

Shared Memory Models

- Asynchronous
 - No rounds: computation step is a *single* state transition of *some* process
- Two types of IPC:
 - Strongly coupled: through shared variables
 - Mutual exclusion, lower bounds
 - Loosely coupled: through shared objects
 - More general and flexible

- S. v. semantics are defined by its type
- Shared variable type:
 - A set V of values
 - An initial value $v_0 \in V$
 - A set of invocations
 - A set of responses
 - A function f: invocations \times V \rightarrow responses \times V

Consensus in an Asynchronous Shared Memory with Registers

- n processes
- n 1-writer/multi-reader shared registers
- Initial value of i is in a local variable x_i
- Decision is written to a local variable y_i
- Any number of t<n of processes can fail by stopping

Consensus Requirements

- Agreement and Validity as before
- Termination: In a fair execution, each correct process eventually decides
 - Fairness: In an infinite execution, all correct processes must take infinitely many steps
 - This termination requirement is called *wait* freedom

Lemma 1 • If $-C_1$ and C_2 are univalent states $-C_1$ and C_2 are indistinguishable to process i • Then, $-C_1$ is v-valent iff C_2 is v-valent for $v \in \{0,1\}$

Lemma 2

• There exists a bivalent initial state

- $0...0 \rightarrow 0$ -valent, $1...1 \rightarrow 1$ -valent
- 01...1 looks like 0...0 to process 1
 Lemma 1→01...1 is 0-valent
- 01...1 looks like 1...1 to process 2 – Lemma 1→01...1 is 1-valent
- 01...1 is bivalent

Consensus and CAS

 Wait-free Consensus can be solved using CAS for any n>0

Consensus Numbers

- A variable type T has a Consensus number k if
 - Wait-free Consensus can be solved using shared variables of type T and registers for n=k
 - Wait-free Consensus cannot be solved using shared variables of type T and registers for n=k+1

