
Paxos

One of the Top Twenty great escapes in the world :

Paxos can be found 14 km south of Corfu, 20 km to the east
is the mainland of Greece. Paxos covers an area of 19 km2

and is one of a cluster of picturesque small islands set in the
Ionian Sea.

2004 is a very special year for Paxos as it has been declared
the "Cultural Village of Europe".

Paxos tour map

2

• Motivation, context

• Paxos algorithm

• Dramatic reenactment ☺

• Paxos dissected

• Putting it into context

• Byzantine Paxos

Motivation: State machine replication

3

• Replicas act as a single server; accept & execute client requests
(a.k.a. active server replication)

⎯ Each replica is a deterministic state machine
⎯ Each request is executed at each replica
⎯ Fault-tolerance through replication

• Challenge is to ensure that each replica receives same input
sequence in the presence of faults

⎯ Replicas should agree on the order they accept client requests
⎯ Faults: crash/recover & byzantine failures,

message losses, asynchrony

Paxos algorithm

Slides courtesy of Gregory Chockler

Formal model

5

• Asynchronous message passing

• Crash failures

⎯ can tolerate crash/recovery

• Reliable links

⎯ can be modified to work with eventually reliable links

• Ω – Leader Oracle

⎯ outputs one trusted process

⎯ from some point, all correct processes trust the same correct process

⎯ the weakest failure detector for Consensus

Synod consensus algorithm

6

• Leader based

⎯ each process has an estimate of who is the current leader
⎯ processes decide on the value proposed by a leader

• A completely asynchronous algorithm

⎯ never violates safety
⎯ never blocks
⎯ termination is guaranteed once Ω stops making mistakes

Algorithm structure

7

• Two phases: prepare + accept [+ decide]

⎯ Leader contacts a majority in each phase

• Problem: there may be multiple concurrent leaders

• Solution: ballots distinguish among values proposed by
different leaders

⎯ unique, locally monotonically increasing

⎯ processes respond only to leader with highest ballot

Ballot numbers

8

• Pairs <num, process id>

• <b1, p1> > <b2, p2>, if

⎯ b1 > b2, or
⎯ b1=b2 and p1 > p2

• Leader p chooses a unique ballot locally

• Monotonically increasing ballot number

⎯ if latest known ballot is b, q
⎯ p chooses b+1, p

Two phases of Paxos

9

1. Prepare

⎯ leader chooses a new ballot number

⎯ leader learns outcome of all smaller ballots from majority

2. Accept

⎯ leader proposes a value with his ballot number

⎯ leader gets majority to accept his proposal

⎯ a value accepted by a majority can be decided

Prepare phase

10

Until decision is reached, try:

if leader (by Ω) then

BallotNum:=<BallotNum.num+1, my proc id>;

send (“prepare”, BallotNum) to all;

Upon receive (“prepare”, b) from i:

if b > BallotNum then

BallotNum := b;

send (“ack”, b, AcceptNum, AcceptVal) to i

else send (“abort”,b) to i

Accept phase

11

Upon receive (“ack”, BallotNum, b, val) or (“abort”,b) from > n/2 :

if (“abort”,b) is received then start over;

if all vals = ⊥ then myVal := initial value

else myVal := received val with highest b;

send (“accept”, BallotNum, myVal) to all;

Upon receive (“accept”, b, v) from i :

if b ≥ BallotNum then

BallotNum := b; AcceptNum := b; AcceptVal := v;

send (“accept”, b) to i;

else send (“reject”, b) to i;

Decide phase

12

Upon receive (“accept”,b) /(“reject”,b) from > n/2 :

if (“reject”,b) is received then start over;

send (“decide”, v) to all

Upon receive (“decide”, v) :

decide v

Correctness: Agreement

13

• Follows from the following Lemma 1:

If a leader sends (“decide”, v) after receiving (“accept”,b,v) from n-t
processes, then v’=v for every proposal (b’, v’) with b’>b.

