers. Therefore,
the algorithm eventually exits from the loop in lines 4–6. We next show that the extra waiting
condition in line 13 does not violate liveness.

Consider an iteration of the while loop (lines 8–14), and the execution of the repeat-until loop
in lines 11–13 during that iteration. Since the while loop is still being executed, C 6= ∅. Consider a
candidate c ∈ C. Since c is a candidate, prevReadW(c) 6= ∅ after line 9. There are two cases for c:

1. At least one register in prevReadW(c) is correct. In this case, the pre-write phase of write(c)
must have completed on at least t + 1 correct registers before the current round is initiated
(because c has been read from the w field of a correct register in round 1 before line 7 is
executed). Each correct register eventually responds in the current round with either c or a
higher timestamped value, and safe(c) eventually holds.

2. All the registers in prevReadW(c) are faulty. In this case, there are at least n − t correct
registers that did not previously respond with c. Since these registers eventually respond, and
since none of them is included in prevReadW(c) during the loop in lines 11–13, eventually,
|Responded \ prevReadW(c)| ≥ n− t becomes true.

Line 13 waits for one of the above to hold, and therefore eventually terminates.

To see why read invokes at most t + 1 rounds, observe that once every candidate in C is safe,
the termination condition of the loop in line 8 is satisfied. If C is empty, we are done. Otherwise,
consider c ∈ C. Lines 11–13 are executed until either c becomes safe or there are n − t responses
from registers that did not previously respond with c. Thus, if c does not become safe in line 13,
then either ReadW(c) grows, or c is removed from C in line 14, because n − t ≥ 2t + 1 registers
respond without c. After j read rounds, for every c ∈ C that is not safe at the end of line 14,
ReadW(c) has grown j times, and therefore includes at least j elements. Once ReadW(c) includes
t + 1 elements, c is safe. We conclude that the algorithm is wait-free:

Lemma 5.3 (Wait Freedom). The safe register emulation satisfies wait freedom.

Proof. Every write operation invoked by a correct process returns, as argued in Lemma 4.2.
Consider a read operation r. By Lemma 5.2, r exits from every repeat-until loop. Moreover, as
argued above, at most t+1 rounds of read operations are invoked before the termination condition
of the loop in line 8 is satisfied, at which point read completes.

We have proven the following:

Theorem 5.4 (t-Tolerant Wait-Free Register Emulation). The algorithm consisting of the
write emulation in Figure 3 and the read emulation in Figure 5 implements a t-tolerant wait-
free SWMR safe register from n > 3t wait-free SWMR regular registers, up to t of which can be
NR-arbitrary faulty.

5.3 Round Complexity

The algorithm’s early-stopping property is more subtle, and is proven in the following lemma.

18

Lemma 5.5 (Early-Stopping). In every execution in which at most f registers exhibit Byzantine
behavior, (i.e., return incorrect values), the read emulation invokes at most min(t+1, f +2) rounds
of read operations on base registers.

Proof. We will show that if read initiates a jth read round, then j ≤ t + 1 and also j ≤ f + 2.
For j > 1, consider the initiation of the jth read round, occurring in lines 11–13 (during the

(j − 1)th iteration in the loop of lines 8–14). Since the loop is executed, C 6= ∅. Let c be the
highest timestamped candidate in C, i.e., highCand(c) holds. Then c is not safe at the beginning
of this iteration (otherwise, the termination condition in line 8 holds). Since c was not removed
from C in line 14 during previous iterations, it was returned in every round before j, and each time
by a new register (i.e., |ReadW(c)| has increased j − 1 times). Since c is not safe, we know that
|ReadW(c)| < t + 1, and therefore j − 1 < t + 1, that is j ≤ t + 1.

If c was never returned by a correct register, then ReadW(c) includes at most f elements, and
j ≤ f +1. Otherwise, let k < j be the first round during which c is read from the w field of a correct
register. Then c was sent by at least k− 1 Byzantine faulty registers before round k. Consider the
set S of registers that respond to rounds k + 1 . . . j − 1. In round k + 1, at least 2t + 1 registers
that did not previously respond with c are read (and are therefore included in S). Moreover, since
ReadW(c) continues to increase in each round, S includes at least 2t + j− k− 1 registers excluding
the k−1 Byzantine registers that sent c before round k. Since k−1 Byzantine faulty registers send
c before round k, at most f − k + 1 members of S are Byzantine faulty, and S includes at least
2t + j − k − 1− (f − k + 1) = 2t + j − f − 2 correct registers.

Finally, since the pre-write phase of write(c) is complete before round k + 1 is initiated, at
most t correct registers respond to rounds k + 1 . . . j − 1 with values older than c in their pw
field. Therefore, if S would include 2t + 1 correct registers, then at least t + 1 of them would have
either c or a higher value in their pw field, and c would be safe. But c is not safe. We get that
2t + j − f − 2 ≤ 2t, that is, j ≤ f + 2.

The algorithm’s round complexity is optimal for optimal-resilience algorithms in which read
operations do not modify the base objects. For such algorithms, min(t + 1, f + 2) rounds is a tight
lower bound on the number of rounds for read, by the lemma above and Corollary 7.7 below. Note
also that only Byzantine failures cause read to take more rounds; benign (i.e., crash) failures do
not slow the algorithm down. Our next lemma shows that the algorithm takes the optimal number
of rounds for any resilience threshold, matching the lower bound of Theorem 7.6.

Lemma 5.6 (Optimality For Arbitrary Resilience). Let n = 3t + k, k > 0. The read

emulation invokes at most bt/kc+ 1 rounds of read operations on base registers.

Proof. First, consider the case that k ≥ t + 1, i.e., n ≥ 4t + 1. Since at least 3t + 1 registers are
read in the first round, every read value either appears in at least t + 1 responses, in which case
it is safe, or is missing from at least 2t + 1 responses, in which case it is not in C. Therefore, the
algorithm never enters the while loop of lines 8–14, and only one read round is invoked.

