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The Weakest Failure Detector 
for Consensus
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CHT Play
– A highly recommended informal and very 

accessible overview of the CHT proof
• Some of the following slides were provided 

by Rachid Guerraoui
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What we need to prove

• To prove that a failure detector class C is the 
weakest for a problem P, one needs to show 
that
– If: P can be solved with D∈C, and
– Only if: For all C’ that can be used to solve P, C’≥C

• ◊S= ◊W is sufficient for Consensus with n>2t
• Need to prove that for all D that can be used to 

implement Consensus, D ≥ ◊W with n>2t

The Outline

• Define a failure detector Ω (leader oracle):
– Output: process id
– Eventually all correct processes permanently output 

the same process id p ,and p is correct
• Lemma 1: For any failure environment: Ω ≥ ◊W

– Proof:?
• Lemma 2: For any failure environment:

If D solves Consensus, then D ≥ Ω
– Proof: ? ☺

A question: Is it possible that Ω > ◊W?
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The Outline

• Theorem: For any failure environment:
If D can be used to solve Consensus, 
then D ≥ ◊W 

Proof: 
• If D solves Consensus, then D ≥ Ω 

(Lemma 2). Ω ≥ ◊W (Lemma 1). 
Transitivity: If D solves Consensus, then  
D ≥ ◊W

D solves Consensus ⇒ D ≥ Ω 

• Let A be a consensus algorithm using D
• Construct an algorithm T that emulates Ω 

on top of D
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Overview of the emulation
1. The exchange

2. The simulation

3. The tagging

4. The stabilization

5. The extraction

(1) The Exchange 

• Every process periodically queries its 
failure detector module (D) and sends all 
outputs it has seen to all 

• A process builds a growing DAG using the 
outputs provided by other processes

• A vertex of the DAG is a triple: 
– (process, f. d. value, f. d. query#)

• An arrow (p1,d1,k1) (p2,d2,k2) means that 
p1 saw d1 before p2 saw d2
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(1) The Exchange Algorithm
DAG := empty graph;
k := 0;
Forever do:
• k := k+1;
• p receives (q,DAGq)      // maybe null
• d := output of p’s failure detector
• DAG := DAG ∪ DAGq;

Add [p,d,k] to DAG and edges from all vertices 
of DAG to to [p,d,k];
Send (p,DAG) to all processes

(1) The Exchange Algorithm

p1

p2

p3

null FD: d1

(p1,[p1,d1,1])

[p1,d1,1]

FD: d2 [p1,d1,1] [p2,d2,1]

FD: d3

[p1,d1,1] [p2,d2,1]

[p3,d3,1]

[p1,d1,1] [p2,d2,1]
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(1) The Exchange Algorithm

p1

p2

p3

null FD: d1

(p1,[p1,d1,1])

[p1,d1,1]

FD: d2 [p1,d1,1] [p2,d2,1]

FD: d3

[p1,d1,1] [p2,d2,1]

[p3,d3,2]

[p1,d1,1] [p2,d2,1]

null [p3,d3,1] FD: d3

[p3,d3,1]

Properties of Local DAGs

• For any correct process p and time t
(1) DAGp(t) is transitively closed

An easy induction

(2) There is a time t’≥t, d and k such 
that ∀v∈Vertices(DAGp(t)), v (p,d,k) is 
an edge of  DAGp(t’)

[p1,d1,1] [p2,d2,1]

[p3,d3,2][p3,d3,1]

t t’
[p3,d3,3]
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Properties of Local DAGs

• The DAG of each correct process is ever 
increasing finite approximation of the 
same infinite limit graph
– The common portion of correct process DAGs

grows without limit 

(2) The Simulation 

• Every process pi uses its DAG to simulate 
runs of A in the system, i.e., every process 
locally plays the role of all other processes

• Whenever pi updates its DAG, pi triggers 
runs of A for:
– All paths in the DAG
– All input vectors I0, I2,.. In, where Ii makes 

processes p1-pi propose 1 and the rest 
propose 0
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(2) The Simulation

pi

pi simulates runs of A for each
(0000), (1000),(1100),(1110),(1111)

(2) The Simulation

Forever do:
• p receives (q,DAGq)      // maybe null
• d := output of p’s failure detector
• DAG := DAG ∪ DAGq;

Add [p,d] to DAG and edges from all 
vertices of DAG to to [p,d];
Simulate(A,DAG);
Send (p,DAG) to all processes
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The Simulation Algorithm

For each I=Ij, 0≤j≤n do 
YI := ∅;
For each path g in DAGp:

