
1

Circumventing Impossibility

Partial Synchrony

Circumventing Impossibility

• Consensus is an important building block
for fault-tolerant computing
– Universal: any deterministic fault-tolerant

service can be implemented on top of it
• Yet, it is impossible in very practical

environments
– Asynchronous systems
– Are they really practical?

2

Circumventing Impossibility

• Key observation: most practical settings
are never completely asynchronous
– We could expect interleaving, arbitrarily long

periods of synchrony and asynchrony
• Synchrony assumptions:

– Ways to formally capture types of semi-
synchronous behavior found in practice

– Implementability of Consensus under various
assumptions

Sources of timing uncertainty

YY
Shared memory
with objects

NAY
Shared memory
with variables

YY
Message
passing

Message/access
delay

Relative process
speeds

3

Synchrony Assumptions

• Real time clock
– At each tick of the clock some processes take exactly

one step of their protocol
• Bounded relative process speeds:

– ∃ integer Φ>0: in any time interval in which some
process takes Φ real time steps, each correct process
takes at least 1 step

• Bounded message delay:
– ∃ integer ∆>0: if p sends m to q at time t, then q

receives m by the time t+∆

More assumptions

• Messages are received in the order which
respects the real time order of their send
events

• Atomic broadcast is available
• Atomic receive/send

4

Dolev, Dwork and Stockmeyer, “On Minimal
Synchronism Needed for Distributed Consensus”

nn00nn0010

nnnnnnnn11

1nn10n0001

0n000n0000

1011010010110100
mb

pc

s=0 s=1
Crash failures

Partial Synchrony

Φ and ∆
• Processes (communication) are (is)

partially synchronous if Φ (∆) holds
eventually (◊)
– Synchronous if Φ (∆) holds always

Φ (∆) holds eventually
– There exists a Global Stabilization Time

(GST) such that Φ (∆) holds in [GST,∞)

Dwork, Lynch and Stockmeyer, Consensus in the Presence of Partial Synchrony

5

Models of Partial Synchrony

Processes

Communication

s s,Φ=? ps ps,Φ=?
s

s,∆=?

ps

ps,∆=?

Failures

crash
omission

Byzantine

auth Byz

64 possible combinations

Summary of the DLS Results

2t+12t+12t+1∞tOmissi
on

3t+13t+13t+1∞3t+1Byz.

2t+13t+13t+1∞t*Auth.
Byz

t2t+12t+1∞tCrash

∆, ◊Φ◊∆, ◊Φ◊∆,ΦAsynchSynchFailure
type

ALL BOUNDS ARE TIGHT

6

System Components

Partially Synchronous Environment
with failures

Round Simulation

Consensus Algorithm

Round Simulation
(Basic Round Model)

• Abstracts away timeliness assumptions
– The failure models stay the same
– 4 Consensus algorithms, 64 round

simulations
• Processing is divided into rounds
• Each round consists of

– Send sub-round
– Receive sub-round
– Computation sub-round

7

The round structure

• Send sub-round:
– Each process sends messages to any subset of the

processes
• Receive sub-round:

– Some subset of the messages sent to the process
during the send sub-round are delivered

• Computation sub-round:
– Each process executes a state transition based on

the set of messages just received

Requirements

• There is a round GST such that
– All messages sent from correct processes to

correct processes at r ≥ GST are delivered
during r

• Processes do not know when GST occurs

8

Crash and Omission failures

• n processes: p1,…,pn

• n/2 resilient Consensus
• NU Agreement, Strong Unanimity and

Termination

The protocol structure
Round 1
Round 2
Round 3
Round 4
…
Round 4k-3
Round 4k-2
Round 4k-1
Round 4k
…

Phase 1

Phase k

Phase k is coordinated by a process pi: i ≡ k mod n

9

Phase k ≡ i mod n
• pj: send (list,k) to pi, where

– list = {v}, if v is the only locked v ∈V
– list = V, if no values are locked
– list = ∅, otherwise

• pi: w is in lists of ≥ n-t processes
– Send (lock, w, k) to all processes

• pj: receives (lock, w, k)
– Lock w (ulocks previous locks for w),
– send (ack, k) to pi

• pi: receives (ack, k) from t+1 processes:
– Decide w, but does not halt

round 1 of k

round 2 of k

round 3 of k

Phase k ≡ i mod n

• Round 4 of k: Lock-release
• pj: broadcasts (v,h) for each v such that v

was locked by pj at phase h
• pj: receives (w,h’) from some process:

– If pj locked (v,h) with v≠w and h≤h’ unlock
(v,h)

10

Agreement

• Let k be the smallest phase at which some
process decides
– pi, i=k mod n decides v

• at least t+1 processes locked v at
phase k

• it is impossible for any further
coordinator to lock a different value since
any two sets of sizes n-t and t+1 intersect

Validity

• Very weak validity is satisfied
– More than a single decision is possible

• Achieving weak (strong) unanimity is a
simple exercise
– And is left as such ☺

11

Termination

• After GST all processes learn about the
highest phase value locked by any
process (if any) at most one value v is
locked by all correct processes

• All processes will send to the coord. either
v or the entire set V (which includes v)

• The coordinator will see some value
appearing ≥n-t times, etc…

Authenticated Byzantine

• A simple modification of the algorithm:
– Every message is signed
– Proposals have a sequence of n-t signed

messages attached as a proof
– Everybody verifies proofs, signatures

12

Impossibility for 2≤n≤2t

• Partition n processes into two sets each of
which is of size at least 1 and at most t

• Initialize each set with conflicting values
• Fail either set to force conflicting decisions

in two different executions
• Combine these two executions to achieve

an execution with conflicting decisions