Next, assume that k < t + 1. If the while loop in lines 8–14 is entered, then there is at least
one candidate c ∈ C that is not safe. Since c is a candidate, it is missing from at most 2t of the
responses gathered in earlier rounds. Since at least n − t = 2t + k responses are awaited in each
round, c appears in at least k responses of previous rounds. Therefore, if c does not become safe
in this iteration of the loop, at line 14, at least k responses are awaited from objects that did not
previously respond in any read round. Therefore, if a (j +1)th read round is invoked, then at least

19

2t + jk objects have responded in previous rounds. Since once 3t + 1 objects respond every read
value is either safe or removed from C, we get that 2t + jk < 3t + 1, i.e., j < (t + 1)/k. Since j, t,
and k are integers, j < (t + 1)/k ≤ bt/kc+ (k − 1)/k + 1/k. Hence, j < bt/kc+ 1 as needed.

Our next lemma shows that in invocations of read that do not overlap any write invocation,
read invokes at most f +1 rounds. This is also a tight lower bound, by Theorem 7.8. In particular,
in the common case that none of the base registers returns faulty values and no overlapping write

occurs, read invokes a single round of read operations.

Lemma 5.7 (Early-Stopping Without Concurrent Writes). In every execution in which f
registers exhibit Byzantine behavior and no write operations overlap the read, the read emulation
invokes at most f + 1 rounds of read operations on base registers.

Proof. Since no write overlaps the read, at least t + 1 correct registers return the latest written
value in the every read round, and this value is safe throughout the execution of the loop in lines
8–14. Whenever an iteration of the loop begins, this value is not the highest timestamped candidate
(otherwise the loop’s termination condition is satisfied), i.e., there is higher timestamped candidate
c′, which was never written. For c′ to remain a candidate after read round k, it has to be read in
every round 1 . . . k. Since c′ was never written, at most f faulty registers return c′, and hence after
f + 1 read rounds c′ is removed from C.

Finally, we observe that in synchronous executions, read always terminates in two rounds. In
order to take advantage of the system synchrony, the reader’s wait statements should be augmented
with timeouts as explained in Section 4.3.

6 Wait-free Consensus with FW-Terminating Registers and Ω

In this section, we show that FW-terminating registers can be used, along with a leader oracle, Ω,
to solve consensus in shared memory. In a consensus problem, each process has an input and may
decide on an output, so that the following conditions are satisfied: (1) wait freedom: each correct
process decides; (2) agreement: every two correct processes that decide decide on the same value;
and (3) validity: every decision is the input of some process. A shared memory consensus object
has a single invocation, decide(v), which takes the invoking process’ input value as a parameter and
returns the decision value. We assume that each process invokes decide at most once.

We present a shared memory consensus algorithm based on those of [LH94, GL03], and prove
that it works correctly with FW-terminating regular registers. Since the algorithm closely resembles
ones in the literature, the contribution of this section is in observing that it works correctly with
FW-terminating registers.

The algorithm is presented in Figure 6. It solves consensus among m processes P1, . . . , Pm using
m FW-terminating SWMR regular registers x1, . . . , xm, where xi is writable by Pi and readable by
all processes. It employs a distributed leader oracle L, which is a failure detector of class Ω [CHT96],
the weakest for consensus [LH94, DFG02, CHT96]. Each process Pi accesses L via its local module
Li, whose output at any given time is the index of the process that is currently considered to be
trusted by Pi. A failure detector of class Ω guarantees that there is a time after which a single
correct process is permanently trusted by all correct processes.

The algorithm is leader-based. A process ` that trusts itself (i.e., believes itself to be the
leader), decides upon a value and writes it in xl with the tag c (line 14), whereas other processes

20

Types: X = N× V als× {⊥, pc, c}, with selectors bal, val, stat;

Shared FW-terminating regular registers xi ∈ X, 1 ≤ i ≤ m, initially 〈0,⊥,⊥〉;
Each xi is writable by Pi and readable by all processes.

Algorithm for process i:

Local variables: val ∈ V als, bal ∈ N, ` ∈ N, ai ∈ X for 1 ≤ i ≤ m;

decidei(inp):
1: bal← i;
2: val← inp;
3: while (true) do
4: `← Li;
5: if (` = i) then; /* Leader case */
6: write(xi, 〈bal,⊥,⊥〉);
7: aj ← read(xj), for each j, 1 ≤ j ≤ m;
8: if (max{aj .bal : 1 ≤ j ≤ m} ≤ bal) then
9: if (∃j : aj .val 6= ⊥) then
10: val← ak.val: 1 ≤ k ≤ m ∧ ak.bal = max{aj .bal : 1 ≤ j ≤ m ∧ aj .val 6= ⊥};
11: write(xi, 〈bal, val, pc〉);
12: aj ← read(xj), for each j, 1 ≤ j ≤ m;
13: if (max{aj .bal : 1 ≤ j ≤ m} ≤ bal) then
14: write(xi, 〈bal, val, c〉);
15: return val;
16: bal← bal + m;
17: else /* Non-leader case */
18: a` ← read(x`);
19: if (a`.stat = c) then
20: return a`.val;

Figure 6: Wait-free consensus with FW-terminating registers and a leader oracle.

continuously read x` until they find a decision value there (lines 18–20). Before P` decides, it
proposes a decision value (line 11), by writing it in xi with the tag pc. Each proposed value is
associated with a unique ballot bal. We say that a process ` proposes (resp. decides) value v at
ballot b if ` completes line 11 (resp. 14) with val = v and bal = b. To propose a value, P` chooses
the value previously proposed with the highest ballot number, or its own initial value if there is
none (lines 7–10). The leader then reads the other processes’ registers in order to check whether
a concurrent leader has written a higher value. Recall that Ω only eventually guarantees that the
leader is unique; initially, multiple concurrent leaders may exist. The leader’s proposal succeeds if
no higher ballot is read (lines 12–13).

