

- Only if: For all C' that can be used to solve P, C' \geq C
- ◊S= ◊W is sufficient for Consensus with n>2t
- Need to prove that for all D that can be used to implement Consensus, D ≥ ◊W with n>2t

Overview of the emulation

- 1. The exchange
- 2. The simulation
- 3. The tagging
- 4. The stabilization
- 5. The extraction

The Simulation Algorithm

For each I=I_j, 0≤j≤n do $Y_1 := \emptyset$; For each path g in DAG_p: $R_g := a \text{ run of A from I with the}$ sequence of failure detector events induced by g; $Y_1 := Y_1 \cup R_g$; Simulation output is a collection of trees Y_{1j}

(4) The Stabilization

- Eventually, the critical index at a given process does not change anymore: this is because the index can only decrease and cannot go lower than 1
- All DAGs converge to the same infinite DAG and the same critical index k is eventually computed at all processes