• Proved by induction, starting from the smallest balloted proposal
accepted by a majority

⎯ Decided value v is sent by a leader after receiving (“accept”,b,v) from n-t
processes

⎯ Proposal for b’ is selected by a leader only after a majority voted

⎯ These two majorities have a member in common that will repeat v in b

⎯ Ballot b being most recent v will be proposed by leader at ballot b’

Correctness: Termination

14

• Once there is one correct leader :

⎯ It eventually chooses the highest rank
⎯ No other process becomes a leader with a higher rank
⎯ All correct processes “ack” its prepare message, “accept” its

propose message
⎯ The leader sends a “decide” message
⎯ All correct processes decide

Dramatic reenactment

Brought to you by MIT improv club

Rules of the MIT improv club

16

• 7 people

⎯ Everyone is his own messenger
⎯ Client requests are letters of alphabet

• Allowed mischiefs:

⎯ Lose / duplicate a message
⎯ Kill a member / resurrect a member in middle
⎯ Two simultaneous leaders

¾Kill the leader in middle, recover the leader later

Paxos dissected

Slides courtesy of Keith Marzullo

Paxos dissected

18

Follows the presentation in “Paxos made simple”

⎯ Give a constructive argument for the consensus protocol

There are three basic roles that take place in consensus

• Proposers that propose a value for consensus

• Acceptors that choose the consensus value

• Learners that learn the consensus value

A single process may take on multiple roles – we ignore this for now

Choosing a value (I)

19

• If there is only one acceptor, then choosing a value is easy:
proposers send a proposal to the acceptor, which chooses the first
proposal it receives

• This solution assumes that the acceptor doesn't fail

• Can instead have multiple acceptors: A value is chosen when a large
enough set of acceptors have accepted it

• If an acceptor can accept at most one value, then a "large enough
set" is a majority of acceptors

Choosing a value

20

5

5

5

5 is chosen

Choosing a value (II)

21

• In the absence of failures, we want a value to be chosen
even if only one value is proposed by a single proposer. So,
we have the requirement:

P1: An acceptor must accept the first proposal that it receives.

... however, simultaneous proposals may lead to no majority of
acceptors accepting the same value.

Choosing a value

22

5

7

-2

no value is chosen

Choosing a value (III)

23

... so, acceptors need to be able to accept more than one
proposal

Keep track of the different proposals that an acceptor may
accept by assigning a natural number to each proposal

⎯ A proposal thus consists of a proposal number and a value

⎯ Different proposals have different numbers

⎯ A value is chosen when a single proposal with that value has
been accepted by a majority of the acceptors

Choosing a value (IV)

24

• We need to guarantee that all chosen proposals have the
same value. It suffices to guarantee:

P2: If a proposal with value v is chosen, then every higher-
numbered proposal that is chosen has value v

which can be satisfied by:

P2a: If a proposal with value v is chosen, then every higher-
numbered proposal accepted by any acceptor has value v

Choosing a value

25

1: 5

2: 7?

1: 5

5 is chosen

Choosing a value (V)

26

• P1 is still needed to ensure that some proposal is accepted.

... asynchronism adds a difficulty: there can be an acceptor a
that never receives any proposals for a long time. Then, a
new proposer issues a higher-numbered proposal with a
different value. If a receives this proposal, then P2a would be
violated

• We solve this problem by strengthening P2a to:

P2b: If a proposal with value v is chosen, then every higher-
numbered proposal issued by any proposer has value v

Choosing a value

27

1: 5

2: 7

1: 5

2: 5

Choosing a value (VI)

28

We can satisfy P2b by maintaining the following invariant:

P2c: For any v and n, if a proposal with value v and number n is
issued, then there is a set S consisting of a majority of acceptors
such that either

⎯ no acceptor in S has accepted any proposal numbered less than n, or

⎯ v is the value of the highest-numbered proposal among all proposals
numbered less than n and accepted by the acceptors in S

Choosing a value

29

4: -1

5:2

no acceptor in S has
accepted any proposal
numbered less than n.

1: 5
2:7

Choosing a value

30

v is the value of the
highest-numbered proposal
among all proposals
numbered less than n and
accepted by the acceptors
in S.

4: -1

5: 2

3: 2
18:2

Choosing a value

31

2: 2

18:-1

4:-1

3: 2

v is the value of the
highest-numbered proposal
among all proposals
numbered less than n and
accepted by the acceptors
in S.