The key to guaranteeing wait freedom despite the use of FW-terminating registers is the fact
that once a unique leader ` emerges (as guaranteed by Ω), P` is the only process that invokes

21

write on any register. Moreover, the ballot numbers stop increasing, and therefore P` invokes a
finite number of writes. Therefore, by FW-termination, all the read operations terminate. We now
formally prove that the algorithm satisfies wait freedom.

Lemma 6.1 (Wait Freedom). In any fair execution, all non-faulty processes eventually decide.

Proof. Let α be a fair execution of the algorithm. Since L ∈ Ω, each correct process i permanently
trusts the same correct process ` after some finite prefix α1 of α. We first show that P` decides
in α. Assume by contradiction that this never happens. By the code, after α1, each process i 6= `
writes xi at most twice (in lines 11 and 14), and then proceeds to read x` (line 18) in a loop
without invoking any other shared memory operations. Therefore, by FW-termination, process `
eventually completes all the read operations it invokes on all registers. As long as P` does not
decide, it repeatedly executes lines 6–16. Since bal` is increased every time P` executes line 16, and
no other processes j increases balj after α1, bal` eventually becomes the highest ballot ever written.
Once this happens, the if statements in lines 8 and 13 are evaluated to true, and process ` writes a
decision value (with stat = c) and returns. A contradiction. We conclude that there exists a prefix
α2 of α after which P` no longer participates in consensus.

Next, we show that all correct processes decide in α. Assume the contrary. Let α3 = max(α1, α2).
Consider a process i 6= ` which is still undecided after α3. Since after α3, Pi never trusts itself as a
leader, Pi is either blocked in one of the read operations in lines 7, 12 or 18, or loops in lines 18–19.
Since after α1 all processes j 6= ` write their registers at most twice, by FW-termination, after α3,
Pi can only be blocked in a read operation from x`. However, P` never writes x` after α3. Thus, by
FW-termination, there exists a prefix α4 ≥ α3 of α after which Pi is looping in lines 18–19 without
being blocked in the read in line 18. Since after α4, P` has already completed write(x`, 〈∗, ∗, c〉)`,
by regularity, the next invocation of read(x`) by Pi will respond with a` such that a`.stat = c.
Hence, Pi decides. A contradiction.

We next prove the algorithm’s safety properties, namely agreement and validity.

Lemma 6.2 (Agreement). All decision values are identical.

Proof. Let b1 be the lowest ballot at which some process decides, and assume that process i decides
v1 in this ballot. Suppose that a process k proposes a value v2 at a ballot b2 ≥ b1. We show that
v2 = v1, which implies agreement, since a value v2 decided in a ballot b2 is first proposed in that
same ballot. The proof is by induction on ballot numbers b ≥ b1. The base case b = b1 is trivially
true, since ballot numbers are unique.

Inductive step: Suppose that the result holds for all b, b1 ≤ b < b2, and consider a process k
proposing v2 in ballot b2. Since Pi decides v1 at b1, it must have proposed v1 at b1. Moreover, since
Pi decided in line 14, the condition in line 13 evaluated to true, which means that for all register
values aj that Pi read in line 12, aj .bal ≤ b1.

Before proposing any value at ballot b2, process k must perform write(xk, 〈b2,⊥,⊥〉)k in line
6. This write must return after the read(xk) by i in line 12 has been invoked, because otherwise,
by regularity of xk and because ballots are monotonically increasing at each process, read(xk) by i
must respond with 〈b′,⊥,⊥〉 such that b′ ≥ b2 > b1 contradicting the fact that aj .bal ≤ b1 in line
13. Thus, the read R = read(xi) by k in line 7 is invoked after write(xi, 〈b1, v1, pc〉)i is complete.
Since i returns after deciding, it does not overwrite xi after ballot b1. Hence, by regularity of xi, R
returns 〈b1, v1, ∗〉.

22

Consequently, when k completes line 7, ai = 〈b1, v1, ∗〉 and therefore, both of the following hold:
(1) the test in line 9 is true; and (2) the value v′ chosen in line 10 was written with a ballot b′ ≥ b1.
Furthermore, since the condition in line 8 is true, b′ ≤ b2. By line 6, ak.val = ⊥. Thus, we get
that v′ must have been written at ballot b′, such that b1 ≤ b′ < b2. Finally, since for any value
v 6= ⊥ such that for some j, xj .val = v, v must have been either proposed or decided by j, and
because the value decided at any ballot must be equal to the value proposed at this ballot, v ′ must
have been proposed with ballot b′, b1 ≤ b′ < b2. By the induction hypothesis, v′ = v1. Therefore,
k proposes v1 at b2.

Lemma 6.3 (Validity). Every decision value is the initial value of some process.

Proof. Immediately follows from the fact that every proposed value is either the proposer’s initial
value or a previously proposed value.

We have proven the following:

Theorem 6.4 (Wait-free Consensus with FW-Terminating Registers). The pseudo-code
in Figure 6 solves m-process wait-free consensus using m SWMR FW-terminating regular registers
in an asynchronous shared memory system augmented with a failure detector of class Ω.

Given a system with 3t + 1 disks, t of which can be arbitrarily corrupted or non-responsive, we
use the construction in Section 4 in order to emulate m t-tolerant FW-terminating registers from
n = 3t + 1 base registers, each stored on a different disk, and use them to solve t-tolerant wait-free
consensus, as illustrated in Figure 7. Thus, we have the following corollary:

Corollary 6.5 (Byzantine Disk Paxos). There is a solution for t-tolerant wait-free consensus
using 3t + 1 disks, t of which can be arbitrarily corrupted or non-responsive, and a failure detector
of class Ω.

7 Lower Bounds on Register Emulations

We now prove lower bounds on memory emulations of reliable objects from ones that can suffer
NR-Arbitrary faults. Obviously, at least 3t + 1 base objects are required in order to emulate a
reliable one in this model (see [MAD02]). Our lower bounds focus on emulations that use less
than 4t + 1 base objects, since using 4t + 1 base objects, one can emulate both read and write

operations in a single round of base object invocations. In Section 7.1 we prove a lower bound
of two rounds for write emulations, and in Section 7.2 we prove lower bounds on the number of
rounds for read emulations in which the read emulation does not write to the base objects.

