
1

Shared Objects

Shared Objects

• Invoked operations have a non-zero 
duration
– Invocations can overlap

• Useful for: 
– modeling distributed shared memory
– Objects can be combined together to 

implement higher level objects
• The problem: Specify object behavior 

under concurrent access



2

Sequential vs Concurrent

• Type: same as before
– Function f is called sequential specification

• Sequential:
– Object has meaningful state between 

invocations
• Concurrent

– Because invocations overlap, object might 
never be between invocations

Exercise: Define a shared Consensus object
Exercise: Define a shared Non-Blocking Atomic Commit (NBAC) object or argue
that no such meaningful object can be defined

Atomicity

• A safety property of concurrent objects
• A sequence α of invocations and 

responses of an object O satisfies 
atomicity if
– Every complete (and some incomplete) 

operation in α appears to take effect in a point 
between the invocation and the response



3

Shared FIFO Queue

enq(x)

enq(y) deq(x)

deq(y)

Atomic or not?

YES!

time

Shared FIFO Queue

enq(x)

enq(y)

deq(y)

Atomic or not?

No!

time



4

Shared FIFO Queue

deq(x)

Atomic or not?

Yes!

time

enq(x)

Shared R/W register

time

write(0) read(1) write(2)

write(1) read(0)

Atomic or not?
No!



5

Shared R/W register

time

write(0) read(1) write(2)

write(1) read(1)

Atomic or not?
No!

Shared R/W register

time

write(0) read(1) write(2)

write(1) read(2)

Atomic or not?
Yes!



6

Power of Atomic Objects

• Consensus # of atomic registers is 1
– Weaker than atomic variables

• Consensus # of FIFO Queue is 2
– Stack, Set, priority queue, double-ended 

queue

Implementability

• Is FIFO queue implementable from R/W 
registers?
– No. Otherwise, we can solve wait-free 

Consensus for 2 processes using registers
• Are CAS, TS, FAA, etc., are 

implementable using R/W registers?
– No. Otherwise can solve wait-free Consensus 

for n≥2 processes using registers



7

Universality of Consensus

• For any object O with a deterministic 
sequential specification, there exists a 
wait-free implementation of O from a 
collection of atomic Consensus objects 
and R/W registers 

Comment: What about a simple algorithm for that?

More Safety Properties for R/W 
registers

• Single-Writer/Multi-Reader registers
• Safe register:

– Each read that does not overlap a write returns the 
value of the latest non-overlapping write

– The result is undefined for a read overlapping a write 
(may be any value in the register domain)

write(1) write(2)write(0)

read(0xffffffffffff)
read(2)



8

Regular Register

• Each read that does not overlap a write 
returns the value that is not older than the 
value written by the latest non-overlapping 
write

write(1)

read(1)

read(0)

write(0)

read(1)

Comment: It might be interesting to talk about multi-writer regular registers

Atomic Register

write(1)

read(1)

read(1)

write(0)

read(1)



9

Register Space

Picture © Maurice Herlihy and Nir Shavit

Computability

• The weakest possible register is SRSW 
Boolean safe register

• Wait-free MRMW atomic registers are 
implementable from SRSW Boolean safe 
registers!
– Involves a long, hard to follow reduction chain 

spanning about 30 papers
Peterson, Concurrent Reading While Writing, 1983

Lamport, On Interprocess Communication, Parts I, II, 1985



10

Some constructions

• From SRSW safe bit to SRSW regular bit:
write(v):

if (old != v) then
write(val, v);
old := v;

read():
return val;

Some Constructions
• SRSW m-valued regular from regular bits
• An array x[m] of regular bits
write(v):

write(x[v], 1);
for (i=v-1; i >=1; i--)

write(x[i],0);
read()

for (i=1; i<= m; i++)
if (read(x[i]) != 0) 

return i;



11

Constructions Summary

• It is possible to construct SRSW m-valued 
regular register from SRSW Boolean safe 
registers
– etc…

• The second construction requires Θ(m) 
space

• There are many Θ(log(m)) constructions 

Termination Conditions

• Wait Freedom: Each operation by a 
correct process is complete

• Lock Freedom: Each operation by a 
correct process is complete unless 
infinitely many operations are complete

• Obstruction Freedom: Each operation by a 
correct process is complete unless it is 
concurrent to an operation by a correct 
process

Comment: resilience and different termination conditions are actually orthogonal



12

Termination Conditions

• Wait-free and lock-free Consensus are 
both impossible with registers

• Obstruction-free Consensus is possible 
with registers!
– Paxos

• Objects can be implemented simpler and 
more efficient with obstruction freedom
– Use a separate “contention manager” to 

resolve contention
Exercise: Prove that lock-free Consensus is impossible with registers
Exercise: Give an obstruction-free atomic snapshot algorithm