5:2
5: 2

Choosing a value (VII)

32

• To maintain P2c, a proposer that wishes to propose a
proposal numbered n must learn the highest-numbered
proposal with number less than n, if any, that has been or
will be accepted by each acceptor in some majority of
acceptors

• Avoid predicting the future by extracting a promise from a
majority of acceptors not to subsequently accept any
proposals numbered less than n

Choosing a value (VIII)

33

Here is the resulting algorithm for issuing a proposal:

1. A proposer chooses a new proposal number n and sends a
request to each member of some set of acceptors, asking it
to respond with:

a) A promise never again to accept a proposal numbered less
than n, and

b) The proposal with the highest number less than n that it has
accepted, if any

... call this a prepare request with number n.

Choosing a value (IX)

34

2. If the proposer receives the requested responses from a majority
of the acceptors, then it can issue a proposal with number n and
value v, where v is the value of the highest-numbered proposal
among the responses, or is any value selected by the proposer if
the responders reported no proposals

A proposer issues a proposal by sending, to some set of acceptors,
a request that the proposal be accepted. Call this an accept
request

Choosing a value (X)

35

What do acceptors do?

• An acceptor receives prepare and accept requests from proposers.
It can ignore these without affecting safety

⎯ It can always respond to a prepare request

⎯ It can respond to an accept request, accepting the proposal, iff it has
not promised not to, e.g.

P1a: An acceptor can accept a proposal numbered n iff it has not responded
to a prepare request having a number > n

... which implies P1

Choosing a value (XI)

36

A small optimization:

• If an acceptor receives a prepare request r numbered n having already
responded to a prepare request numbered greater than n, then the acceptor can
simply ignore r.

• It can also ignore prepare requests to which it has already responded.

... so, an acceptor only needs to remember the highest numbered proposal it has
accepted and the number of the highest-numbered prepare request to which it
has responded.

This information needs to be stored on stable storage to allow restarts.

Choosing a value: Summary

37

Phase 1:

a) A proposer selects a proposal number n and sends a prepare request
with number n to a majority of acceptors.

b) If the acceptor receives a prepare request with number n greater than
any that of any prepare request to which it has already responded, then
it responds to the request with a promise not to accept any more
proposals numbered less than n and with the highest-numbered
proposal (if any) that it has accepted.

Phase 2:

a) If the proposer receives a response to its prepare requests (numbered
n) from a majority of acceptors, then it sends an accept request to each
of those acceptors for a proposal numbered n with a value v, where v is
the value of the highest-numbered proposal among the responses, or is
any value if the responses report no proposals.

b) If an acceptor receives an accept request for a proposal numbered n, it
accepts the proposal unless it has already responded to a prepare
request having a number greater than n.

Learning a chosen value (I)

38

• A learner must find out that a proposal has been accepted by
a majority of acceptors.

⎯ Can have each acceptor send a message to each learner
whenever it accepts a proposal. When it receives the same
message from a majority of acceptors, then it knows that the
value in these messages was chosen.

⎯ Can have a distinguished learner (or set of such learners) that
take on this role, and can inform other learners when a value
has been chosen.

Learning a chosen value

39

⎯ Due to message loss, a learner may not know that a value has
been chosen.

10: 5

12: 6

12: 6

1

was 6
chosen?

propose something!

Optimization: Fast Paxos

40

• Allow process 1 (only!) to skip the Prepare phase

⎯ initiate BallotNum to <1,1>

⎯ propose its own initial value

• Terminates in 3 communication steps

⎯ Can be further optimized by processes broadcasting their accept
messages

⎯ Hence, achieve 2 communication steps complexity, which is
optimal

Putting it into context

Slides courtesy of Keith Marzullo

Implementing state machines (I)

42

• We implement a sequence of separate instances of
consensus, where the value chosen by the ith instance is the
ith command in the sequence.

• Each server assumes all three roles in each instance of the
algorithm.

• Assume that the set of servers is fixed.

Implementing State Machines (II)

43

• In normal operation, a single server is elected to be a leader, which
acts as the distinguished proposer in all instances of the consensus
algorithm.