To strengthen our lower bounds, we prove them for emulations of the weakest meaningful register
type: a SWSR safe register [Lam86] with a binary value domain. Without loss of generality, we
assume that the emulated register’s initial value is 0. We allow for atomic base objects of any type.
We prove the lower bounds for emulations of FW-terminating registers. We note that our lower
bounds apply to obstruction free registers as well, but since obstruction freedom is not the focus of
our paper, we do not make formal claims regarding obstruction free emulations.

Since we are not seeking space lower bounds, we can assume a model in which all base objects
have the same types and initial states. A concurrent system consisting of base objects O1, . . . On of
different types T1, . . . , Tn can be emulated in this model by replacing each base object Oi with a tuple

23

�� �� ��

�� �� ��

������ ��

���� �� ��

�� �� �� ��

���	
 ���	
 ���	

������������������

�� ���������������������������

Figure 7: Byzantine Disk Paxos example: First, four disks of which one can be corrupt are used to
emulate three 1-tolerant SWMR FW-terminating registers. The emulated registers are then used
to solve 1-tolerant wait-free consensus among three processes.

O′
i of type T1×· · ·×Tn, and initializing all base registers to the same initial value s0 = 〈s1

0, . . . , s
n
0 〉

where si
0 is the initial state of Oi. We thus henceforth assume that all base objects are initialized

to the same (arbitrary-type) value, s0.

7.1 Lower Bound on write Emulations

The following simple lemma shows that any algorithm implementing an FW-terminating SWSR safe
register has executions where the write implementation invokes at least one complete invocation
request on some base object.

Lemma 7.1 (One Write Round). Consider a concurrent system C implementing a t-tolerant
FW-terminating SWSR safe register out of n > 0 base objects. Consider a fair execution α where
a correct writer invokes write(1) and no other operations are invoked. Then α consists of at least
one complete invocation request to some correct base object.

Proof. By FW-termination and fairness, write(1) must terminate and return ack at some point
τ in α. Assume by contradiction that α does not include any complete invocation request to a
correct base object. Since the writer returns in α without seeing any responses from correct base
objects, all invocation requests that were issued to the correct base objects (if any) were invoked
in separate threads of control, which did not return. We construct an execution α′, which starts

24

with all the activity of α except that no invocation request events to correct objects occur in α′

until point τ (that is, in α′ the threads that handle correct object invocations in α are slowed down
so that all the invocation requests issued to the correct objects are postponed). We then extend
α′ with a complete read invocation. Note that by FW-termination read must complete, because
the reader is correct and no write is in progress. We construct α′ so that any faulty object that
received an invocation request by write(1), does not change its state, and responds to the read

the same as in an execution in which no write never occurs. Since α′ is indistinguishable to the
reader from an execution where no write operations were ever invoked, the read response must
be 0. However, since write(1) completes before read is invoked, safety requires read to return
1. A contradiction.

We now prove our main lower bound on write emulations:

S3

S2

S4

XS1

WRITE(1)

t0

(a) Execution α1.

WRITE(1)

XS3

S2

S4

S1

X
READ

s0

s0

 return 0

(b) Execution α2.

S3

XS2

S4

S1

WRITE(1)

t0

READ

s0

s0

(c) Execution α3.

Figure 8: Illustrating the lower bound on write emulations.

Theorem 7.2 (Write Lower Bound). Let C be a concurrent system implementing a t-tolerant
FW-terminating SWSR binary safe register out of 0 < n ≤ 4t base objects. Then, for every
0 ≤ f ≤ t, there exists an execution of C in which f base objects are faulty, and which includes a
complete invocation of write(1) and no other invocations, such that during write(1) at least two
invocation requests are completed on some correct base object.

Proof. We partition the n base objects into four pairwise disjoint sets, S1, S2, S3, and S4, such
that |Si| ≤ t, for each i ≥ 1. Assume by contradiction that in all executions consisting of a
complete write(1) invocation and no other invocations, less than two invocations complete on
each base object. By Lemma 7.1, some correct base objects are written by write(1). Without
loss of generality, assume that the first base objects to which write(1) writes are those in S4 (if
it writes to fewer objects, then it writes to a subset of S4). Let α1 be an execution of C with a
single write(1) invocation and no read invocations, in which all base objects in S1 are crashed.
By FW-termination, write(1) completes by some point t0 in α1 (see Figure 8(a)).

Next, we construct an execution α2 where all the objects in S3 are initially crashed. Execution
α2 begins with a write(1) invocation, the invocations it issues to objects in S4, and their responses
as they occur in α1. No invocations on other objects occur. This is a valid execution of C since
it represents the situation in which the writer fails after receiving responses from some objects in

25

the set S4. Moreover, since write does not invoke more than one operation on any correct base
object, the objects in S4 are exactly in the same states as after the complete write in α1.

We then extend α2 with a read invocation and assume that the reader is correct. All the objects
in S1 and S2 are in state s0 when accessed by the read. The objects in S3 are crashed, and hence
do not respond. Since the reader runs by itself, by FW-termination, read completes in α2. Since
the reader sees at most t objects (those in S4) in states different from s0, α2 is indistinguishable
to the reader from an execution in which write(1) is never invoked and all objects in states other
than s0 are faulty. Therefore, read returns 0 in α2, as illustrated in Figure 8(b).

We next construct an execution α3 in which all the objects in S2 are Byzantine faulty and
the remaining objects are correct. Execution α3 starts with all the activity of α1 except that the
invocation requests targeted to the objects in S1 do not occur in α3 until t0 (i.e., in α3, the threads
that handle invocations on objects in S1 are slowed down so that all the invocation requests issued
in α1 are postponed). Since until t0, α3 is indistinguishable to the writer from α1, write(1) also
terminates in α3 after completing at most one invocation request at each base object.