Rg := a run of A from I with the 
sequence of failure detector events 
induced by g;
YI := YI ∪ Rg;

Simulation output is a collection of trees YIj

(2) The Simulation

Forever do:
• p receives (q,DAGq)      // maybe null
• d := output of p’s failure detector
• DAG := DAG ∪ DAGq;

Add [p,d] to DAG and edges from all 
vertices of DAG to to [p,d];
{YI0,…,YIn} := Simulate(A,DAG);
Send (p,DAG) to all processes
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Properties of the simulation
at correct processes

S
only correct processes

Property 1: For any vertex S of YI, there 
exists a finite trace E  containing only the steps 
of correct process such that S·E is in YI and 
all correct process decide in S·E

I

Intuition Behind Property 1
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An Example

[p1,d1,1]

[p2,d2,1]

[p3,d3,1] [p3,d3,2] [p3,d3,1]

[p2,d2,1]

(3) Tagging
Forever do:
• p receives (q,DAGq)      // maybe null
• d := output of p’s failure detector
• DAG := DAG ∪ DAGq;

Add [p,d] to DAG and edges from all vertices of 
DAG to to [p,d];
{YI0,…,YIn} := Simulate(A,DAG);
TAG({YI0,…,YIn});
Send (p,DAG) to all processes
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The Tagging Algorithm

• For every vector YIj: Tag Ij as
– 0-valent if only 0 are decided in YIj

– 1-valent if only 1 are decided in YIj

– Bivalent if both 0 and 1 are decided in 
YIj

(3) Tagging
Forever do:
• p receives (q,DAGq)      // maybe null
• d := output of p’s failure detector
• DAG := DAG ∪ DAGq;

Add [p,d] to DAG and edges from all vertices of 
DAG to to [p,d];
{YI0,…,YIn} := Simulate(A,DAG);
Tagged_forest := TAG({YI0,…,YIn});
Send (p,DAG) to all processes
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Tagging Properties

• By validity of consensus, I0 is always 
tagged  as 0-valent and In as 1-valent 

• Other 0 or 1-valent input vector can only 
get tagged bivalent 

• A bivalent input vector stays bivalent 
forever

Critical Index

• There is some index k in the sequence of 
vectors such that Ik-1 is 0-valent and Ik is 
not: k is called the critical index

• If Ik is 1-valent, then pi trusts pk

• (we do not consider here the more 
complicated case when Ik is bivalent)
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(4) The Stabilization

• Eventually, the critical index at a given 
process does not change anymore: this is 
because the index can only decrease and 
cannot go lower than 1

• All DAGs converge to the same infinite 
DAG and the same critical index k is 
eventually computed at all processes

(5) The Extraction
Forever do:
• p receives (q,DAGq)      // maybe null
• d := output of p’s failure detector
• DAG := DAG ∪ DAGq;

Add [p,d] to DAG and edges from all vertices of DAG to 
to [p,d];
{YI0,…,YIn} := Simulate(A,DAG);
Tagged_forest := TAG({YI0,…,YIn});
p := Extract_Leader(Tagged_forest);
Output p;
Send (p,DAG) to all processes
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The Extraction Algorithm

If k is critical then 
If Ik-1 is 0-valent and Ik is 1-valent then

return pk;
else // Ik-1 is 0-valent and Ik is bivalent then

Look for decision gadgets;
choose a process based on a 
deterministically chosen decision 
gadget;

Correctness of Extraction

Claim: Eventually, (1) all correct processes 
permanently return the same process pk
and (2) pk correct

Proof:
(1) At each correct process, the critical 
index eventually stabilizes at k.
It is eventually the same at all processes.
All correct processes return pk
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Correctness of Extraction

(2) Assume pk crashes

Ik-1, tag(Ik-1)=0 Ik, tag(Ik)=1

Run without pk where
all processes decide

A contradiction

Decision Gadgets: Fork

S (bivalent)

Ik, tag(Ik)=Bivalent

p p

S1 (1-valent) S0 (0-valent)

Run without p where
all processes decide 0

p is correct
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Decision Gadgets: Hook

S (bivalent)
p’ p

S1 (1-valent)

S0 (0-valent)

Ik, tag(Ik)=Bivalent

p’

Run without p where
all processes decide 0

p is correct

What people think ☺

• Actual replies I’ve got when enquiring 
about an instructional material on CHT
– My advice is: don't do it!
– I tried to understand it for a while and gave up
– It's a terrible proof
– It’s mind-boggling
– No way I'm going to try and teach it in a class


