
Information Processing Letters 71 (1999) 155–158

A simple bivalency proof that
t-resilient consensus requirest + 1 rounds✩

Marcos Kawazoe Aguilera1, Sam Toueg∗
Department of Computer Science, Upson Hall, Cornell University, Ithaca, NY 14853-7501, USA

Received 28 August 1998; received in revised form 1 April 1999
Communicated by F.B. Schneider

Abstract

We use a straightforward bivalency argument borrowed from Fischer et al. (1985) to show that in a synchronous system with
up tot crash failures solving consensus requires at leastt+1 rounds. The proof is simpler and more intuitive than the traditional
one: It uses an easy forward induction rather than a more complex backward induction which needs the induction hypothesis
several times. 1999 Elsevier Science B.V. All rights reserved.

Keywords:Distributed computing; Fault tolerance; Consensus; Lower bound; Synchronous system; Bivalency

1. Background

A fundamental result of distributed computing is
that solving consensus in a synchronous system with
up tot process crashes requires at leastt+1 rounds [8,
7,4]. The traditional proof of this result proceeds by
a rather complex backward induction that uses the
induction hypothesis several times [9]. In this note, we
provide a much simpler and intuitive proof: it uses an
easy forward induction and it is based on a standard
bivalency argument. Proofs similar to ours have been
independently found by Moses and Rajsbaum [10],
and by Bar-Joseph and Ben-Or [1] (see Section 3 for
details on related work).

In the following, we consider systems where proces-
ses proceed in synchronized rounds: in each round,

✩ Research partially supported by the NSF grant CCR-9711403
and by an Olin Fellowship.
∗ Corresponding author. Email: sam@cs.cornell.edu.
1 Email: aguilera@cs.cornell.edu.

every process sends messages to other processes, re-
ceives all the messages sent to it in that round, and
changes state accordingly. When a process crashes in
a round, it sends a subset of the messages that it in-
tends to send in that round, and does not execute any
subsequent rounds. Acorrectprocess is one that never
crashes.

In the consensus problem, every process starts with
some initial value and must make an irrevocable
decisionon a value such that:

Agreement. No two correct processes decide differ-
ently.

Validity. If some correct process decidesv, thenv is
the initial value of some process.

Termination. Every correct process must eventually
decide some value.

0020-0190/99/$ – see front matter 1999 Elsevier Science B.V. All rights reserved.
PII: S0020-0190(99)00100-3



156 M.K. Aguilera, S. Toueg / Information Processing Letters 71 (1999) 155–158

2. The proof

We now show that any consensus algorithm that tol-
eratest crashes requirest + 1 rounds. Roughly speak-
ing, the proof proceeds by contradiction as follows.
Suppose there is a consensus algorithmA that toler-
ates up tot crashes and always terminates int rounds.
We first show that in any run ofA, the configuration
at the beginning of roundt must be univalent. We then
obtain a contradiction by constructing a run ofA that
is bivalent at the beginning of roundt . This run is ob-
tained by starting from a bivalent initial configuration
and extending it one round at a time, while maintain-
ing bivalency. Each one-round extension may require
the killing of a process.

Theorem 1. Consider a synchronous round-based sys-
temS with n processes and at mostt crash failures
such that at most one process crashes in each round.
If n > t + 1 then there is no algorithm that solves con-
sensus int rounds inS.

The proof is by contradiction. Suppose there is an
algorithmA that solves consensus int rounds inS.
Without loss of generality, we can assume thatA

is loquacious, i.e., at every round, each process is
supposed to send a message to every process.

We consider the configuration of the systemS at the
end of each round (this is also the configuration of the
system just before the start of the next round). Such a
configuration is just the state of each process (which
also indicates the current round number and whether
it has crashed in a previous round). Informally, a
configurationC is 0-valent[1-valent] if starting from
C the only possible decision value of correct processes
is 0 [1];C is univalentit is either 0-valent or 1-valent;
C is bivalentif it is not univalent.

In the following, ak-round partial run rk denotes
an execution of algorithmA up to the end of round
k. Consider the configurationCk at the end of round
k of partial run rk . We say thatrk is 0-valent, 1-
valent, univalent, or bivalent if Ck is 0-valent, 1-
valent, univalent, or bivalent, respectively.

We proceed by proving three lemmata. The third
one contradicts the first and thus completes the proof
of the theorem.

Lemma 2. Any (t − 1)-round partial run rt−1 is
univalent.

Proof. The proof is by contradiction. Suppose there is
a bivalent(t − 1)-round partial runrt−1. Let r0 be the
t-round run obtained by extendingrt−1 by one round
such that no process crashes in roundt . Without loss
of generality assume that all correct processes decide
0 in r0. Since partial runrt−1 is bivalent, there is at
least onet-round runr1 that extendsrt−1 such that all
correct processes decide 1. Note that in roundt of r1:
(a) exactly one processp must crash (recall that in

each run at most one process crashes per round),
and

(b) p must fail to send a message to at least one
correct process, sayc.

