
Byzantine Disk Paxos

Byzantine Disk Paxos -- The Setup

...

...

Processes
(can suffer crash failures)

Shared Memory Objects
(can suffer NR-arbitrary failures)

Ω Leader Oracle

Byzantine Disk Paxos -- The Setup

...

...

Processes
(can suffer crash failures)

Shared Memory Objects
(can suffer NR-arbitrary failures)

Ω Leader OracleHow can we solve
consensus?

Byzantine Disk Paxos -- The Basic Idea

...

...

How can we solve
consensus?

Emulate Reliable Registers:
(We saw this two weeks ago.)

Byzantine Disk Paxos -- The Basic Idea

...

...

How can we solve
consensus?

Emulate Reliable Registers:
In ACKM* two types of registers:

* Wait-free SWMR safe

* FW-termination SWMR regular

Tolerates t < n/3 memory object
failures – a tight bound.**

* I. Abraham, G. Chockler, I. Keidar, and D. Malkhi. Byzantine Disk Paxos: Optimal Resilience with Byzantine Shared Memory
** J-P. Martine, L. Alvisi, and M. Dahlin. Minimal byzantine storage. In Proceedings of the 16th International Symposium on
Distributed Computing (DISC), October 2002.

Byzantine Disk Paxos -- The Basic Idea

...

...

How can we solve
consensus?

Emulate Reliable Registers:
In ACKM* two types of registers:

* Wait-free SWMR safe
Can convert to regular using known
procedures,* and solve with
Disk Paxos approach.**

* FW-termination SWMR regular
ACKM provides Disk Paxos style
algorithm, and proves it works
with FW registers.

* L. Lamport. On interprocess communication – part ii: Algorithms. Distributed Computing, 1(2):86-101, 1986
** E. Gafni and L. Lamport. Disk paxos. Distributed Computing, 16(1):1-20, 2003.

Byzantine Disk Paxos -- The Basic Idea

...

...

How can we solve
consensus?

Emulate Reliable Registers:
In ACKM* two types of registers:

* Wait-free SWMR safe
Can convert to regular using known
procedures,* and solve with
known approach.**

* FW-termination SWMR regular
ACKM provides Disk Paxos style
algorithm, and proves it works
with FW registers.

* L. Lamport. On interprocess communication – part ii: Algorithms. Distributed Computing, 1(2):86-101, 1986
** E. Gafni and L. Lamport. Disk paxos. Distributed Computing, 16(1):1-20, 2003.

Byzantine Disk Paxos -- Consensus w/ FW-terminating Registers and Ω

Based on existing shared memory consensus algorithms:

E. Gafni and L. Lamport. Disk paxos. Distributed Computing, 16(1):1-20, 2003

W. K. Lo and V. Hadzilacos. Using failure detectors to solve consensus in asynchronous
shared-memory systems. In Proceedings of the 8th International Workshop on
Distributed Algorithms (WDAG), pages 280-295. Springer-Verlag, 1994.

Byzantine Disk Paxos -- Consensus w/ FW-terminating Registers and Ω

Algorithm Setup:

* m processes
* m FW-terminating SWMR regular registers (x1...xm)
* distributed leader oracle

Byzantine Disk Paxos -- Consensus w/ FW-terminating Registers and Ω

Pseudo-Pseudo Code for Process i:
bal <-- i; (1)
val <-- <initial value>; (2)

while (true) do (3)

if you trust yourself then (4-5)
reset register by writing <bal,_,_>; (6)
read all registers and store values; (7)
if you have the largest ballot number in read set then (8)

choose a proposal value val by examining the read set; (9-10)
propose val by writing <bal,val,pc> to register; (11)
read all registers (again) and store values; (12)
if your proposed ballot number is largest then (13)

write <bal,val,c> to register; (14)
decide and halt; (15)

increase bal; (16)

else (17)

read register of process you trust; (18)
if value is a decision value then (19)

decide the same and halt; (20)

Byzantine Disk Paxos -- Consensus w/ FW-terminating Registers and Ω

Validity:

Obvious, as every proposed value is a process's initial value
or a previously proposed value.

Byzantine Disk Paxos -- Consensus w/ FW-terminating Registers and Ω

Termination:

1) Every fair execution eventually reaches a point after which no more
failures occur, and every correct process trusts the same correct
process k.

2) After this point, all processes that are not k can do at must two writes
(lines 11 and 14) before looping on the non-leader read (line 18).

3) FW-termination then saves the day, as with all processes finishing
their writes, k can be guaranteed to finish its reads. It will then continually
loop through the leader case, incrementing its ballot number each
iteration (line 16) until it decides.

4) Once k decides, no more writes will happen ever again. Therefore,
by FW-termination, all the non-k processes will complete their read
operations (line 18), see k's decision value, and decide the same.

Byzantine Disk Paxos -- Consensus w/ FW-terminating Registers and Ω

Agreement (part 1):

1) Assume b1 is the lowest ballot at which some process decides.
Assume process i decides v1 with this ballot.

2) Process k comes along and proposes v2 with ballot b2 > b1.

3) We will show v2 = v1 which implies agreement as processes
only decide the value they just proposed with the same ballot.

Use induction on b >= b1:

The base case b = b1 is trivial (unique ballot numbers).

For the inductive step, assume the result holds for b, b1 <= b < b2.

Byzantine Disk Paxos -- Consensus w/ FW-terminating Registers and Ω

Agreement (part 2):

Back to process k proposing v2 with ballot b2 > b1:

4) Process i decided v1 with ballot number b1. What does this tell us?
First, process i first proposed v1 with ballot number b1 (line 11),
then it read all values (line 12) and its ballot number was still
the highest...

5) ...therefore, process k's register clearing write (line 6) did not occur
until after process i started its post-proposal read (line 12).

6) This is good because it shows that process k does not do its initial read (line 7)
until after process i's proposal (remember, at this point, process i is at
least line 12 on its way to deciding...its proposal occurred at line 11).

Byzantine Disk Paxos -- Consensus w/ FW-terminating Registers and Ω

Agreement (part 3):

7) Therefore, process k will read <b1, v1, *> (line 7) so we know:

* Process k's test for existing proposals (line 9) returns true...

* Process k will choose a pre-existing proposal value v'
with ballot b' >= b1...

* To get to line 9 the test at line 8 must have been true,
so b' <= b2...can reduce to strictly b' < b2.

* To have read <b', v', *> this value must have been proposed
at b1 <= b' < b2...

* This brings us back to the induction hypothesis which says
v' = v1, so process k will propose value v = v' = v1.

