
1

The Weakest Failure Detector
for Consensus

References and Thanks

• [CHT] Chandra, Hadzilacos and Toueg,
The Weakest Failure Detector for Solving
Consensus, JACM 43(4), 1996

• Gärtner, Guerraoui and Kouznetsov, The
CHT Play
– A highly recommended informal and very

accessible overview of the CHT proof
• Some of the following slides were provided

by Rachid Guerraoui

2

What we need to prove

• To prove that a failure detector class C is the
weakest for a problem P, one needs to show
that
– If: P can be solved with D∈C, and
– Only if: For all C’ that can be used to solve P, C’≥C

• ◊S= ◊W is sufficient for Consensus with n>2t
• Need to prove that for all D that can be used to

implement Consensus, D ≥ ◊W with n>2t

The Outline

• Define a failure detector Ω (leader oracle):
– Output: process id
– Eventually all correct processes permanently output

the same process id p ,and p is correct
• Lemma 1: For any failure environment: Ω ≥ ◊W

– Proof:?
• Lemma 2: For any failure environment:

If D solves Consensus, then D ≥ Ω
– Proof: ? ☺

A question: Is it possible that Ω > ◊W?

3

The Outline

• Theorem: For any failure environment:
If D can be used to solve Consensus,
then D ≥ ◊W

Proof:
• If D solves Consensus, then D ≥ Ω

(Lemma 2). Ω ≥ ◊W (Lemma 1).
Transitivity: If D solves Consensus, then
D ≥ ◊W

D solves Consensus ⇒ D ≥ Ω

• Let A be a consensus algorithm using D
• Construct an algorithm T that emulates Ω

on top of D

4

Overview of the emulation
1. The exchange

2. The simulation

3. The tagging

4. The stabilization

5. The extraction

(1) The Exchange

• Every process periodically queries its
failure detector module (D) and sends all
outputs it has seen to all

• A process builds a growing DAG using the
outputs provided by other processes

• A vertex of the DAG is a triple:
– (process, f. d. value, f. d. query#)

• An arrow (p1,d1,k1) (p2,d2,k2) means that
p1 saw d1 before p2 saw d2

5

(1) The Exchange Algorithm
DAG := empty graph;
k := 0;
Forever do:
• k := k+1;
• p receives (q,DAGq) // maybe null
• d := output of p’s failure detector
• DAG := DAG ∪ DAGq;

Add [p,d,k] to DAG and edges from all vertices
of DAG to to [p,d,k];
Send (p,DAG) to all processes

(1) The Exchange Algorithm

p1

p2

p3

null FD: d1

(p1,[p1,d1,1])

[p1,d1,1]

FD: d2 [p1,d1,1] [p2,d2,1]

FD: d3

[p1,d1,1] [p2,d2,1]

[p3,d3,1]

[p1,d1,1] [p2,d2,1]

6

(1) The Exchange Algorithm

p1

p2

p3

null FD: d1

(p1,[p1,d1,1])

[p1,d1,1]

FD: d2 [p1,d1,1] [p2,d2,1]

FD: d3

[p1,d1,1] [p2,d2,1]

[p3,d3,2]

[p1,d1,1] [p2,d2,1]

null [p3,d3,1] FD: d3

[p3,d3,1]

Properties of Local DAGs

• For any correct process p and time t
(1) DAGp(t) is transitively closed

An easy induction

(2) There is a time t’≥t, d and k such
that ∀v∈Vertices(DAGp(t)), v (p,d,k) is
an edge of DAGp(t’)

[p1,d1,1] [p2,d2,1]

[p3,d3,2][p3,d3,1]

t t’
[p3,d3,3]

7

Properties of Local DAGs

• The DAG of each correct process is ever
increasing finite approximation of the
same infinite limit graph
– The common portion of correct process DAGs

grows without limit

(2) The Simulation

• Every process pi uses its DAG to simulate
runs of A in the system, i.e., every process
locally plays the role of all other processes

• Whenever pi updates its DAG, pi triggers
runs of A for:
– All paths in the DAG
– All input vectors I0, I2,.. In, where Ii makes

processes p1-pi propose 1 and the rest
propose 0

8

(2) The Simulation

pi

pi simulates runs of A for each
(0000), (1000),(1100),(1110),(1111)

(2) The Simulation

Forever do:
• p receives (q,DAGq) // maybe null
• d := output of p’s failure detector
• DAG := DAG ∪ DAGq;

Add [p,d] to DAG and edges from all
vertices of DAG to to [p,d];
Simulate(A,DAG);
Send (p,DAG) to all processes