We then extend α3 with the segment of α2 that starts with the read invocation request and
ends with its corresponding response. Note that α3 is a valid execution of C because (i) the objects
in S2 are Byzantine faulty, and are therefore allowed to respond as if their state is s0 even after
write(1) terminates; (ii) no invocations by the writer occur at objects in S1 in α3, and therefore
these objects’ states are s0 when read occurs; (iii) the responses of objects in S3 are delayed until
after the read returns; and (iv) the objects in S4 are in the same states as in α2. This scenario
is depicted in Figure 8(c). By construction, α3 is indistinguishable to the reader from α2, and
therefore, the read must return 0 in α3. But since in α3, the read follows write(1) and does not
overlap any write, by safety, read must return 1. A contradiction.

7.2 Lower Bound on read Emulations

In this section we show a lower bound on a number of rounds of base object invocations required to
emulate read operations of a binary t-tolerant FW-terminating SWSR safe register. We consider
a system with n = 3t + k base objects, t of which can fail. The special case where k = 1 represents
an optimal resilience algorithm.

Since our complexity metric is the number of rounds, we can assume that operations are invoked
in rounds, and each round attempts to invoke operations on all base objects; if on some base object
there is a pending invocation, then the new invocation awaits the completion of the pending one.

Our lower bound results only apply to algorithms in which the reader does not modify the base
objects’ states. The significance of this assumption is that the reader cannot communicate to the
writer that a read is in progress, and hence write must behave the same way regardless of whether
or not there is a read in progress. We conjecture that even if readers can modify the base objects,
it still holds that either the read or the write emulation must take min(t + 1, f + 2) rounds. We
discuss this conjecture at the end of this section. We note that in all register emulations suggested
thus far in this model, (e.g., [MR98, Baz00, JCT98, GWGR04]), readers do not modify the base
objects, and therefore the lower bound is of interest regardless of whether our conjecture holds.

Since there is a single process modifying the base objects, we can assume, without loss of
generality, that the base objects are read/write registers. Moreover, as we are not seeking a space
lower bound, we can assume a full information model in which the writer attempts to write the same
value to all base objects in each round. This does not limit the generality, since if the writer intends

26

to write values v1, . . . , vk to objects o1, . . . , ok, resp., it can simply write the tuple 〈v1, . . . , vk〉 to
all base objects, and the reader can ignore the irrelevant elements of each tuple.

We further assume, without loss of generality, that write does not return before 2t + k base
objects respond to its last round of write invocations. Note that waiting for 2t + k responses does
not violate liveness since at least 2t + k correct base objects are guaranteed to respond. This
assumption implies that when write(1) completes, there exist t + k correct base objects whose
states are equal to the last value written by write. We denote this state by s1. As before, we
denote the base objects’ initial state as s0.

We begin by proving the following simple lemma:

Lemma 7.3. For any 0 ≤ f ≤ t, there is a finite execution that includes a single complete write

operation, in which f objects fail, and at the end of which the states of t correct base objects are
s0.

Proof. Consider an execution σ in which t (faulty) objects, o1, . . . , ot crash at the beginning of the
execution, and write(1) is invoked. By FW-termination, write must return without hearing from
o1, . . . , ot. Let τ be the point in σ at which write returns. We construct an execution σ ′ that until
point τ looks to the writer exactly like σ, but in which o1, . . . , ot are correct, and the requests sent
to these objects are delayed until after τ . The remaining n − t objects (f of which are faulty) all
abide by the protocol, and respond exactly as they do in σ. Since until τ , σ′ is indistinguishable to
the writer from σ, write returns at τ , before the delayed requests reach o1, . . . , ot. Hence, when
write returns, t correct objects’ states are still s0.

We now prove lower bounds on the number of rounds in read emulations. Our lower bounds
will be derived from the following key lemma, which inductively constructs executions in which
the read emulation is forced to invoke more and more read rounds. The executions constructed
in the lemma below are illustrated in Figure 9 for the special case that k = 1; the responses to
write invocations are omitted, whereas for read invocations, only responses are shown. Incomplete
invocations of any kind are not shown.

Lemma 7.4 (Read Lower Bound). Assume that k ≤ t. For 1 ≤ i ≤ t/k, there exist three
finite executions αi, βi, and γi, in each of which a read emulation has issued i + 1 rounds of read
invocations, such that:

1. In αi write(1) completes before read is invoked; objects o1, . . . , ot+k are correct and their
state is s1 from a time before the beginning of the read onward; objects ot+k+1, . . . , o2t+k are
correct and their state is s0 throughout αi; and the remaining t objects are faulty.

2. In βi no write ever occurs; objects o1, . . . , oik are faulty; and objects ot+k+1, . . . , on, are cor-
rect and their state is s0 throughout βi. All the invocations directed to objects oik+1, . . . , ot+k

are delayed, i.e., are not invoked in βi. For these objects, we do not specify whether they are
faulty or not since they do not participate in the execution yet. Note that at least k of them
must be correct, but we do not specify which ones.

3. In γ1, all objects are correct. For i > 1, objects o1, . . . , o(i−1)k are faulty in γi and the
remaining objects are correct.

27

4. The responses that the reader receives in all three executions in rounds 1, . . . , i are as follows:
In response to every round j read, 1 ≤ j ≤ i, objects ot+k+1, . . . , on return s0 in round j,
objects o1, . . . , ojk return s1 in round j, and each object o` for (j + 1)k ≤ ` ≤ ik returns s1,
but this response only arrives in round `. No other objects respond.

5. The last events of each of these executions are round i+1 read invocations on all base registers
that responded to all the previously issued read invocations.

��������

	�

���
����	�

����

����
�����	�

�

����
��������

	�

���

���
���

����
�

	�

	�

���
�

����
�

	�

	�

����

�����
�

1−iα

(a) Execution αi.