Construct runr0,1 which is identical tor1, except
thatp sends its message toc. Let c′ be a process that
does not crash inr0,1 and is different fromc. Such a
process must exist sincen > t + 1 implies that there
are at least two correct processes in the system. Note
that:
(a) c cannot distinguish betweenr0,1 andr0;
(b) c′ cannot distinguish betweenr0,1 andr1.
By (a), c decides 0 inr0,1, while by (b)c′ decides 1
in r0,1—a violation of the agreement property of
consensus. 2
Lemma 3. There is a bivalent initial configuration.

Proof. (Same as in Fischer et al. [6].) Suppose,
for contradiction, that every initial configuration is
univalent. Consider the initial configurationsC0 and
C1 such that all processes have initial value 0 and 1,
respectively. By the validity property of consensus,C0

is 0-valent andC1 is 1-valent. Clearly, there are two
initial configurations that differ by the initial value of
only one processp, such that one is 0-valent and the
other is 1-valent. We can easily reach a contradiction
by crashingp at the beginning of round 1 (before it
sends any messages to any process).2
Lemma 4. There is a bivalent(t − 1)-round partial
run rt−1.

Proof. We show by induction onk that for eachk,
06 k 6 t−1, there is a bivalentk-round partial runrk .



M.K. Aguilera, S. Toueg / Information Processing Letters 71 (1999) 155–158 157

Basis: By Lemma 3, there is some bivalent initial
configurationC0. For k = 0, let r0 be the 0-round
partial run that ends inC0.

Induction step: Suppose 06 k < t − 1. Let rk be a
bivalentk-round partial run. We now show thatrk can
be extended by one round into a bivalent(k+1)-round
partial runrk+1. Assume, for contradiction, that every
one-round extension ofrk is univalent.

Let r∗k+1 be the partial run obtained by extending
rk by one round such that no new crashes occur.
Partial runr∗k+1 is univalent. Without loss of generality
assume it is 1-valent. Sincerk is bivalent, and every
one-round extension ofrk is univalent, there is at least
one one-round extensionr0

k+1 of rk that is 0-valent.
Note thatr∗k+1 andr0

k+1 must differ in roundk + 1
(and only in that round). Since roundk + 1 of r∗k+1
is failure-free, there must be exactly one processp

that crashes in roundk + 1 of r0
k+1 (recall that in each

run, at most one process crashes per round). Sincep

crashes in roundk + 1 of r0
k+1 it may fail to send

a message to some processes, say toq1, q2, . . . , qm,
where 06m6 n. 2

Starting fromr0
k+1, we now define(k + 1)-round

partial runsr1
k+1, . . . , r

m
k+1 as follows. For everyj, 16

j 6m, rjk+1 is identical torj−1
k+1 except thatp sends a

message toqj before it crashes in roundk + 1. Note

that for everyj, 06 j 6 m, rjk+1 is univalent. There
are two possible cases:
(1) For all j , 06 j 6 m, rjk+1 is 0-valent. Sormk+1

and r∗k+1 are 0-valent and 1-valent, respectively.
The only difference betweenrmk+1 andr∗k+1 is that
p crashes at the end of roundk + 1 in rmk+1,
while p is correct up to and including roundk+ 1
in r∗k+1. Consider the following runr extending
r∗k+1. Processp crashes at the beginning of round
k+2 (before it sends any messages in that round),
and there are no more crashes. Sincer∗k+1 is 1-
valent, all correct processes decide 1 in runr. For
every process exceptp, run r is indistinguishable
from the runr ′ that extendsrmk+1 such that no
process crashes after roundk + 1. But all correct
processes decide 0 inr ′ (becausermk+1 is 0-
valent)—a contradiction.

2 It is possible that in roundk + 1 of r0
k+1 processp sends a

message toeveryprocess, and then crashes at the end of this round.
In this case,m= 0.

(2) There is aj , 16 j 6m, such thatrj−1
k+1 is 0-valent

while rjk+1 is 1-valent. Extend partial runsrj−1
k+1

andrjk+1 into runsr andr ′, respectively, by crash-
ing processqj at the beginning of roundk + 2
(before it sends any message in that round),3 and
continuing with no additional crashes. Note that
(a) no process exceptqj can distinguish between
r andr ′, and (b) all correct processes must decide
0 in r and 1 inr ′—a contradiction. 2

3. Related work

The(t + 1)-rounds lower bound for consensus was
first proved for synchronous systems with Byzantine
process failures [5]. This lower bound was extended
first to systems with Byzantine failures and message
authentication [2,3], and then to systems with crash
failures [8,7]. A refinement of the(t+1)-rounds lower
bound was later obtained by determining the number
of rounds necessary to reach (simultaneous) consen-
sus, given the pattern in which crashes occur [4]. The
lower-bound proof in [5] is for Byzantine failures, and
it is not clear that it can be extended to more benign
models of failures. On the other hand, the lower-bound
proofs in [2,3,8,7] are based on a relatively complex
backward induction, and they do not use bivalency ar-
guments.