9

The Simulation Algorithm

For each I=Ij, 0≤j≤n do
YI := ∅;
For each path g in DAGp:

Rg := a run of A from I with the
sequence of failure detector events
induced by g;
YI := YI ∪ Rg;

Simulation output is a collection of trees YIj

(2) The Simulation

Forever do:
• p receives (q,DAGq) // maybe null
• d := output of p’s failure detector
• DAG := DAG ∪ DAGq;

Add [p,d] to DAG and edges from all
vertices of DAG to to [p,d];
{YI0,…,YIn} := Simulate(A,DAG);
Send (p,DAG) to all processes

10

Properties of the simulation
at correct processes

S
only correct processes

Property 1: For any vertex S of YI, there
exists a finite trace E containing only the steps
of correct process such that S·E is in YI and
all correct process decide in S·E

I

Intuition Behind Property 1

11

An Example

[p1,d1,1]

[p2,d2,1]

[p3,d3,1] [p3,d3,2] [p3,d3,1]

[p2,d2,1]

(3) Tagging
Forever do:
• p receives (q,DAGq) // maybe null
• d := output of p’s failure detector
• DAG := DAG ∪ DAGq;

Add [p,d] to DAG and edges from all vertices of
DAG to to [p,d];
{YI0,…,YIn} := Simulate(A,DAG);
TAG({YI0,…,YIn});
Send (p,DAG) to all processes

12

The Tagging Algorithm

• For every vector YIj: Tag Ij as
– 0-valent if only 0 are decided in YIj

– 1-valent if only 1 are decided in YIj

– Bivalent if both 0 and 1 are decided in
YIj

(3) Tagging
Forever do:
• p receives (q,DAGq) // maybe null
• d := output of p’s failure detector
• DAG := DAG ∪ DAGq;

Add [p,d] to DAG and edges from all vertices of
DAG to to [p,d];
{YI0,…,YIn} := Simulate(A,DAG);
Tagged_forest := TAG({YI0,…,YIn});
Send (p,DAG) to all processes

13

Tagging Properties

• By validity of consensus, I0 is always
tagged as 0-valent and In as 1-valent

• Other 0 or 1-valent input vector can only
get tagged bivalent

• A bivalent input vector stays bivalent
forever

Critical Index

• There is some index k in the sequence of
vectors such that Ik-1 is 0-valent and Ik is
not: k is called the critical index

• If Ik is 1-valent, then pi trusts pk

• (we do not consider here the more
complicated case when Ik is bivalent)

14

(4) The Stabilization

• Eventually, the critical index at a given
process does not change anymore: this is
because the index can only decrease and
cannot go lower than 1

• All DAGs converge to the same infinite
DAG and the same critical index k is
eventually computed at all processes

(5) The Extraction
Forever do:
• p receives (q,DAGq) // maybe null
• d := output of p’s failure detector
• DAG := DAG ∪ DAGq;

Add [p,d] to DAG and edges from all vertices of DAG to
to [p,d];
{YI0,…,YIn} := Simulate(A,DAG);
Tagged_forest := TAG({YI0,…,YIn});
p := Extract_Leader(Tagged_forest);
Output p;
Send (p,DAG) to all processes

15

The Extraction Algorithm

If k is critical then
If Ik-1 is 0-valent and Ik is 1-valent then

return pk;
else // Ik-1 is 0-valent and Ik is bivalent then

Look for decision gadgets;
choose a process based on a
deterministically chosen decision
gadget;

Correctness of Extraction

Claim: Eventually, (1) all correct processes
permanently return the same process pk
and (2) pk correct

Proof:
(1) At each correct process, the critical
index eventually stabilizes at k.
It is eventually the same at all processes.
All correct processes return pk

16

Correctness of Extraction

(2) Assume pk crashes

Ik-1, tag(Ik-1)=0 Ik, tag(Ik)=1

Run without pk where
all processes decide

A contradiction

Decision Gadgets: Fork

S (bivalent)

Ik, tag(Ik)=Bivalent

p p

S1 (1-valent) S0 (0-valent)

Run without p where
all processes decide 0

p is correct

17

Decision Gadgets: Hook

S (bivalent)
p’ p

S1 (1-valent)

S0 (0-valent)

Ik, tag(Ik)=Bivalent

p’

Run without p where
all processes decide 0

p is correct

What people think ☺

• Actual replies I’ve got when enquiring
about an instructional material on CHT
– My advice is: don't do it!
– I tried to understand it for a while and gave up
– It's a terrible proof
– It’s mind-boggling
– No way I'm going to try and teach it in a class