��

����

��

��	
����������

��

��

��������

��	
���

��

��

������

��	
���

��

��

����

1−iβ

(b) Execution βi.

��������

	�
��	�

����

�

����
�

	�

���������������������

��
���

����
�

	�

	�

��
���

����
�

	�

	�

� 	�

1−iβ

(c) Execution γi.

Figure 9: Illustrating the lower bound on read emulations for the special case that k = 1.

Proof. Base case

A read emulation begins by invoking read operations on all base objects, and waiting for responses.
This is the first round. We construct three different executions that are indistinguishable to the

28

reader after receiving 2t + k responses in the first round.

1. In execution α1, a write(1) operation completes before read is invoked. Therefore, read

must return 1. When read is invoked, at least t+k correct objects’ states are s1. Without loss
of generality, these are objects o1, . . . , ot+k. Moreover, t correct objects are in state s0 (this
is possible by Lemma 7.3). Without loss of generality, these are objects ot+k+1, . . . , o2t+k. In
response to the first read round, k correct objects, o1, . . . , ok, return s1 (if k = 1 then only
o1 returns s1), t correct objects, ot+k+1, . . . , o2t+k return s0, and t objects o2t+k+1, . . . , on are
faulty and also return s0. The remaining objects do not respond.

2. In execution β1, no write ever occurs. Therefore, read must return 0 (the register’s initial
value), and all the correct objects are in state s0. In this execution, objects o1, . . . , ok are
faulty and return s1 in the first read round. 2t objects, ot+k+1, . . . , on, are correct and return
s0. The read invocations on the remaining objects do not take place.

3. In execution γ1, a write(1) operation occurs concurrently with the read. In this execution,
all objects are correct. The first read request reaches objects ot+k+1, . . . , on before write is
invoked, and they therefore respond with s0. The first read request sent to objects o1, . . . , ok

is delayed while the write is executing. By FW-termination, the write eventually completes
and changes the states of objects o1, . . . , ok to s1. The read invocations on objects o1, . . . , ok

then take place, and they respond with s1.

In all three executions, the reader receives the same responses from base objects. In α1, it is
not allowed to return 0. In β1, it is not allowed to return 1. In γ1, it is not allowed to wait for
more round 1 responses, because it already heard from 2t + k correct objects, and the remaining t
may be faulty, and since the write completes, and no new writes are invoked, FW-termination
mandates that read complete as well. Therefore, a second round of base object invocations is
initiated at the end of each of the three executions.

Inductive step

Assume that 1 < i ≤ t/k. We use our inductive hypothesis for αi−1 and βi−1, and show how to
construct αi, βi, and γi from αi−1 and βi−1. Note that (i + 1)k ≤ t + k (since i ≤ t/k), and thus,
there are at least 2k objects have not yet responded to any of the read rounds in αi−1 and βi−1:
O(i−1)k+1, . . . , O(i+1)k+1. We construct the three executions by having k additional objects respond
to all the read rounds, as follows:

1. Execution αi extends αi−1 by having the correct objects o(i−1)k+1, . . . , oik respond to all the
read rounds with their state s1; and having all the objects that have responded in previous
rounds respond the same way in round i.

2. Execution βi extends βi−1 by having the objects o(i−1)k+1, . . . , oik become faulty and respond
to all the read rounds with s1; and having all the objects that have responded in previous
rounds respond the same way in round i.

3. Execution γi extends βi−1 as follows: first, all the objects that have responded in previous
rounds respond the same way in round i. Meanwhile, the invocations to all remaining objects
continue to be delayed. A write(1) operation is then invoked and, by FW-termination,

29

completes and changes the states of objects o(i−1)k+1, . . . , oik to s1. Subsequently, the reader’s
delayed threads are resumed, and read invocations take place at objects o(i−1)k+1, . . . , oik.
These objects are all correct in γi, and they respond to all read rounds with s1.

Again, we have a situation in which in all three executions, the reader receives exactly the
same responses. That is, these executions are indistinguishable to the reader. In execution αi, the
reader is not allowed to return 0. In execution βi, it is not allowed to return 1. In execution γi, it
hears from 2t + k correct objects in all the rounds, and is therefore not allowed to wait for more
responses in any round, because the remaining objects may be faulty. By FW-termination, read

must complete. Thus, round i + 1 must be initiated. We add the initiation of round i + 1 at the
end of αi, βi, and γi, and the lemma follows.

From Lemma 7.4, we derive the following theorems:

Theorem 7.5 (Read Lower Bound). For every algorithm A emulating a t-tolerant SWSR safe
register in a system with n = 3t + k base objects, t of which can suffer NR-Arbitrary failures, and
in which the reader does not modify the base objects’ states, there is an execution of A in which the
read emulation invokes bt/kc+ 1 rounds of base object operations.

Proof. For k > t the theorem trivially holds, because obviously at least one round is required in
order to read a value from the register. When k ≤ t, by Lemma 7.4, there exists an execution,
αbt/kc, in which bt/kc+ 1 rounds are invoked.

Next, we observe that in execution γi, (i − 1)k objects are faulty. Therefore, Lemma 7.4 also
implies the following lower bound for adaptive (early-stopping) algorithms:

Theorem 7.6 (Early-Stopping Read Lower Bound). Consider an algorithm A emulating
a t-tolerant SWSR safe register in a system with n = 3t + k base objects, t of which can suffer
NR-Arbitrary failures, and in which the reader does not modify the base objects’ states. For every
1 ≤ i ≤ bt/kc, there is an execution of A in which (i − 1)k objects fail and the read emulation
invokes i + 1 rounds of base object operations.

For the special optimal resilience case, (i.e., k = 1), we get a lower bound of f + 2 rounds in
executions with f < t failures by substituting f for i − 1 in Theorem 7.6; the t + 1 lower bound
follows from Theorem 7.5. We get the following corollary:

Corollary 7.7. Consider an algorithm A emulating a t-tolerant SWSR safe register in a system
with n = 3t + 1 base objects, t of which can suffer NR-Arbitrary failures, and in which the reader
does not modify the base objects’ states. For every 0 ≤ f ≤ t, there is an execution of A in which
f objects fail and the read emulation invokes min(t + 1, f + 2) rounds of base object operations.