Moses and Rajsbaum [10], and Bar-Joseph and
Ben-Or [1] have independently found a(t +1)-rounds
lower-bound proof that is similar to ours. In [10],
Moses and Rajsbaum introduce the notion oflayer-
ing, and use it to provide a unified analysis of consen-
sus that can be applied to several models of distributed
computation, including asynchronous shared memory
with crash failures, asynchronous and synchronous
message passing with crash failures, and synchronous
message passing with mobile failures.4 A layering
is defined as a functionS that maps a state to a set
of (not necessarily immediate) successor states; intu-
itively, it allows one to focus on “interesting states”
within “interesting runs”. Using layering, Moses and

3 If qj already crashed before roundk + 2, we don’t crash it in
roundk+ 2.

4 In this latter model, in each round one process may fail to send
some of its messages. The failing process can change from round to
round, and hence the term “mobile”.



158 M.K. Aguilera, S. Toueg / Information Processing Letters 71 (1999) 155–158

Rajsbaum [10] prove some general results on consen-
sus. In particular, a lemma shows that given a bivalent
statex, if S(x) satisfies a certain condition thenx has
a successor state that is also bivalent. For the round-
based synchronous model, Moses and Rajsbaum [10]
define a specific layeringS, 5 and use this lemma to
obtain a run with a bivalent state at the end oft − 1
rounds. To complete the(t + 1)-rounds lower-bound
proof, [10] shows that after reaching a bivalent state,
two extra rounds are necessary for the decision.

In [1],Moses and Rajsbaum,Bar-Joseph and Ben-Or
show tight upper and lower bounds of2(t/

√
n logn)

on the expected number of rounds needed for random-
ized consensus in synchronous systems with crash fail-
ures, and with a full-information and adaptive adver-
sary. While [1] does not explicitly show the(t + 1)-
round lower-bound result, it contains the essence of
the bivalency-based proof of our paper.

The bivalency argument was first introduced by
Fischer, Lynch and Paterson [6] in the context of
asynchronoussystems (to prove that consensus cannot
be solved in the presence of crashes). To the best of our
knowledge, the first paper to use a bivalency argument
in the context of synchronoussystems was [11].
Specifically, bivalency is used in [11] to show a
general result on theimpossibilityof consensus that
can be applied to synchronous systems where one
process can fail per round, but there is no bound on
the number of rounds with failures (e.g., a system with
recurrent mobile failures).

Acknowledgements

We thank Bernadette Charron-Bost for her com-
ments on an earlier draft, and the anonymous referees
for useful suggestions.

5 Roughly speaking, ifx is the state at the beginning of a round,
thenS(x) is the set of states that can be reached by either a failure-
free round, or, if there were fewer thant failures so far, by a round in
which some process crashes and fails to send a message to a prefix
of the processes.

References

[1] Z. Bar-Joseph, M. Ben-Or, A tight lower bound for randomized
synchronous consensus, in: Proceedings of the Seventeenth
ACM Symposium on Principles of Distributed Computing,
1998, pp. 193–199.

[2] R.A. DeMillo, N.A. Lynch, M.J. Merritt, Cryptographic proto-
cols, in: Proceedings of the Fourteenth ACM Symposium on
Theory of Computing, May 1982, pp. 383–400.

[3] D. Dolev, H.R. Strong, Authenticated algorithms for Byzantine
Agreement, SIAM J. Comput. 12 (4) (1983) 656–666.

[4] C. Dwork, Y. Moses, Knowledge and common knowledge in
a Byzantine environment: Crash failures, Inform. and Comput.
88 (2) (1990) 156–186.

[5] M.J. Fischer, N.A. Lynch, A lower bound for the time to assure
interactive consistency, Inform. Process. Lett. 14 (1982) 183–
186.

[6] M.J. Fischer, N.A. Lynch, M.S. Paterson, Impossibility of
distributed consensus with one faulty process, J. ACM 32 (2)
(1985) 374–382.

[7] V. Hadzilacos, A lower bound for Byzantine agreement with
fail-stop processors, Technical Report 21-83, Department of
Computer Science, Harvard University, Cambridge, MA, July
1983.

[8] L. Lamport, M. Fischer, Byzantine Generals and Transaction
Commit protocols, Technical Report 62, Computer Science
Lab., SRI International, Menlo Park, CA, April 1982.

[9] N.A. Lynch, Distributed Algorithms, Morgan Kaufmann Pub-
lishers, San Mateo, CA, 1996.

[10] Y. Moses, S. Rajsbaum, The unified structure of consensus: a
layered analysis approach, in: Proceedings of the Seventeenth
ACM Symposium on Principles of Distributed Computing,
1998, pp. 123–132.

[11] N. Santoro, P. Widmayer, Time is not a healer, in: B. Monien,
R. Cori (Eds.), Proceedings of the 6th Annual Symposium
on Theoretical Aspects of Computer Science, Lecture Notes
in Computer Sci., Vol. 349, Springer, Berlin, February 1989,
pp. 304–313.