⎯ Client send commands to the leader, which decides where in the
sequence each command should appear

⎯ If the leader, for example, decides that a client command is the kth

command, it tries to have the command chosen as the value in the kth

instance of consensus

Implementing State Machines (III)

44

Normal operation: a new leader λ is selected.

• Since λ is a learner in all instances of consensus, it should know
most of the commands that have already been chosen. For example,
it might know commands 1-10, 13, and 15.

⎯ It executes phase 1 of instances 11 and 14 and of all instances 16 and
larger.

⎯ This might leave, say, 14 and 16 constrained and 11, 12 and all
commands after 16 unconstrained

⎯ λ will execute phase 2 of 14 and 16, thereby choosing the commands
numbered 14 and 16

Implementing State Machines (IV)

45

⎯ λ can execute commands 1-10, but it can't execute 13-16
because 11 and 12 haven't yet been chosen.

⎯ λ can take the next two commands requested by clients to be
commands 11 and 12, but it could also immediately fill the gap
by proposing them to be null commands that have no effect on
the state machines. lt proposes these commands by running
phase 2 of consensus for instance numbers 11 and 12

⎯ Once consensus is obtained, λ can execute all commands
through 16.

⎯ λ is free to propose (via phase 2) commands for 17 and higher.
Gaps can occur (such as the missing 11 and 12) because of lost
messages and asynchronous communications and then having λ
fail.

Implementing State Machines (VI)

46

• How can we have λ execute phase 1 for an infinite instances of
consensus (command 16 and higher)?

⎯ Since all instances are with the same servers, it can send a message for
all instances of consensus larger than some sequence number, and an
acceptor can respond with a set of messages for which it has already
accepted a value

• The overhead of this approach, ignoring the transient overhead of
starting up a new leader, is just running phase 2 of the
asynchronous consensus, which is optimal in terms of delay.

Implementing State Machines (VII)

47

• Based on leader election, which in pathological situations
may result in no leader or multiple leaders.

⎯ If there are no leaders, then no new commands will be
proposed.

⎯ If there are multiple leaders, then they could propose values fo
the same instance of consensus, which may result in no value
being chosen.

... in both cases, safety is preserved.

Byzantine Paxos

Slides courtesy of Idith Keidar

Byzantine Paxos Setting

49

• Motivation: State machine replication

• Structured like Paxos:

⎯ Updates are sent to the current leader

⎯ Leader uses a consensus algorithm to have all replicas agree on the order
of updates

• Used to implement BFS – Byzantine Fault Tolerant NFS

⎯ Only 3% slower than un-replicated NFS

Overcoming byzantine failures with
3t+1 processes

50

• For crash failures –

⎯ We gather “votes” from a majority in every ballot.

⎯ Since every two majorities intersect, for every two ballots, at least one
process votes in both.

• But now, a faulty process can lie about what it did in the other
ballot.

⎯ We want a correct process in the intersection.

⎯ Since n-t ≥ 2t+1, two sets of size n-t intersect by at least one correct
process.

⎯ Gather n-t votes in a ballot, to ensure that for every two ballots, at least
one correct process votes in both.

Model

51

• Universe: n processes: {0,…n-1}.

• Up to t Byzantine failures, t < n/3.

⎯ Assume n = 3t+1

• Authentication

• Reliable links, no recovery (for now).

Safety problems: Leader can lie

52

• Leader can choose a value different than the highest
accepted by n-t processes

⎯ Solution: Should “prove” he’s not lying by sending the signed
“ack” (phase 1) messages to all processes

• If no previous ballot was accepted, leader can send
different new values to different processes

⎯ Solution: Before accepting a value proposed by the leader,
verify that the value was proposed to “enough” processes

⎯ Phase 1: Prepare

⎯ Phase 2: Accept – echo leader’s proposal

⎯ Phase 3: Decide – now only if n-t proposed

Safety problems: Others can lie

53

• Faulty users can send invalid values with higher AcceptNums
in “ack” messages.

⎯ Solution: Should “prove” value is valid by forwarding signed
“accept” messages.

⎯ Add new variable: Proof, initially empty set.