Finally, observe that in execution βi, ik objects are faulty and no read operation overlaps any
write operation. We thus get the following lower bound for reads that do not overlap any write:

Theorem 7.8 (Read Lower Bound without Concurrent Writes). Consider an algorithm A
emulating a SWSR safe register in a system with n = 3t + k base objects, t of which can suffer
NR-Arbitrary failures, and in which the reader does not modify the base objects’ states. For every
1 ≤ i ≤ bt/kc, there is an execution of A in which ik objects fail and a read emulation that does
not overlap any write invokes i + 1 rounds of base object operations.

30

When k = 1, this yields a lower bound of f +1 rounds on read emulations that do not overlap
any write. The t-tolerant wait-free algorithm presented in Section 5 shows that all the bounds
proven in this section are tight.

7.2.1 Allowing Readers to Modify Objects

The lower bounds above assume that the reader does not modify the base objects. We now revisit
this assumption. Consider an algorithm in which the reader modifies the base objects and the writer
reads information from them. How can such an algorithm be more efficient than an algorithm in
which the reader is not allowed to modify the base objects? Conceivably, the reader may be able
to signal to the writer that a read is in progress, and the writer could conceivably use this signal in
order to refrain from writing to base objects while the reader is reading them. Observe that indeed,
our lower bound proof makes use of the fact that write can occur concurrently with the read.

Whether expediting the read emulation by allowing readers to write and writers to read is
possible or not remains an open problem. However, we believe that in order to allow some form
of meaningful communication from the reader to the writer, one would need the abstraction of
a SWSR safe register, where the read emulation is the writer and the write emulation is the
reader. Intuitively, a safe register is needed in order for the reader to be able to signal to the writer
that read is in progress, and for the writer to be able to distinguish the case that the reader never
signaled that read is in progress from the case that the reader did signal so before the write began.
We conjecture that no form of communication weaker than a safe register can help reduce the cost
of a read emulation. Therefore, we believe that a safe register in one direction must be emulated
at the “full cost” before a safe register in the other direction can be emulated faster. We therefore
conjecture that if it is possible to expedite the read in this manner, then the write emulation
needs to invoke at least bt/kc+ 1 rounds of read operations on base objects:

Conjecture 7.1. For every algorithm A emulating a t-tolerant SWSR safe register in a system
with n = 3t+ k base objects, t of which can suffer NR-Arbitrary failures, there is an execution of A
in which either the read emulation or the write emulation invokes bt/kc+ 1 operation rounds.

8 Conclusions

We have studied asynchronous implementations of wait-free shared memory objects from base
objects that can suffer NR-Arbitrary faults, focusing on the number of rounds of base object
invocations as our primary complexity metric. This failure model and performance metric are
important in capturing much recent work on scalable widely-distributed systems that are based
on either lightweight replicated servers (e.g., Fleet [MR00] and Agile Store [LAV03]) or on the
emerging technology of Storage Area Networks (e.g., PASIS [GWGR04]).

We have addressed a previously open question – whether it possible to construct t-tolerant
wait-free shared registers in this model using as little 3t + 1 base objects, t of which can fail.
We have shown that such constructions are indeed possible, but also inherently more costly than
constructions that use 4t + 1 or more fault-prone base registers: First, when n ≤ 4t, emulating
write operations requires two rounds of base object write invocations. Second, we have shown a
lower bound of min(t+1, f +2) rounds for emulating read operations in executions with f failures
in systems where the reader does not modify the base objects. Since in all known constructions for
the NR-Arbitrary fault model readers do not modify the base objects, the lower bound has broad

31

applicability. Whether this lower bound still holds when readers are allowed to modify the base
objects remains an open problem. However, we have conjectured that even if readers can modify the
base objects, it still holds that either the read or the write emulation must take min(t+1, f +2)
rounds.

We have presented, for the first time, an optimal resilience t-tolerant wait-free construction (i.e.,
using 3t + 1 base objects, t of which can fail) of a safe register. Our safe register construction is
early-stopping, and its round complexity is optimal, as we prove in the Section 7. Based on known
reductions from safe registers to regular ones, our construction yields a Byzantine version of the
Disk Paxos consensus algorithm, which employs as little as 3t+1 disks, t of which can be arbitrarily
corrupted or non-responsive, and a leader oracle.

Nevertheless, emulating a regular register from safe ones incurs additional rounds of operation
invocations. Moreover, our safe register construction is quite elaborate, as are known efficient
reductions from safe registers to regular ones. Therefore, from a practical perspective, it is desirable
to derive simpler solutions, directly constructing regular registers.

We have addressed this challenge by defining a weaker termination condition called FW-
termination, which allows read operations not to terminate if infinitely many writes are invoked.
We have presented a simple and elegant construction of an t-tolerant FW-terminating regular reg-
ister, which we have shown, suffices for solving consensus with a leader oracle. Note that by design,
the number of rounds executed by the read emulation of the t-tolerant FW-terminating register
can be unbounded. Nevertheless, in synchronous executions, which are most common in practice,
the read operations of the t-tolerant FW-terminating register always terminate in two rounds.
Our t-tolerant FW-terminating construction is therefore quite practical – it is simple, direct, and
likely to perform well in a real system.

Acknowledgments

We are thankful to Partha Dutta, Rachid Guerraoui, Maurice Herlihy, Petr Kouznetsov, Victor
Luchangco, Nancy Lynch, Mark Moir, and Nir Shavit for many interesting discussions and insightful
comments.

References

[ABO03] H. Attiya and A. Bar-Or. Sharing memory with semi-byzantine clients and faulty
storage servers. In SRDS, 2003.

[AGM+95] Y. Afek, D.S. Greenberg, M. Merritt, , and G. Taubenfeld. Computing with faulty
shared objects. Journal of the ACM, 42(6):1231–1274, November 1995.