• Faulty users can send invalid “decide” messages.

⎯ Solution: Wait for n-t=2t+1 “decide” messages.

Liveness problems

54

• Faulty leader can deadlock algorithm.

⎯ Solution: Propose a new leader when the current does not
deliver.

⎯ Use rotating coordinator until one is correct.
Leader will be BallotNum mod n.

• Faulty processes may keep selecting new leaders all the
time (livelock).

⎯ Solution: Accept a new ballot only if t+1 processes propose a
new leader.

Byzantine Paxos Phase I: Prepare

55

Until decision is reached, try:

if leader then

BallotNum ← BallotNum +1

send (“prepare”, BallotNum) to all

Upon receive (“prepare”, b) from t+1 :

if (b < BallotNum) then return;

if (b > BallotNum) then

BallotNum ← b

send (“prepare”, BallotNum) to all

send (“ack”, b, AcceptNum, AcceptVal, Proof) to Leader

Byzantine Paxos Phase II: Accept

56

Upon receive (“ack”, BallotNum, b, val, proof) from n-t :

S = {received (signed) “ack” messages}

if (all vals that have valid proofs in S are ⊥) then myVal ← init value

else myVal ← val that has valid proof with highest b in S

send (“accept”, BallotNum, myVal, S) to all

Upon receive (“accept”, b, v, S) :

if (b ≤ BallotNum) then return;

if (v is not a valid choice given S) then return;

BallotNum ← b;

send (“accept”, BallotNum, v, S) to all

Byzantine Paxos Phase III: Decide

57

Upon receive (“accept”, b, v, S) from n-t

if (b < BallotNum) then return

AcceptNum ← b; AcceptVal ← v

Proof ← set of n-t signed “propose” messages

send (“decide”, b, v) to all

Upon receive (“decide”, b, v) from n-t

decide v

In Failure-Free Runs

58

decide

1

prepare ack accept

2

n

1

2

n

.

.

.

1 1

2

n

.

.

.

1

2

n
accept

1

2

n

.

.

.

.

.

.

.

.

.

All send
prepare All echo

accept

Saving Communication

59

• Prepare and its “ack” can be merged into one message
round.

• Proofs don’t have to be sent with messages: processes can
have the information to check the proofs locally because the
original messages are multicast.

Invariant

60

• If proposals (b,v) and (b, v’) are accepted by correct processes i and
j, (possibly i = j) then v’=v.

• Proof:

⎯ An accepted proposal is proposed by n-t processes.

⎯ Two sets of n-t = 2t+1 processes have at least one correct process in
common.

⎯ A correct process sends no more than one propose message with the
same b.

Lemma 1

61

• If a proposal (b,v) is accepted by t+1 correct processes, then
for every proposal (b’, v’) that is proposed by a correct
process with b’>b, v’=v.

• Follows from invariant…

⎯ Since two sets of t+1 correct processes have at least one correct
process in common.

Lemma 2

62

• If a proposal (b,v) is proposed by a correct process, then
there is a set S including at least t+1 correct processes such
that either

⎯ no correct p in S accepts a proposal ranked less than b; or
⎯ v is the value of the highest-ranked proposal among proposals

ranked less than b accepted by correct processes in S.

Liveness

63

• Is the current leader making progress?

⎯ If yes, some correct process decides. This process can periodically
forward the “proof” for its decision to others so they will decide too.

⎯ If not, all timeout on the leader and start a new ballot.

• Once there is a correct leader

⎯ The n-t correct processes will send all the needed messages

⎯ The t faulty processes will not be able to force a new ballot

Atomic Broadcast: Issues

64

• Leader can propose invalid client requests.

• Leader can refrain from proposing client requests.

• Leader can lie to client about response.

• Leader can refrain from sending client responses.

• Solution: clients cannot trust a single server.

Byzantine Message Flow

65

decide

S1

prepare ack accept

S2

Sn

.

.

.

S1

S2

Sn

S1 S1

S2

Sn

S1

S2

Sn
accept

S1

S2

Sn

.

.

.

.

.

.

.

.

.

.

.

.

S1

request

S2

Sn

.

.

.

C C
response

End of tour

66