[AMT93] Y. Afek, M. Merritt, and G. Taubenfeld. Benign failures models for shared memory. In
Proceedings of the 7th International Workshop on Distributed Algorithms, pages 69–83.
Springer Verlag, September 1993. In: LNCS 725.

[Baz00] R. Bazzi. Synchronous byzantine quorum systems. Distributed Computing, 13(1):45–52,
2000.

[BDFG03] R. Boichat, P. Dutta, S. Frolund, and R. Guerraoui. Deconstructing paxos. Distributed
computing column of the ACM SIGACT News, 34(1):47–67, 2003.

32

[BT85] G. Bracha and S. Toueg. Asynchronous consensus and broadcast protocols. Journal of
the ACM, 32(4):824–840, October 1985.

[CF99] F. Cristian and C. Fetzer. The timed asynchronous distributed system model. IEEE
Transactions on Parallel and Distributed Systems, pages 642–657, June 1999.

[CHT96] T. D. Chandra, V. Hadzilacos, and S. Toueg. The weakest failure detector for solving
consensus. Journal of the ACM, 43(4):685–722, 1996.

[CM02] G. Chockler and D. Malkhi. Active disk paxos with infinitely many processes. In
Proceedings of the 21st ACM Symposium on Principles of Distributed Computing
(PODC’02), 2002.

[CMR01] G. Chockler, D. Malkhi, and M. K. Reiter. Backoff protocols for distributed mutual
exclusion and ordering. In Proceedings of the 21st International Conference on Dis-
tributed Computing Systems, pages 11–20, 2001.

[DFG02] C. Delporte, H. Fauconnier, and R. Guerraoui. Failure detection lower bounds on regis-
ters and consensus. In Proceedings of the 16th International Symposium on Distributed
Computing (DISC), October 2002.

[DLS88] C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in the presence of partial syn-
chrony. Journal of the ACM, 35(2):288–323, April 1988.

[GGJR00] Juan A. Garay, Rosario Gennaro, Charanjit Jutla, and Tal Rabin. Secure distributed
storage and retrieval. Theoretical Computer Science, 243(1–2):363–389, 2000.

[GL03] E. Gafni and L. Lamport. Disk paxos. Distributed Computing, 16(1):1–20, 2003.

[GWGR04] G. Goodson, J. Wylie, G.Ganger, and M. Reiter. Efficient byzantine-tolerant erasure-
coded storage. In Proceedings of the International Conference on Dependable Systems
and Networks (DSN-2004), June 2004.

[HLM03] M. Herlihy, V. Luchangco, and M. Moir. Obstruction-free synchronization: Double-
ended queues as an example. In Proceedings of the 23rd International Conference on
Distributed Computing Systems (ICDCS), page 522. IEEE Computer Society, 2003.

[HV02] Sibsankar Haldar and Paul Vitanyi. Bounded concurrent timestamp systems using
vector clocks. J. ACM, 49(1):101–126, 2002.

[JCT98] P. Jayanti, T. Chandra, , and S. Toueg. Fault-tolerant wait-free shared objects. Journal
of the ACM, 45(3):451–500, 1998.

[Lam86] L. Lamport. On interprocess communication – part ii: Algorithms. Distributed Com-
puting, 1(2):86–101, 1986.

[Lam98] L. Lamport. The part-time parliament. ACM Transactions on Computer Systems,
16(2):133–169, 1998.

[LAV03] S. Lakshmanan, M. Ahamad, and H. Venkateswaran. Responsive security for stored
data. In Proceedings of the International Conference on Distributed Computing Systems
(ICDCS), 2003.

33

[LH94] W. K. Lo and V. Hadzilacos. Using failure detectors to solve consensus in asyn-
chronous shared-memory systems. In Proceedings of the 8th International Workshop
on Distributed Algorithms (WDAG), pages 280–295. Springer-Verlag, 1994. In: LNCS
857.

[LQLZ04] S. Lin, M. Chen Q. Lian, and Z. Zhang. A practical distributed mutual exclusion
protocol in dynamic peer-to-peer systems. In 3rd International Workshop on Peer-to-
Peer Systems (IPTPS’04), 2004.

[LT89] N. A. Lynch and M.R. Tuttle. An introduction to Input/Output Automata. CWI
Quarterly, 2(3):219–246, 1989.

[MAD02] J-P. Martin, L. Alvisi, and M. Dahlin. Minimal byzantine storage. In Proceedings of
the 16th International Symposium on Distributed Computing (DISC), October 2002.

[MR98] D. Malkhi and M. Reiter. Byzantine quorum systems. Distributed Computing,
11(4):203–213, 1998.

[MR00] D. Malkhi and M. Reiter. An architecture for survivable coordination in large dis-
tributed systems. IEEE Transactions on Knowledge and Data Engineering, 12(2):187–
202, 2000.

[RL04] R. Rodrigues and B. Liskov. Rosebud: A Scalable Byzantine-Fault-Tolerant Stor-
age Architecture. Technical Report MIT-LCS-TR-932, MIT Laboratory for Computer
Science, 2004.

[ZSvR02] L. Zhou, F. B. Schneider, and R. van Renesse. Coca: A secure distributed on-line
certification authority. ACM Transactions on Computer Systems, 20(4):329–368, 2002.

34

	Introduction
	The System Model
	Registers

	Exemplifying the Results
	Previous Solutions and Remaining Challenges
	Intuitive Description of Our Algorithms

	t-Tolerant FW-Terminating Regular Register Emulation
	Register Emulation
	Correctness
	Efficiency

	t-Tolerant Wait-free Safe Register Emulation
	Register Emulation
	Correctness
	Round Complexity

	Wait-free Consensus with FW-Terminating Registers and
	Lower Bounds on Register Emulations
	Lower Bound on write Emulations
	Lower Bound on read Emulations
	Allowing Readers to Modify Objects

	Conclusions

